Uniqueness of Embeddings of the Affine Line into Algebraic Groups

Peter Feller Department of Mathematics, Boston College, United States peter.feller@math.ch

Immanuel van Santen né Stampfli Fachbereich Mathematik, University of Hamburg, Germany immanuel.van.santen@math.ch

Introduction

We study (algebraic) embeddings $X \to Y$ of varieties over the complex numbers \mathbb{C} up to (algebraic) automorphisms of Y. We say that two closed (algebraic) embeddings $f, g: X \to Y$ are *equivalent* if there exists an automorphism $\varphi: Y \to Y$ such that $\varphi \circ f = g$.

Problem

For varieties X and Y, describe the equivalence classes of closed embeddings $X \rightarrow Y$.

We consider embeddings of the affine line \mathbb{C} into varieties Y that arise as underlying

Main Result

Theorem

Let *G* be a connected affine algebraic group. Then two embeddings of the affine line \mathbb{C} into *G* are equivalent provided that *G* is not isomorphic as a variety to a product of a torus $(\mathbb{C}^*)^k$ and one of the three varieties \mathbb{C}^3 , $SL_2(\mathbb{C})$, and $PSL_2(\mathbb{C})$.

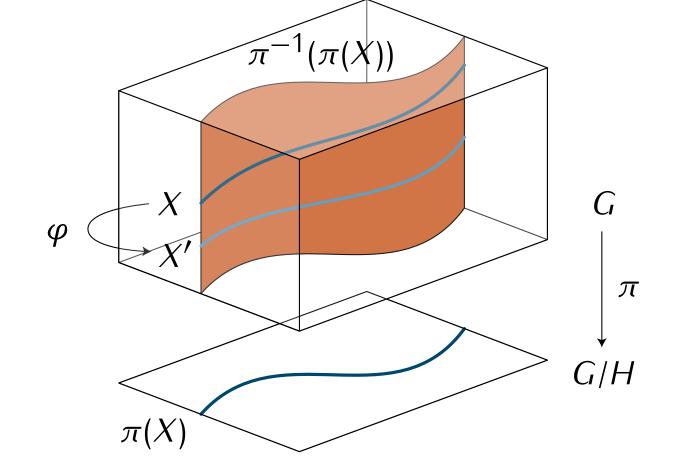
In particular, \mathbb{C} embeds uniquely (up to automorphisms) into algebraic groups without nontrivial characters of dimension different than 3. The special case, when $G = SL_n$ for $n \ge 3$ is done by the second author [Sta15].

varieties of *(affine) algebraic groups*.

Tools

Moving Tool. Let X be a curve in an algebraic group G that is isomorphic to \mathbb{C} . The following is the main tool to move X in G via an automorphism of G.

Let $H \subseteq G$ be a closed subgroup such that G/H is quasi-affine and let $\pi: G \to G/H$ be the quotient map. If π restricts to an embedding on X and if X' is another section of $\pi^{-1}(\pi(X)) \to \pi(X)$, then there exists an automorphism φ of G that preserves π and maps X onto X'.



Main Generic Quotient Result. In order to use our moving tool, we need results which enable us to quotient an algebraic group G by closed subgroups H such that the

Background and Further Question

Embedding problems in affine algebraic geometry are most classically considered for $Y = \mathbb{C}^n$. We recall what is known about uniqueness of embeddings of \mathbb{C} into \mathbb{C}^n . If n = 2, all embeddings are equivalent by the Abhyankar-Moh-Suzuki Theorem [AM75, Suz74]. For $n \ge 4$, again all embeddings are equivalent by the work of Srinivas [Sri91], where he in particular shows that smooth affine varieties of dimension d embed uniquely into \mathbb{C}^n whenever $n \ge 2d + 2$. The case n = 3 remains open [Kra96] and seems to be very hard. For a different point of view we consider the notion of flexible varieties as studied by various authors in [AFK⁺13]. Flexible varieties can be seen as generalization of algebraic groups without non-trivial characters. Smooth irreducible affine flexible varieties of dimension ≥ 2 have the property that all embeddings of a fixed finite set are equivalent [AFK⁺13]. Our main result states that in most algebraic groups even all embeddings of \mathbb{C} are equivalent. The following question is natural in light of our main result.

