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Chapter 1

Introduction

It is a fundamental problem in mathematics to embed geometric objects into
others and to study these embeddings. Fundamental guiding questions for geo-
metric objects X, Y in this context are the following:

(A) (Existence) Does there exist an embedding of X into Y ?

(B) (Equivalence) Are two embeddings f, g : X ,! Y related by some auto-
morphism of the ambient space Y ? More formally, having two embeddings
f, g : X ,! Y , one may ask for an automorphism ' of Y such that the
following diagram commutes:

Y

X

Y

'

g

f

.

The study of these questions has a long history. We will first briefly address
some classical results concerning the existence of embeddings into the euclidean
(projective) space in di↵erent contexts; this small survey is by no means com-
plete.

A starting point of these embedding questions are the results obtained by
Whitney. By the weak Whitney embedding theorem, every closed smooth man-
ifold M can be smoothly embedded into the real euclidean space Rn as long
as n � 2 dimM + 1 [Whi36]. Based on the now called Whitney trick [Whi44],
Whitney strengthened his result to the condition n � 2 dimM . This is known
today as Whitey’s strong embedding theorem. In contrast, the real projective
space of dimension 2k for k � 0 yields an example of a 2k-dimensional smooth
manifold that does not embed into R2·2k�1 [Pet57], and thus the dimension
condition in the strong Whitney embedding theorem cannot be strengthened.

Based on Whitney’s strong embedding theorem, Nash and Kuiper were able
to prove that every Riemannian manifoldM admits a continuously di↵erentiable
isometric embedding into Rn provided that n � 2 dimM + 1 [Nas54, Kui55].
In case M is compact, the dimension condition n � 2 dimM is enough. In
contrast, a compact locally flat Riemannian manifold M cannot be four times
continuously di↵erentiable isometrically embedded into the euclidean space of
dimension 2 dimM � 1 [CK52].
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4 CHAPTER 1. INTRODUCTION

In contrast to the embedding theorems due to Whitney, Nash and Kuiper
there is a much weaker dimension condition for Stein manifolds. In fact, ev-
ery Stein manifold M with dimM > 1 admits a holomorphic embedding into
the complex euclidean space Cn if n > 3

2 dimM by Eliashberg-Gromov and
Schürmann [EG92, Sch97]. Examples of Forster show that this dimension con-
dition cannot be improved [For70], when dimM > 1. It is still an open problem
whether every open Riemann surface can be holomorphically embedded into C2.

In algebraic geometry, there are the following existence results concerning
embeddings into the complex projective space Pn(C) and into the complex a�ne
space Cn: If X is a smooth projective (a�ne) algebraic variety, then there exists
an algebraic embedding into Pn(C) (into Cn), provided that n � 2 dimX +
1 by Theorems due to Holme [Hol75], Kaliman [Kal91] and Srinivas [Sri91].
By Theorems of Horrocks-Mumford [HM73] and Van de Ven [VdV75] (in the
projective case), and by a Theorem of Bloch-Murthy-Szpiro [BMS89] (in the
a�ne case), these dimension conditions are also optimal. There are also versions
for singular varieties due to Holme [Hol75], Kaliman [Kal91] and Srinivas [Sri91].

Concerning the equivalence of embeddings into euclidean space, one has
the following classical results: By Kaliman [Kal91] and Srinivas [Sri91], two
algebraic embeddings of a smooth a�ne variety into Cn are the same up to an
algebraic automorphism of Cn, provided that n > 2 dimX+1. Analogous results
hold as well in di↵erent settings, see e.g. [Jel09]: In particular, two embeddings
of a smooth compact real manifold (compact real analytic manifold) into Rn are
the same up to a di↵eomorphism (real analytic automorphism) of Rn, provided
that n > 2 dimX + 1.

Focusing on more specific settings in a�ne algebraic geometry, the famous
Abhyankar-Moh-Suzuki Theorem [AM75, Suz74] says that up to algebraic auto-
morphisms of the a�ne plane C2 there exists exactly one algebraic embedding
of the a�ne line C into C2. This result holds more generally for so-called cus-
pidal curves (i.e. the normalization is isomorphic to the a�ne line) instead of
the a�ne line by a theorem due to Lin-Zaidenberg [ZL83]. Another example is
the following: The union of all the coordinate hyperplanes in the a�ne space
Cn has a unique embedding up to automorphisms of Cn by Jelonek [Jel97].

It is natural to ask the above embedding questions for more general targets
than the euclidean space. The first part of my results I will present in this
habilitation, concern exactly these questions in the context of a�ne algebraic
geometry. I.e. the geometric objects under consideration are zero sets of poly-
nomials in finitely many variables and the considered embeddings are given by
polynomial maps. Mostly, I considered the case where the target is an alge-
braic group. This is joint work with my collaborators Peter Feller and Jérémy
Blanc. Related to these embedding questions, in the algebraic context, I studied
together with Stefan Maubach maximal C-subalgebras of a given C-algebra.

In order to attack these embedding questions, one needs to understand to
a certain amount the automorphisms of the target space Y of an embedding
X ,! Y . In fact, the a�ne varieties I consider as targets have usually a huge
automorphism group and it is a challenge for its own sake to understand these
automorphism groups. For example, the group Aut(Cn) of polynomial automor-
phisms is fairly good understood for n = 1, 2, whereas for n � 3 these groups
are huge and still rather mysterious. The second part of my results cover my
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research on several questions concerning the above mentioned automorphism
groups. Specifically, I studied the following fundamental problems:

(C) (Characterization) Understand to what extend the automorphism group
Aut(X) of a geometric object X determines X itself.

(D) (Dynamics) Understand the dynamics of automorphisms of a geometric
object X.

(E) (Low degree) Understand the automorphisms of a geometric object X
that are small with respect to some measure.

Klein proposed in his famous Erlangen program from 1872 to study geomet-
ric objects X via their automorphisms in case Aut(X) is rather big. In several
situations it turns out that Aut(X) completely determines X, i.e. if Aut(X)
and Aut(Y ) are isomorphic, then X and Y are isomorphic. In particular, this
happens for smooth manifolds, symplectic manifold or contact manifolds, see
[Fil82, Ryb95, Ryb02]. In a�ne algebraic geometry, usually Aut(X) is small and
hence it cannot determine X completely. However, for certain a�ne varieties
where Aut(X) is big enough, the group Aut(X) still determines X. Concerning
problem (D), together with Hanspeter Kraft and Andriy Regeta, I focused on
exactly these problems in the context of a�ne algebraic geometry. More pre-
cisely, together with Hanspeter Kraft and Andriy Regeta, I considered the case
X = Cn and together with Andriy Regeta, I considered the case when X is a
quasi-a�ne spherical variety (i.e. there is a faithful algebraic action of a reduc-
tive algebraic group on the quasi-a�ne variety X such that a Borel subgroup
acts with a dense orbit) under a stronger assumption on the group isomorphism
between the automorphism groups under consideration.

The study of the dynamics of an automorphism f is the study of its iter-
ates f i = f � · · · � f when i goes to infinity. In algebraic geometry, one aspect
that catches the dynamical behaviour of an automorphism is its dynamical de-
gree. In case f is an automorphism of Cn one may define it as the limit of
the numbers (deg(f i))

1
i as i goes to infinity. I studied together with Jérémy

Blanc the question, which real numbers can arise as dynamical degrees of auto-
morphisms of Cn. We developed a technique to compute dynamical degrees in
certain cases. In particular, we gave all dyanmical degrees of all so-called a�ne-
triangular automorphisms of C3, i.e. automorphisms that are a composition of
an a�ne linear automorphism of C3 with an automorphism of C3 of the form
(x, y, z) 7! (p(x), q(x, y), r(x, y, z)) where p, q, r are polynomials over C.

Concerning problem (E) in a�ne algebraic geometry, and specifically for
X = Cn, a natural measure of the complexity is the degree of the automor-
phism. There is a conjecture due to Rusek [Rus88] which says, that every
automorphism of degree  2 is a so-called tame automorphism, i.e. a finite
composition of a�ne and triangular automorphisms of Cn. Whereas the con-
jecture is confirmed in case n  5 by results due to Fornæs and Wu [FW98],
Meisters and Olech [MO91], and Sun [Sun14], it is an open problem, whether
the same also holds for automorphisms of degree 3. In case n  2, all auto-
morphisms of C2 are tame. Motivated by this I studied together with Jérémy
Blanc the next case, i.e. automorphisms of C3 of degree 3. In particular we
were able to show that all such automorphisms are tame and we computed their
dynamical degrees.
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These are also my articles for the habilitation with the exception of the
article [2]. After uploading this article on arXiv.org, we were informed that the
main result was already proven by Kaliman in https://arxiv.org/abs/1309.3791
now published in [Proc. Amer. Math. Soc.].

1.2 Main results

My research can be manly divided up into the study of embeddings and into the
study of automorphisms in a�ne algebraic geometry. Each of these can again
be divided up into parts, according to the questions/problems posed in (A), (B)
and in (C), (D), (E).

In the next section, I will survey the main results that I received after my
PhD at the University of Basel in 2013.

Existence questions about embeddings

As already mentioned,
every smooth a�ne va-
riety X admits an al-
gebraic embedding into
Cn provided that n �
2 dimX+1 by the Holme-
Kaliman-Srinivas embed-
ding theorem. Together
with Peter Feller, I was able to prove an analogous theorem where we replaced
the a�ne space by any simple algebraic group G under the dimension condition
dimG > 2 dimX + 1; see [1]. Moreover, we were able to show that there exists
for each algebraic group G of dimension n and for each integer d � n

2 a smooth
irreducible a�ne variety X of dimension d that does not admit an embedding
into G by adopting the strategy of Bloch-Murthy-Szpiro [BMS89]. In particu-
lar, the dimension condition dimG > 2 dimX + 1 may be improved at most by
one in case dim(G) is odd and the dimension condition dimG > 2 dimX + 1 is
optimal in case dim(G) is even.

Equivalence questions about embeddings

Together with Peter Feller, I studied algebraic embeddings of smooth a�ne va-
rieties X into the complex a�ne space Cn up to holomorphic automorphisms
[2]. We were able to weaken the classical dimension bound given by Kali-
man and Srinivas for algebraic embeddings and algebraic automorphisms to
n � 2 dimX + 1 in this more relaxed setting. After we put a first version of
this manuscript on arXiv, we were informed that the main result was already
established by Kaliman [Kal15]. Therefore, I will not report on this work here.

https://arxiv.org/
https://arxiv.org/abs/1309.3791
https://www.ams.org/journals/proc/2015-143-11/S0002-9939-2015-12684-6/home.html
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In 2013 there was a
break-through in the un-
derstanding of so-called
flexible varieties (infor-
mally speaking these are
varieties with “a lot” of
additive group actions):
The flexibility of an irre-
ducible smooth a�ne va-

riety Y of dimension � 2 is equivalent to the transitivity of the natural action
of SAut(Y ) on Y and also to the m-transitivity of this action for each m � 1
where SAut(Y ) denotes the subgroup of the algebraic automorphisms Aut(Y )
that are induced by additive group actions. In particular, connected linear al-
gebraic groups without non-trvial characters of dimension � 2 are flexible. In
[10], I proved that all algebraic embeddings of C into SLn(C) are the same up to
an algebraic automorphism for n � 3 and up to a holomorphic automorphism
for n � 2. Together with Peter Feller, I was able to generalize the first part of
this result to linear algebraic groups without non-trivial characters of dimension
di↵erent from 3; see [7].

Together with Jérémy
Blanc, I studied algebraic
embeddings of the a�ne
plane C2 into the special
linear group SL2(C) [8].
While it is a long stand-
ing open problem, whether
all algebraic embeddings
of C2 into C3 (or even
into C4) are the same up to algebraic automorphisms (or even holomorphic
automorphisms), we were able to provide huge families of algebraic embeddings
of C2 into SL2(C), where di↵erent members of that family are not the same up
to algebraic automorphisms of SL2(C).

Maximal subalgebras

Together with Stefan Mau-
bach, I classified the so-
called extending maximal
C[[tQ�0 ]][y]-subalgebras of
C[[tQ]][y], where C[[tQ]] de-
notes the field of Hahn se-
ries over C with exponents
in the rational numbers Q.

Using this classification result, we were able to describe the maximal C-
subalgebras of the polynomal ring over the ring of Laurent polynomials C[t±1, y]
[9]. This was the first such classification result for a commutative algebra of di-
mension > 1.
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Characterization of varieties via their automorphisms

Together with Andriy Re-
geta and Hanspeter Kraft,
I could prove that the ab-
stract group Aut(Cn) of
algebraic automorphisms
determines Cn (up to iso-
morphisms) within the
class of n-dimensional
smooth irreducible quasi-
projective varieties with a
finite Picard group and non-vanishing Euler characteristic [6]. Furthermore, to-
gether with Andriy Regeta, I was able to partially generalize the above result
in the following sense: If X is a smooth a�ne G-spherical variety where G is
a connected reductive algebraic group, and if Y is an a�ne irreducible normal
variety such that there is a group isomorphism Aut(X) ' Aut(Y ) that preserves
algebraic group actions, then X and Y are isomorphic as G-varieties [5].

Dynamics and low degree automorphisms of the a�ne space

Together with Jérémy
blanc, I developped a
technique in order to
calculate dynamical de-
grees of algebraic endo-
morphisms of Cn under
certain assumptions on
these endomorphisms. Using this result, we were able to compute the dynamical
degree of every composition of an a�ne automorphism and a triangular auto-
morphism of C3 [3]. Moreover, we described all algebraic automorphisms of C3

up to composition with a�ne automorphisms at the source and target and as an
application of this description, we were able to compute all dynamical degrees
of them, using the above mentioned technique [4].



10 CHAPTER 1. INTRODUCTION



Chapter 2

Embedding questions

As mentioned in the beginning, I studied embedding questions in the category
of a�ne varieties over the complex numbers C. I.e. the geometric objects are
common zero sets of polynomials in the a�ne space Cn endowed with the Zariski
topology. The embeddings under consideration are morphisms f : X ! Y of
a�ne varieties such that f(X) is closed in Y and f induces an isomorphism
X ' f(X) of a�ne varieties.

In a�ne algebraic geometry, there is a purely algebraic description of the
embeddings. In fact, denoting by C[Z] the coordinate ring of an a�ne variety
Z, then a morphism f : X ! Y of a�ne varieties is an embedding, if and only
if the comorphism f⇤ : C[Y ]! C[X], p 7! p � f is surjective. Beside this purely
algebraic characterization, there is also the following geometric description, that
turns out to be very useful (and in fact it holds not only for a�ne varieties): A
morphism f : X ! Y of varieties is an embedding if and only if

• f is proper,
• f is injective,
• f is immersive, i.e. for all x 2 X, the di↵erential dxf : TxX ! Tf(x)Y is
injective

(see Appendix B in [1]). In the following sections, I report on my articles
concerning the embedding questions (A) and (B). Although many results work
in more generality, I choose for the ground field always the field of complex
numbers in order to make the exposition as simple as possible.

2.1 Existence of embeddings of smooth varieties
into linear algebraic groups

In this section, I discuss the paper [1]. This is joint work with Peter Feller.
Having the classical Holme-Kaliman-Srinivas embedding theorem for the target
the a�ne space Cn in mind, it is natural to look for more general algebraic
groups as targets of embeddings. More precisely, X will be a smooth a�ne
variety and Y will be the underlying a�ne variety of an algebraic group. One
of our main result is the following.

11
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Theorem 2.1.1 (cf. Theorem A in [1]). Let G be a simple algebraic group and
let X be a smooth a�ne variety. If the dimension condition dimG > 2 dimX+1
holds, then X admits an embedding into G.

We got also an analogous result for semi-simple algebraic groups, however,
with a stronger dimension condition, depending on the number of minimal con-
nected normal subgroups. Concerning the optimality of the dimension condition
in Theorem 2.1.1, we were able to prove the following.

Proposition 2.1.2 (cf. Proposition B in [1]). For every non-finite algebraic
group G and every d � dimG

2 , there exists an irreducible smooth a�ne variety
of dimension d that does not admit an embedding into G.

So in case the simple algebraic group G in Theorem 2.1.1 is of even dimen-
sion, Proposition 2.1.2 implies that the dimension condition is optimal, whereas
for an odd dimensional G, the dimension condition can be possibly improved at
most to dimG � 2 dimX+1. The proof of Proposition 2.1.2 is a generalization
of a Chow-group-based argument due to Bloch, Murthy, and Szpiro [BMS89];
in fact, they showed Proposition 2.1.2 in the special case, when G is the a�ne
space.

Next, I will report on the strategy of the proof of the existence result, The-
orem 2.1.1. We fix a smooth a�ne variety X of dimension d. Let us first recall
the strategy for the classical embedding theorem, where the target is the a�ne
space. There exists N � 2d+ 1 such that X is a closed subset of CN . As long
as N > 2d + 1, for a generic linear projection ⇡ : CN ! CN�1, the restriction
⇡|X : X ! CN�1 is proper, injective and immersive, i.e. it is an embedding.
The result is then established by induction.

In case the target is not the a�ne space, this strategy doesn’t work because
of the absence of generic projections. The idea is, to construct the embedding
from “bottom up”. More precisely, this idea goes back to Eliashberg-Gromov
[EG92] where they construct embeddings of Stein manifolds into a�ne spaces.
One starts with a finite surjective morphism X ! Cd (which exists due to
Noether normalization). Now, one needs a “nice” morphism ⇡ : Y ! Cd that
allows to lift X ! Cd to an injective and immersive morphism f : X ! Y . By
construction, f is then also proper and thus it is an embedding. The problem
lies in the existence of the “nice” morphism ⇡ : Y ! Cd. One setting where this
strategy works is the following (which constitutes our main embedding tool).

Theorem 2.1.3 (cf. Theorem 2.5 in [1]). Let Y be a smooth irreducible a�ne
variety such that:

a) There is a principal Ga-bundle ⇢ : Y ! Q;
b) There is a smooth morphism ⇡ : Y ! P such that there are “enough” alge-

braic group actions on Y that fix ⇡;
c) There is a morphism ⌘ : Q! P that admits a section and satisfies ⌘�⇢ = ⇡.

If there exists a smooth a�ne variety X with dimY � 2 dimX + 1 and a finite
surjective morphism r : X ! P , then there exists an embedding f : X ! Y with
r = ⇡ � f .

A precise statement of condition b) can be found in Theorem 2.5 in [1]. The
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next diagram illustrates the situation of Theorem 2.1.3.

Y Q

X P

⇡

principal Ga-bundle ⇢

⌘ with a section

finite, surjective r

9 embedd. f

.

Roughly, the idea of the proof of Theorem 2.1.3 is the following. We define for
every morphism f : X ! Z its ✓-invariant by

✓f := max { dim (Z ⇥X Z \ �X) , dim (ker(df) \ 0X) }

where �X denotes the diagonal inside the fibre product Z⇥X Z with respect to
f , ker(df) denotes the kernel of the di↵erential df : TX ! TZ and 0X ⇢ TX
denotes the zero section of the tangent bundle TX ! X. The ✓-invariant is a
measure for the injectivity and immersivity of f . In particular, if ✓f < 0, then
f is injective and immersive. Now, one starts with the morphism s � r : X ! Q
where s : P ! Q is a section of ⌘ : Q ! P . Then one uses the fact that ⇢
restricts to a trivial Ga-bundle ⇢�1((s � r)(X)) ! (s � r)(X) in order to get
a morphism g : X ! Y with ⇢ � g = s � r and ✓g < ✓s�r. The next picture
illustrates the morphism g : X ! Y over s � r : X ! Q in the case, when X is
a curve:

⇢

⇢�1(s(r(X)))

x 7! s(r(x)) Q

Y

x 7! g(x)

Now, one uses a parametric transversality result for flexible a�ne varieties
due to Kaliman [Kal20] in order to get an automorphism of Y that fixes ⇡ such
that ✓g = ✓⇢�↵�g. Note that the ✓-invariant of ⇢ � ↵ � g : X ! Q is smaller than
that one of s�r : X ! Q. Repeating this process, we find a morphism f : X ! Y
with negative ✓-invariant, i.e. it is injective and immersive. Moreover, ⇡ �f = r,
thus f is finite and hence f : X ! Y is our desired embedding.

In order to apply Theorem 2.1.3 to construct an embedding of a smooth a�ne
variety X of dimension d into the simple algebraic group G as in Theorem 2.1.1,
we choose a hypersurface in G that is isomorphic to Q⇥Ck for some algebraic
group Q and some k � 0. In fact, using the classification of parabolic subgroups
in simple algebraic groups, we can choose k and Q in such a way that dimQ�1 
k and that Q is generated by unipotent elements (see Propositions 3.8, 3.9 in
[1]). Since dimQ + k = dimG � 1 � 2d + 1, we get thus k � d. We then set
F := Q ⇥ Ck�d and choose some closed subgroup U ⇢ F that is isomorphic to
Ga. Applying Theorem 2.1.3 to the canonical projections

⇡ : F ⇥ Cd ⇢�! (F/U)⇥ Cd ⌘�! Cd
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yields then an embedding of X into F ⇥ Cd, hence also into G.
While embedding X into F ⇥ Cd ' Q⇥ Ck, we lost possibly one dimension

in the dimension condition. In order to strengthen Theorem 2.1.1, it is natural
to try to apply the embedding tool (Theorem 2.1.3) directly to Y = G and some
“nice” morphism ⇡ : G! P . It seems, that the only natural candidates for such
a ⇡ are algebraic quotient morphisms G! G/H =: P for some closed algebraic
subgroup H of G. However, in general, there is no finite surjective morphism
X ! G/H, due to the following result.

Proposition 2.1.4 (cf. Proposition 5.1 in [1]). Let G be a simple algebraic
group, H ( G a proper closed subgroup and X an irreducible smooth a�ne va-
riety with the rational homology of a point and such that X is simply connected.
Then, there exists no finite surjective algebraic morphism X ! G/H.

The proof of Proposition 2.1.4 is based on a purely topological fact, namely
on Hopf’s theorem on the Umkehrungshomomorphismus from algebraic topol-
ogy (cf. Theorem A.1 in [1]). In fact this topological fact implies that for any
proper and dominant morphism f : X ! Z between complex n-dimensional
smooth varieties, the induced homomorphism in Q-homology fk : Hk(X,Q) !
Hk(Z,Q) is surjective for all non-negative integers k. Then we use the knowl-
edge of the rational homology groups of complex simple algebraic groups to
deduce Proposition 2.1.4.

However, if the dimension of the target algebraic group is small, we are able
to get the existence of embeddings with an optimal dimension condition:

Proposition 2.1.5 (cf. Proposition 3.11 in [1]). Let G be an algebraic group
without nontrivial characters such that dimG  8. If X is a smooth a�ne
variety with 2 dimX + 1  dimG, then X admits an embedding into G.

Recently, Kaliman put a preprint on arXiv, which shows in particular the
optimality of the dimension bound, when the algebraic group is a product of
the form

Q
N

i=1 SLki(C):

Theorem 2.1.6 (cf. [Kal21, Theorem 1.1]). Let G be a semisimple algebraic
group such that its Lie algebra is a product of Lie algebras of special linear
groups. Then every smooth a�ne variety Z with 2 dimZ + 1  dimG admits
an embedding into G.

I will finish this section, by reporting on the existence of embeddings into
algebraic groups in the holomorphic setting. In fact, Andrist-Forsternič-Ritter-
Wold proved that every Stein manifold X admits a holomorphic embedding into
every Stein manifold Y that satisfies the (volume) density property, provided
that dimY � 2 dimX + 1 [AFRW16]. Using that every connected algebraic
group G without non-trivial characters satisfies the density property or G ' Ga

by Donzelli-Dvorsky-Kaliman [DDK10], we get that every smooth a�ne variety
X with 2 dimX + 1  dimG admits a holomorphic embedding into G.

2.2 Algebraic embeddings of C into SLn(C)
In this section, I will report on the article [10]. Recall that by results of Kaliman
and Srinivas and in fact also Jelonek [Jel87, Theorem 1.1], the complex line C
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admits one algebraic embedding into Cn up to algebraic automorphisms of Cn,
provided that n � 4. By Abhyankar-Moh [AM75] and Suzuki [Suz74], this
statement also holds for n = 2 and it is widely open for n = 3. However, if one
studies algebraic embeddings of C into C3 up to holomorphic automorphisms of
C3, then there is exactly one by Kaliman [Kal92]. In fact, one may even replace
the complex line C by any a�ne curve [Kal15]. It is natural to study algebraic
embeddings into more general targets and I chose as a first example the special
linear group SLk(C). In fact, the following holds:

Theorem 2.2.1 (cf. Main Theorem in [10]). The complex a�ne line admits a
unique algebraic embedding into

a) SLk(C) up to algebraic automorphisms of SLk(C) for k � 3;
b) SL2(C) up to holomorphic automorphisms of SL2(C).

First, I will report on the proof of Theorem 2.2.1a). For this, we recall the
classical argument, that every embedding f : C ,! Cn, n � 4 is linear up to an
algebraic automorphism of Cn. In fact, for a generic linear map ↵ 2 GLn(C), the
composition r := ⇡�↵�f : C! Cn�1 is still an embedding, where ⇡ : Cn ! Cn�1

denotes the projection to the first n� 1 coordinates:

C Cn Cn

Cn�1

embedding r

f ↵

⇡

.

After replacing f by ↵ � f , we may assume that r = ⇡ � f is an embedding. Let
� := r(C) ⇢ Cn�1 and let ⇢ : Cn ! C be the projection to the last coordinate.
Then, the morphism �! C, v 7! r�1(v)� ⇢(f(r�1(v))) extends to a morphism
h : Cn�1 ! C. Now, consider the automorphism

' : Cn ! Cn , (v, s) 7! (v, s+ h(v)) .

Then, (⇢ � ' � f)(t) = t for all t 2 C. In fact, the automorphism ' moves the
embedding t 7! f(t) into the embedding t 7! (⇡(f(t)), t). The next picture
illustrates the curves t 7! f(t) and t 7! (⇡(f(t)), t) over �:

⇡

�⇥ C

� Cn�1

Cn

t 7! (⇡(f(t)), t)

t 7! f(t)

Hence, after replacing f with ' � f , we may assume that ⇢(f(t)) = t. Now, we
consider the automorphism

 : Cn ! Cn , (v, s) 7! (v � ⇡(f(s)), s) .
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Then ( � f)(t) = (0, t) 2 Cn�1 ⇥ C for all t 2 C, i.e.  � f : C ! Cn is our
desired linear embedding and this finishes the classical argument.

The idea in the proof of Theorem 2.2.1b) is to move a fixed embedding
f : C ! SLn(C) into the embedding C ! SLn(C), t 7! En1(t) via an automor-
phism of SLn(C), where En1(t) denotes the elementary matrix with n1-th entry
equal to t. Similarly, as in the classical argument, we may assume that ⇡�f : C!
Mn,n�1(C) is again an embedding, where ⇡ : SLn(C)! Mn,n�1(C) denotes the
projection onto the first n � 1 columns. Furthermore, one may achieve then,
that the first column of f(t) is given by the transpose of (1, 0, . . . , t). Denot-
ing by ⇡1 : SLn(C) ! Cn the projection to the first column, one gets thus
⇡1(f(t)) = ⇡1(En1(t)) for all t 2 C. Note that ⇡1 is a principal bundle and,
analogously to the classical case, one can move the embedding t 7! f(t) into
t 7! En1(t) via the ⇡1-automorphism

' : SLn(C)! SLn(C) , A 7! A · f(An1)
�1 · En1(An1)

where An1 denotes the n1-th -entry of the matrix A.
Now, I will report on the proof of Theorem 2.2.1b). Before, let me explain

the argument of Kaliman [Kal92], that every embedding f : C ,! C3 is linear
up to a holomorphic automorphism of C3. Similarly, as before, one studies the
morphism r = f � ↵ � ⇡ : C ! C2, where ↵ 2 GL3 and ⇡ : C3 ! C2 is the
projection on the first two coordinates. From dimension reasons, one cannot
expect that r : C ! C2 is an embedding. However, for a well chosen ↵, the
morphism r : C ! C2 is birational onto its image � ⇢ C2 and � has at worst
finitely many simple normal crossing singularities. We replace f by ↵ � f . Now,
after applying a certain holomorphic ⇡-automorphism we may assume that

⇢(f(ti,1))� ⇢(f(ti,2) = ti,1 � ti,2 for all i 2 {1, . . . , s}

where ⇢ : C3 ! C denotes the projection to the last coordinate, v1, . . . , vs 2 C2

denotes the simple normal crossing singularities of � and f�1(vi) = {t1,i, t2,i}
for all i 2 {1, . . . , s}. Thus, one may choose a holomorphic map h0 : � ! C
such that h0(r(t)) = t � ⇢(f(t)) for all t 2 C. Since � is closed in C2, one
may extend h0 to a holomorphic map h : C2 ! C. As before, one considers the
automorphism ' : C3 ! C3 given by '(v, s) = (v, s + h(v)) and one receives
(⇢ � ' � f)(t) = t for all t 2 C. Similarly, as before, one may then move
t 7! f(t) into the desired linear embedding t 7! (0, t) 2 C2⇥C via a holomorphic
automorphism of C3.

The idea of the proof of Theorem 2.2.1(b)) is in some sense similar to the
argument above. One studies the principal Ga-bundle ⇡ : SL2 ! C2 \ {(0, 0)}
and one may achieve as before, that ⇡�f : C! C2\{(0, 0)} is briational onto its
image � and � has at worst simple normal crossing singularities. As replacement
of the projection C3 ! C to the last coordinate, one considers the morphism

⇢ : SL2 ! C ,

✓
x y
z w

◆
7! y .

The idea is then to move the embedding f in such a way, that ⇢(f(t)) = t for
all t 2 C. This is the main bulk of the whole argument. Let p, q : C ! C be
holomorphic maps such that p(t)t = x(t)� x(0) and q(t)t = w(t)� w(0) for all
t 2 C. Consider the automorphism

' : SL2 ! SL2 ,

✓
x y
z w

◆
7!
✓

1 0
�q(y) 1

◆
·
✓
x y
z w

◆
·
✓

1 0
�p(y) 1

◆
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of SL2. Using that x(0)w(0) = 1, one receives

(' � f)(t) =
✓
x(0) t
0 w(0)

◆
for all t 2 C .

Up to an algebraic automorphism of SL2, the embedding t 7! (' � f)(t) is equal
to the embedding t 7! E12(t), where E12(t) denotes the elementary matrix with
12-th entry equal to t.

After giving the idea of the proof of Theorem 2.2.1, let me finish this section
with the following partial generalizations concerning embeddings into SLn(C)
due to Kaliman [Kal20] (in order to simplify the notation, I formulate them only
in the smooth case):

Theorem 2.2.2 ([Kal20, Theorem 0.5, Theorem 0.4]). Let ' : Y1 ! Y2 be an
isomorphism of two closed smooth subvarieties of SLn(C).

a) If n � 3, Yi ' Ak and k  n

3 � 1 (or k = 1), then ' extends to an algebraic
automorphism of SLn(C).

b) If one of the following cases occur:

• 3 dimY1 + 1  n � 2, Hi(Y1,Z) = 0 for i � 3 and H2(Y1,Z) is a free
abelian group; or

• Y1 is a curve and n � 5; or
• Y1 is a curve with only one place at infinity and n � 3,

then ' extends to a holomorphic automorphism of SLn(C).

2.3 Uniqueness of embeddings of the a�ne line
into algebraic groups

In this section, I report on the article [7]. This is joint work with Peter Feller. In
the last section, I explained that two embeddings of the a�ne line into SLn(C)
are the same up to an algebraic automorphism of SLn(C) provided that n � 3.
It is natural to ask, whether this holds for more general algebraic varieties. The
following is the main result, we got in this setting:

Theorem 2.3.1 (cf. Theorem 1.1 in [1]). Let G be an algebraic group without
nontrivial characters of dimension 6= 3. Then two embeddings of the a�ne line
are the same up to an automorphism of G.

Without loss of generality, we may and will assume that the group G in
Theorem 2.3.1 is in addition also connected. If G is of dimension 2, then G
is isomorphic to the a�ne plane C2 and then Theorem 2.3.1 follows from the
Abhyankar-Moh-Suzuki Theorem [AM75, Suz74]. Hence, we may and will as-
sume that the dimension of G is � 4. I will now report on the idea of the
proof.

In the case G = SLn(C) from the last section, we used explicit coordinates
(i.e. we used the standard representation) to show that two embeddings are the
same up to an algebraic (a holomorphic) automorphism of SLn(C). Now, in
the general case, we do not have such explicit coordinates and thus we need
a replacement. Roughly, the idea is to replace the quotients SLn(C) ! Mn,r
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that map a matrix to the first r columns by algebraic quotients G ! G/H for
algebraic subgroups H in G such that G/H is a�ne or just quasi-a�ne.

In fact, there is an easy class of embedding of C into G, namely the unipotent
one-parameter subgroups U ⇢ G, i.e. one-dimensional algebraic subgroups of G
that are isomorphic to Ga. In fact one can show that all these embeddings
are the same up to automorphisms of G. The idea is then first to reduce the
problem to the case, when G is a simple algebraic group and thus we assume
that G is simple.

We fix a curve X ⇢ G that is isomorhic to the complex line. The goal is now,
to give an idea, how one can move X into a unipotent one-parameter subgroup
of G. For doing this, we need a tool to move a curve inside G. The picture after
the result illustrates the setting.

Proposition 2.3.2 (cf. Proposition 5.1 in [7]). Let H ✓ G be a closed subgroup
such that the quotient G/H is quasi-a�ne and let ⇡ : G ! G/H be the quo-
tient morphism. If X1, X2 ⇢ G are close curves that are isomorphic to C with
⇡(X1) = ⇡(X2) and such that ⇡|Xi : Xi ! ⇡(Xi) is an isomorphism for i = 1, 2,
then there exists an automorphism ' of G such that '(X1) = X2.

G

G/H

⇡

⇡(X1) = ⇡(X2)

X1

X2
'

⇡�1(⇡(X1)) = ⇡�1(⇡(X2))

For this, we fix a Borel subgroup B ⇢ G and we choose a maximal parabolic
subgroup P ⇢ G that lies over B. In the quotient G/P , there is a unique one-
dimensional B-orbit and we denote by E ⇢ G the preimage of the closure of this
one-dimensional B-orbit under the natural projection G ! G/P . We choose
now an opposite parabolic subgroup P� to P , i.e. P�\P is a common Levi factor
of P and P� and we denote by Ru(P�) the unipotent radical of P�. Now, we
use heavily the fact, that the restriction to E of the natural projection ⇡ : G!
G/Ru(P�) yields a locally trivial C-bundle and the image ⇡(E) is a big open
subset ofG/Ru(P�), i.e. the complement of ⇡(E) inG/Ru(P�) has codimension
at least 2. After composing f with an automorphism of the form G ! G,
g 7! g0g (for a well-chosen g0 2 G), we may assume that ⇡(X) is contained in
⇡(E) as ⇡(E) is a big open subset of G/Ru(P�). Since ⇡|E : E ! ⇡(E) is a
locally trivial C-bundle, it has a section X 0 over ⇡(X). Using Proposition 2.3.2
one can thus move X into X 0 ⇢ E. This furnishes the main step in the proof.
Further, the idea is then to move X into a algebraic subgroup G that is not the
whole of G. Having this, one can then move X into a one-parameter unipotent
subgroup of G.

Based on Theorem 2.3.1, Kaliman and Udumyan proved the following gener-
alization below. Recall, the following terminology: For any closed subvariety Z
in an a�ne variety X and any k � 1, the closed subscheme Spec(C[X]/IX(Z)k)
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of X is called the k-th infinitesimal neighbourhood of Z in X, where IX(Z)
denotes the vanishing ideal of Z inside the coordinate ring C[X].

Theorem 2.3.3 (cf. Theorem 0.1 in [KU20]). Let G be an algebraic group
without nontrivial characters of dimension � 4. If C1, C2 ✓ G are isomorphic
to the a�ne line, then for any k � 1, each isomorphism of the k-th infinitesimal
neighbourhoods of C1 and C2 in G where the determinant of the Jacobian is equal
to 1 extends to an automorphism of G.

2.4 Embeddings of a�ne spaces into quadrics

In this section, I report on the paper [8]. This is joint work with Jérémy Blanc.
We studied embeddings of a�ne spaces into quadrics. The later are smooth
hypersurfaces of a�ne spaces that are given by one polynomial of degree 2. The
motivation of this study was, that until now, it is an open problem whether all
embeddings of C2 into C3 (or even into C4) are the same up to algebraic (or
even holomorphic) automorphisms. Amongst others, we studied embeddings of
the plane C2 into the following quadric

SL2(C) =
⇢✓

x t
s y

◆ ��� xy � st = 1

�
✓ C4

instead of C3.
An example of a familiy of such embeddings is the following (where � 2 C⇤):

⇢� : C2 ! SL2(C) , (s, t) 7!
✓

1 t
�s 1 + �st

◆
.

The images of these embeddings in SL2(C) are all the same and they are given
by the condition x = 1. Already this simple family produces many embeddings
that are distinct up to automorphisms of SL2(C):

Theorem 2.4.1 (cf. Theorem 2 in [8]). For �,�0 2 C⇤, the emebeddings ⇢� and
⇢�0 are the same up to an automorphism of SL2(C) if and only if � = ±�0.

In order to proof the above theorem we established the following extension
result for automorphisms of C2:

Theorem 2.4.2 (cf. Theorem 2 in [8]). An automorphism ' of C2 extends to an
automorphism of SL2(C) via ⇢1 if and only if the determinant of the Jacobian
det(Jac(')) is equal to ±1.

Note that ⇢�(s, t) = ⇢1(�s, t) for each � 2 C⇤. We fix �,�0 2 C⇤ and denote
by ' the automorphism of C2 given by (s, t) 7! (�(�0)�1s, t). Now, ⇢� and ⇢�0

are the same up to an automorphism of SL2(C) if and only if there exists an
automorphism  of SL2(C) with ⇢1(�s, t) =  (⇢1(�0s, t). The latter condition
is equivalent to the fact that ⇢1 � ' =  � ⇢1. Using Theorem 2.4.2, we get now
that ⇢� and ⇢�0 are the same up to an automorphism of SL2(C) if and only if
det(Jac(')) = ±1. This amounts to say that � = ±�0 and gives Theorem 2.4.1.

In order to proof Theorem 2.4.2, let me mention that the automorphisms
of C2 are generated by the group of linear automorphisms GL2(C) and the
automorphisms 'p that are given by (s, t) 7! (s, t + p(s)) where p runs over
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all polynomials in C[s], as all automorphisms of C2 are tame (see [Jun42]).
Hence the subgroup of automorphisms in Aut(C2) where the determinant of
the Jacobian is equal to ±1 is generated by the linear involution ◆ given by
(s, t) 7! (t, s) and the automorphisms 'p, p 2 C[s]. However ◆ and 'p extend
to the automorphisms

✓
x t
s y

◆
7!
✓
x s
t y

◆
and

✓
x t
s y

◆
7!
✓
x t+ xp(s)
s y + sp(s)

◆

of SL2(C) via ⇢1. This gives one implication in Theorem 2.4.2.
In order to establish the other implication, we give a certain geometric in-

terpretation of SL2(C) using C3. This interpretation turns out to be very useful
also for future investigations. We consider the morphisms

SL2(C)
⌘�! C3

✓
x t
s y

◆
7�! (x, t, s)

and
C3 ⇡�! C

(x, t, s) 7�! x
.

Note that ⌘ restricts to an isomorphism ⌘�1(U) ! U , where U ✓ C3 denotes
the complement of the plane ⇡�1(0). Denote Hx = ⌘�1(⇡�1(x)) ✓ SL2(C) for
x 2 C. Note that ⌘ maps H0 surjectively onto the hyperbola � in ⇡�1(0) that
is given by st + 1 = 0 and ⌘ restricts to a trivial C-bundle H0 ! �. In fact,
SL2(C) is isomorphic to the complement of the strict transform of ⇡�1(0) inside
the blow-up Bl�(C3) of C3 with center �. The following picture illustrates the
fibres of ⇡ � ⌘ : SL2(C)! C:

C

C3

⇡

SL2(C)

⌘

H0Hx

�

x 6= 0 0

⇡�1(x) ⇡�1(0)

This establishes the existence of the following injective group homomorphism

⇢
✓ 2 Aut(C3)

��� ⇡ � ✓ = ⇡ ,
✓(�) = �

�
⌥�! { 2 Aut(SL2(C)) | ⇡ � ⌘ �  = ⇡ � ⌘ }

✓ 7�! ⌘�1 � ✓ � ⌘ .

The key step is now the following:

Proposition 2.4.3 (cf. Proposition 4.5 in [8]). The group homomorphism ⌥ is
an isomorphism.

Indeed, we get now the other implication in Theorem 2.4.2: The image of
⇢ is the hypersurface H1 in SL2(C). If  is an automorphism of SL2(C) with
 (H1) = H1, then  permutes the fibres of ⇡ � ⌘ : SL2(C! C, i.e. it permutes
the Hx for x 2 C. Since Hx ' C2 for x 6= 0 and H0 ' C ⇥ C⇤, we get
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 (H0) = H0. Together with  (H1) = H1, we get  (Hx) = Hx for each x 2 C,
i.e. ⇡ � ⌘ �  = ⇡ � ⌘. By Proposition 2.4.3 there is now an automorphism ✓ of
C3 with  = ⌘�1 � ✓ � ⌘, ✓ fixes the fibres of ⇡ and ✓(�) = �. One can see, that
the latter condition gives det(Jac(✓|⇡�1(0))) = ±1. In summary we get now the
result:

det(Jac( |H1)) = det(Jac(✓|⇡�1(1))) = det(Jac(✓|⇡�1(0))) = ±1 .

The proof of Proposition 2.4.3 is a deformation argument based on work of
Furter [Fur02]. Indeed, let  2 Aut(SL2(C)) such that ⇡ � ⌘ �  = ⇡ � ⌘ and
let ✓ := ⌘ �  � ⌘�1. Then ✓ restricts to an automorphism of U = C3 \ ⇡�1(0)
and it is given by ✓(x, s, t) = (x, ✓1(x, s, t), ✓2(x, s, t)) for all (x, s, t) 2 U where
✓1, ✓2 are regular functions on U . Is is enough to establish that ✓1, ✓2 extend
to C3. If this is not the case, then, say ✓1 62 C[x, s, t]. There exists now l > 0
such that f = xl✓1 2 C[x, s, t], but f |⇡�1(0) 6= 0. Note that Cx = { (s, t) 2
C2 | f(x, s, t) = 0 } ✓ C2 is isomorphic to C for each x 6= 0, as ✓|⇡�1(x) is an
automorphism of ⇡�1(x) = C2 for each x 6= 0. Using that f |⇡�1(0) 6= 0, by the
deformation argument [Fur02, Theorem 4], C0 is isomorphic to a finite number
of copies of C. On the other hand, writing p : C3 ! C, (x, s, t) 7! xls, we get

f(�) = f(⌘(H0)) = p(⌘( (H0))) = p(⌘(H0)) = p(�) = {0}

as l > 0. Hence � ✓ {0} ⇥ C0. Since � is a closed curve in ⇡�1(0) = {0} ⇥ C2

that is isomorphic to C⇤ and since C0 ' C is a closed curve in C2, we arrive at
a contradiction.

So far, we established that there are many distinct embeddings of C2 into
SL2(C). However, all these embeddings have the same image in SL2(C). We
proved also that there are many copies of C2 inside SL2(C) that cannot be
mapped onto each other by an automorphism of SL2(C):

Theorem 2.4.4 (cf. Theorem 3, the proof of Proposition 5.8(1) and Lemma 5.10
in [8]). Let f 2 C[x, s, t] be an irreducible polynomial, let

Cx := Cf,x := { (s, t) 2 C2 | f(x, s, t) = 0 } ✓ C2 for x 2 C ,

let Zf ✓ C3 be given by f and let Hf := ⌘�1(Zf ) ✓ SL2(C). Then we have:

a) If Cx ' C for at least one x 6= 0, then: Hf ' C2 if and only if Cx ' C for
all x 6= 0 and f(0, s, t) 2 {µsm(s � �), µtm(t � �)} for some µ,� 2 C⇤ and
m � 0.

b) If f(0, s, t) = µ
Q

k

i=1(t � �i) for some k � 2, µ 2 C⇤ and pairwise distinct
�1, . . . ,�k 2 C⇤, and if Cx ' C for all x 6= 0, then ⇡ � ⌘|Hf is the only
morphism Hf ! C with general fibre isomorphic to C up to automorphisms
of the target C.

c) There is an uncountable set F ✓ C[x, s, t] such that Hf ' C2 for each f 2 F
and for f1 6= f2 in F there is no  2 Aut(SL2(C)) with  (Hf1) = Hf2 .

Let me explain the very rough idea of the construction of the distinct copies
of C2 in SL2(C) up to automorphisms of SL2(C) claimed in c). Whereas it is
an open problem, whether there are distinct copies of C2 in C3, the so-called
Danielewski surfaces inside C3 give many examples of pairwise distinct surfaces
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up to automorphisms of C3, see [DP09]. The idea is now to choose f in such a
way, that Zf is a Danielewski surface, but Hf is isomorphic to C2. One shows
then that the existence of an automorphism of SL2(C) that sends Hf1 onto some
Hf2 would give an automorphism of C3 that sends Zf1 onto Zf2 .

We give now more details of the proof of Theorem 2.4.4. For this, we state
the following generalization of the Abhyankar-Moh-Suzuki Theorem:

Theorem 2.4.5 (cf. [Bha88, Theorem 3.9]). Let B be an algebraic variety
and let f : B ⇥ C2 ! C be a morphism such that there is a B-isomorphism
⇠ : f�1(0) ! B ⇥ C with respect to the natural projections to B. Then there
exists a B-automorphism # of B ⇥ C2 such that (f � #)(b, x, y) = x for all
(b, x, y) 2 B ⇥ C2.

a): By assumption, one non-zero fibre of ⇡|Zf : Zf ! C is isomorphic to C
and therefore the same holds for (⇡ � ⌘)|Hf : Hf ! C as well. Now, if Hf ' C2,
then by the Abhyankar-Moh-Suzuki Theorem [AM75, Suz74] all fibres of the
morphism (⇡ � ⌘)|Hf : Hf ! C are isomorphic to C. This gives Cx ' C for
all x 6= 0 and � intersects C0 transversally in exactly one point. Applying
Theorem 2.4.5 to B = C⇤ and f |C⇤⇥C2 : C⇤⇥C2 ! C and using the deformation
argument [Fur02, Theorem 4], it follows that C0 is isomorphic to a finite number
of copies of C (see also Lemma 3.8 in [4]). The only possibilities of curves in
C2 that are isomorphic to C and have no intersection with � are given by s = 0
or t = 0. Using an analysis at the points at infinity, one can see that the
only curves in C2 that are isomorphic to C and intersect � transversally in one
point are given by t = � or s = � for some � 2 C⇤. This implies then one
direction. For the other implication, note that the assumptions give that all
fibres of (⇡ � ⌘)|Hf : Hf ! C are isomorphic to C and then Hf ' C2 e.g. by
[Asa87, Corollary 3.2] and [BCW77].

b): All non-zero fibres of ⇡|Zf : Zf ! C are isomorphic to C, whereas the
zero-fibre consists of k copies of C. As � intersects each of these k copies of C
transversally in one point, ⌘|Hf : Hf ! Zf is the open subset of the blow-up
of Zf in these intersection points, where the strict transforms of these k copies
of C are removed. In particular all non-zero fibres of ⇡ � ⌘|Hf : Hf ! C are
isomorphic to C, whereas the zero fibre consists of k copies of C. In particular,
Zf and Hf are smooth. Moreover, using the geometry of ⌘|Hf : Hf ! Zf one

can in fact construct a minimal smooth projective completion Hf of Hf such
that the boundary Hf \ Hf is not a linear chain of projective lines P1. This
gives then the claim by [Giz71] or [Ber83, Théorème 1.8].

c): Let fi 2 C[x, s, t], i = 1, 2 such that Cfi,x ' C for each x 6= 0 and
fi(0, s, t) = µtm(t� 1) for some µ 2 C⇤, m � 1. In particular Hfi ' C2 by a).

Applying Theorem 2.4.5 to B = C⇤ and fi|C⇤⇥C2 : C⇤ ⇥ C2 ! C, it follows
that ⇡|Zfi�a : Zfi�a ! C is a trivial C-bundle over C⇤ for all a 2 C. Moreover,
fi(0, s, t)� a 2 C[t] has m+1 distinct roots in C⇤ for general a 2 C. By b), for
general a 2 C,

pi,a := ⇡ � ⌘|Hfi�aHfi�a ! Zfi�a ! C

is the only morphism Hfi�a ! C with general fibre isomorphic to C up to
automorphisms of the target C. If  2 Aut(SL2(C)) with  (Hf1) = Hf2 , then
there exists a µ 2 C⇤ such that  (Hf1�a) = Hf2�µa for all a 2 C and hence, it
follows that p2,µa �  is the same as p1,a up to an automorphism of the target
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C for general a 2 C. As the zero-fibre of pi,a is the only fibre that is non-
isomorphic to C, it follows that  (p�1

1,a(0)) = p�1
2,µa(0) for general a 2 C. This

gives thus  ((⇡ � ⌘)�1(0)) = (⇡ � ⌘)�1(0). Therefore we find � 2 C⇤ such that

⇡ � ⌘ �  = � · (⇡ � ⌘) = ⇡ � ⌘ � #� ,

where #� 2 Aut(SL2(C)) is given by

#�

✓
x t
s y

◆
=

✓
�x t
s ��1y

◆
.

Applying Proposition 2.4.3 we find ✓ 2 Aut(C3) with ⌘�1 � ✓ � ⌘ =  � (#�)�1.
Hence ⌘�1 � ✓ � ✓� � ⌘ = ⌘�1 � ✓ � ⌘ � #� =  , where ✓� 2 Aut(C3) is given by
✓�(x, t, s) = (�x, t, s). As  (Hf1) = Hf2 , we find that

(✓ � ✓�)(Zf1) = Zf2 .

So we traced back the problem of finding distinct C2 in SL2(C) up to automor-
phisms to the problem of finding distinct surfaces of the form Zfi in C3 up to
automorphisms.

However, the hypersurfaces Zfi of C3 are particular examples of so-called
Danielewski surfaces. These surfaces are widely studied for example in [DP09].
Explicitly we may choose

F = {xdeg(r)+3s� (t� x) · (t� 1� x2r(x)) | r 2 C[x] \ {0} }

by [DP09, Proposition 3.6] (in fact, in the formula in Lemma 5.10 in [8] there
is a typo).

We studied also embeddings of C into the quadric surface

Q = { (x, y, z) 2 C3 | xy = z(z + 1) } ✓ C3 .

While there is only one embedding of C into C2 up to automorphisms of C2 by
the Abhyankar-Moh-Suzuki Theorem, there are many distinct embeddings of C
into Q up to automorphisms of Q:

Theorem 2.4.6 (Theorem 1 in [8]). There is are uncountably many distinct
embedding of C into Q up to automorphisms of Q.

In fact, we studied the family of embeddings

⌫p : C! Q , t 7! (t(1 + tp(t)), p(t), tp(t)) where p 2 C[t] .

We use the fact, that Q is equal to the complement of the diagonal � in P1⇥P1

and showed the following (this is the key step): if there is an automorphism
↵ 2 Aut(Q) = Aut((P1⇥P1)\�) such that ⌫q = ↵�⌫p for polynomials p, q 2 C[t]
of degree � 3, then ↵ extends to an automorphism ↵̂ 2 Aut(P1 ⇥ P1). Using
the fact that ↵̂ maps the diagonal � onto itself and ⌫q = ↵̂ � ⌫p, one gets p = q.



24 CHAPTER 2. EMBEDDING QUESTIONS

2.5 On maximal subalgebras

In this section I report on the work [9]. It is joint work with Stefan Maubach.
The guiding problem was to classify maximal subrings of a given ring. So let
me settle the definitions first:

Definition 2.5.1. A ring extension A ✓ R is called minimal, if A 6= R and
there exists no subring B of R such that A ( B ( R. In this case A is called a
maximal subring of R and R is called a minimal overring of A.

Geometrically, this says the following: Having a dominant morphism be-
tween a�ne schemes Spec(R)! Spec(A), then A ✓ R is a minimal ring exten-
sion, if there exists no a�ne scheme Z such that Spec(R)! Spec(A) factorizes
as into two dominant morphisms Spec(R) ! Z ! Spec(A). So, intuitively,
Spec(R)! Spec(A) is “not decomposable” and serves as a “minimal block” in
a composition.

There is the following fundamental result concerning minimal ring exten-
sions.

Theorem 2.5.2 ([FO70, Théorème 2.2], cf. also Theorem 1.0.1 in [9]). Let
A ✓ R be a minimal ring extension and let ' : Spec(R) ! Spec(A) be the
corresponding morphism of a�ne schemes. Then there exists a unique maximal
ideal m ✓ A, called crucial maximal ideal, such that

Spec(R) \ '�1(m)
'�!
'

Spec(A) \ {m}

is an isomorphism. Moreover, the following statements are equivalent:

i) ' is surjective
ii) R is a finite A-module
iii) m = mR.

In order to make the further exposition simpler, we assume that R is a
finitely generated C-algebra which is also an integral domain. Moreover, we
assume that every maximal subring A of R is a C-subalgebra of R and we call
it then a maximal subalgebra of R. According to the result above, there is a
dichotomy between the maximal subalgebras A of R: Either the corresponding
morphism Spec(R)! Spec(A) is finite (i.e. R is a finite A-module) and we call
this the non-extending case or the corresponding morphism Spec(R)! Spec(A)
is an embedding of Spec(R) onto an open subset of Spec(A) and we call it the
extending case.

In some situations the following tool can be used to construct maximal sub-
rings:

Lemma 2.5.3 ([FO70, Lemme 1.4]). Let A ✓ R be a ring extension and let
a ✓ A be an ideal that is also an ideal in R. Then A ✓ R is a minimal ring
extension if and only if A/a ✓ R/a is a minimal ring extension.

2.5.1 The non-extending case

Let A ✓ R be a subalgebra. By Theorem 2.5.2 and Lemma 2.5.3, A is a non-
extending maximal subalgebra of R if and only if there exists a maximal ideal
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m ✓ A such that m = Rm and A/m ✓ R/m is a minimal ring extension.
However, in this case A/m ✓ R/m is finite and thus A/m is then isomorphic
to C and due to [FO70, Lemme 1.2] the minimal ring extensions C ✓ R0 are of
the form

C! C⇥ C , z 7! (z, z) or C ,! C["]/("2) .

If we are in the first case, then the fibre of the morphism Spec(R)! Spec(A)
over m contains exactly two closed points. Intuitively, Spec(A) corresponds to
the glueing of these two points in Spec(R) in such a way that the images of the
corresponding tangent spaces form a direct sum of the tangent space of Spec(A)
at m. A prominent example is the following:

m = (t2 � 1, t(t2 � 1)) ✓ A = C[t2 � 1, t(t2 � 1)] ✓ R = C[t]

and the corresponding morphism can be illustrated as follows:

Spec(R)
�1 1 (t 7! (t2 � 1, t(t2 � 1)))

x

y

Spec(A)

If we are in the second case, then the fibre of the morphism Spec(R) !
Spec(A) over m contains exactly one closed point m0 2 Spec(R) and the fibre
over it is schematically non-reduced. Intuitively Spec(A) corresponds to delet-
ing one tangent direction of Spec(R) at m0, i.e. the di↵erential of Spec(R) !
Spec(A) at m0 has exactly a on-dimensional kernel. A prominent example is
the following:

m = (t2, t3) ✓ A = C[t2, t3] ✓ R = C[t]

and the corresponding morphism can be illustrated as follows:

Spec(R)
0 (t 7! (t2, t3)

x

y

Spec(A)

More details about the non-extending case can be found in [MS17, §2]. In
fact, one has in this non-extending case a rather clear picture of the situation.

2.5.2 The extending case

Much more di�cult is the extending case. If A ✓ R is an extending maximal
subalgebra, then the corresponding morphism Spec(R) ! Spec(A) is an open
embedding and the complement of the image consists of exactly one (closed)
point m 2 Spec(A). So these morphisms are embeddings, but contrary to our
convention, these are open and not closed embeddings.

In case Spec(R) is one-dimensional, we have a full classification:
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Theorem 2.5.4 (cf. Theorem 3.0.13 and Lemma 3.0.12 in [9]). Let R be a
finitely generated C-algebra that is also an integral domain of dimension one,
let X := Spec(R) and let X be a projective closure of X such that X is smooth
at every point of X \ X. If X \ X consists only of one point, then R has no
extending maximal subalgebra. Otherwise, for each p 2 X \X,

A = { f 2 R | f is defined at p }

is an extending maximal subalgebra and every extending maximal subalgebra of
R is of this form. Moreover, each such A is a finitely generated C-algebra.

Assume now that R is a finitely generated C-algebra, that is also an inte-
gral domain and assume that the dimension is � 2. If A ✓ R is an extending
maximal subalgebra, then A cannot be a finitely generated C-algebra, since oth-
erwise the localization Am at the crucial maximal ideal m would be a Noetherian
integral domain of dimension two and thus it would not be a discrete valuation
ring, contradicting [FO70, Corollaire 3.4]. So this gives an indication, that the
extending maximal subalgebras of R are much more di�cult to understand than
the non-extending ones.

As a first exploration in the two dimensional case, we considered the algebra
R = C[t±1, y], i.e. R is the polynomial ring in the variable y over the Laurent
polynomial ring C[t±1].

Let us consider a first example.

Example 2.5.5. For each polynomial p 2 C[t], the algebra

A = C[t, y] + (y � p)C[t±1, y]

is an extending maximal subalgebra of R = C[t±1, y] with crucial maximal ideal

m = tC[t, y] + (y � p)C[t±1, y] .

Indeed, a = (y � p)C[t±1, y] is an ideal in A and in R and the ring extension

C[t] = A/a ✓ R/a = C[t±1, p] = C[t±1]

is minimal. Thus by Lemma 2.5.3 A ✓ R is a mimimal ring extension. As t 2 R
is invertible and as t 2 m, there exists no prime ideal p ✓ R with m = A \ p.
Hence m is the crucial maximal ideal of the minimal ring extension A ✓ R and
A ✓ R is extending.

Let me give now a slightly more involved example.

Example 2.5.6. For each n � 1, the algebra

A = C[t, y] + (yn � t)C[t±1, y]

is an extending maximal subalgebra of R = C[t±1, y]. Indeed,

a = (yn � t)C[t±1, y]

is an ideal in both rings A and R and the ring extension

C[y] = A/a ✓ R/a = C[y±n, y] = C[y±1]
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is minimal. Thus again by Lemma 2.5.3 we conclude that the ring extension
A ✓ R is minimal. As in Example 2.5.5, one can see that

m = tC[t, y] + (yn � t)C[t±1, y]

is a maximal ideal in A such that there is no p 2 Spec(R) with m = p\A.
Therefore the minimal ring extension A ✓ R is extending.

Now, there is also a di↵erent description of A. In fact, we extend the scalars
C[t] by C[t1/n] and consider the subalgebra

A0 = C[t1/n, y] + (y � t1/n)C[t±1/n, y]

of R0 = C[t1/n] ⌦C[t] R = C[t±1/n, y]. Using Example 2.5.5 (where we replace

t by t1/n) one concludes that A0 ✓ R0 is minimal and since (yn � t)C[t±1, y] ✓
(y � t1/n)C[t±1/n, y] one gets A ✓ A0. Moreover, as A ✓ R is minimal and as
t�1 lies not inside A0 \ C[t±1, y], we get

A = A0 \ C[t±1, y] ( R .

Thus we found a new description of A: it is the intersection of A0 with C[t±1, y].
The advantage of A0 over A lies in the fact, that the ideal (y� t1/n)C[t±1/n, y] is
generated by a linear polynomial in y, whereas a = (yn�t)C[t±1, y] is generated
by a degree n polynomial in y.

So, this last example illustrates, that extending the scalars can simplify the
situation. We used exactly this idea. In order to formulate the results, let us
consider the field of so-called Hahn-series:

K := C[[tQ]] :=

8
<

:
X

s2Q
ast

s

��� as 2 C and supp

0

@
X

s2Q
ast

s

1

A ✓ Q is well-ordered

9
=

;

where

supp

0

@
X

s2Q
ast

s

1

A := { s 2 Q | as 6= 0 } .

The field K is algebraically closed and complete with respect to the metric
induced by the valuation ⌫ : K ! Q, ↵ 7! min(supp(↵)). The valuation ring of
K with respect to ⌫, we denote by

K+ := C[[tQ�0 ]] := {↵ 2 C[[tQ]] | ⌫(↵) � 0 } .

It turned out that extending the scalars C[t] to K+ is very useful: the extend-
ing maximal subalgebras of K[y] that contain K+[y] have in fact a fairly easy
description:

Theorem 2.5.7 (cf. Theorem 1.0.2 in [9]). The following map

K+ ↵ 7!A↵����!
⇢

maximal extending subalgebras
of K[y] that contain K+[y]

�
,

is a bijection, where A↵ := K+[y] + (y � ↵)K[y] ✓ K[y].
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Using the notation of the theorem above, we can now describe the extending
maximal subrings of C[t±1, y] that contain C[t, y]:

Theorem 2.5.8 (cf. Theorem 1.0.3 in [9]). Let

S :=

⇢
↵ 2 K+

��� supp(↵) is contained in a strictly
increasing sequence of Q

�
.

Then we have a bijection

S/G
↵ 7!A↵\C[t±1

,y]����������!
⇢

maximal extending subalgebras
of C[t±1, y] that contain C[t, y]

�
,

where G = Hom(Q/Z,C⇤) and the action of G on S is given by

g ·
X

s2Q
ast

s :=
X

s2Q
g(s)ast

s .

In general, there is the following dichotomy:

Proposition 2.5.9 (cf. Theorem 1.0.4 in [9]). Let A ✓ C[t±1, y] be a maximal
extending subalgebra. Then exactly one of the following cases occur:

i) There exists an automorphism � of C[t±1, y] such that �(A) contains C[t, y].
ii) A contains C[t±1].

The first case is covered by Theorem 2.5.8 and thus we are left with the
problem of the classification of all extending maximal subalgebras of C[t±1, y]
that contain C[t±1]. For this let us introduce the following notation:

M := {extending maximal subalgebras of C[t, y] that contain C[t]}

and

N :=

8
<

:

extending maximal subalgebras A of
C[t, y±1] that contain C[t, y�1] and such
that A! C[t, y±1]/(t� �) is surjective

9
=

; ,

where � 2 C is the unique complex number such that t � � lies in the crucial
maximal ideal of the minimal ring extension A ✓ C[t, y±1]. The set N can be
described using Theorem 2.5.8. The extending maximal subalgebras of C[t±1, y]
that contain C[t±1] may now be described by the following result:

Theorem 2.5.10 (cf. Theorem 7.0.1 and Proposition 6.0.2 in [9]). There exist
bijections ⇥ and �

N
⇥��!
1:1

M �

8
<

:

B 2M s.t. the crucial
maximal ideal of B
does not contain t

9
=

;
� ��
1:1

8
<

:

extending maximal
subalgebras of C[t±1, y]
that contain C[t±1]

9
=

; .

where ⇥(A) = A \ C[t, y] and �(A0) = A0 \ C[t, y].



Chapter 3

Automorphisms of a�ne
varieties

In this part, I report on my research concerning the automorphism group
Aut(X) of an a�ne variety X. As in the previous part, I will write the results
for simplicity over the field of complex numbers C, if not mentioned explicitly
otherwise.

The first two papers concern question (C): specifically, I investigated the de-
termination of the a�ne space Cn and spherical varieties by their automorphism
groups. In order to state the results, let me mention the following terminology:
We say that a group homomorphism of automorphism groups

✓ : Aut(X)! Aut(Y )

preserves algebraic group actions, if for each faithful algebraic group action
G⇥X ! X of an algebraic group G, the action G⇥Y ! Y , (g, y) 7! ✓(g)(y) is
again a faithful algebraic group action. If ✓ is a group isomorphism, then we say
that it preserves algebraic group actions if this holds for ✓ and ✓�1. This notion
coincides with the notion of “preserving algebraic subgroups” (see §5 in [5] and
Theorem 9 in [6]).

The third paper addresses question (D): specifically, in this article I investi-
gated the dynamical degree of a certain class of polynomial automorphisms of
Cn; the dynamical degree �(f) of a polynomial automorphism f is defined to be
the number

�(f) := lim
i!1

�
deg(f i)

� 1
i 2 R ,

where for any automorphism g 2 Aut(Cn) with corresponding coordinate func-
tions g1, . . . , gn : Cn ! C we define the degree deg(g) of g by

deg(g) = max
i=1,...,n

deg(gi) .

In the last paper, I investigated question (E): specifically I classified automor-
phisms f of C3 with deg(f)  3 up to composition with a�ne automorphisms
(i.e. automorphisms of degree 1) at the source and target and I computed their
dynamical degrees �(f).

29



30 CHAPTER 3. AUTOMORPHISMS OF AFFINE VARIETIES

3.1 Is the a�ne space determined by its auto-
morphism group?

In this section, I will report on the article [6] joint with Hanspeter Kraft and
Andriy Regeta. If there is a group isomorphism ✓ : Aut(Cn) ! Aut(X) that
preserves algebraic group actions and if X is a connected a�ne variety, then X
and Cn are isomorphic by a result due to Kraft [Kra17, Theorem 1.1]. Motivated
by this result, we studied to what extend one could neglect the hypothesis that
✓ preserves algebraic group actions:

Theorem 3.1.1 (cf. Main Theorem in [6]). Let X be an irreducible quasi-
projective n-dimensional variety such that there exists a group isomorphism
✓ : Aut(X)! Aut(Cn). Then X ' Cn if one of the following conditions holds.

1) X is smooth, the Euler characteristic �(X) is nonzero and the Picard group
Pic(X) is finite;

2) X is toric and quasi-a�ne.

As an immediate consequence we get that Aut(Cn \S) and Aut(Cn) cannot
be isomorphic for each closed subvariety S ✓ Cn with �(S) 6= 1, as in this case
�(Cn \ S) = �(Cn)� �(S) 6= 0. In particular this applies to all finite subsets S
of Cn with more than one element.

In order to point out the key steps in the proof of Theorem 3.1.1, let us
introduce the following terminology for the automorphism group Aut(X) of a
variety X. A map ⌫ : A ! Aut(X) is called a morphism if the associated
map A ⇥ X ! X, (a, x) 7! ⌫(a, x) is a morphism (of varieties). A subgroup
G ✓ Aut(X) is called an algebraic subgroup if there exists an algebraic group
H and a group isomorphism ⌫ : H ! G ✓ Aut(X) such that ⌫ is a morphism.
If G ✓ Aut(X) is any subgroup, then we define the identity component by

G� :=

⇢
g 2 G

��� there exists a morphism ⌫ : A! Aut(X) of an
irreducible variety A such that g, idX 2 ⌫(A) ✓ G

�

and its dimension by

dimG := sup

⇢
dimA

��� there exists an injective morphism
⌫ : A! Aut(X) with image in G

�
.

For a subgroup G ✓ Aut(X) the following statements are equivalent (see
Theorem 2.9 in [6]):

• G is an algebraic subgroup of Aut(X);
• dimG is finite and G� has finite index in G;
• There exists a morphism A! Aut(X) with image G.

In order to show thatX and Cn are isomorphic, our main tool is the following
result:

Proposition 3.1.2 (cf. Proposition 4.1 in [6]). Let W be an irreducible quasi-
a�ne variety and let ✓ : Aut(Cn) ! Aut(W ) be a group isomorphism such
that ✓ maps the standard n-dimensional torus T ⇢ Aut(Cn) onto an algebraic
subgroup of Aut(W ). Then W and Cn are isomorphic.
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The main steps in the proof of Proposition 3.1.2 are the following: T nor-
malizes the subgroup of translations Tr ✓ Aut(Cn) and acts on it with an open
orbit O that satisfies Tr = O � O. For a fixed v0 2 O, the set O consists of all
elements of the form t � v0 � t�1, t 2 T . As ✓(T ) is an algebraic subgroup of
Aut(W ), there exists an algebraic group S together with a group isomorphism
⌫ : S ! ✓(T ) ✓ Aut(X) that is a morphism. Then

S ⇥ S ! ✓(Tr) = ✓(O) � ✓(O)
(s1, s2) 7! ⌫(s1) � ✓(v0) � ⌫(s1)�1 � ⌫(s2) � ✓(v0) � ⌫(s2)�1

is surjective and the composition with the inclusion ✓(Tr) ✓ Aut(X) yields a
morphism S ⇥ S ! Aut(X). Thus ✓(Tr) is an algebraic subgroup of Aut(W ).
As ✓(Tr) is commutative and contains no element of finite order except idX , it
follows that ✓(Tr) is unipotent. As W is quasi-a�ne, all orbits of ✓(Tr) in W
are closed. As W is irreducible and quasi-a�ne, one may then show that the
algebraic subgroup ✓(Tr) of Aut(W ) acts with a dense orbit on W . Hence ✓(Tr)
acts transitively on W and this implies that W is an a�ne space Cm. In terms
of subgroups of Aut(Cd) one may characterize d as the maximal number k such
that Aut(Cd) contains a subgroup isomorphic to (Z/2Z)k. This implies thus
m = n and gives the statement of the proposition.

The following theorem is our main result in order to apply Proposition 3.1.2:

Theorem 3.1.3 (cf. Theorem 1.1 in [6]). Let Y and Z be irreducible quasi-
projective varieties, and let # : Aut(Y ) ! Aut(Z) be an group isomorphism.
Assume that n := dimY � dimZ and that the following conditions are satisfied:

i) Y is quasi-a�ne and toric;
ii) Z is smooth, �(Z) 6= 0, and Pic(Z) is finite.

Then dimZ = n, and for each n-dimensional torus T ✓ Aut(Y ), the identity
component of the image #(T )� is an algebraic subgroup of Aut(Z), isomorphic
to a torus of dimension n. Furthermore, Z is quasi-a�ne.

In order to deduce Theorem 3.1.1 under the assumptions 1), we apply The-
orem 3.1.3 to Y := Cn, Z := X and # := ✓�1 : Aut(Cn)! Aut(X) and thus we
get for the standard n-dimensional torus T ✓ Aut(Cn) that #(T )� is an alge-
braic subgroup of Aut(X) and moreover that X is quasi-a�ne. One can then
show that in fact #(T )� = #(T ). Hence the assumptions of Proposition 3.1.2
are satisfied for # and we get X ' Cn.

In order to deduce Theorem 3.1.1 under the assumptions 2), we apply The-
orem 3.1.3 to Y := X, Z := Cn and # := ✓ : Aut(X) ! Aut(Cn). Then for
a fixed n-dimensional torus T ✓ Aut(X), the identity component #(T )� is an
algebraic subgroup of Aut(Cn), isomorphic to an n-dimensional torus. One can
again show, that #(T )� = #(T ). Now, all n-dimensional tori in Aut(Cn) are
conjugated by a result due to Bia lynicki-Birula [BB66]. Thus there exists a
' 2 Aut(Cn) such that ' � #(T ) � '�1 is the standard n-dimensional torus in
Aut(Cn). Now,

#�1(' � #(T ) � '�1) = #�1(') � T � #�1(')�1

is an algebraic subgroup of Aut(X) and thus again, Proposition 3.1.2 yields
X ' Cn.
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The proof of Theorem 3.1.3 is the main bulk of the whole article. As Y is toric
and T ⇢ Aut(Y ) is a torus of maximal dimension, the centralizer CentAut(Y )(T )
of T in Aut(Y ) is equal to T itself. If p is a prime number, then there is a
unique finite subgroup µp ⇢ T that is isomorphic to (Z/pZ)n and we have
T ✓ CentAut(Y )(µp). Thus we get ✓(T ) ✓ CentAut(Z)(✓(µp)) =: C. We may
choose p in such a way, that p does not divide �(Z) 6= 0. Hence, one can see
that the fixed point set Z✓(µp) is non-empty. As Z is smooth one may even find
an isolated point z0 2 Z✓(µp). Using that Pic(Z) is finite and using the tangent
representation C� ! Tz0Z, one may find C�-semi-invariant regular functions
f1, . . . , fn : Z ! C such that z0 2

T
n

i=1 f
�1
i

(0) ✓ Z✓(µp). Let �1, . . . ,�n : C� !
C be the corresponding characters of the semi-invariants f1, . . . , fn. Then one
may show that the homomorphism

� : C� ! (C⇤)n , g 7! (�1(g), . . . ,�n(g))

is regular in the sense that for each morphism ⌫ : A ! Aut(Z) with image
in C�, the composition � � ⌫ : A ! (C⇤)n is a morphism. The morphism
f := (f1, . . . , fn) : Z ! Cn is C�-equivariant, when C� acts via g ·(x1, . . . , xn) =
(�1(g)x1, . . . ,�n(g)xn) on Cn. As z0 is an isolated point of f�1(0), the mor-
phism f : Z ! f(Z) =: W has finite degree, i.e. the field extension f⇤ : C(W )!
C(Z) is finite. Now, the kernel ker(�) acts faithfully on C(Z) (as C� does) and
leaves C(W ) fixed. Thus ker(�) embeds into the finite group AutC(W )(C(Z))
and hence ker(�) is finite. Now, if ⌫ : A! C� is an injective morphism, then the
composition � � ⌫ : A! (C⇤)n has finite fibers and thus dimA  n. Hence, by
definition dimC�  n. As C� = (C�)�, we get that C� is an algebraic subgroup
of Aut(Z).

One may now show that C� is an n-dimensional torus in Aut(Z) and since
dimZ  n, we get dim(Z) = n. The smoothness of Z implies thus that Z is a
toric variety and since Pic(Z) is finite (and hence trivial), one can show that Z
is quasi-a�ne.

Let me finish this section with the following generalization of Theorem 3.1.1
due to Cantat, Regeta and Xie, which shows that the assumptions 1) and 2) are
supperfluous, if one is interested only in a�ne varieties:

Theorem 3.1.4 (cf. [CRX19, Theorem A]). Let Y be a connected a�ne variety
such that there exists a group isomorphism Aut(Y )! Aut(Cn). Then Y ' Cn.

3.2 Characterizing smooth a�ne spherical vari-
eties via the automorphism group

I will report on the article [5] joint with Andriy Regeta. If X is an a�ne
toric variety di↵erent from the torus and if Y is an irreducible normal a�ne
variety such that there is a group isomorphism Aut(X)! Aut(Y ) that preserves
algebraic group actions, then X ' Y by a result due to Liendo, Regeta and
Urech [LRU19, Theorem 1.4]. Spherical varieties are natural generalizations
of toric varieties. The aim of this paper was, to study how much information
of a (quasi)-a�ne spherical variety X one receives via its automorphism group
Aut(X).
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In order to fix notation and to state the main result, let G be a connected
reductive algebraic group and B ✓ G a Borel subgroup. For any algebraic
group H, a variety X together with a faithful algebraic H-action is called an
H-variety. Recall that an irreducible normal G-variety X is called G-spherical
if B acts with a dense orbit on X. We denote by X(B) the character group of B,
i.e. the group of all regular homomorphisms B ! C⇤ and we denote by ⇤+(X)
the weight monoid of X, i.e.

⇤+(X) =

⇢
� 2 X(B)

��� there exists a regular function f : X ! C such
that f(b�1x) = �(b)f(x) for all b 2 B, x 2 X

�
.

Our main result is the following:

Theorem 3.2.1 (cf. Main Theorem A in [5]). Let X, Y be irreducible normal
quasi-a�ne varieties and let ✓ : Aut(X)! Aut(Y ) be a group isomorphism that
preserves algebraic group actions. If X is G-spherical and not isomorphic to a
torus, then the following holds:

(1) Y is G-spherical for the induced G-action via ✓;
(2) the weight monoids ⇤+(X) and ⇤+(Y ) inside X(B) are the same;
(3) if X and Y are smooth and a�ne, then X and Y are isomorphic as G-

varieties.

In order to formulate the strategy of the proof, we introduce some terminol-
ogy. Let H be an algebraic group and let m � 1. A faithful algebraic group
action of the additive group Cm on an H-variety X is H-homogeneous of weight
� 2 X(H) if

h � ⇢(v) � h�1 = ⇢(�(h)v) for all h 2 H and all v 2 Cm ,

where ⇢ : Cm ! Aut(X) denotes the group homomorphism induced by the Cm-
action on X. This notion will be crucial for the whole proof.

Main steps for the proof of Theorem 3.2.1(1). Assume that H is
a connected solvable algebraic group, non-isomorphic to a torus. Then for a
quasi-a�ne irreducible H-variety Z, the following statements are equivalent:

i) H acts with a dense orbit on Z;
ii) There exists a constant C such that for each faithful H-homogeneous Cm-

action on Z we have m  C.

Assume thatH acts with a dense orbit on Z and let a faithfulH-homogeneous
Cm-action on Z be given. From the faithfulness of the Cm-action on Z one can
see that the linear map

T0Cm ! Vec(Z) , w 7! ⇠w := (z 7! (d0µz)w)

is injective, where Vec(Z) denotes the vector space of all sections of the tangent
bundle TZ ! Z and µz : Cm ! Z, v 7! v · z denotes the orbit map associated
to z. As the Cm-action is H-homogeneous with respect to a certain weight
� 2 X(H), one may see for all w 2 T0Cm that

(d'h)⇠w(('h)
�1(z)) = �(h)⇠w(z) for all h 2 H and all z 2 Z , (3.1)
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where 'h : Z ! Z denotes the automorphism z 7! hz. Since H acts with a
dense orbit Hz0 on Z it follows from (3.1) that ⇠w is completely determined by
⇠w(z0) for each w 2 T0Cm. Hence the composition

T0Cm w 7!⇠w����! Vec(Z)
⇠ 7!⇠(z0)�����! Tz0Z

is injective and thus we get the estimate m = dimT0Cm  dimTz0Z. This
shows i) =) ii).

Now, assume thatH doesn’t act with a dense orbit on Z. As Z is quasi-a�ne,
there exist H-semi-invariant regular functions f1, f2 : Z ! C of the same weight
in X(H) with f2 6= 0 such that f := f1/f2 is a non-constant rational H-invariant
map on Z. Now p(f1, f2) 6= 0 for all non-zero homogeneous polynomials p 2
C[T1, T2], as otherwise the non-constant function f would be algebraic over the
algebraically closed field C. As H is not a torus, there exists a one-dimensional
unipotent subgroup U ✓ H that is normalized by H. Denoting by ⇢ : C⇥Z ! Z
the corresponding H-homogeneous C-action on Z induced by U , we get that

Cm+1 ⇥ Z ! Z , ((t0, . . . , tm), z) 7! ⇢

 
mX

i=0

tif
i

1(z)f
m�i

2 (z), z

!

is a faithful H-homogeneous Cm+1-action on Z for each m � 1. This shows
ii) =) i)

If G is not a torus, then B is also not a torus. The above characterization of
the existence of a dense B-orbit is in fact preserved under group isomorphisms
Aut(X) ! Aut(Y ) that preserve algebraic group actions. In order to get The-
orem 3.2.1(1) we are left with the case when G and B are equal to a torus T .
Hence, T acts faithfully on Y and thus dimY � dimT = dimX. Since G = T ,
it is enough to show that dimY  dimT . As X is not a torus, one can show,
that there exists a faithful action of a connected solvable group H on X such
that H is not a torus and dimH = dimT . Using again the characterization of
the existence of a dense H-orbit above, we get as before, that H acts faithfully
with a dense orbit on Y . Thus dimY  dimH = dimT .

Main steps for the proof of Theorem 3.2.1(2). To any subset D of
a finite dimensional non-zero Euclidean R-vector space V with scalar product
(·, ·) : V ⇥ V ! R and associated norm k·k : V ! R one may associate the
so-called asymptotic cone in V :

D1 :=

⇢
x 2 V \ {0}

��� there exists a sequence (xi)i in D \ {0} with
kxik ! 1 such that xi/ kxik ! x/ kxk

�
[ {0} .

The asymptotic cone is indeed a cone, i.e. for each x 2 D1 we have tx 2 D1
for all real t � 0 and D1 is non-empty. The following picture illustrates two
examples in the Euclidean plane R2:

D

x

y

D1

x

y

and

x

y

D

x

y

D1
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The following subset of the character group X(B) plays a prominent rôle for
the proof

D(X) :=

⇢
� 2 X(B)

��� there exists a faithful B-homogeneous
C-action of weigth � on X

.

�

The set D(X) is contained in the lattice X(B) of the R-vector space X(B)⌦Z R
and we fix once and for all a scalar product on the R-vector space X(B)⌦Z R.

Since there is a group isomorphism Aut(X) ! Aut(Y ) that preserves alge-
braic group actions, it follows that D(X) = D(Y ). Now, if G is not a torus,
then the set D(X) (the set D(Y )) determines the weight monoid ⇤+(X) (the
weight monoid ⇤+(Y )) and thus we get ⇤+(X) = ⇤+(Y ):

Theorem 3.2.2 (cf. Main Theorem B in [5]). Assume that X is a quasi-a�ne
G-spherical variety that is non-isomorphic to a torus. If G is not a torus, then

⇤+(X) = Conv(D(X)1) \ SpanZ(D(X)) ,

where the asymptotic cone and the linear span are taken inside X(B)⌦Z R.

If G is a torus and X,Y are a�ne, then Theorem 3.2.1(2) may be retrieved
from [LRU19, Theorem 1.4]. However, in case G is a torus and Spec(O(X)) 6'
C ⇥ (C \ {0})dimX�1, the above formula in Theorem 3.2.2 still holds. This
can be retrieved with similar methods as in the case when G is not a torus.
The case, when G is a torus and Spec(O(X)) ' C ⇥ (C \ {0})dimX�1 can be
done separately. However we will not consider these two special cases here and
illustrate the methods in the case when G is not a torus.

The main steps for the proof of Theorem 3.2.2 are the following. Let T ✓ B
be a maximal torus and let U ✓ B be the unipotent radical of B. There is a
natural B-action on the vector space Vec(X) given by

B ⇥Vec(X)! Vec(X) , (b, ⇠) 7!
�
x 7! (d'b)⇠(('b)

�1(x))
�

,

where 'b : X ! X denotes the automorphism x 7! bx. This action turns Vec(X)
into a B-module. Now, the fixed points VecU (X) under the subgroup U of B
form a B-submodule of Vec(X). Moreover, VecU (X) has a natural structure of
an O(X)U -module, where O(X)U denotes the subring of U -invariants of O(X).
It turns out, that VecU (X) is a finitely generated O(X)U -module (by using the
so-called transfer principle; see Corollary 4.8 in [5]) and thus we have a surjective
O

U (X)-module homomorphism

⇡ :
kM

i=1

O
U (X)⇠i ! VecU (X) , (f1⇠1, . . . , fk ⇠k) 7! f1⇠1 + . . .+ fk⇠k

for finitely many B-homogeneous ⇠1, . . . , ⇠k 2 VecU (X) of weights �1, . . .�k 2
X(B). Moreover ⇡ is a B-module homomorphism. Now, if � 2 X(B) is the
weight of a B-homogeneous ⇠ 2 VecU (X), then one may see that there is a

B-homogeneous ⌘ 2
L

k

i=1O
U (X)⇠i such that ⇡(⌘) = ⇠ and thus � is the weight

of ⌘. Hence we have the following inclusion of subsets in X(B)

D0(X) :=

8
<

:� 2 X(B)
���

there exists a B-homo-
geneous vector field
of weight � in VecU (X)

9
=

; ✓
k[

i=1

(�i + ⇤+(X)) ,
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as ⇤+(X) are precisely the B-weights of OU (X). There exists a faithful B-
homogeneous C-action ⇢ : C⇥X ! X induced from a certain one dimensional
unipotent subgroup of the center of U (here we use the fact that U is non-
trivial, which is implied by the fact that G is not a torus). Let � 2 X(B) be the
weight of ⇢. Then for each B-semi-invariant r 2 O

U (X) of weight �0 2 X(B),
the morphism C ⇥ X ! X, (t, x) 7! ⇢(r(x)t, x) is a faithful B-homogeneous
C-action on X of weight �+ �0 and thus �+ �0 2 D(X). This shows

�+ ⇤+(X) ✓ D(X) ✓ D0(X) ✓
k[

i=1

(�i + ⇤+(X)) .

Taking asymptotic cones in X(B)⌦Z R yields

⇤+(X)1 = D(X)1 .

Now, a certain quotient torus T 0 of the torus T acts faithfully on Spec(OU (X))
and turns it into an a�ne toric variety (by the so-called transfer principle; see
Proposition 4.6 in [5]). Note that there is a natural embedding X(T 0) ✓ X(T ) =
X(B). As Spec(OU (X)) is an a�ne T 0-toric variety, one may see that the convex
cone generated by ⇤+(X) in X(B)⌦Z R satisfies

⇤+(X) = Conv(⇤+(X)) \ X(T 0)

Furthermore, one may see that SpanZ(D(X)) = X(T 0). Hence, in total

⇤+(X) = Conv(⇤+(X)) \ X(T 0)

= Conv(⇤+(X)1) \ SpanZ(D(X))

= Conv(D(X)1) \ SpanZ(D(X)) ,

where the second equality follows from the fact, that ⇤+(X)1 is equal to the
convex cone spanned by ⇤+(X) inside X(B)⌦Z R.

The proof of Theorem 3.2.1(3) The statement is a direct consequence of
Theorem 3.2.1(1), (2), as for smooth a�ne G-spherical varieties X, the weight
monoid ⇤+(X) determines the G-variety X due to a beautiful result of Lo-
sev [Los09, Theorem 1.3] (which confirmed Knop’s conjecture).

3.3 Dynamical degrees of a�ne-triangular auto-
morphisms of a�ne spaces

I will report in this section on the joint article with Jérémy Blanc, [3]. As an
exception, we formulate in this section all results over an algebraically closed
field k of arbitrary characteristic. Although all results would work over an
arbitrary field, we stick for simplicity to the assumption that the ground field
is algebraically closed.

If f1, . . . , fn 2 k[x1, . . . , xn] are polynomials, we write the endomorphism

kn ! kn , x 7! (f1(x), . . . , fn(x))
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shortly by f = (f1, . . . , fn) 2 End(kn) and we call f1, . . . , fn the coordinate
functions of f or components of f . Moreover, we define the degree of an endo-
morphism f = (f1, . . . , fn) 2 End(kn) by

deg(f) = max
1in

deg(fi)

where deg(fi) is the maximum of all the numbers
P

n

i=1 ai where (a1, . . . , an) 2
Nn

0 runs over all n-tuples such that the coe�cient of the monomial xa1
1 · · ·xan

n

in the polynomial fi is non-zero.
The aim of this article was to study the dynamical degree �(f) of automor-

phisms f 2 Aut(kn), where

�(f) := lim
i!1

�
deg(f i)

� 1
i 2 R and f i := f � . . . � f| {z }

i times

and more precisely to give the possible numbers in R that are dynamical degrees
of automorphisms of kn. A very interesting feature of the dynamical degree is
the fact, that it is invariant under conjugation of automorphisms of kn (and
even birational maps of kn). In case n = 1, the dynamical degree is always one
and for n = 2, the dynamical degree is an integer (which can be deduced from a
famous Theorem due to Jung [Jun42] and van der Kulk [vdK53] that describes
Aut(k2) as a certain amalgamated product). Hence, the question starts to be
interesting for n � 3 and already in this case the question is di�cult.

One of the starting points of our work was the following unpublished result
due to Jonsson:

Theorem 3.3.1 (Jonsson (unpublished)). For each n � 2 and each polynomial
p 2 k[x1, . . . , xn�1] of degree � 2, let f 2 Aut(kn) be the automorphism

f = (xn + p(x1, . . . , xn�1), x1, . . . , xn�1) 2 Aut(kn) .

Let I ⇢ Nn�1
0 be the finite subset of indices of the monomials of p. Then

�(f) = max

8
<

:� 2 R
��� �n�1 =

n�1X

j=1

ij�
n�1�j for some (i1, . . . , in�1) 2 I

9
=

; .

The automorphisms f in Theorem 3.3.1 are special cases of so-called a�ne-
triangular automorphisms of kn. These are automorphisms of kn of the form
↵�⌧ , where ↵ is an a�ne automorphism of kn, i.e. ↵ 2 Aut(kn) and deg(↵) = 1,
and ⌧ = (⌧1, . . . , ⌧n) is a triangular automorphism of kn, i.e. ⌧ 2 Aut(kn) and
⌧i 2 k[x1, . . . , xi] for all 1  i  n.

Our main result concerning dynamical degrees of a�ne-triangular automor-
phisms is the following:

Theorem 3.3.2 (cf. Theorem 1 in [3]). For each integer d � 2, the set of
dynamical degrees of all a�ne-triangular automorphisms of k3 of degree  d is
equal to

(
a+
p
a2 + 4bc

2

��� (a, b, c) 2 N3
0 , a+ b  d , c  d

)
\ {0} .
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In order to write down the strategy of the proof, let me explain the technique
we used to compute dynamical degrees. For any µ = (µ1, . . . , µn) 2 (R�0)n, the
µ-degree of a polynomial p 2 k[x1, . . . , xn] is defined by

deg
µ
(p) = max

(
nX

i=1

aiµi

��� the coe�cient of the monomial
xa1
1 · · ·xan

n
in p is non-zero

)
.

Note that for µ = (1, . . . , 1) we get back the classical degree. Moreover, we call
a polynomial p 2 k[x1, . . . , xn] µ-homogeneous of degree # if p is a finite sum of
monomials of µ-degree equal to #. Thus we may write each p 2 k[x1, . . . , xn]
uniquely as

p =
X

#2R�0

p#

where p# is µ-homogeneous of degree # and only finitely many of the p# are
non-zero. If p 6= 0, then the element pdegµ(p) is called the µ-leading part of p.

For any µ = (µ1, . . . , µn) 2 (R�0)n, the µ-degree of an endomorphism f =
(f1, . . . , fn) 2 End(kn) is defined by

deg
µ
(f) = inf{# 2 R | deg

µ
(fi)  #µi for all 1  i  n } 2 R�0 [ {1} .

We call an endomorphism f 2 End(kn) µ-algebraically stable if deg
µ
(f) < 1

and deg
µ
(f i) = (deg

µ
(f))i for all i � 1. If all the components f1, . . . , fn of f

are non-zero, we define the µ-leading part of f to be the endomorphism g =
(g1, . . . , gn) 2 End(kn), where gi is the µ-leading part of fi for all 1  i  n.

We may associate to an endomorphism f 2 End(kn) in a natural manner
certain square matrices and we have then a notion of a maximal eigenvector and
maximal eigenvalue of f with respect to these square matrices. These concepts
turn out to be very fruitful in order to compute dynamical degrees.

Definition 3.3.3. Let f = (f1, . . . , fn) 2 End(kn) such that fi 6= 0 for all
1  i  n. We say that an n⇥ n square matrix M = (mij) with coe�cients in
N0 is contained in f , if for each i, the coe�cient of the monomial xmi1

1 · · ·xmin
n

in fi is non-zero. The maximal eigenvalue of f is then defined by

✓f := { |⇠| 2 R�0 | ⇠ is an eigenvalue of a matrix that is contained in f } .

Moreover, we say that a non-zero µ = (µ1, . . . , µn) 2 (R�0)n is a maximal
eigenvector of f if

deg
µ
(fi) = ✓fµi for all 1  i  n .

Now, we may state our main result in order to compute dynamical degrees
of endomorphisms of kn:

Proposition 3.3.4 (cf. Proposition B in [3]). Let f = (f1, . . . , fn) 2 End(kn)
be a dominant endomorphism. Then the following holds:

(1) There exists a maximal eigenvector of f .
(2) For all maximal eigenvectors µ = (µ1, . . . , µn) of f we have ✓f = deg

µ
(f)

and the following statements hold:

(i) If f is µ-algebraically stable, then �(f) = ✓f .
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(ii) Assume that ✓f > 1 and denote by g 2 End(kn) the µ-leading part
of f . Then f is µ-algebraically stable, if and only if for each r � 1
there is 1  i  n (depending on r) such that µi > 0 and the i-th
component of gr is non-zero.

The main bulk of the proof of Theorem 3.3.2 lies in the proof of the following
technical lemma, whose proof is heavily based on Proposition 3.3.4(2)(ii):

Lemma 3.3.5 (cf. Lemma 4.3.3 in [3]). Let f = � � ⌧ 2 Aut(k3), where
� 2 Aut(k3) is a permutation of the coordinates and ⌧ 2 Aut(k3) is triangular.
Suppose that the maximal eigenvalue ✓ := ✓f is bigger than 1 and let µ be a
maximal eigenvector of f such that f is not µ-algebraically stable. Then, one of
the following cases holds:

(i) f = (⇠3x3 + p3(x1, x2), p1(x1), ⇠2x2 + p2(x1)) where ⇠2, ⇠3 2 k⇤, p1, p2 2
k[x1], p3 2 k[x1, x2], deg(p1) = 1, and deg(p2) = ✓2 > 1. Moreover, there
exists s 2 k[x2] such that the conjugation of f by (x1, x2, x3 + s(x2)) does
not increase the degree of p3 and (strictly) decreases the degree of p2;

(ii) f = (⇠2x2 + p2(x1), ⇠3x3 + p3(x1, x2), p1(x1)) where ⇠2, ⇠3 2 k⇤, p1, p2 2
k[x1], p3 2 k[x1, x2], deg(p1) = 1, and deg(p2) = ✓ > 1. Moreover,
there exists s 2 k[x1] such that the conjugation of f by (x1, x2+s(x1), x3)
(strictly) decreases the degrees of p2 and p3.

Now, using this lemma, I will explain how Theorem 3.3.2 can be deduced.
Assume that f = ↵ � ⌫ 2 Aut(k3) where ↵ is a�ne and ⌫ is triangular, and
denote by d = deg(f) the degree of f . We may even assume that ↵ is linear (as
the translation part of ↵ can be composed with ⌫ and hence this composition is
triangular). Then, there exist linear triangular automorphisms �, � 2 Aut(k3)
and an automorphism � 2 Aut(k3) that permutes the coordinates such that
↵ = � � � � � by the Bruhat decomposition. For the triangular automorphism
⌧ = � � ⌫ � � 2 Aut(k3) we have now

f = ↵ � ⌫ = � � � � � � ��1 � ⌧ � ��1 = � � � � ⌧ � ��1 .

As dynamical degrees are invariant under conjugation and as � is linear, we may
assume f = � � ⌧ (the degree doesn’t change). By Proposition 3.3.4(1), there
exists a maximal eigenvector µ 2 (R�0)n of f . Now, we may apply Lemma 3.3.5
finitely many times and thus we may assume that either the maximal eigenvalue
✓f is one or f is µ-algebraically stable (after each application the sum of the
degrees of the components of f decreases). If ✓f > 1, then f is µ-algebraically
stable and thus Proposition 3.3.4(2)(i) implies that �(f) = ✓f . However, a
direct computation (by inspecting all the matrices contained in f) shows that
there are (a, b, c) 2 N3

0 with a+ b  d, c  d such that

✓f =
a+
p
a2 + 4bc

2
6= 0 .

On the other hand, let d � 1 be given, and let (a, b, c) 2 N3
0 such that

a + b  d, c  d and (a +
p
a2 + 4bc)/2 > 1. Consider the a�ne-triangular

automorphism

g = (x3 + xa

1x
b

2, x2 + xc

1, x1) 2 Aut(k3) .
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Then deg(g)  d. Now, g is the composition of an automorphism of k3

that permutes the coordinates and a triangular automorphism of k3. A di-
rect computation shows that the maximal eigenvalue ✓g of g is equal to (a +p
a2 + 4bc)/2 > 1. As g is not of the form given in the two cases in Lemma 3.3.5,

it follows that g is µ-algebraically stable for each maximal eigenvector µ of g.
By Proposition 3.3.4(1), there exists a maximal eigenvector µ 2 Rn

�0 of f .
Now, Proposition 3.3.4 (2)(i) shows that the dynamical degree �(g) is equal to
(a+

p
a2 + 4bc)/2. This gives Theorem 3.3.2.

Let me also mention the following generalization of the unpublished result
due to Jonsson (Theorem 3.3.1). For this, recall that a positive real number
is called a Handelman number if it is the root of a monic integral polynomial
T d +

P
d�1
i=0 ciT i where ci  0 for all 0  i  d� 1. In particular, the dynamical

degrees appearing in Theorem 3.3.1 are Handelman numbers.

Proposition 3.3.6 (cf. Proposition C in [3]). Let f 2 Aut(kn) be an auto-
morphism of the form f = � � e, where � 2 Aut(kn) is a permutation of the
coordinates and e is an automorphism of the form

e = (x1, . . . , xn�1, xn + p(x1, . . . , xn�1)) 2 Aut(kn)

where p 2 k[x1, . . . , xn�1] is any polynomial. If the maximal eigenvalue ✓f of f
is bigger than 1, then there exists a maximal eigenvector µ of f such that f is
µ-algebraically stable. In particular, the dynamical degree �(f) is equal to the
maximal eigenvalue ✓f . This maximal eigenvalue ✓f is a Handelman number.

Let me finish this section with the following recent general result due to
Dang and Favre concerning dynamical degrees of automorphisms of k3:

Theorem 3.3.7 ([DF21, Corollary 3]). Dynamical degrees of polynomial auto-
morphisms of k3 are algebraic numbers whose degree over the field of rational
numbers Q is at most 6.

3.4 Automorphisms of the a�ne 3-space of de-
gree 3

In this section, I report on the joint article with Jérémy Blanc [8]. As an
exception, we formulate in this section all results over an algebraically closed
field k of arbitrary characteristic.

We use the classical degree for polynomials k[x1, . . . , xn] and automorphisms
of kn, introduced in the last section. Moreover, we also identify each morphism
f : kn ! km with its m-tuple of coordinate functions (f1, . . . , fm) and write
then shortly f = (f1, . . . , fm) (analogous to the last section).

Two prominent subgroups of Aut(kn) are the so-called a�ne automorphisms

A↵(kn) := {↵ 2 Aut(kn) | deg(↵) = 1 }

and the so-called triangular automorphisms

Triang(kn) :=

⇢
⌧ = (⌧1, . . . , ⌧n) 2 Aut(kn)

��� ⌧i 2 k[x1, . . . , xi]
for all 1  i  n

�
.
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The group generated by A↵(kn) and Triang(kn) inside the automorphism group
Aut(kn) is called the subgroup of tame automorphisms and we denote it by
Tame(kn). In case n = 1, we have Tame(k) = Aut(k) and by a famous result
due to Jung and van der Kulk [Jun42, vdK53] we have also Tame(k2) = Aut(k2).
For a long time it was conjectured that the so-called Nagata automorphism

(x� 2y(zx+ y2)� z(zx+ y2)2, y + z(zx+ y2), z) 2 Aut(k3)

is not tame and eventually this conjecture was proven by Shestakov and Umir-
baev in a landmark paper [SU04] in case the characteristic of k is zero. Note
that the degree of the Nagata automorphism is 5. The least degree of a non-
tame automorphism (until now) in k3 (if char(k) = 0) is also 5. Amongst other
things, we proved that all automorphisms of degree 3 of k3 are tame (see The-
orem 3.4.1). It is still an open problem, whether all automorphisms of degree 4
in Aut(k3) are tame.

For stating our main result, we introduce the following equivalence relation
on Aut(Cn): Two automorphisms f, g 2 Aut(Cn) are called equivalent, if there
exist ↵,� 2 A↵(kn) such that g = ↵ � f � �.

Theorem 3.4.1 (cf. Theorem 1 in [4]). Each automorphism of k3 of degree
 3 is either equivalent to a triangular automorphism or to an automorphism
of the form

(x+ yz + za(x, z), y + a(x, z) + r(z), z) 2 Aut(k3) , (3.2)

where a 2 k[x, z] \ k[z] is homogeneous of degree 2 and r 2 k[z] is of degree  3.

Using Theorem 3.4.1 we also calculated the set of dyanmical degrees of all
automorphisms of degree  3 of k3; see the last section for the definition of
the dynamical degree of an automorphism of the a�ne space. In fact, the
dynamical degrees of all automorphisms of C3 of degree 2 were calculated by
Maegawa [Mae01, Theorem 3.1] and the list is given by {1,

p
2, (1 +

p
5)/2, 2}.

This list stays the same over k and in fact we came up with the following result:

Theorem 3.4.2 (cf. Theorem 2 in [4] ). We denote by ⇤d the set of all dy-
namical degrees of all automorphisms of k3 of degree d. Then we have:

⇤1 = {1}
⇤2 = {1,

p
2, 1+

p
5

2 , 2}
⇤3 = {1,

p
2, 1+

p
5

2 ,
p
3, 2, 1+

p
13

2 , 1 +
p
2,
p
6, 1+

p
17

2 , 3+
p
5

2 , 1 +
p
3, 3} .

In fact, if f 2 Aut(k3) and if deg(f)  3, then either f is equivalent to
a triangular automorphism or to an automorphism of the from (3.2) by Theo-
rem 3.4.1. In the first case, f is conjugated (via an a�ne automorphism) to an
a�ne-triangular automorphism (i.e. a composition of an a�ne automorphism
with a triangular automorphism) and since the dynamical degree is invariant
under conjugation, this case is covered by the general result Theorem 3.3.2 from
the last section. In particular this applies to all automorphisms of degree  2 of
k3 (which follows again from Theorem 3.4.1, as equivalent automorphisms have
the same degree). The main bulk of the proof of Theorem 3.4.2 lies in studying
the case when f is equal to ↵ � g, where ↵ is a�ne and g is an automorphism of
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the form (3.2). We proceeded then the computation of the dynamical degrees
via the method from Proposition 3.3.4 .

In fact, by inspecting Theorem 3.3.2, one can see, that 3+
p
5

2 is the only
dynamical degree in ⇤3 that doesn’t appear in the list of all dynamical degrees
of a�ne-triangular automorphisms (of arbitrary degree) of k3. One may see
(again using Proposition 3.3.4) that the automorphism

f = (y + xz, z, x+ z(y + xz)) 2 Aut(k3)

from the last section has dynamical degree 3+
p
5

2 (note that f is an automor-
phism of the form (3.2), where a = xz and r = 0) composed with a cyclic
permutation of the coordinates). As a consequence, we get that f cannot be
conjugate via any automorphism of k3 (or even via any birational map of k3)
to an a�ne-triangular automorphism of k3.

Let me explain, the main strategy of the proof ot Theorem 3.4.1. In fact it
turned out that the following generalization of automorphisms was very fruitful
in order to classify automorphisms of degree  3 of k3. We call a morphism

f : kd ! kn

an a�ne linear system of a�ne spaces, if for each a�ne hyperplane H in kn the
preimage f�1(H) is isomorphic to kd�1. This property is satisfied for automor-
phisms of kn and it is preserved under compositions by a�ne automorphisms
at the source and target. Moreover, the dimension of the target has to be
smaller than the dimension of the source. If two a�ne linear systems of a�ne
spaces kd ! kn are the same up to composition with a�ne automorphisms at
the source and target, we call them equivalent (which generalizes the notion
introduced for automorphisms). Note that for each surjective a�ne linear map

⇡ : kn ! kn
0
and for each a�ne linear system of a�ne spaces f : kd ! kn the

composition ⇡ � f : kd ! kn
0
is again an a�ne linear system of a�ne spaces.

We proved in fact a generalization of Theorem 3.4.1. In order to formulate
it, recall that variables are polynomials in k[x1, . . . , xn] that are components of
automorphisms of kn, that a k-fibration is a surjective morphism f : X ! Y
such that each fiber is (schematically) isomorphic to k and that a k-fibration
f : X ! Y is called trivial if there exists an isomorphism ' : Y ⇥ k ! X such
that the composition f � ' : Y ⇥ k! Y is the projection onto the first factor.

Theorem 3.4.3 (cf. Theorem 3 in [4]). Every a�ne linear system of a�ne
spaces k3 ! kn of degree  3 is equivalent to an element of the following eleven
families. Case I) corresponds to n = 1, Cases IIa) and IIb) correspond to n = 2
and Case III) corresponds to n = 3.

I) variables of k[x, y, z]:

(1) x+ r2(y, z) + r3(y, z), where ri 2 k[y, z] is homogeneous of degree i;
(2) xy + yr2(y, z) + z, where r2 2 k[y, z] \ k[y] is homogeneous of degree 2;
(3) xy2 + y(z2 + az + b) + z, where a, b 2 k.

IIa) trivial k-fibrations:

(4) (x + p2(y, z) + p3(y, z), y + q2z2 + q3z3), where pi 2 k[y, z] is homogeneous
of degree i and q2, q3 2 k;
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(5) (yz+ za2(x, z)+x, y+a2(x, z)+ r1z+ r2z2+ r3z3), where a2 2 k[x, z] \k[z]
is homogeneous of degree 2 and ri 2 k;

(6) (yz + za2(x, z) + x, z), where a2 2 k[x, z] \ k[z] is homogeneous of degree 2;
(7) (xy2 + y(z2 + az + b) + z, y), where a, b 2 k.

IIb) non-trivial k-fibrations:

(8) (x+ z2 + y3, y + x2), where the characteristic of k is 2;
(9) (x+ z2 + y3, z + x3), where the characteristic of k is 3.

III) automorphisms of k3:

(10) (x+p2(y, z)+p3(y, z), y+ q2z2+ q3z3, z), where pi 2 k[y, z] is homogeneous
of degree i and q2, q3 2 k;

(11) (yz + za2(x, z) + x, y+ a2(x, z) + r2z2 + r3z3, z), where a2 2 k[x, z] \ k[z] is
homogeneous of degree 2 and r2, r3 2 k.

Let me give the main steps for the proof of Theorem 3.4.3. We call an a�ne
linear system of a�ne spaces f : k3 ! kn to be in standard form if there exist
polynomials p1, . . . , pn 2 k[y] and q1, . . . , qn 2 k[y, z] such that

f = (xp1(y) + q1(y, z), . . . , xpn(y) + qn(y, z)) : k3 ! kn .

The first step was, to consider the a�ne linear systems of a�ne spaces k3 ! k
of degree  3. Using a certain result about variables in k[x, y, z] due to Russell
[Rus76, Theorem 2.3] we were able to show that they are always equivalent
to an a�ne linear system of a�ne spaces in standard form and that they are
even equivalent to the systems in Case I) of Theorem 3.4.3. In a second step
we studied a�ne linear systems of a�ne spaces k3 ! kn of degree  3 such
that the homogenous parts of degree 3 of the components are all divisible by
the same homogeneous polynomial of degree 2. In geometric terms, this means
that the extension P3 99K Pn of k3 ! kn has a conic in the base locus. It
turned out that all these are equivalent to a�ne linear systems a�ne spaces in
standard form. In a third step, we studied the a�ne linear systems of a�ne
spaces f : k3 ! k2 of degree  3 and we showed that either f is equivalent to
an a�ne linear system of a�ne spaces in standard form or f is equivalent to an
a�ne linear system of a�ne spaces in Case IIb) of Theorem 3.4.3. This reduced
then our study to the case of a�ne linear systems of a�ne spaces k3 ! kn of
degree  3 in standard form for n = 2, 3. This study then gave the Cases IIa)
and III) in Theorem 3.4.3.

Let me finish this section by relating Theorem 3.4.3 to the Jacobian con-
jecture. One can in fact prove that the following implications hold for all
f 2 End(kn):

f 2 Aut(kn) =) f is an a�ne linear system
of a�ne spaces

=) det Jac(f) 2 k⇤ .

The Jacobian conjecture says that all the implications above are equivalences
if the characteristic of k is zero. In case the characteristic of k is a prime
p, then the second implication is wrong, as can be seen for example by the
endomorphism f = (x1 + xp

1, x2, . . . , xn) 2 End(kn). If n = 3 and the degree
of f 2 End(k3) is at most 3, then Vistoli proved that the Jacobian conjecture
holds [Vis99]. Theorem 3.4.3 says in particular that the first implication is an
equivalence if f 2 End(k3) and deg(f)  3 for algebraically closed fields of any
characteristic.
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EXISTENCE OF EMBEDDINGS OF SMOOTH VARIETIES
INTO LINEAR ALGEBRAIC GROUPS

PETER FELLER AND IMMANUEL VAN SANTEN

Abstract. We prove that every smooth a�ne variety of dimension d
embeds into every simple algebraic group of dimension at least 2d +
2. We do this by establishing the existence of embeddings of smooth
a�ne varieties into the total space of certain principal bundles. For the
latter we employ and build upon parametric transversality results for
flexible a�ne varieties due to Kaliman. By adapting a Chow-group-
based argument due to Bloch, Murthy, and Szpiro, we show that our
result is optimal up to a possible improvement of the bound to 2d+ 1.

In order to study the limits of our embedding method, we use rational
homology group calculations of homogeneous spaces and we establish a
domination result for rational homology of complex smooth varieties.
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2 PETER FELLER AND IMMANUEL VAN SANTEN

1. Introduction

In this text, varieties are understood to be (reduced) algebraic varieties
over a fixed algebraically closed field k of characteristic zero endowed with
the Zariski topology. We will focus on a�ne varieties—closed subvarieties
of the a�ne space An. A closed embedding, embedding for short, f : Z ! X
of an a�ne variety Z into an a�ne variety X is a morphism such that f(Z)
is closed in X and f induces an isomorphism Z ' f(Z) of varieties.

A focus of this text lies on embeddings into the underlying varieties of
a�ne algebraic groups. Recall that an a�ne algebraic group, an algebraic
group for short, is a closed subgroup of the general linear group GLk for
some positive integer k. An algebraic group is simple if it has no non-trivial
connected normal subgroup. We prove the following embedding theorem.

Theorem A (Theorem 3.7). Let G be the underlying a�ne variety of a sim-
ple algebraic group and Z be a smooth a�ne variety. If dim G > 2 dimZ+1,
then Z admits an embedding into G.

In case dim G is even, the dimension assumption on dim Z in terms of
dim G from Theorem A is optimal; while in case dim G is odd, the dimension
assumption can at best be relaxed by one, that is from dim G > 2 dimZ + 1
to dim G � 2 dimZ + 1. Indeed, we have the following.

Proposition B (Corollary 4.4). Let G be the underlying a�ne variety of
an algebraic group of dimension n � 1. Then, for every integer d � n

2 there
exists a smooth irreducible a�ne variety Z of dimension d that does not
admit an embedding into G.

Theorem A fits well in the context of classical embedding theorems in
di↵erent categories. We provide this context in the next subsection and an
outline of the proof of Theorem A in the subsection after that.

Before that, we discuss a domination result for the rational homology of
smooth varieties, which we believe to be of independent interest. The con-
nection to Theorem A comes from an application that explains one crucial
obstacle to weakening the dimension assumption to dim G � 2 dimZ + 1
in our proof of Theorem A; see Proposition D in the outline of the proof
of Theorem A below. For this domination result we work over the field of
complex numbers, and rational homology groups H⇤(·; Q) are taken with
respect to the Euclidean topology.

Theorem C. Let f : X ! Y be a proper surjective morphism between com-
plex n-dimensional smooth varieties. Then the induced map on k-th rational
homology Hk(X; Q) ! Hk(Y ; Q) is a surjection for all integers k � 0.

We will formulate a version of Theorem C (see Theorem A.2) in the
category of complex manifolds that can be understood as a generalization
of Gurjar’s Theorem [Gur80] (see Remark A.4). We prove Theorem C via
a version of Hopf’s Theorem on the Umkehrungshomomorphismus for non-
compact topological manifolds; see Appendix A.
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Context: embedding theorems in various settings.

Holme-Kaliman-Srinivas embedding theorem. When considering a�ne vari-
eties as closed subvarieties of the a�ne space An, it is natural to wonder
about their minimal embedding dimension in a�ne space. It turns out that
every smooth a�ne variety Z embeds into An for n � 2 dimZ + 1; see
Holme [Hol75], Kaliman [Kal91], and Srinivas [Sri91]. This can be under-
stood as an analog of the following classical result in di↵erential topology.

Whitney embedding theorem. The weak Whitney embedding theorem states
that every closed smooth manifold M can be embedded into Rn for n �
2 dimM + 1 [Whi36]. The fact that Whitney’s result also holds in case
n = 2dim M is known as the strong Whitney embedding theorem, based on
the so-called Whitney trick [Whi44]. Furthermore, if M is a closed smooth
manifold such that dim M is not a power of 2, then Haefliger-Hirsch [HH63]
proved that M embeds into R2 dim M�1. In contrast, the real projective space
of dimension 2k for k � 0 yields a 2k-dimensional smooth manifold that does
not embed into R2·2k

�1 [Pet57].

Holomorphic embeddings of Stein manifolds. Focusing on k = C (hence
An = Cn), it is natural to compare the Holme-Kaliman-Srinivas result with
the holomorphic setup. It is known that every Stein manifold M of dimen-
sion at least 2 can be holomorphically embedded into Cn for n > 3

2 dim M ;
see Eliashberg-Gromov [EG92] and Schürmann [Sch97]. Examples of Forster
show that this dimension condition is optimal [For70].

Focusing on more general targets, Andrist, Forsternič, Ritter, and Wold
proved that for every Stein manifold X that satisfies the (volume) density
property and every Stein manifold M such that dim X � 2 dimM +1, there
exists a holomorphic embedding of M into X [AFRW16]. In particular, if
G is a characterless algebraic group, then G satisfies the density property
by Donzelli-Dvorsky-Kaliman [DDK10, Theorem A] or G is isomorphic to
C. Hence, every smooth a�ne variety Z with 2 dim Z + 1  dim G admits
a holomorphic embedding into G. As far as the authors know, it remains
open whether a dimension improvement à la Eliashberg-Gromov is possible.

Embeddings into projective varieties. Comparing with the projective setting,
a further analog of the weak Whitney embedding theorem states that every
smooth projective variety Z embeds into Pn provided n � 2 dimZ + 1; see
Lluis [Llu55].

While the Holme-Kaliman-Srinivas embedding result concerning a�ne
spaces generalizes to some, possibly all a�ne algebraic groups, the embed-
ding result due to Lluis concerning projective spaces cannot generalize to
projective algebraic groups, better known as abelian varieties. In fact, each
rational map Z 99K A from a rationally connected variety Z into an abelian
variety A is constant; see [Lan83, Corollary to Theorem 4, Ch. II].



4 PETER FELLER AND IMMANUEL VAN SANTEN

Optimality of the dimension condition for algebraic embeddings. As seen
above, in many categories, d-dimensional objects embed into the standard
space of dimension 2d, e.g. the strong Whitney embedding theorem, or even
lower like in the case of the Eliashberg-Gromov result. In contrast, even
the analog of the strong Whitney embedding theorem is known to fail for
a�ne varieties. Indeed, by a result of Bloch-Murthy-Szpiro [BMS89], for
every d � 1 there exists a d-dimensional smooth a�ne variety that does not
embed into A2d. In fact, their argument (based on Chow group calculations)
su�ces to also yield Proposition B, as we will see in Section 4.

Incidentally, in the Lluis embedding theorem, the dimension bound is
optimal in the sense that for every d � 1 there is a smooth projective variety
of dimension d that does not admit an embedding into P2d; see Horrocks-
Mumford [HM73] and Van de Ven [VdV75].

Proof strategy: an embedding method and its limits.

Proof strategy of the Holme-Kaliman-Srinivas theorem and an approach to
more general targets. We recall the basic idea behind the Holme-Kaliman-
Srinivas embedding theorem, which uses the same method as the proofs of
the weak Whitney embedding theorem and the Lluis embedding theorem.
To show that every smooth a�ne variety Z embeds into X = A2 dim Z+1,
one starts from an arbitrary embedding Z ✓ Am for some large integer
m � 2 dimZ + 1, and shows that the composition of the inclusion Z ✓ Am

with a generic linear projection Am ! A2 dim Z+1 is still an embedding.
For more general targets X, one looses the availability of (many) pro-

jections from Am to X. In contrast with the above strategy, instead, we
consider a morphism ⇡ : X ! Adim Z and a finite morphism Z ! Adim Z

(guaranteed to exist by Noether normalization) in order to build our em-
bedding Z ! X as a factorization of Z ! Adim Z through ⇡. This approach
is similar to the setup of Eliashberg-Gromov and their notion of relative em-
bedding using their ‘background map’; see [EG92, Section 2]. A strength of
this approach lies in the following fact: checking that a morphism f : Z ! X
is an embedding (i.e. a proper injective morphism with everywhere injective
di↵erential), reduces to checking that f is injective and has everywhere in-
jective di↵erential, since any morphism that can be composed with another
yielding a finite (in particular proper) morphism is proper. Sloppily speak-
ing, one gets properness ‘for free’.

Outline of the proof of Theorem A. More concretely, our approach to prove
Theorem A can be understood in two steps. Step one involves finding a
specific subvariety of a simple algebraic group using classical algebraic group
theory. Using parametric transversality results, in step two we promote finite
maps with target the base space of a principal bundle to embeddings into the
total space. Here the total space is the subvariety constructed in step one.
These two steps will be treated in detail in Sections 3 and 2, respectively.
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We provide a short outline, where we fix a smooth a�ne variety Z and a
simple algebraic group G with dim G > 2 dimZ + 1.

Step one. We find a closed codimension one subvariety X ⇢ G iso-
morphic to Adim Z ⇥ H, where H is a characterless closed subgroup of G.
This will be achieved using a well-chosen maximal parabolic subgroup in G
and constitutes the bulk of Section 3. It turns out that G itself cannot be
a product of the form Am ⇥ H for any variety H underlying an algebraic
group and m > 0; hence, the X we found has the largest possible dimension.

Link between the two steps. We note that step one reduces the proof
of Theorem A to finding an embedding of Z into Adim Z ⇥ H. We set up
a principal bundle together with a finite morphism from Z into the base.
For the latter, denoting by Ga the underlying additive algebraic group of
the ground field k, we consider the principal Ga-bundle ⇢ : Adim Z ⇥ H !
Adim Z ⇥ H/U , where U is a closed subgroup of H that is isomorphic to
Ga. Using Noether normalization, one has a finite morphism Z ! Adim Z ,
which yields a morphism r : Z ! Adim Z ⇥H/U by composing with a section
of the projection ⌘ : Adim Z ⇥ H/U ! Adim Z to the first factor. Writing
X := Adim Z ⇥H and Q := Adim Z ⇥H/U , we have the following commutative
diagram

X
⇡

$$

⇢

✏✏

Z
r
// Q

⌘
// Adim Z .

(1)

Step two. We consider the following setup generalizing (1). This con-
stitutes our embedding method mentioned earlier. Consider a principal Ga-
bundle ⇢ : X ! Q, where X is a smooth irreducible a�ne variety of dimen-
sion at least 2 dim Z + 1, and a finite morphism Z ! Adim Z that is the
composite of morphisms r : Z ! Q and ⌘ : Q ! Adim Z such that the follow-
ing holds. The composition ⇡ := ⌘ � ⇢ : X ! Adim Z is a smooth morphism
such that there are su�ciently many automorphisms of X that fix ⇡ (see
Definition 2.1). Given this setup, we show that there exists an embedding of
Z into X (see Theorem 2.5). This is done in Section 2 building on notions
and results due to Kaliman [Kal20]. Next, we explain in broad strokes how
we build such an embedding.

Note first that ⇢ : X ! Q restricts to a trivial Ga-bundle over any a�ne
subvariety of Q. Hence, there exists a morphism

f0 : Z ! ⇢�1(r(Z)) ' r(Z) ⇥ Ga ⇢ X

such that ⇢ � f0 = r. Then we use a generic automorphism ' of X that
fixes ⇡ to construct an ‘improved’ morphism f1 : Z ! X with ⇢ � f1 =
⇢ � ' � f0. ‘Improved’ means that f1 and its di↵erential are ‘more injective’
than f0 and its di↵erential, respectively. After finitely many, say k, such
‘improvements’, we get an injective morphism fk : Z ! X with everywhere
injective di↵erential. Note that by construction we have that ⇡ � fk =
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⌘ � r : Z ! Adim Z is finite. This shows the properness of fk, and thus fk is
an embedding of Z into X.

The case of small dimensions and other cases. While, in general, we do not
know how to weaken the dimension assumption to the optimal dim G �
2 dimZ + 1 in Theorem A, we are able to treat the case dim G  8: every
smooth a�ne variety Z embeds in every characterless algebraic group G of
dimension  8 if 2 dimZ + 1  dim G; see Proposition 3.11.

From the method of the proof it is clear that Theorem A generalizes to
products of a simple algebraic group with a�ne spaces (Theorem 3.7) and
to products of a semisimple algebraic group with a�ne spaces but with a
stronger dimension assumption (Theorem 3.10). In case the dimension of the
a�ne space in the product is big enough, we get in fact the embedding result
with the optimal dimension assumption; see Corollary 3.1. In particular, we
give a new proof of the Holme-Kaliman-Srinivas embedding theorem; see
Remark 3.2.

Our embedding method also yields that if a smooth a�ne variety Z em-
beds into a smooth a�ne variety X with dim X � 2 dimZ + 1, then Z
embeds into the target of every finite étale surjection from X, whenever
X has su�ciently many automorphisms; see Corollary 2.26. In particular,
Theorem A generalizes to homogeneous spaces of simple algebraic groups
with finite stabilizer; see Proposition 2.13.

Limits of the method and relation to Theorem C. We end the introduction by
coming back to a statement from earlier: the seemingly unrelated Theorem C
explains a major obstacle to treating the case dim G = 2 dim Z + 1. We
explain this in terms of the above short two step outline. In fact, in step one
we find ⇡ : X ! Adim Z by restricting the natural projection p : G ! G/H
for some closed subgroup H to X ✓ G, i.e. ⇡ := p|X : X ! p(X) ✓ G/H.
However, by the dimension assumption that we need for step two, if we were
to follow that strategy, we would have to choose X ✓ G of full dimension.
Hence, assuming w.l.o.g. that G is irreducible, we would have to choose
X = G and would have to replace Adim Z with a homogeneous space G/H of
dimension dim Z in diagram (1). For the embedding method from step two
to work for G/H in place of Adim Z in diagram (1), we need in particular
a finite morphism from Z to G/H; compare Theorem 2.5. However, there
exist Z such that no finite morphism from Z to G/H exists. Concretely,
working over C, rational homology calculations for homogeneous spaces (see
Proposition 5.2) and Theorem C yield the following result.

Proposition D (Proposition 5.1). Let Z be a simply-connected complex
smooth algebraic variety with the rational homology of a point. If G/H is a
dim Z-dimensional complex homogeneous space of a complex simple algebraic
group G, then there is no proper surjective morphism from Z to G/H.
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And indeed, we do not know whether such Z embed into simple algebraic
groups of dimension 2 dim Z +1. Concretely, the authors cannot answer the
following question, even over C and for contractible Z.

Question. Does every 7-dimensional smooth a�ne variety embed into SL4?

Addendum: In a new arXiv preprint, Kaliman has answered this question
a�rmatively [Kal21, Theorem 1.1]. In fact, more generally, he proves that,
if G is a semisimple algebraic group such that its Lie algebra is a product
of Lie algebras of special linear groups, then every smooth a�ne variety Z
with 2 dimZ + 1  dim G admits an embedding into G.

Acknowledgements. We thank Jérémy Blanc, Adrien Dubouloz, Stefan
Friedl, Matthias Nagel, Patrick Orson, Pierre-Marie Poloni, and Paula Truöl
for helpful conversations. Moreover, we would like to thank the anonymous
referee for the detailed and helpful comments. We are in particular grateful
to them for pointing out an error in our original argument for Proposi-
tion 2.15.

PF gratefully acknowledges support by the SNSF Grant 181199.

2. Embeddings into the total space of a principal bundle

For the main result in this section the following definition will be useful:

Definition 2.1. Let X be a variety. A subgroup G of the group of algebraic
automorphisms Aut(X) acts su�ciently transitively on X if the natural
action on X is 2-transitive and the natural action on (TX)� is transitive,
where (TX)� denotes the complement of the zero-section in the total space
TX of the tangent bundle of X.

Let us recall the definition of an algebraic subgroup of an automorphism
group which goes back to Ramanujam [Ram64].

Definition 2.2. Let X be a variety. A subgroup H ⇢ Aut(X) is called
algebraic subgroup if there exists an algebraic group G and a faithful alge-
braic action ⇢ : G⇥X ! X such that H is the image of the homomorphism
f⇢ : G ! Aut(X) induced by ⇢.

Remark 2.3. Note that the algebraic group G in Definition 2.2 is uniquely
determined by H in the following sense: if G0 is another algebraic group
with a faithful algebraic action ⇢0 on X such that f⇢0(G0) = H, then there
exists an isomorphism of algebraic groups � : G0 ! G such that f⇢0 = f⇢ � �
[KRvS19, Theorem 9]. This allows us to identify G and H.

Moreover, we will use the following subgroups of the automorphism group
of a variety:

Definition 2.4. Let X be a variety. Then Autalg(X) denotes the subgroup
of Aut(X) that is generated by all connected algebraic subgroups of Aut(X).
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If X comes equipped with a morphism ⇡ : X ! P , then AutP (X) denotes
the subgroup of Aut(X) that consists of the � 2 Aut(X) with ⇡ � � = ⇡.

We define Autalg
P

(X) as the subgroup of AutP (X) that is generated by all
connected algebraic subgroups of Aut(X) that lie in AutP (X).

The main result to construct embeddings in this article is the following
theorem. Note that Ga denotes the underlying additive algebraic group of
the ground field k. The proof of the theorem is contained in Subsection 2.4.

Theorem 2.5. Let X be a smooth irreducible a�ne variety such that:

a) There is a principal Ga-bundle ⇢ : X ! Q;

b) There is a smooth morphism ⇡ : X ! P such that Autalg
P

(X) acts su�-
ciently transitively on each fiber of ⇡;

c) There is a morphism ⌘ : Q ! P that satisfies ⌘ � ⇢ = ⇡.

If there exists a smooth a�ne variety Z such that dim X � 2 dimZ + 1 and

d) there exists a morphism r : Z ! Q such that ⌘ � r : Z ! P is finite and
surjective,

then there exists an embedding of Z into X.

Part of Theorem 2.5 can be illustrated by the following diagram

Z
9 embedding

// X
⇡

��

⇢

✏✏

Z
r
// Q

⌘
// P .

Remark 2.6. Let X be a smooth a�ne irreducible variety and assume that
conditions a), b), c) of Theorem 2.5 are satisfied. If Z is a smooth a�ne
variety with dim X � 2 dimZ + 1, P = Adim Z , and ⌘ : Q ! P has a section
s : P ! Q, then condition d) is also satisfied. Indeed, in this case there exists
a finite morphism p : Z ! Adim Z due to Noether’s Normalization Theorem
and one can choose r := s � p : Z ! Q.

2.1. Transversality results. This subsection essentially amounts to col-
lecting and rephrasing some material from [Kal20] that we need for the proof
of Theorem 2.5.

Definition 2.7. Let X ! P be a smooth morphism of smooth irreducible
varieties and let H = (H1, . . . , Hs) be a tuple of connected algebraic sub-
groups H1, . . . , Hs ⇢ AutP (X). Then H is

(1) big enough for proper intersection, if for every morphism f : Y ! X
and every locally closed subvariety Z in X there is an open subset U ⇢
H1 ⇥ · · · ⇥ Hs such that for every (h1, . . . , hs) 2 U we have

dim Y ⇥X h1 · · · hs · Z  dim Y ⇥P Z + dim P � dim X . (PI)
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(2) big enough for smoothness if there exists an open dense subset U ⇢
H1 ⇥ · · · ⇥ Hs such that the morphism

�H : H1 ⇥ · · · ⇥ Hs ⇥ X ! X ⇥P X ,

((h1, . . . , hs), x) 7! (h1 · · · hs · x, x)

is smooth on U ⇥ X.

Proposition 2.8. Let X ! P be a smooth morphism of smooth irreducible
varieties and let H = (H1, . . . , Hs) be a tuple of connected algebraic sub-
groups H1, . . . , Hs in AutP (X). Then:

(1) If H is big enough for smoothness, then H is big enough for proper
intersection.

(2) If H is big enough for smoothness and H0, Hs+1 ⇢ AutP (Y ) are two
connected algebraic subgroups, then (H0, H1, . . . , Hs, Hs+1) is big enough
for smoothness.

Proof. (1): The proof closely follows [Kal20, Theorem 1.4]. By assumption,
there is an open dense subset U ⇢ H1⇥· · ·⇥Hs such that �H|U⇥X : U⇥X !
X ⇥P X is smooth. Let f : Y ! X be a morphism and let Z be a locally
closed subvariety of X. Let W be the fiber product of Y ⇥P Z ! X ⇥P X
and �H|U⇥X :

W

✏✏

// Y ⇥P Z

✏✏

U ⇥ X
�H|U⇥X

// X ⇥P X .

By generic flatness [GW10, Theorem 10.84], we may shrink U and assume
that ⇡ : W ! U ⇥ X ! U is flat. Take h = (h1, . . . , hs) 2 U . Then

⇡�1(h)red �! (Y ⇥X h1 · · · hs · Z)red , ((h, x), (y, z)) ! (y, h1 · · · hs · z)

is an isomorphism, since (h1 · · · hs ·x, x) = (f(y), z) for each ((h, x), (y, z)) 2
⇡�1(h)red. If ⇡�1(h) is empty, then (PI) from Definition 2.7 is satisfied (as
by convention dim ? = �1) and thus we may assume that ⇡�1(h) is non-
empty and we get dim⇡�1(h)  dim W � dim U by the flatness of ⇡. By
the smoothness of �H|U⇥X and the pullback diagram above, W ! Y ⇥P Z
is smooth since smoothness is preserved under pullbacks. In particular,
dim W  dim Y ⇥P Z + dim U ⇥ X � dim X ⇥P X. In total we get

dim Y ⇥X h1 · · · hs · Z = dim⇡�1(h)

 dim Y ⇥P Z + dim X � dim X ⇥P X

= dimY ⇥P Z + dim P � dim X ,

since dim X⇥P X = 2dim X�dim P , which in turn follows from the smooth-
ness of X ! P and the irreducibility of X, P .

(2): This follows directly from [Kal20, Remark 1.8]. ⇤
Proposition 2.9 ([Kal20, Proposition 1.7]). Let  : X ! P be a smooth
morphism of smooth irreducible varieties and let a subgroup G ⇢ AutP (X)
be generated by a family G of connected algebraic subgroups of AutP (X)
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which is closed under conjugation by G. Moreover, assume that G acts
transitively on each fiber of .

Then there exist H1, . . . , Hs 2 G such that (H1, . . . , Hs) is big enough for
smoothness. ⇤
2.2. Su�ciently transitive group actions. For a variety X we denote
by SAut(X) the subgroup of Aut(X) that is generated by all unipotent
algebraic subgroups; in particular, SAut(X) ✓ Autalg(G). Transitivity of
the natural action of SAut(X) on X implies m-transitivity for all m and
that one can prescribe the tangent map of an automorphism of X at a finite
number of fixed points:

Theorem 2.10 ([AFK+13, Theorem 0.1, Theorem 4.14 and Remark 4.16]).
Let X be an irreducible smooth a�ne variety of dimension at least 2. If
SAut(X) acts transitively on X, then:

(1) SAut(X) acts m-transitively on X for each m � 1;
(2) for every finite subset Z ⇢ X and every collection �z 2 SL(TzX), z 2 Z,

there is an automorphism ' 2 SAut(X) that fixes Z pointwise such that
the di↵erential satisfies dz' = �z for all z 2 Z. ⇤

Example 2.11. Let F be an irreducible smooth a�ne variety of dimension
� 2 such that SAut(F ) acts transitively on it. Then, Theorem 2.10 implies
that SAut(F ) acts su�ciently transitively on F ; see Definition 2.1.

Example 2.12. If G is a connected characterless algebraic group, then the
group Autalg(G) acts su�ciently transitively on G. Indeed, such a G is
generated by its unipotent subgroups (see e.g. [Pop11, Lemma 1.1]) and
thus G ✓ SAut(G). In particular, SAut(G) acts transitively on G. Now, if
dim G = 0, then the statement is trivial. If dim G = 1, then G is isomorphic
to Ga and thus Autalg(G) = Aut(A1); hence, the statement is also clear. If
dim G � 2, then the statement follows from Example 2.11.

Incidentally, the above example characterizes algebraic groups G such
that Autalg(G) acts su�ciently transitively on G:

Proposition 2.13. Let G be an algebraic group. Then Autalg(G) acts suf-
ficiently transitively on G if and only if G is connected and characterless.

Proof. According to Example 2.12 we only have to show the ‘only if’-part.
Let G be an algebraic group such that Autalg(G) acts su�ciently transi-

tively on it.
Let g, g0 2 G. Since Autalg(G) acts transitively on G, there exist con-

nected algebraic subgroups H1, . . . , Hr in Aut(G) such that g0 lies in the
image of the morphism

H1 ⇥ · · · ⇥ Hr ! G , (h1, . . . , hr) 7! (h1 � . . . � hr)(g) .

Hence, g, g0 2 G lie in an irreducible closed subset of G. Since g, g0 were
arbitrary elements of G, it follows that G is connected.
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Denote by Gu the algebraic subgroup of G that is generated by all unipo-
tent elements in G. Then Gu is closed and normal in G and each invertible
function on Gu is constant. There exists an algebraic torus T ✓ G (i.e. T is
a product of finitely many copies of the underlying multiplicative group of
the ground field) such that G = Gu o T ; see e.g. [FvS19, Lemma 8.2].

Let ⇡ : G ! T be the canonical projection. Take an arbitrary algebraic
action ⇢ : H ⇥ G ! G of an arbitrary connected algebraic group H. Since
each invertible function on each fiber of ⇡ is constant, the morphism

H ⇥ G
⇢! G

⇡! T

is invariant under the algebraic action N ⇥ (H ⇥ G) ! H ⇥ G that is given
by n · (h, g) = (h, ng). Hence, the morphism ⇡ � ⇢ factors through idH ⇥ ⇡,
i.e. there is a commutative diagram

H ⇥ G
⇢
//

idH⇥⇡

✏✏

G

⇡

✏✏

H ⇥ T
⇢T
// T

(2)

for a unique morphism ⇢T : H ⇥ T ! T . As ⇢ is an action, ⇢T is an action
as well. Since Autalg(G) acts 2-transitively on G and since each action ⇢ of
a connected algebraic group on G induces an action ⇢T on T such that (2)
commutes, we get that Autalg(T ) acts 2-transitively on T . By Lemma 2.14
below, we find that T is trivial, and thus G = Gu is characterless. ⇤

The following lemma is certainly well-known to the specialists. However,
for lack of a reference we give a proof of it.

Lemma 2.14. Let T be an algebraic torus. Then

Autalg(T ) = { T ! T , t 7! st | s 2 T } .

Proof. Let H ⇢ Aut(T ) be an algebraic subgroup. Hence there exists a
faithful algebraic H-action ⇢ : H⇥T ! T such that the image of the induced
homomorphism in Aut(T ) is H (see Remark 2.3). By [Ros61, Theorem 2]
there exist morphisms µ : H ! T and � : T ! T such that

⇢(h, t) = µ(h)�(t) for each h 2 H, t 2 T .

After replacing µ and � by t0µ and t�1
0 �, respectively, for some t0 2 T , we

may assume that µ(eH) = eT , where eH and eT denote the neutral elements
of H and T , respectively. Hence, t = ⇢(eH , t) = �(t) for each t 2 T , and
thus

⇢(h, t) = µ(h)t for each h 2 H, t 2 T .

This implies that H lies inside { T ! T , t 7! st | s 2 T }, and thus the
lemma follows. ⇤
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2.3. Su�ciently transitive group actions on fibers. In the next propo-
sition, we provide a class of smooth morphisms ⇡ : X ! P such that
Autalg

P
(X) acts su�ciently transitively on each fiber of ⇡.

Proposition 2.15. Let G be a connected algebraic group and H ✓ G be
a connected characterless algebraic subgroup of dimension � 2. Then, the
algebraic quotient ⇡ : G ! G/H =: P is a smooth morphism such that

Autalg
P

(G) acts su�ciently transitively on each fiber of ⇡.

We note that the dimension condition dim H � 2 in Proposition 2.15 is
necessary, as the following example shows.

Example 2.16. Denote by ⇡ : SL2 ! P := SL2 /H the algebraic quotient,
where H ⇢ SL2 denotes the subgroup of unipotent upper triangular matri-
ces. In this case each automorphism ' in AutP (SL2) acts as a translation
on ⇡�1(p) ' A1 for each p 2 P . In particular, for each p 2 P we have that

Autalg
P

(SL2) does not act su�ciently transitively on ⇡�1(p) (while the group
Autalg(⇡�1(p)) acts su�ciently transitively on ⇡�1(p) by Example 2.12).

That ' acts as a translation on each fiber of ⇡ can be checked explicitly
by writing ' with respect to the following parametrizations

A1 \ {0} ⇥ A1 ⇥ A1 ! SL2 , (x, z, y) 7!
✓

x y
z yz+1

x

◆

and

A1 ⇥ A1 \ {0} ⇥ A1 ! SL2 , (x, z, w) 7!
✓

x xw�1
z

z w

◆
.

For the proof of Proposition 2.15, we need some preparation. First, we
recall a more general version of Theorem 2.10 stated in terms of the following
definition.

Definition 2.17 ([AFK+13, Definition 2.1]). Let X be an a�ne variety
and let N be a set of locally nilpotent derivations on the coordinate ring
O(X) and let G(N ) be the subgroup of SAut(X) that is generated by all
automorphisms of X that are induced by the locally nilpotent derivations
in N . Then N is called saturated, if

(i) N is closed under conjugation by elements from G(N ) and
(ii) for each D 2 N and each f 2 ker(D) we have fD 2 N .

Remark 2.18. If X is an a�ne variety and if N is a set of locally nilpotent
derivations on O(X) that satisfies (ii) from Definition 2.17, then there exists
a bigger set N 0 of locally nilpotent derivations on O(X) that is saturated
and satisfies G(N 0) = G(N ); see [FKZ17, Lemma 4.6].

We come now to the promised generalization of Theorem 2.10.

Theorem 2.19 ([AFK+13, Theorem 2.2, Theorem 4.14 and Remark 4.16]).
Let X be an irreducible smooth a�ne variety of dimension at least 2 and
let N be a saturated set of locally nilpotent derivations on O(X). If the
subgroup G(N ) of SAut(X) acts transitively on X, then:
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(1) G(N ) acts m-transitively on X for each m � 1;
(2) for every finite subset Z ⇢ X and every collection �z 2 SL(TzX), z 2 Z,

there is an automorphism ' 2 G(N ) that fixes Z pointwise such that
the di↵erential satisfies dz' = �z for all z 2 Z. ⇤

Lemma 2.20. Let G be an algebraic groups and let U ✓ H ✓ G be closed
subgroups such that H is characterless and U is unipotent. Then, the restric-
tion map O(G) ! O(H), q 7! q|H induces a surjection on the U -invariant
rings O(G)U ! O(H)U where the U -actions are induced by right multipli-
cation.

The following example shows, that the assumption that H is characterless
is necessary:

Example 2.21. Let G = SL2, H the subgroup of upper triangular matri-
ces and let U ✓ H be the subgroup with 1 on the diagonal. Denote the
coordinates on SL2 by ✓

x y
z w

◆

Then O(G) ! O(H) identifies with the homomorphism

k[x, y, z, w]/(xw � yz � 1)
x 7!x , y 7!y , z 7!0 , w 7!w����������������! k[x, y, w]/(xw � 1)

and thus O(G)U ! O(H)U identifies with the non-surjective homomorphism

k[x, z]
x 7!x , z 7!0�������! k[x, w]/(xw � 1) ' k[x, x�1] .

We first provide the proof of Proposition 2.15 using Lemma 2.20. After-
wards, we provide the setup and the proof of Lemma 2.20.

Proof of Proposition 2.15. We have to show that Autalg
G/H

(G) acts su�ciently

transitively on each fiber of ⇡ : G ! G/H. Since ⇡ is G-equivariant with

respect to left multiplication by G, it is enough to show that Autalg
G/H

(G)

acts su�ciently transitively on the closed subset H of G. Let

N =

8
<

: fD
���

D is a locally nilpotent derivation of O(H) induced
by right multiplication of a one-dimensional
unipotent subgroup of H and f 2 ker(D)

9
=

; .

Since H is connected and characterless, H is spanned by all its one-dimen-
sional unipotent subgroups; see [Pop11, Lemma 1.1] Hence, the subgroup
G(N ) of SAut(H) generated by N acts transitively on H. By Remark 2.18,
there exists a saturated set of locally nilpotent derivations N 0 with G(N ) =
G(N 0); hence, Theorem 2.19 implies that G(N ) acts su�ciently transitively
on H. Therefore, it su�ces to show that every element of G(N ) can be

extended to an automorphism in Autalg
G/H

(G).

Let D 2 N , f 2 ker(D) and denote by U ✓ H the corresponding one-
dimensional unipotent subgroup. Note that ker(D) is equal to the invariant
ring O(H)U . By Lemma 2.20, there exists q 2 O(G)U such that q|H = f .
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Denote by E the locally nilpotent derivation of O(G) induced by right
multiplication of U on G. Since q 2 O(G)U = ker(E), the derivation qE
of O(G) is locally nilpotent. Since U is a subgroup of H, the fibers gH,
g 2 G of ⇡ are stable under the induced Ga-action of qE and thus this
Ga-action gives an algebraic subgroup of Autalg

G/H
(G). Note that we have a

commutative diagram of the following form

O(G)
qE
//

✏✏

✏✏

O(G)

✏✏

✏✏

O(H)
fD
// O(H)

where the vertical arrows are induced by the embedding H ✓ G. Therefore
we found our desired extension of the Ga-action induced by fD. ⇤

Proof of Lemma 2.20. Since H and U are characterless, the quotients G/U ,
H/U and G/H are quasi-a�ne; see [Tim11, Example 3.10]. Hence, the
canonical morphisms

• ◆G/U : G/U ! (G/U)a↵ := Spec(O(G)U )

• ◆H/U : H/U ! (H/U)a↵ := Spec(O(H)U )

• ◆G/H : G/H ! (G/H)a↵ := Spec(O(G)H)

are dominant open immersions; see [Gro61, 5, Proposition 5.1.2]. The tar-
gets of these open immersions are a�ne schemes that are, in general, not of fi-
nite type over k. There are unique G-actions on (G/U)a↵ and (G/H)a↵ such
that ◆G/U and ◆G/H are G-equivariant and a unique H-action on (H/U)a↵

such that ◆H/U is H-equivariant; see [KRvS19, Lemma 5]. Moreover, the
canonical G-equivariant morphism ⇢ : G/U ! G/H induces a unique G-
equivariant morphism

⇢a↵ : (G/U)a↵ ! (G/H)a↵

such that the following diagram commutes

G/U
◆G/U

//

⇢

✏✏

(G/U)a↵

⇢a↵

✏✏

G/H
◆G/H

// (G/H)a↵ .

Let V ✓ G/H be an open a�ne neighbourhood of q := H 2 G/H. We
may assume that there is an s 2 O(G/H) = O(G)H such that V = (G/H)s,
i.e. V consists of all points in G/H where s does not vanish. Further we may
assume that the extension sa↵ : (G/H)a↵ ! A1 of s : G/H ! A1 via ◆G/H

vanishes on the complement of ◆G/H(G/H) in (G/H)a↵ . Hence, ◆G/H(V ) =
((G/H)a↵)sa↵ and therefore

◆G/U (⇢�1(V )) ✓ ⇢�1
a↵ (◆G/H(V )) = ⇢�1

a↵ (((G/H)a↵)sa↵ ) = ((G/U)a↵)sa↵�⇢a↵ .
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By [Sta21, Lemma 01P7] we have (O(G/U))s�⇢ = O((G/U)s�⇢) and thus

((G/U)a↵)sa↵�⇢a↵ = ((G/U)s�⇢)a↵ = (⇢�1(V ))a↵ .

Hence, we have the following commutative diagram

⇢�1(V ) (G/U)s�⇢

open

✏✏

// ((G/U)a↵)sa↵�⇢a↵

open

✏✏

(⇢�1(V ))a↵

G/U
◆G/U

// (G/U)a↵ .

(4)

Furthermore, we may shrink V such that there exists a finite Galois covering
⌧ : V 0 ! V for some finite group � (i.e. ⌧ is a geometric quotient for a free
�-action on V 0) such that the pull-back map ⇢0 in the following pull-back
diagram

V 0 ⇥V ⇢�1(V )
⌧

0

//

⇢
0

✏✏

⇢�1(V )

⇢|
⇢�1(V )

✏✏

V 0 ⌧
// V

is a trivial H/U -bundle; see [Ser58, 1.5 and Proposition 3]. In particular,
there exists an isomorphism ' : V 0 ⇥ (H/U) ! V 0 ⇥V ⇢�1(V ) such that
⇢0�' : V 0⇥(H/U) ! V 0 is the projection onto the first factor. As ⌧ : V 0 ! V
is finite and V is a�ne, V 0 is a�ne as well. Note further, that the �-action
on V 0 induces a natural free �-action on V 0 ⇥V ⇢�1(V ) such that ⇢0 is �-
equivariant and ⌧ 0 is a geometric quotient for this �-action. Choose q0 2 V 0

such that ⌧(q0) = q.
Let f 2 O(H/U) = O(H)U . The goal is to extend f to an element in

O(G)U . Consider the morphism

f 0 : �q0 ⇥ (H/U)
'|�q0⇥(H/U)�������! (⇢0)�1(�q0)

⌧
0
|(⇢0)�1(�q0)��������! ⇢�1(q) = H/U

f�! A1 .

Then the extension f 0

a↵ : �q0 ⇥ (H/U)a↵ = (�q0 ⇥ (H/U))a↵ ! A1 of f 0 can
be extended to a morphism

V 0 ⇥ (H/U)a↵ ! A1 , (⇤)

as �q0 ⇥ (H/U)a↵ is a closed subscheme in the a�ne scheme V 0 ⇥ (H/U)a↵ .
Let F 0 : V 0 ⇥ (H/U) ! A1 be the composition of idV 0 ⇥ ◆H/U with the
morphism (⇤). By construction we have that F 0|�q0⇥(H/U) = f 0. Now, let

G0 :=
1

|�|
X

�2�

� · (F 0 � '�1) : V 0 ⇥V ⇢�1(V ) ! A1

be the average of F 0�'�1 over �. Since f 0�('|(⇢0)�1(�q0))
�1 = f �⌧ 0|(⇢0)�1(�q0)

is �-invariant, it follows that

f � ⌧ 0|(⇢0)�1(�q0) = G0|(⇢0)�1(�q0) . (⇤⇤)

Since G0 is �-invariant and since ⌧ 0 is a geometric quotient for the �-action
on V 0 ⇥V ⇢�1(V ), there exists a morphism F : ⇢�1(V ) ! A1 such that G0 =
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F � ⌧ 0. Using (⇤⇤), we find F |⇢�1(q) = f . The commutative diagramm (4)

implies that F extends to a morphism Fa↵ : (⇢�1(V ))a↵ = ⇢�1
a↵ (◆G/H(V )) !

A1 via ◆G/U , i.e.

Fa↵(◆G/U (gU)) = F (gU) for all gU 2 ⇢�1(V ) .

Hence the restriction Fa↵ |
⇢

�1
a↵ (H) : ⇢

�1
a↵ (H) ! A1 satisfies

Fa↵(◆G/U (hU)) = F (hU) = f(hU) for all h 2 H .

Since ⇢�1
a↵ (H) is a closed subscheme of the a�ne scheme (G/U)a↵ , there

exists an extension of Fa↵ |
⇢

�1
a↵ (H) to a morphism (G/U)a↵ ! A1. This is our

desired element in O(G)U . ⇤

2.4. The proof of Theorem 2.5. Throughout this subsection we use the
following notation.

Notation. Let f : X ! Z be a morphism of varieties, then we denote by

X(2)
Z

the complement of the diagonal in the fiber product X ⇥Z X and we
denote by (ker df)� the complement of the zero section in the kernel of the
di↵erential df : TX ! TZ.

We start with the following rather technical result that will turn out to
be the key.

Proposition 2.22. Let ⇡ : X ! P , ⇢ : X ! Q be smooth morphisms of
smooth irreducible varieties such that there exists a morphism ⌘ : Q ! P
with ⇡ = ⌘ � ⇢. Assume that Autalg

P
(X) acts su�ciently transitively on each

fiber of ⇡.
If Z is a smooth variety and f : Z ! X is a morphism such that each

non-empty fiber of ⇡ � f : Z ! P has the same dimension k � 0, then there
exists a ' 2 Autalg

P
(X) with

dim((' � f) ⇥ (' � f))�1(X(2)
Q

)  dim Z + dim P � dim Q + k (A)

dim(d(' � f))�1(ker d⇢)�  dim Z + dim P � dim Q + k . (B)

For the proof of the estimate (B) in this key proposition, we need the
following estimate:

Lemma 2.23. Let f : X ! Y be a morphism of varieties such that X is
smooth and denote by k the maximal dimension among the fibers of f .

Then the kernel of the di↵erential df : TX ! TY , i.e. the closed subva-
riety

ker(df) :=
[

x2X

ker(dxf) ✓ TX ,

satisfies dim ker(df)  dim X + k.
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Proof of Lemma 2.23. Let X =
S

n

i=1 Xi be a partition into smooth, irre-
ducible, locally closed subvarieties X1, . . . , Xn in X such that

fi := f |Xi
: Xi ! f(Xi)

is smooth for each i = 1, . . . , n (see [Har77, Lemma 10.5, Ch. III]). Note that
f(Xi) is an open subvariety of f(Xi) that is smooth, see [GR03, Proposition
3.1, Exposé II]. Let x 2 Xi. Thus the di↵erential dxfi : TxXi ! Tf(x)f(Xi)

is surjective and since dim f�1
i

(x)  k, we get dimker(dxfi)  k. Then the
kernel of

TxXi ,! TxX
dxf�! Tf(x)Y

has dimension  k, which implies dim ker(dxf)  dim TxX � dim TxXi + k.
Since X is smooth, we have dim TxX  dim X (we did not assumed that X
is equidimensional, hence we do not necessarily have an equality) and since
Xi is smooth and irreducible, we have dim TxXi = dimXi. Thus we get

dim ker(df)|Xi
 dim Xi + max

x2Xi

dim ker(dxf)

 dim Xi + dim X � dim Xi + k = dimX + k .

Hence, dim ker(df)  max1in dim(ker dxf) \ TX|Xi
 dim X + k. ⇤

Proof of Proposition 2.22. Let G := Autalg
P

(X) and let G be the family of all
connected algebraic subgroups of Aut(X) that lie in AutP (X). By definition
G is generated by the subgroups inside G and G is closed under conjugation
by elements of G.

Since ⇡ : X ! P is smooth and G acts su�ciently transitively on each
fiber of ⇡, the morphisms

 : X(2)
P

! P , (x, x0) 7! ⇡(x)

and
0 : (ker d⇡)� ! X

⇡�! P

are smooth and G acts transitively on each fiber of  and 0.

Applying Proposition 2.9 to  and the image of G in AutP (X(2)
P

) under
' 7! '⇥P ' gives H1, . . . , Hs 2 G such that H = (H1, . . . , Hs) is big enough
for smoothness with respect to . Likewise one gets H 0

1, . . . , H
0

s0 2 G such
that H0 = (H 0

1, . . . , H
0

s0) is big enough for smoothness with respect to 0.
Using Proposition 2.8(2), M = (H1, . . . , Hs, H 0

1, . . . , H
0

s0) is big enough for
smoothness with respect to  and 0. By Proposition 2.8(1), M is also big
enough for proper intersection with respect to  and 0. Hence, there is an
open dense subset U ⇢ H1 ⇥ · · · ⇥ Hs ⇥ H 0

1 ⇥ · · · ⇥ H 0

s0 such that for each
element in U the estimate (PI) in Definition 2.7 is satisfied with respect to

• the smooth morphism  : X(2)
P

! P ,

• the morphism (f ⇥ f)|
(f⇥f)�1(X

(2)
P

)
: (f ⇥ f)�1(X(2)

P
) ! X(2)

P
and

• the closed subset X(2)
Q

in X(2)
P

and
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• the smooth morphism 0 : (ker d⇡)� ! P ,
• the morphism df |(df)�1(ker d⇡)� : (df)�1(ker d⇡)� ! (ker d⇡)� and
• the closed subset (ker d⇢)� in (ker d⇡)�.

That means that, if we choose an element (h1, . . . , hs, h0

1, . . . , h
0

s0) 2 U , then
the automorphism ' = (h1 · · · hs · h0

1 · · · h0

s0)�1 2 G satisfies the following
estimates:

dim((' � f) ⇥ (' � f))�1(X(2)
Q

)

= dim(f ⇥ f)�1(X(2)
P

) ⇥
X

(2)
P

('⇥ ')�1(X(2)
Q

)

(PI)
 dim(f ⇥ f)�1(X(2)

P
) ⇥P X(2)

Q
+ dim P � dim X(2)

P

and

dim(d(' � f))�1(ker d⇢)�

= dim(df)�1(ker d⇡)� ⇥(ker d⇡)� (d')�1(ker d⇢)�

(PI)
 dim(df)�1(ker d⇡)� ⇥P (ker d⇢)� + dim P � dim(ker d⇡)� .

Since ⇡ : X ! P and  : X ! Q are both smooth morphisms of smooth
irreducible varieties, we get

• dim X(2)
P

= 2dim X � dim P

• dim X(2)
Q

= 2dim X � dim Q
• dim(ker d⇡)� = 2dim X � dim P .

Hence, it is enough to show the following estimates:

(1) dim(f ⇥ f)�1(X(2)
P

)⇥P X(2)
Q

 2 dimX +dimZ �dim Q�dim P +k

(2) dim(df)�1(ker d⇡)�⇥P (ker d⇢)�  2 dimX+dim Z�dim Q�dim P+
k

We establish (1): Consider the following pull-back diagram

(f ⇥ f)�1(X(2)
P

) ⇥P X(2)
Q

//

✏✏

X(2)
Q

"
✏✏

(f ⇥ f)�1(X(2)
P

) // P

(3)

Let Q0 ⇢ Q be the image of ⇢ : X ! Q. Since ⇢ is smooth, Q0 is an
open dense subset of Q. Hence ⌘|Q0 : Q0 ! P is a morphism of smooth
irreducible varieties. Since ⇡ = ⌘|Q0 � ⇢ : X ! P is smooth, it follows that
⌘|Q0 is smooth. Thus

" : X(2)
Q

= X(2)
Q0

! Q0
⌘|Q0�! P

is smooth as well of relative dimension 2 dim X �dim Q�dim P . Since each
non-empty fiber of ⇡�f : Z ! P has dimension k, the image of Z ⇥P Z ! P
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is contained in ⇡(f(Z)) and each non-empty fiber of it has dimension  2k.
Thus the same holds for

(f ⇥ f)�1(X(2)
P

) ! P .

Hence dim(f ⇥ f)�1(X(2)
P

)  dim⇡(f(Z)) + 2k = dim Z + k and the esti-
mate (1) follows from the pull-back diagram (3).

We establish (2): Consider the following fiber product:

(df)�1(ker d⇡)� ⇥P (ker d⇢)�
//

✏✏

(ker d⇢)�

✏✏

(df)�1(ker d⇡)�
// P

(4)

Since ⇢ : X ! Q is smooth, we get dim(ker d⇢)� = 2dim X � dim Q. Hence
(ker d⇢)� ! P is smooth of relative dimension 2 dim X � dim Q � dim P
(since (ker d⇢)� ! X and ⇡ : X ! P are smooth). Moreover,

dim(df)�1(ker d⇡)�  dim ker d(⇡ � f)  dim Z + k

where the second inequality follows from Lemma 2.23, since each non-empty
fiber of ⇡ � f : Z ! P has dimension k and Z is smooth. Thus the desired
estimate (2) follows from the pull-back diagram (4). ⇤
Lemma 2.24. Let f : Z ! X and ⇢ : X ! Q be morphisms of varieties.
Then we have the following:

dim Z(2)
Q

= max
n

dim(f ⇥ f)�1(X(2)
Q

), dim Z(2)
X

o

dim ker d(⇢ � f)� = max
�
dim(df)�1(ker d⇢)�, dim(ker df)�

 
.

Proof. The first equality follows, since the underlying set of Z(2)
Q

is the dis-
joint union of

{ (z1, z2) 2 Z ⇥ Z | ⇢(f(z1)) = ⇢(f(z2)) , f(z1) 6= f(z2) } = (f ⇥ f)�1(X(2)
Q

)

and the underlying subset of Z(2)
X

in Z ⇥ Z. The second equality follows,
since the underlying set of ker d(⇢ � f)� is the disjoint union of

{ v 2 TZ | d(⇢ � f)(v) = 0 , (df)(v) 6= 0 } = (df)�1(ker d⇢)�

and the underlying subset of (ker df)� in TZ. ⇤

In order to construct embeddings, we use the following characterization
of them:

Proposition 2.25. A morphism f : Z ! X of varieties is an embedding if
and only if the following conditions are satisfied

• f is proper
• f is injective
• for each z 2 Z, the di↵erential dzf : TzZ ! Tf(z)X is injective.
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We prove this proposition in the Appendix B for the lack of a reference
to an elementary proof; see Proposition B.1. From Proposition 2.22 and
Lemma 2.24 we get now immediately the following consequence:

Corollary 2.26. Let X be a smooth irreducible variety such that Autalg(X)
acts su�ciently transitively on X. If ⇢ : X ! Q is a finite étale surjec-
tion and Z ⇢ X is a smooth closed subvariety with dim X � 2 dimZ + 1,
then there exists ' 2 Autalg(X) such that ⇢ � ' : X ! Q restricts to an
isomorphism Z ! ⇢('(Z)).

Proof. We apply Proposition 2.22 to ⇡ : X ! P := {pt}, ⇢ : X ! Q (note
that Q is irreducible and smooth by [GR03, Proposition 3.1, Exposé II]),
and the inclusion f : Z ,! X in order to get a ' 2 Autalg(X) such that

dim((' � f) ⇥ (' � f))�1(X(2)
Q

)  2 dimZ � dim Q  dim X � 1 � dim Q < 0

dim(d(' � f))�1(ker d⇢)�  2 dimZ � dim Q  dim X � 1 � dim Q < 0

where we used the assumption dimX � 2 dimZ + 1. Applying Lemma 2.24
to ' � f : Z ! X and ⇢ : X ! Q yields, that the composition

Z
f

,! X
'�! X

⇢�! Q

is injective and the di↵erential dz(⇢ � ' � f) : TzZ ! T⇢('(z))Q is injective
for each z 2 Z. As the composition ⇢ � ' � f : Z ! Q is also proper, the
statement follows from Proposition 2.25. ⇤

The following number associated to each morphism will be crucial for the
proof of Theorem 2.5:

Definition 2.27. For each morphism f : Z ! X of varieties we define the
✓-invariant by

✓f := max{ dim Z(2)
X

, dim(ker df)� } .

In case W ✓ Z is locally closed, we define the restricted ✓-invariant by

✓f |W := max{ dim W (2)
X

, dim(ker df)�|W } .

Note that ✓f stays the same if we replace f with '�f for an automorphism
' 2 Aut(X). Moreover, the following remarks hold.

Remark 2.28. If f : Z ! X is a proper morphism, then f is an embedding
if and only if ✓f < 0. This follows directly from Proposition 2.25.

Remark 2.29. If f : Z ! X is a morphism and if X1, . . . , Xr ✓ X are locally
closed subsets with

S
i
Xi = X, then we have

✓f = max
i

✓f |f�1(Xi) .

The next result will enable us to inductively lower the ✓-invariant in the
proof of Theorem 2.5. We formulate it first in a general version suitable for
the applications, and we formulate it afterwards in the special case needed
for the proof of Theorem 2.5.
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Proposition 2.30. Let ⇢ : X ! Q be a principal Ga-bundle, Z an a�ne
variety and r : Z ! Q a finite morphism. Moreover, let A ✓ Z be a closed
subset, let gA : A ! X be a morphism with ⇢�gA = r|A and let Z1, . . . , Zs ✓
Z \ A be locally closed subsets.

Then there is a morphism g : Z ! X with ⇢ � g = r, g|A = gA and such
that the restricted ✓-invariants satisfy ✓g|Zi

 ✓r|Zi
� 1 for all i.

Part of Proposition 2.30 can be illustrated by the following commutative
diagram with filler g:

A

⇢

gA
// X

⇢

✏✏

Z
r
//

9g

??

Q .

Proof. Let W := r(Z) ⇢ Q. Since r : Z ! Q is finite and Z is a�ne, W
is a closed a�ne subvariety of Q by Chevalley’s Theorem, [GW10, Theo-
rem 12.39]. The restriction ⇢�1(W ) ! W of ⇢ is locally trivial with respect
to the Zariski topology (see [Ser58, Example, 2.3]) and since W is a�ne,
it is a trivial principal Ga-bundle (see e.g. [Gro58, Proposition 1, 1]); this
means, there exists a W -isomorphism ◆ : W ⇥ Ga ! ⇢�1(W ).

For i 2 {1, . . . , s}, we choose finite subsets

Ri ✓ (Zi)
(2)
Q

and Si ✓ (ker dr)� |Zi

such that each irreducible component of (Zi)
(2)
Q

and of (ker dr)� |Zi
contains

a point of Ri and of Si, respectively. Let pr1, pr2 : Z ⇥ Z ! Z be the
projection onto the first and second factor, respectively. As Z is a�ne and
Zi ⇢ Z \ A for all i, there exists a morphism q : Z ! Ga such that

• q restricted to A is equal to prGa
�◆�1 � gA where prGa

: W ⇥ Ga ! Ga

denotes the natural projection onto Ga,
• q restricted to pr1(Ri) [ pr2(Ri) is injective for all i and
• dq : TZ ! TGa restricted to Si never vanishes for all i.

Now, we define

g : Z // W ⇥ Ga

◆

'

// ⇢�1(W ) ⇢ X .

z �
// (r(z), q(z))

Since ◆ : W ⇥ Ga ! ⇢�1(W ) is a W -isomorphism, ⇢ � g = r. Moreover, by
construction we have g|A = gA. Now, we claim that

dim(Zi)
(2)
X

 dim(Zi)
(2)
Q

� 1 for all i , (5)

dim(ker dg)�|Zi
 dim(ker dr)�|Zi

� 1 for all i . (6)

For proving (5), take an irreducible component V of (Zi)
(2)
Q

. Then

V � := { (v1, v2) 2 V | g(v1) 6= g(v2) }
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is an open subset of V . By construction, there exists (z1, z2) 2 Ri \ V

with g(z1) 6= g(z2). Hence, V � is non-empty. This implies that V \ (Zi)
(2)
X

is properly contained in V . Since (Zi)
(2)
X

is a closed subset of (Zi)
(2)
Q

, we
get (5). Similarly, we get (6) by using that dg restricted to Si never vanishes.
Together, the estimates (5) and (6) imply that ✓g|Zi

 ✓r|Zi
�1 for all i. ⇤

By choosing A as the empty set, s = 1, and Z1 equal to Z, Proposition 2.30
becomes the following.

Corollary 2.31. Let ⇢ : X ! Q be a principal Ga-bundle, Z an a�ne
variety and r : Z ! Q a finite morphism. Then there exists a morphism
g : Z ! X such that ⇢ � g = r and ✓g  ✓r � 1. ⇤

We prove Theorem 2.5 by inductively applying Corollary 2.31.

Proof of Theorem 2.5. Let Z be a smooth a�ne variety such that dim X �
2 dimZ +1 and such that condition d) is satisfied. Let n := dim P = dimZ.

The following claim will enable us to lower the ✓-invariant.

Claim: 9 f : Z ! X such that ⇡ � f : Z ! P is finite and ✓f � 0
=) 9 g : Z ! X such that ⇡ � g : Z ! P is finite and ✓g < ✓f

Proof of Claim. Let f : Z ! X be a morphism such that ⇡ � f : Z ! P
is finite and ✓f � 0. By condition d), ⌘ : Q ! P is surjective and since
⇢ : X ! Q is surjective, we get that ⇡ : X ! P is surjective as well. Since
⇢ and ⇡ are smooth surjections and since X is smooth and irreducible, it
follows that P and Q are smooth and irreducible; see [GR03, Proposition

3.1, Exposé II]. By condition b), Autalg
P

(X) acts su�ciently transitively on
each fiber of ⇡. Thus we may apply Proposition 2.22 to f : Z ! X and may
choose a ' 2 Autalg

P
(X) such that f 0 := ' � f satisfies

max{ dim(f 0 ⇥ f 0)�1(X(2)
Q

) , dim(df 0)�1(ker d⇢)� }
 dim Z + dim P � dim Q ,

since ⇡ � f : Z ! P is finite (see condition d)). Note that

dim Z + dim P � dim Q = 2n � dim Q  dim X � 1 � dim Q = 0 ,

since ⇢ : X ! Q is a principal Ga-bundle. Thus by Lemma 2.24:

dim Z(2)
Q,⇢�f 0  max{ 0 , dim Z(2)

X,f 0 }
dim ker d(⇢ � f 0)�  max{ 0 , dim ker(df 0)� }

where we compute Z(2)
Q,⇢�f 0 and Z(2)

X,f 0 with respect to ⇢ � f 0 and f 0, respec-
tively. Thus ✓f 0  ✓⇢�f 0  max{0, ✓f 0}, which implies (as ✓f = ✓f 0 � 0)

✓f = ✓f 0 = ✓⇢�f 0 . (7)

Note that ⇢ � f 0 : Z ! Q is finite, since ⇡ � f 0 = ⇡ � f is finite. Hence,
applying Corollary 2.31 to ⇢ � f 0 : Z ! Q yields a morphism g : Z ! X such
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that ⇢ � g = ⇢ � f 0 and ✓g < ✓⇢�f 0 . Thus, we get ✓g < ✓f by (7). Since
⇡ � g = ⇡ � f 0 is finite, this completes the proof of the claim. ⇤

By condition d), the composition ⌘ � r : Z ! P is finite. In particular,
r : Z ! Q is finite and since Z is a�ne, there exists a morphism f : Z ! X
such that ⇢ � f = r; see Corollary 2.31. By the finiteness of ⇡ � f = ⌘ � r, we
can iteratively apply the claim in order to get a morphism g : Z ! X such
that ⇡ � g : Z ! P is finite and ✓g < 0. In particular, g : Z ! X is proper,
and, thus, g : Z ! X is an embedding by Remark 2.28. ⇤

3. Applications: Embeddings into algebraic groups

In this section we apply the results from Section 2 in order to construct
embeddings of smooth a�ne varieties into characterless algebraic groups.

In the entire section, we use the language of and results about algebraic
groups, with more notions showing up in later subsections. For the basic
results on algebraic groups we refer to [Hum75] and for the basic results
about Lie algebras and root systems we refer to [Hum78].

3.1. Embeddings into a product of the form Am ⇥ H. In this subsec-
tion, we study embeddings of smooth a�ne varieties into varieties of the
from Am ⇥ H where H is a characterless algebraic group. While this is of
independent interest, for us it is also a preparation to establish Theorem A;
compare with the outline of the proof in the introduction.

Corollary 3.1. Let H be a characterless algebraic group and let Z be a
smooth a�ne variety with

2 dimZ + 1  m + dim H . (⇤)

If dim Z  m, then Z admits an embedding into Am ⇥ H.

Proof. We may and do assume that H is connected. We set d := dimZ  m
and G := Am�d ⇥ H. Since G is a connected characterless algebraic group,
Autalg(G) acts su�ciently transitively on G by Example 2.12.

Let X = Ad⇥G ' Am⇥H. Since dimG = m+dimH �d � d+1 � 1 due
to (⇤) and since G is characterless, we may and do choose a one-dimensional
unipotent subgroup U ✓ G. Let Q = Ad ⇥ G/U . We apply Theorem 2.5
and Remark 2.6 to the natural projections

⇡ : X ! Ad , ⇢ : X ! Q and ⌘ : Q ! Ad

and get our desired embedding Z ! X. ⇤

Remark 3.2. Corollary 3.1 gives us back the Holme-Kaliman-Srinivas em-
bedding theorem, when we take for H the trivial group.
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3.2. Embeddings into a product of the form Am ⇥ (SL2)s. In this
subsection we study the special case Am ⇥ (SL2)s. The main result of the
subsection is Proposition 3.3, which is an analog of Corollary 3.1 with a
weaker dimension condition. This result will be used in order to get optimal
dimension conditions for embeddings into characterless algebraic groups of
low dimension in Subsection 3.4.

Proposition 3.3. Let s, m � 0 be integers and let Z be a smooth a�ne
variety with

2 dimZ + 1  m + dim ((SL2)
s) . (⇤⇤)

If dim Z  m + s, then Z admits an embedding into Am ⇥ (SL2)s.

Remark 3.4. In Proposition 3.3 we may replace the condition dim Z  m
by s� 1  m in case m+3s is odd and by s� 2  m in case m+3s is even.
Indeed, if m + 3s is odd, then s � 1  m implies that

dim Z
(⇤⇤)
 m + 3s � 1

2
=

m + (s � 1) + 2s

2
 m + m + 2s

2
= m + s

and if m + 3s is even, then s � 2  m implies that

dim Z
(⇤⇤)
 m + 3s � 2

2
=

m + (s � 2) + 2s

2
 m + m + 2s

2
= m + s .

Proof of Proposition 3.3. We may and do assume that dim Z � 0. If dim Z <
s, we may replace Z with Z⇥As�dim Z and the assumed dimension estimates
are still satisfied; thus, we may and do assume that dim Z � s. We set
d := dimZ.

Choose a finite morphism r : Z ! Ad (which exists due to Noether Nor-
malization). For any subset I ✓ {1, . . . , s}, let

HI := { (x1, . . . , xd) 2 Ad | xi = 0 for each i 2 I and xi 6= 0 for each i 62 I } .

Moreover, we denote for k 2 {0, . . . , d}
Zk := { z 2 Z | rank dzr = k } ,

which is a locally closed subset of Z. Note that dim Zk  k. (Indeed,
since r|Zk

: Zk ! r(Zk) is a finite morphism, there exists z 2 Zk with
dim Zk = rank dz(r|Zk

)  rank dzr = k.) Using Kleiman’s Transversality
Theorem [Kle74, 2. Theorem] there exists an a�ne linear automorphism '
of Ad such that

dim Zk \ r�1('�1(HI))  dim Zk + dim HI � d  k � |I| .
Hence, after replacing r by ' � r, we may assume that the dimension of the
locally closed subset

Zk,I := Zk \ r�1(HI) ✓ Z

is less than or equal to k � |I|. Since rank dzr = k for each z 2 Zk,I we get

dim(ker dr)�|Zk,I
 dim(ker dr)|Zk,I

= dimZk,I + (d � k)  d � |I| . (8)
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Now, for I ✓ {1, . . . , s}, let

ZI := r�1(HI) =
d[

k=0

Zk,I ⇢ Z .

Since dim Zk,I  k�|I| for all k, we get dim ZI  d�|I|. Since r|ZI
: ZI ! Ad

is finite, the projection dim(ZI)
(2)
Ad

! ZI to one of the factors is quasi-finite.

Hence, dim(ZI)
(2)
Ad

 dim ZI  d � |I|, and by the estimate (8) we get
dim(ker dr)�|ZI

 d � |I|. In total the restricted ✓-invariants of r satisfy

✓r|ZI
 d � |I| for all I ✓ {1, . . . , s} . (9)

We set

Xl := (A2 \ {(0, 0)})l�1 ⇥ A2 ⇥ Ad�l , Ql := (A2 \ {(0, 0)})l ⇥ Ad�l ,

and

⇢l := id(A2\{(0,0)})l�1 ⇥ pr1 ⇥idAd�l : Xl ! Ql�1 ,

where pr1 : A2 ! A1 denotes the projection onto the first factor. Next, for
l 2 {0, . . . , s}, we construct inductively finite morphisms gl : Z ! Ql such
that we have ⇢l � gl = gl�1, ✓gl

|ZI
 ✓gl�1 |ZI

for all I ✓ {1, . . . , s}, and
✓gl

|ZI
 ✓gl�1 |ZI

� 1 for I ⇢ {1, . . . , s} with l /2 I.
Let g0 : Z ! Q0 be the finite morphism r : Z ! Ad. By induction, we

assume that the finite morphism

gl�1 =
⇣
g(1)
l�1, . . . , g

(l+d�1)
l�1

⌘
: Z ! Ql�1

is already constructed for some 1  l  s. We apply Proposition 2.30 to the
trivial Ga-bundle ⇢l : Xl ! Ql�1, the closed subset

A := r�1
⇣
{ (x1, . . . , xd) 2 Ad | xl = 0 }

⌘
=

[

I✓{1,...,s} : l2I

ZI ✓ Z ,

and the morphism

gA : A ! Ql , a 7!
⇣
g(1)
l�1(a), . . . , g(2l�1)

l�1 (a), 1, g(2l)
l�1(a), . . . , g(l+d�1)

l�1 (a)
⌘

in order to get a morphism gl : Z ! Xl with ⇢l � gl = gl�1, gl|A = gA and

✓gl
|ZI

 ✓gl�1 |ZI
� 1 for all I ✓ {1, . . . , s} with l 62 I (10)

(here we used that ZI ✓ Z \A for each I with l 62 I). Since ⇢l �gl = gl�1, we

get ✓gl
|ZI

 ✓gl�1 |ZI
for all I ✓ {1, . . . , s}. Since gl|A = gA and since g(2l�1)

l�1
is equal to the l-th coordinate function of r, we get that the image of gl is
contained in Ql. Thus, we may consider gl as a morphism Z ! Ql.

Now,

✓gs
|ZI

(10)
 ✓r|ZI

� (s � |I|)
(9)
 d � s for all I ✓ {1, . . . , s} .
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Since r : Z ! Ad factorizes through gs : Z ! Qs, Ad =
S

I
HI , and ZI =

r�1(HI), Remark 2.29 implies that

✓gs
= max

I✓{1,...,s}

✓gs
|ZI

 d � s . (11)

Finally, let ⇢ := ⌘s ⇥ pr: (SL2)s ⇥ Am ! Qs = (A2 \ {(0, 0)})s ⇥ Ad�s,
where ⌘ : SL2 ! A2 \ {(0, 0)} denotes the projection to the first column
and pr: Am ! Ad�s is a surjective linear map (such a map exists, since
d  s+m). Since ⌘ is a Ga-bundle, ⇢ is the composition of 2s+m�d many
Ga-bundles. Thus, Corollary 2.31 gives us a morphism g : Z ! (SL2)s ⇥ Am

such that ⇢ � g = gs and ✓g  ✓gs
� (2s + m � d). Using the estimate (11)

gives us ✓g  2d � (3s + m). By (⇤⇤), we have 2d � (3s + m) < 0. Since g is
proper, Remark 2.28 implies that g is an embedding. ⇤
3.3. Embeddings into (semi)simple algebraic groups. In this sub-
section, we consider arbitrary (semi)simple algebraic groups G as targets of
embeddings of smooth a�ne varieties Z. However, while doing so the price
we have to pay is to relax the dimension condition 2 dim Z + 1  dim G in
order to get an embedding of Z into G.

From the point of view of the outline of the proof of Theorem A in the in-
troduction, the content of this subsection can be summarized as follows. Fix-
ing a semisimple algebraic group G, we start with two lemmas (Lemma 3.5
and Lemma 3.6) that yield closed subvarieties XP ✓ G with XP ' Am ⇥ H
based on a choice of a parabolic subgroup P ✓ G. We then formulate a
version of Theorem A for semisimple algebraic groups where the dimension
assumption on Z depends on dimension estimates for a chosen parabolic
subgroup P and its subgroups P u and Ru(P ) defined below. Finally, we
provide dimension estimates for P u and Ru(P ) for good choices of P ⇢ G
for simple algebraic groups based on the classification of simple Lie algebras
(Proposition 3.9). This su�ces to yield Theorem A by applying Corollary 3.1
to XP for a good choice of P (Theorem 3.7).

We recall a few notions. If G is an algebraic group, we denote by R(G) the
radical, by Ru(G) its unipotent radical, and by Gu the closed subgroup of
G that is generated by all unipotent elements of G. Recall that a connected
algebraic group G is called semisimple if G is non-trivial and R(G) is trivial,
and it is called simple if G is non-commutative and contains no non-trivial
proper closed connected normal subgroup. Moreover, a non-trivial algebraic
group G is called reductive if Ru(G) is trivial.

For lack of a reference, we insert a proof of the following classical facts:

Lemma 3.5. Let G be a semisimple algebraic group and let P ⇢ G be a
parabolic subgroup. Then the following holds:

(1) If L is a Levi factor of P , then Ru(P ) o Lu = P u.
(2) If P� ⇢ G is an opposite parabolic subgroup to P , then we have dim G =

dim Ru(P ) + dim P and the product morphism

Ru(P�) ⇥ Ru(P ) ⇥ (P \ P�)u ! G
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is an embedding1.
(3) If P is a maximal parabolic subgroup of G (i.e. P is a maximal proper

subgroup of G that contains a Borel subgroup), then dim P u = dimP �1.

For the proof of Lemma 3.5 we need the following Lemma.

Lemma 3.6. Let G be a connected reductive algebraic group. Then

a) Gu = [G, G],
b) G = Gu · R(G), Gu \ R(G) is finite and Gu is trivial or semisimple.

Proof of Lemma 3.6. Note that G/Gu is an algebraic torus, as it is con-
nected and contains only semisimple elements; see [Hum75, Proposition
21.4B and Theorem 19.3]. In particular, Gu contains the commutator sub-
group [G, G].

On the other hand, for every non-trivial character ↵ of a maximal alge-
braic torus T ⇢ G, [G, G] contains the root subgroup U↵ ⇢ G with respect
to T , since for each isomorphism � : Ga ! U↵ we have

�(↵(t) � 1) = �(↵(t))�(1)�1 = t�(1)t�1�(1)�1 2 [G, G] for every t 2 T .

Hence [G, G] contains Gu and thus we get the first statement.
The second statement follows from the first statement and from [Bor91,

Proposition 14.2, Ch. IV]. ⇤
Proof of Lemma 3.5. (1): By definition we have Ru(P ) n L = P . Hence,
we get an inclusion Ru(P ) o Lu ⇢ P u. On the other hand, the inclusion
P u ⇢ P induces an inclusion P u/Ru(P ) ⇢ P/Ru(P ) and ⇡ : P ! P/Ru(P )
restricts to an isomorphism ⇡|L : L ! P/Ru(P ). Hence,

Lu ⇡|Lu���!
'

(P/Ru(P ))u = P u/Ru(P ) ,

which implies (1).
(2): By [Tim11, Example 3.10], the algebraic quotient G/P u is quasi-

a�ne. Let P� be an opposite parabolic subgroup to P . The orbit in G/P u

through the class of the neutral element under the natural action of the
unipotent radical Ru(P�) is therefore closed in G/P u. This implies that
Ru(P�)P u is closed in G.

By definition, L := P \ P� is a Levi factor of P (and also of P�). The
product morphism induces an isomorphism of varieties

Ru(P�) ⇥ Ru(P ) ⇥ L
'�! Ru(P�) ⇥ P

'�! Ru(P�)P

and Ru(P�)P is an open dense subset of G (see [Bor91, Proposition 14.21]
or [FvS19, Appendix B.2]). This gives the first statement. Due to (1),
we have P u = Ru(P ) o Lu. Hence, the above isomorphism restricts to an
isomorphism:

Ru(P�) ⇥ Ru(P ) ⇥ Lu '�! Ru(P�)P u .

1By convention, for us embeddings are closed. In contrast, the product morphism
G ⇥ G ⇥ G ! G restricts to an isomorphism Ru(P

�) ⇥ Ru(P ) ⇥ (P \ P�) ! W , where
W is open in G.
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(3): By construction G/Ru(G) is a reductive or trivial algebraic group.
In the second case, G contains no maximal parabolic subgroup and thus
we may assume that G/Ru(G) is reductive. Since Ru(G) is contained in
every Borel subgroup of G, it follows that Ru(G) is contained in P . Thus
P/Ru(G) is a maximal parabolic subgroup of G/Ru(G). Since Ru(G) ⇢ P u,
we get an isomorphism

P/P u ' (P/Ru(G))/(P u/Ru(G)) .

Thus, it is enough to show (3) in case G is reductive (and by definition it is
connected).

Let B ⇢ G be a Borel subgroup, T ⇢ B a maximal algebraic torus,
r = dimT , r is the rank of G, and let X(T ) be the group of characters of T .
We may choose simple roots ↵1, . . . ,↵r 2 X(T ) such that P is the parabolic
subgroup with respect to ↵1, . . . ,↵r�1; see [Hum75, Theorem in 29.3]. Let

Zi =

0

@
i\

j=1

ker(↵j)

1

A
�

⇢ T for each i = 1, . . . , r

where H� denotes the identity component of a closed subgroup H ⇢ G.
Since by definition ↵1, . . . ,↵r form a basis of X(T )⌦Z R, it follows that over
Z the elements ↵1, . . . ,↵r are linearly independent. Hence, the dimension
of Zi is r � i. From [Hum75, 30.2], it follows that

R(P ) = Ru(P ) o Zr�1 .

Now, let Q := P/Ru(P ). Thus Q is a connected reductive algebraic group.
Since P u is the preimage of Qu under the canonical projection ⇡ : P ! Q,
we get

P/P u ' Q/Qu .

Note that ⇡(R(P )) is a normal solvable connected subgroup of Q and thus
⇡(R(P )) ⇢ R(Q). On the other hand, ⇡�1(R(Q)) is a normal, connected
subgroup and it is solvable, as Ru(P ) = ker(⇡) and R(Q) are solvable. The
latter two statements together imply that ⇡�1(R(Q)) = R(P ) and thus

R(Q) ' Zr�1 .

By Lemma 3.6, Q = Qu ·R(Q) and R(Q)\Qu is finite. Thus, the canonical
projection Q ! Q/R(Q) restricts to an isogeny Qu ! Q/R(Q). In total:

1 = dim Zr�1 = dimR(Q) = dim Q�dim Qu = dimQ/Qu = dimP/P u . ⇤

Theorem 3.7. Let G be a simple algebraic group, let k � 0 be an integer,
and let Z be a smooth a�ne variety. If dim G + k > 2 dimZ + 1, then Z
admits an embedding into G ⇥ Ak.

For the proof of Theorem 3.7 we will use the two next propositions.
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Proposition 3.8. Let G be a semisimple algebraic group and let k � 0 be
an integer. If there exists a parabolic subgroup P ⇢ G with dim P u � 1 
3 dimRu(P ), then for every smooth a�ne variety Z with

2 dimZ + dim P � dim P u < dim G + k

there exists an embedding of Z into G ⇥ Ak.

Proposition 3.9. Let G be a simple algebraic group. Then there exists a
maximal parabolic subgroup P ⇢ G such that dim P u  3 dimRu(P ).

Proof of Theorem 3.7. Let P ⇢ G be a maximal parabolic subgroup as in
Proposition 3.9. By Lemma 3.5(3) we have dim P � dim P u = 1. Thus the
theorem follows from Proposition 3.8. ⇤
Proof of Proposition 3.8. By Lemma 3.5(2) there exists an embedding of
Am ⇥ H into G ⇥ Ak, where m = 2dim Ru(P ) + k and H = (P \ P�)u for
an opposite parabolic subgroup P� ⇢ G of P . By Lemma 3.5(1) we have
dim H = dimP u � dim Ru(P ). Now, we get

dim H � 1 = dim P u � dim Ru(P ) � 1  2 dimRu(P )  m . (12)

By Lemma 3.5(2) we get dim G = dimRu(P ) + dim P . Hence

2 dimZ + 1  dim G � dim P + dim P u + k

= dimP u + dim Ru(P ) + k

= dimH + m .

Thus, we get dim Z  dim H�1+m

2  m by (12). Hence, the proposition
follows from Corollary 3.1. ⇤
Proof of Proposition 3.9. Let P ⇢ G be a maximal parabolic subgroup. By
Lemma 3.5(2),(3) we get dim Ru(P )+dim P u +1 = dim G. Let L be a Levi
factor of P . Then, by Lemma 3.5(1) dim P u = dim Lu + dimRu(P ). Now,
if we find a maximal parabolic subgroup P in G such that

dim G � 2 dimLu + 1 , (13)

then we are done, as in this case we would get

3 dimRu(P ) = dim Ru(P ) + dim P u + 1 � 1 + 2 dimRu(P ) � dim P u

= dimG � 1 + 2 dimRu(P ) � dim P u

� 2 dimLu + 2 dim Ru(P ) � dim P u

= dimP u .

We treat first the case, when G is one of the classical Lie-types An, Bn, Cn

or Dn. For n � 1, we denote by an, bn, cn, dn the dimension of the Lie algebra
of type An, Bn, Cn and Dn, respectively. By [Hum78, 1.2], we get

an = n2 + 2n , bn = cn = 2n2 + n , dn = 2n2 � n .

Now we choose s 2 N0 according to the Lie-type as follows
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Lie-type Dynkin diagram s
An, n � 1 b(n + 1)/2c
Bn, n � 2 b(4n + 1)/6c
Cn, n � 3 b(4n + 1)/6c
Dn, n � 4 b(4n � 1)/6c

where bxc means the largest integer that is smaller or equal than x. In
order to specify the maximal parabolic subgroup P of G, let I be the set
of all simple roots in the Dynkin diagram of G, except the simple root at
position s, when we count from the left in the Dynkin diagram. We let P
be the standard parabolic subgroup with respect to I and some fixed chosen
Borel subgroup of G and we let (as above) L ⇢ P be a Levi factor. Then
Lu is semisimple or trivial (by Lemma 3.6) and the corresponding Dynkin
diagram is the Dynkin diagram of G with the vertex s (counted from the
left) deleted; see [Hum75, 30.2]. For example, if the Lie type of G is B4,
then s = b17/6c = 2 and we have the following Dynkin diagrams (the cross

means to delete the corresponding simple root):

G: P : =) dim Lu = a1 + b2 = 13 .

By considering the Dynkin diagrams for the classical types An, Bn, Cn and
Dn and by using that a1 = b1 = c1, d2 = 2a1 and d3 = a3, we get

Lie-type s dim Lu

An, n � 1
⌅

n+1
2

⇧
� 1 as�1 + an�s = 2s2 � (2n + 2)s + n2 + 2n � 1

Bn, n � 2
⌅

4n+1
6

⇧
� 1 as�1 + bn�s = 3s2 � (4n + 1)s + 2n2 + n � 1

Cn, n � 3
⌅

4n+1
6

⇧
� 2 as�1 + cn�s = 3s2 � (4n + 1)s + 2n2 + n � 1

Dn, n � 4
⌅

4n�1
6

⇧
� 2 as�1 + dn�s = 3(s + 1)2 � (4n + 5)(s + 1)

+2n2 + 3n + 1.

From this table we conclude dimG � 2 dimLu � 0 as desired. We provide
the detailed calculation. For An with n � 1, we note

dim G � 2 dimLu � 1 = � n2 + 4(n + 1)

�
n + 1

2

⌫
� 4

�
n + 1

2

⌫2

� 2n + 1

=

8
>><

>>:

�n2 + 4(n + 1)n+1
2 � 4

�
n+1

2

�2 � 2n + 1
if n is odd

�n2 + 4(n + 1)n

2 � 4
�

n

2

�2 � 2n + 1
if n is even

=

⇢
2 if n is odd
1 if n is even

� 0 .
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For Bn and Cn with n � 2 and n � 3, respectively, and x 2 {0, �2, �4}
such that 6 divides 4n + x, we calculate

dim G � 2 dimLu � 1 = � 2n2 + 2(4n + 1)

�
4n + 1

6

⌫
� 6

�
4n + 1

6

⌫2

� n + 1

= � 2n2 + 2(4n + 1)
4n + x

6
� (4n + x)2

6
� n + 1

=
2n2 + n

3
+ 1 +

2x � x2

6
� 2n2 + n

3
+ 1 � 4

� 0 .

For Dn with n � 4 and x 2 {0, 2, 4} such that 6 divides 4n+x, we calculate

dim G � 2 dimLu � 1 = � 2n2 + 2(4n + 5)

�
4n + 5

6

⌫
� 6

�
4n + 5

6

⌫2

� 7n � 3

= � 2n2 + 2(4n + 5)
4n + x

6
� (4n + x)2

6
� 7n � 3

=
2n2 � n

3
+

10x � x2

6
� 3

� 2n2 � n

3
� 3

� 0 .

Now, for the exceptional Lie-types, we choose P as in the table below
and the estimate (13) follows from the same table (again the cross in the
dynkin diagram of P means, to remove the corresponding simple root):

Lie-type Dynkin diagram dim G Dynkin diagram dim Lu

of G of P

E6 78 a1 + a2 + a2 = 19

E7 133 a1 + a2 + a3 = 26

E8 248 a1 + a2 + a4 = 35
F4 52 b3 = 21
G2 14 a1 = 3 . ⇤

Having settled the case for simple algebraic groups, we go on to semisimple
algebraic groups. The following result generalizes Theorem 3.7.

Theorem 3.10. Let G be a semisimple algebraic group and let k � 0 be
an integer. Let r � 1 be the number of minimal normal closed connected
subgroups of G. If Z is a smooth a�ne variety with dim G+k > 2 dimZ+r,
then there exists an embedding of Z into G ⇥ Ak.
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Proof. Let G1, . . . , Gr be the minimal normal closed connected subgroups of
G. By [Hum75, Theorem in 27.5], the product morphism G1⇥· · ·⇥Gr ! G
is a finite étale surjection. In the light of Corollary 2.26 we may thus assume
G = G1 ⇥ · · · ⇥ Gr. Since Gi is a simple algebraic group, there exists a
maximal parabolic subgroup Pi ⇢ Gi such that 3 dim Ru(Pi) � dim P u

i
, by

Proposition 3.9. Let

P := P1 ⇥ P2 ⇥ · · · ⇥ Pr ⇢ G1 ⇥ G2 ⇥ · · · ⇥ Gr .

Then we get P u = P u

1 ⇥ · · · ⇥ P u
r and Ru(P ) = Ru(P1) ⇥ · · · ⇥ Ru(Pr)

and therefore 3 dim Ru(P ) � dim P u. Since dimPi � dim P u

i
= 1 for each

i 2 {1, . . . , r} (Lemma 3.5(3)), we get dim P � dim P u = r. Thus, the
theorem follows from Proposition 3.8. ⇤

3.4. Embeddings into algebraic groups of low dimension. Our main
result concerning characterless algebraic groups of low dimension is the fol-
lowing.

Proposition 3.11. Let G be a characterless algebraic group with dim G 
10 and let Z be a smooth a�ne variety with 2 dimZ + 1  dim G. If the
Lie algebra of G is non-isomorphic to sl2 ⇥ sl2 ⇥ sl2 and non-isomorphic to
sl3 ⇥ k, then Z admits an embedding into G.

Before giving the proof, let us shortly comment on the above result.
Proposition 3.11 implies that for any characterless algebraic group G with
dim G  8 the condition 2 dim Z + 1  dim G su�ces to get an embedding
of Z into G.

Question. Does every 4-dimensional smooth a�ne variety embed into the
algebraic group SL2 ⇥ SL2 ⇥ SL2 or into SL3 ⇥Ga?

Proof of Proposition 3.11. Let G be a characterless algebraic group of di-
mension  10 such that its Lie algebra is neither isomorphic to sl2 ⇥sl2 ⇥sl2
nor to sl3 ⇥ k. We may and will assume that G is connected. Using a
Levi decomposition [OV90, Theorem 4, Ch. 6], G is isomorphic as a va-
riety to Am ⇥ H where H is a connected reductive characterless algebraic
group. In particular, H is semisimple or trivial; see [FvS19, Remark 8.3] and
Lemma 3.6. In case H is trivial, the result follows from the Holme-Kaliman-
Srinivas embedding theorem. Thus we may assume that H is semisimple.
Since every semisimple algebraic group is the target of a finite homomor-
phism of a product of simple algebraic groups (see [Hum75, Theorem in
27.5]), we may assume that H is the product of simple algebraic groups by

Corollary 2.26. From the classification of simple Lie algebras it follows that
a simple algebraic group of dimension  10 has Lie algebra equal to sl2, sl3
or so5 = sp4. Again using Corollary 2.26, we may assume that the factors
of H are simple algebraic groups that are not targets of non-trivial finite
homomorphisms. Hence, H is a product of the groups

SL2 , SL3 and Sp4 .
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If H has a factor equal to SL3 or Sp4, then the statement follows from
Theorem 3.7 (note we excluded the case A1 ⇥ SL3). Hence, we are left with
the case

G ' Am ⇥ (SL2)
s .

for some s � 1. We distinguish two cases:

• m + 3s is odd: In case s � 1  m, the statement follows from Remark 3.4
and Proposition 3.3. Thus we assume that s � 1 > m. Since m + 3s  10
by assumption, we get 0  m  min{10 � 3s, s � 2}. Since m + 3s is odd,
this implies that (s, m) = (3, 0), which contradicts the assumption that
the Lie algebra of G is non-isomorphic to sl2 ⇥ sl2 ⇥ sl2.

• m + 3s is even: Again using Remark 3.4 and Proposition 3.3 we may
assume that s � 2 > m. Similarly as above we get 0  m  min{10 �
3s, s � 3}. Hence, (s, m) = (3, 0), and since m + 3s is even, we arrive at a
contradiction. ⇤

4. Non-embedability results for algebraic groups

Recall from the last section that, for all simple algebraic groups G and
smooth a�ne varieties Z such that dim G � 2 dimZ + 2, there exists an
embedding of Z into G (see Theorem 3.7). In this section, for every algebraic
group G and every integer d such that dim G  2d, we construct a smooth
a�ne variety Z of dimension d such that Z does not allow an embedding
into G (see Corollary 4.4 below). Thus, for a simple algebraic group G this
gives optimality of our embedding result (Theorem 3.7) in case dim G is
even, and optimality up to one dimension in case dim G is odd. We will
focus more on this last case in Section 5.

We recall some facts of the Segre- and Chern class operations. For this
we use the excellent book of Fulton [Ful98] as a reference. For a smooth
irreducible variety X of dimension d we denote by CHi(X) its i-th Chow
group, i.e. the group of i-cycles modulo linear equivalence for each 0  i  d.
For i > d and i < 0 we set CHi(X) = 0. For each vector bundle E ! X
and each i � 0, we get the so-called Segre class operations

si(E) : CHk(X) ! CHk�i(X) , ↵ 7! si(E) \ ↵

and thus endomorphisms si(E) on CH(X) =
L

k

i=0 CHi(X) (see [Ful98,
3.1]). By [Ful98, Propsition 3.1(a)] we have that s0(E) = 1 is the identity

in End(CH(X)). Following [Ful98, 3.2] we consider the formal power series
st(E) =

P
1

i=0 si(E)ti and define ct(E) =
P

1

i=0 ci(E)ti as the inverse of
st(E) inside the formal power series ring End(CH(X))[[t]]. This makes sense
since the endomorphisms si(E), i � 0 commute pairwise [Ful98, Proposition
3.1(b)]. It follows that ci(E) maps CHk(X) into CHk�i(X) and we denote
the image of ↵ 2 CHk(X) under ci(E) by ci(E) \ ↵ 2 CHk�i(X). The
operations ci(E), i � 0 are called Chern class operations. Moreover, by
[Ful98, Example 8.1.6] we have

ci(E) \ (cj(E) \ [X]) = (ci(E) \ [X]) · (cj(E) \ [X]) for all i, j ,
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where ‘·’ denotes the intersection product; see [Ful98, 8.1]. In the sequel
we denote by T ⇤X ! X the cotangent bundle of X.

Proposition 4.1. For d � 1, there exists an irreducible smooth a�ne vari-
ety Z of dimension d such that sd(T ⇤Z) 6= 0.

Proof. By the proof of [BMS89, Theorem 5.8], there exists a smooth irre-
ducible a�ne variety Z of dimension d such that the component in CH0(Z)
of the total Segre class of T ⇤Z ! Z is non-vanishing, sd(T ⇤Z) \ [Z] 6= 0 in
CH0(Z). This implies that sd(T ⇤Z) 6= 0 inside End(CH(Z)). ⇤

From a Theorem of Grothendieck, [Gro58, Remarque p.21] or [Bri11,
Proposition 2.8] we get the following result:

Proposition 4.2. Let G be a connected algebraic group of dimension n.
Then CHi(G) is a torsion group for 0  i  n � 1 and CHn(G) = Z. ⇤
Lemma 4.3. Let Z be an irreducible smooth a�ne variety of dimension
d � 1. If there is a connected algebraic group G of dimension 2d such that
there is an embedding ◆ : Z ! G, then sd(T ⇤Z) = 0.

Proof. Since d � 1, by Proposition 4.2, we get that ◆⇤([Z]) 2 CHd(G) is a
torsion element where [Z] 2 CHd(Z) denotes the class associated to Z. By
[Ful98, Corollary 6.3] we have

◆⇤(◆⇤([Z])) = cd(N
⇤) \ [Z] 2 CH0(Z)

where N⇤ denotes the conormal bundle of Z in G. Hence ◆⇤(◆⇤([Z])) is a
torsion element in CH0(Z). In case d = 1, we have dim G = 2 and thus G is
solvable. In particular CH1(G) = 0. In case d � 2, it follows from [BMS89,
Proposition 2.1] that CH0(Z) is torsion free. Thus in both cases ◆⇤(◆⇤([Z]))
is zero. Moreover cd(N⇤)\↵ = 0 for each ↵ 2 CHk(Z) if k < d. This implies
that cd(N⇤) = 0, it is the zero endomorphism of CH(Z).

Since G is an algebraic group, the cotangent bundle T ⇤G ! G is trivial.
Moreover, we have a short exact sequence of vector bundles over Z:

0 ! N⇤ ! ◆⇤(T ⇤G) ! T ⇤Z ! 0 .

Then we get

1 = ct(◆
⇤(T ⇤G)) = ct(N

⇤)ct(T
⇤Z) inside End(CH(Z))[[t]]

by [Ful98, Theorem 3.2(e)]. By definition we get st(T ⇤Z) = ct(N⇤) and thus
sd(T ⇤Z) = cd(N⇤) = 0. ⇤

Now, we apply the above results in order to get irreducible smooth a�ne
varieties that do not admit an embedding into algebraic groups for appro-
priate dimensions.

Corollary 4.4. Let G be an algebraic group of dimension n > 0. Then,
for each integer d � n

2 there exists a smooth irreducible a�ne variety Z of
dimension d that does not admit an embedding into G.
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Proof. By assumption 2d � n. Let k := 2d � n � 0. By Proposition 4.1
there exists a smooth irreducible a�ne variety Z of dimension d such that
sd(T ⇤Z) 6= 0. Towards a contradiction, assume that Z allows an embedding
into G. As Z is irreducible, there exists an embedding of Z into the identity
component G� of G and hence also into G� ⇥ (Ga)k. Since dimG� + k =
n + 2d � n = 2d, by Lemma 4.3 we get sd(T ⇤Z) = 0, contradiction. ⇤

5. Limits of our methods for odd dimensional simple groups

In Section 4 we proved that Theorem 3.7 is optimal for even dimensional
simple algebraic groups G. Moreover, by Proposition 3.11 we also get opti-
mality in case dim G  8. In this section we will explain, why we are not
able to apply our method to an odd dimensional simple algebraic group G
and smooth a�ne varieties Z with dim G = 2dim Z + 1 and dim Z > 1.

Concretely, let G be an odd dimensional simple algebraic group. In or-
der to apply our method (Theorem 2.5) to a smooth a�ne variety Z with
dim G = 2dim Z + 1 we need at least the following: a smooth morphism

⇡ : G ! P with dim P = dim Z

that factors through a principal Ga-bundle, Autalg
P

(G) acts su�ciently tran-
sitively on each fiber of ⇡, and a finite surjective morphism Z ! P .

The only way to construct such a ⇡ : G ! P seems to be forming the al-
gebraic quotient by some proper connected characterless algebraic subgroup
H ⇢ G of the right dimension; see Proposition 2.13 and Proposition 2.15.
However, in this section we prove Proposition D which yields an obstruction
to the existence of proper surjective morphisms Z ! G/H; see also the
discussion in the introduction.

Since the obstruction comes from algebraic topology, in this section we
work with varieties over the complex numbers, i.e. our ground field will be
C. However, using an appropriate Lefschetz principle, we promote a version
of Proposition D back to every algebraically closed field of characteristic
zero; see Appendix C.

In order to avoid confusion with the category of complex manifolds, below
we write algebraic morphism instead of just morphism. We restate Propo-
sition D:

Proposition 5.1. Let Z be a simply-connected complex smooth algebraic
variety with the rational homology of a point. If G/H is a dim Z-dimensional
complex homogeneous space of a complex simple algebraic group G, then
there is no proper surjective algebraic morphism from Z to G/H.

In Appendix C we prove that Proposition 5.1 holds for Z = Adim G�dim H

over any algebraically closed field of characteristic zero; see Proposition C.1.

Proof of Proposition 5.1. Let G̃ be the universal cover of G. Then p : G̃ ! G
is a homomorphism of simple complex algebraic groups [GR03, Théorème
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5.1, Exposé XII]. Since G̃/p�1(H) and G/H are isomorphic as algebraic
varieties, we may assume that G is simply connected.

Assume that there exists a proper surjective algebraic morphism Z !
G/H. Let H� be the identity component of H. Denote by p : G/H� ! G/H
the canonical projection, which is a finite algebraic étale surjection. As Z
is simply connected, there exists a holomorphic map f : Z ! G/H� such
that p � f : Z ! G/H is the original proper surjective algebraic morphism.
By [Ser58, Proposition 20], it follows that f : Z ! G/H� is an algebraic
morphism, and it is also proper and surjective. Thus, by replacing H by
H�, we may assume without loss of generality that H is connected.

Since G is simply connected and H is connected, the long exact homotopy
sequence assocaited to H ,! G ⇣ G/H yields the exact sequence

1 = ⇡1(G) ! ⇡1(G/H) ! ⇡0(H) = 1 .

Thus, since G is connected, we get that G/H is simply connected. Let

i0 := inf{ i � 1 | ⇡i(G/H) ⌦Z Q is non-vanishing } .

By Proposition 5.2 below, it follows that 1 < i0 < 1. As G/H is simply
connected, we may apply a rational version of the Hurewicz Theorem [KK04,
Theorem 1.1] and get

0 6= ⇡i0(G/H) ⌦Z Q ' Hi0(G/H; Q)

where H⇤(·; Q) denotes singular homology with rational coe�cients. Since
f : Z ! G/H is a proper surjective algebraic morphism, Theorem C applies,
and we get that f⇤ : Hi0(Z; Q) ! Hi0(G/H; Q) is surjective. However, this
contradicts Hi0(Z; Q) = 0. ⇤

Proposition 5.2. Let G be a simple complex algebraic group. Then, for
each proper closed complex subgroup H ⇢ G, there exists i > 1 such that

⇡i(G/H) ⌦Z Q 6= 0 .

For the proof of this proposition, we use facts about the rational homotopy
groups of all simply connected simple complex algebraic groups. We recall
those facts next.

Denote by G a simply connected semisimple complex algebraic group. Re-
call that there exists a maximal compact connected real Lie subgroup K ⇢ G
such that G and K are homotopy equivalent [Hel78, Theorem 2.2, Ch. VI].
In particular, K is simply connected, and thus we may apply [MT91, Theo-
rem 6.27, Ch. IV] to get a continuous map of a product of odd dimensional
spheres into K

f : S2n1�1 ⇥ · · · ⇥ S2nl�1 ! K

that induces an isomorphism between the singular cohomology rings with
rational coe�cients

H⇤(K; Q) ' H⇤(S2n1�1 ⇥ · · · ⇥ S2nl�1; Q) .



EXISTENCE OF EMBEDDINGS INTO ALGEBRAIC GROUPS 37

By the universal coe�cient theorem for cohomology, f induces an isomor-
phism between singular homology groups with rational coe�cients. Since
K is simply connected, we get by Künneth’s formula

H1(S
2n1�1; Q) � · · · � H1(S

2nl�1; Q) ' H1(K; Q) = 0 .

This implies ni � 2 for each i 2 {1, . . . , l}. In particular, the product of
spheres S2n1�1 ⇥ · · · ⇥ S2nl�1 is simply connected as well. Now, by the
Whitehead-Serre Theorem [FHT01, Theorem 8.6], f induces for each i � 0
an isomorphism of rational homotopy groups

⇡i(S
2n1�1)⌦Z Q⇥ · · ·⇥⇡i(S

2nl�1)⌦Z Q ' ⇡i(K)⌦Z Q = ⇡i(G)⌦Z Q . (14)

Note that by a Theorem of Serre ([FHT01, Example 1 in 15(d)] or [KK04,
Theorem 1.3], for odd positive integers k, the group ⇡i(Sk)⌦ZQ is isomorphic
to Q if i = k and otherwise it vanishes.

Definition 5.3. For a simply connected semisimple complex algebraic group
G, we call the above constructed unordered l-tuple {2n1 � 1, . . . , 2nl � 1}
the rational homotopy type of G.

In the following table we list the complex dimension and rational homo-
topy type for each Lie type (the statements follow from [MT91, Theorem
6.5, Ch. III and Theorem 5.10, Ch. VI]):

Table 1. Rational homotopy types
Lie-Type Complex dimension Rational homotopy type of the

simply connected simple
complex algebraic group

Am, m � 1 m2 + 2m {3, 5, . . . , 2m + 1}
Bm, m � 2 2m2 + m {3, 7, . . . , 4m � 1}
Cm, m � 3 2m2 + m {3, 7, . . . , 4m � 1}
Dm, m � 4 2m2 � m {3, 7, . . . , 4m � 5} [ {2m � 1}

E6 78 {3, 9, 11, 15, 17, 23}
E7 133 {3, 11, 15, 19, 23, 27, 35}
E8 248 {3, 15, 23, 27, 35, 39, 47, 59}
F4 52 {3, 11, 15, 23}
G2 14 {3, 11}

Proof of Proposition 5.2. With the same argument as in the beginning of
the proof of Proposition 5.1, we may assume that G is simply connected.
Let H� ⇢ H be the identity component of H. Since G/H� ! G/H is a finite
étale surjection, we get for each i > 1 an isomorphism ⇡i(G/H�) ' ⇡i(G/H).
Hence, in addition we may assume that H is connected.

Let R(H) be the radical of H. By definition H/R(H) is a semisimple
complex algebraic group. Let S ! H/R(H) be the universal covering. As
before, S is a simply connected semisimple complex algebraic group. Since
R(H) is the product of an algebraic torus and a unipotent algebraic group,
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it follows from the long exact homotopy sequence that

⇡i(H) = ⇡i(H/R(H)) = ⇡i(S) for each i > 2

and
⇡2(H) ,! ⇡2(H/R(H)) = ⇡2(S)

is injective. From (14) it follows that ⇡2(S) ⌦Z Q = 0. Hence we get

⇡i(H) ⌦Z Q = ⇡i(S) ⌦Z Q for each i > 1 .

Let S1, . . . , Sl be the connected normal minimal closed complex subgroups
of S. Then each Si is a simple complex algebraic group and the product
morphism S1⇥· · ·⇥Sl ! S is a finite étale surjection (see [Hum75, Theorem
in 27.5]). Hence, we get

⇡i(S) = ⇡i(S1) ⇥ · · · ⇥ ⇡i(Sl) for each i > 1 .

Now, assume towards a contradiction that ⇡i(G/H) ⌦Z Q = 0 for each
i > 1. By tensoring the long exact homotopy sequence associated to H ,!
G ⇣ G/H with Q, we get isomorphisms

⇡i(H) ⌦Z Q ' ⇡i(G) ⌦Z Q for each i > 1 .

In particular,

⇡3(S1) ⌦Z Q ⇥ · · · ⇥ ⇡3(Sl) ⌦Z Q ' ⇡3(G) ⌦Z Q . (15)

According to Table 1, we have ⇡3(Si) ⌦Z Q ' ⇡3(G) ⌦Z Q ' Q for each
i 2 {1, . . . , l}. Hence, due to (15), we get l = 1, S is already simple, and

⇡i(S) ⌦Z Q ' ⇡i(G) ⌦Z Q for each i > 1 .

Since S and G are both simply connected we get even

⇡i(S) ⌦Z Q ' ⇡i(G) ⌦Z Q for each i � 0 .

This implies that S and G have the same rational homotopy type. However,
according to Table 1 this can only happen if the Lie types of S and G
coincide or the Lie types of S and G are Bm and Cm, respectively, for some
m � 3 (note that the 5th rational homotopy group is non-vanishing only
for Am with m � 2 and the 7th rational homotopy group is non-vanishing
only for Bm, Cm and Dm). In both cases the complex dimension of S and
G coincide, which contradicts the fact that H is a proper closed complex
subgroup of G. ⇤

Appendix A. Hopf’s Umkehrungshomomorphismus theorem

In this chapter we use a version of Hopf’s Umkehrungshomomorphismus
theorem to prove Theorem C. Apart from the proof of Theorem C, in this
section we consider the Euclidean topology on (topological, smooth and
complex) manifolds and subsets thereof. For lack of reference, we provide
a proof of the following version for (in general) non-closed manifolds of a
result going back to the work of Hopf in the case of closed (smooth) mani-
folds [Hop30]. While we will apply the result only for smooth maps, we take
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the opportunity to formulate the statements for topological manifolds and
proper continuous maps between them. Aspects of our proof are written
with smooth concepts in mind (definition of degree, exhaustion of manifolds
by full-dimensional compact manifolds with boundary), even if the proficient
topologist might have worked di↵erently, e.g. to avoid topological transver-
sality in Lemma A.5. An advantage is that this proof works very naturally
in the smooth setup as well, and it seems like the fastest path from citable
literature to the theorem.

The reader may read what follows for the ring R being Z or Q without loss
for the application in this paper. Recall that an orientation on a manifold is
a Z-orientation. The notions used in the result will be explained afterwards.

Theorem A.1. Let R be a commutative unital ring, M and N be R-oriented
non-empty topological manifolds of the same dimension where N is con-
nected, and let f : M ! N be a proper continuous map. Denote by d 2 R
the degree of f , by fk : Hk(M ; R) ! Hk(N ; R) the induced map in k-th
homology, and by f!,k : Hk(N ; R) ! Hk(M ; R) the Umkehrungshomomor-
phismus. Then, for all non-negative integers k and all c 2 Hk(N ; R), we
have fk � f!,k(c) = dc.

We use Theorem A.1 to prove Theorem C. In fact we prove the following.

Theorem A.2. Let f : X ! Y be a proper surjective holomorphic map
between complex n-dimensional manifolds. Assume that Y is connected and
let the integer d � 1 be the number of preimages of a regular value of f .
Then the following hold.

(a) The image of the induced map on k-th homology Hk(X; R) ! Hk(Y ; R)
contains dHk(Y ; R) for all integers k � 0.

(b) Assume that X is connected. Then for all x in X, the image of the in-
duced homomorphism on the fundamental groups f⇤ : ⇡1(X, x) ! ⇡1(Y, f(x))
has finite index in ⇡1(Y, f(x)) and this index divides d. In case X has
the rational homology of a point, then f⇤ is a surjection.

Proof of Theorem C. Since f is proper (in the sense of algebraic geometry),
it is proper as a map when X and Y are endowed with the Euclidean topol-
ogy (i.e. their topology as (complex) di↵erentiable manifolds); see [GR03,
Proposition 3.2, Exp. XII], [Bou71, Proposition 6, 10]. From here on we
consider X and Y with their Euclidean topology. W.l.o.G. X and Y are
connected. Since d 6= 0 is a unit in Q, the statement follows by applying
Theorem A.2(a) for R = Q. ⇤

Proof of Theorem A.2. Since X and Y are complex manifolds, they are
canonically oriented, and since f is holomorphic, for every regular point
x 2 X, f maps a neighborhood orientation-preservingly to Y . Consequently,
the local degree of f at a regular value y 2 Y (see Remark A.6 for a topolog-
ical definition) equals the non-negative integer d of the number of elements
of f�1(y).
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The degree of f is well-defined as the local degree d � 0 of any regular
value y 2 Y , and, since preimages of regular values are non-empty, the
degree of f is non-zero.

(a): We apply Theorem A.1 to find that

fk(Hk(X; R)) ◆ fk(f!,k(Hk(Y ; R))) = dHk(Y ; R) .

(b): W.l.o.g., we fix x 2 X such that y := f(x) 2 Y is a regular
value of f . Let p : eY ! Y be the covering of Y corresponding to the sub-
group f⇤(⇡1(X, x)) ✓ ⇡1(Y, y). We show that this is a finite cover, whence
f⇤(⇡1(X, x)) has finite index in ⇡1(Y, y).

We pick ey 2 p�1(y) and denote by ef : X ! eY a lift of f with ef(x) = ey.
First we show that p�1(y) is contained in the image of ef . Indeed, take

ez 2 p�1(y) and let e� : [0, 1] ! eY be a path connecting ey and ez. We arrange
for e� to lie in p�1(Y reg), where Y reg ✓ Y denotes the subset of regular
values of f . This can, for example, be achieved by composing �̃ with p,
homotoping the resulting path rel endpoints into Y reg (here we invoke that
f is holomorphic2), and lifting the resulting path. The loop � := p � e� can
be lifted to a path ↵ : [0, 1] ! f�1(Y reg) starting at x since f restricts to
a covering f�1(Y reg) ! Y reg (recall that proper local homeomorphisms are
coverings). By construction, ef � ↵ and e� are lifts of � starting at ey; in
particular, ef(↵(1)) = ez as desired.

We conclude that p�1(y), which is the index of f⇤(⇡1(X, x)) in ⇡1(Y, y),
must be finite. In fact,

��p�1(y)
��
��� ef�1(ey)

��� =

����
⇣
p � ef

⌘
�1

(y)

���� =
��f�1(y)

�� = d 2 N,

where the first equality follows since f̃ restricts to a covering f�1(Y reg) !
p�1(Y reg) and, thus, |f̃�1(y0)| = |f̃�1(ey)| for all y0 2 p�1(y).

Assume now, that X has the rational homology of a point. Note that
ef is a holomorphic map between complex n-dimensional manifolds; hence,
its degree ed equals ef�1(ey) by the same argument we used above to find

2We provide an argument for the claim that any smooth path � : [0, 1] ! Y with
endpoints in Y reg can be homotoped relative endpoints to a smooth path in Y reg.

Note that Y sing := Y \Y reg is the image f(Xsing) of the closed analytic subset Xsing =
{x 2 X | f is singular at x } ✓ X, and thus Y sing is a closed analytic subset of Y by
Remmert’s Proper Mapping Theorem [Rem57, Satz 23]. As such, Y sing can be stratified
as a finite union M1[̇ · · · [̇Mk of complex submanifolds Mi ✓ Y of complex codimesion
at least 1; see e.g. [Chi89, 5.5. Stratifications]. Let G : [0, 1]⇥RN ! Y be a smooth map
for some N 2 N with G|[0,1]⇥{0} = � such that for each t 2 [0, 1], the map RN ! Y ,
v 7! G(t, v) is submersive (see e.g. [GP74, Corollary to the "-Neighbourhood Theorem]).
Let F : [0, 1]⇥ RN ! Y be given by F (t, v) := G(t, t(1� t)v). Then, F and @F : @[0, 1]⇥
RN ! Y are both transversal to each submanifold Mi of Y . By Thom’s Transversality
Theorem, �v : [0, 1] ! Y , t 7! F (t, v) is transversal to Y sing for each v 2 RN away from a
nullset. As the Mi have real codimension at least 2 in Y , this means that the image of �v

is disjoint from each Mi. We set �0 = �v for some v not in that nullset.
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d = f�1(y). Hence, since f and ef have non-zero-degree, Theorem A.1
implies that they both induce surjections on rational homology. Hence, both
Y and eY have the rational homology of a point and, in particular, they both
have Euler characteristic 1. However, for a finite covering p : eY ! Y of index
k, the Euler characteristic of eY is k-times that of Y , thus k = 1. ⇤
Remark A.3. An n-dimensional manifold M is said to dominate an n-
dimensional connected manifold N , if there exists a proper continuous map
f : M ! N of non-zero degree. Using this term, the above proof of Theo-
rem A.2(a) amounts to observing that a proper surjective holomorphic map
between complex n-dimensional manifolds is a map that establishes that the
domain dominates the target and then applying Theorem A.1.

Remark A.4. Only after a preprint of this article appeared on the arXiv, the
authors became aware of Gurjar’s result [Gur80]. This was the motivation
to add (b) to Theorem A.2, so that Theorem A.2 specializes to Gurjar’s
result by setting X = Cn. Our proof of part (b) can also be understood as
the natural generalization of the argument from [Gur80].

Before providing the proof of Theorem A.1, we recall orientations, dual-
ities, the Umkehrungshomomorphismus, and the degree. We do this some-
what detailed and in a for us suitable way since we need all notions to work
for non-compact manifolds. We take [Hat02] as our reference for algebraic
topology.

For readability, we will drop the coe�cients from the notation of homology
and cohomology.

Manifold. A topological manifold, short manifold, of dimension n is a sec-
ond countable Hausdor↵ space locally homeomorphic to Rn. In particular,
manifolds have no boundary unless otherwise stated. A manifold is said to
be closed if it is compact.

Orientation. An R-orientation is a map o : M !
S

x2M
Hn(M, M \ {x})

such that o(x) 2 Hn(M, M\{x}) ' R is a generator (i.e. Ro(x) = Hn(M, M\
{x})) and o is continuous. Here,

S
x2M

Hn(M, M \ {x}) is endowed with
the following topology, which turns the canonical projection to M into a
covering map and o into a section of this covering map. The topology is the
inductive limit topology with respect to the maps

Rn ⇥ R
(x,r) 7!r"x(µ)

//

S
y2Rn Hn(Rn, Rn \ {y})

�⇤
//

S
x2M

Hn(M, M \ {x})

for all local charts � : Rn ! U where R carries the discrete topology, µ 2
Hn(Rn, Rn\{0}) is a fixed generator and "x : Hn(Rn, Rn\{0}) ! Hn(Rn, Rn\
{x}) is induced by the translation Rn ! Rn, y 7! y + x; see [Hat02, R-
orientation]).

For every compact K ⇢ M , we denote by oK 2 Hn(M, M \K) the unique
element in Hn(M, M \ K) that maps to o(x) under the map induced by
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inclusion of pairs (M, M \ K) ⇢ (M, M \ {x}) for all x 2 K; see [Hat02,
Lemma 3.27].

For context, recall that for a closed oriented manifold M , oM is the fun-
damental class in Hn(M).

Cohomology groups with compact supports as a limit. For any topo-
logical space X, we denote by Hk

comp(X) cohomology groups with compact
supports ; that is, the limit group of the directed system of groups given by
the groups and maps
n

Hk(X, X \ K)
o

K⇢X, K compact
and Hk(X, X \ K)

◆
⇤

! Hk(X, X \ L),

where K ✓ L ✓ X are compacts and i : (X, X \ L) ! (X, X \ K) denotes
the inclusions of pairs, respectively; see [Hat02, Paragraph after Prop 3.33].

This yields a functor from the category of topological space with mor-
phisms given by proper continuous maps to the category of R-modules for
each non-negative integer k: to a proper continuous map f : X ! Y we
associate

fk

comp : Hk

comp(Y ) ! Hk

comp(X) , [�] 7! [fk(�) 2 Hk(X, X \ f�1(J))] ,

where � 2 Hk(Y, Y \ J) for some compact subset J ✓ Y , and we denote
by fk : Hk(Y, Y \ J) ! Hk(X, X \ f�1(J)) the homomorphism induced by
f : (X,X \ f�1(J)) ! (Y, Y \ J).

Poincaré duality and the Umkehrungshomomorphismus. We recall
that for an R-oriented topological manifolds M we have the Poincare duality
isomorphism. One can write the Poincaré duality map

PDk(M) : Hn�k

comp(M) ! Hk(M)

as the homomorphism induced by

Hn�k(M, M \ K) ! Hk(M) ,  7! oK \  
for all compact subsets K in X; see [Hat02, Theorem 3.35].

Correspondingly, for all non-negative integers k, one defines the Umkehr-
ungshomomorphismus in homology of a proper continuous map f : M ! N
between R-oriented n-manifolds as

f!,k := PDk(M) � fn�k

comp � (PDk(N))�1 : Hk(N) ! Hk(M).

Alexander duality. For an R-orientable manifold M and a locally con-
tractible compact path-connected subset K ⇢ M , one has the following

Hl(M, M \ K) ' Hn�l(K) for all l 2 {0, . . . , n}, (16)

which we only use for l = n and K path-connected, so that Hn�l(K) ' R.

Proof of (16). Let K be a compact in an R-orientable n-dimensional man-
ifold M . If M is closed, see [Hat02, Theorem 3.44] for a proof (the proof
given there works as stated for every R).
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If instead M is not closed (i.e. M is not compact), we find a compact n-
dimensional submanifold M0 ⇢ M with boundary such that K is contained
in the interior of M