Question

Let Y be a smooth irreducible affine flexible variety of dimension at least four. Are all embeddings of \mathbb{C} into Y equivalent?

quotient map $G \rightarrow G/H$ restricts to a closed embedding on a fixed curve in G. Our main result in this direction is the following.

If *G* is simple and of rank at least two, and if *H* is a closed unipotent subgroup, then for any curve $X \subseteq G$ that is isomorphic to \mathbb{C} there exists an automorphism φ of *G* such that for generic $g \in G$ the quotient map $\pi_g \colon G \to G/gHg^{-1}$ restricts to an embedding on $\varphi(X)$:

for generic $g \in G$.

Summary

Uniqueness (up to automorphisms) of embeddings of $\mathbb C$ into different varieties:

	dim 2	dim 3	dim 4	dim 5	5 • • •
Affine space	\checkmark	?	\checkmark	\checkmark	• • •
Algebraic group without non-trivial characters		?	\checkmark	\checkmark	•••
Smooth irreducible affine flexible variety	×	?	?	?	•••
Smooth irreducible contractible affine variety	\checkmark	×	×	X	• • •

Outline of the Proof

Let G be an algebraic group and let $X \subseteq G$ be a curve that is isomorphic to \mathbb{C} . The proof of our main result divides up into four steps

- Reduce to the case when G is simple and of rank at least two. We fix then a maximal parabolic subgroup P in G. Furthermore, we denote by E the inverse image of the unique Schubert curve in the flag variety G/P under the quotient map $G \rightarrow G/P$.
- One can move X into E via an automorphism of G. This is the key step in our proof.
- If $X \subseteq E$, then there exists an automorphism ψ of G such that $\psi(X)$ is a unipotent subgroup of G.
- All embeddings of $\mathbb C$ into G with a unipotent image are equivalent.

The Key Step: Moving *X* into *E*

Let P^- be an opposite parabolic subgroup to P and denote by $\pi: G \to G/R_u(P^-)$ the quotient map with respect to the unipotent radical of P^- . We establish, that the restriction of π to E is a locally trivial \mathbb{C} -bundle and $\pi(E)$ is a big open subset of $G/R_u(P^-)$, i.e. the complement is a closed subset of codimension at least two in $G/R_u(P^-)$. One can move X into E via the following steps.

- Using our main generic quotient result, we can achieve that π restricts to an embedding on X.
- Using that $\pi(E)$ is a big open subset of $G/R_u(P^-)$ and the G-equivariancy of π , we can move X into $\pi^{-1}(\pi(E))$ and π restricts still to an embedding on X.

References

- [AM75] S. S. Abhyankar and T. T. Moh, *Embeddings of the line in the plane*, J. Reine Angew. Math. **276** (1975).
- [AFK⁺13] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg, *Flexible varieties and automorphism groups*, Duke Math. J. **162** (2013), no. 4.
- [Kra96] H. Kraft, *Challenging problems on affine n-space*, Astérisque (1996), no. 237, Exp.
 No. 802, 5. Séminaire Bourbaki, Vol. 1994/95.
- [Sri91] V. Srinivas, *On the embedding dimension of an affine variety*, Math. Ann. **289** (1991), no. 1.
- [Sta15] I. Stampfli, Algebraic embeddings of \mathbb{C} into $SL_n(\mathbb{C})$, Transformation Groups (2015).
- [Suz74] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace C², J. Math. Soc. Japan 26 (1974).

• Since $E \to \pi(E)$ is a locally trivial \mathbb{C} -bundle, it has a section $X' \subseteq E$ over $\pi(X) \cong \mathbb{C}$. Therefore, we can move X into X' with our moving tool.

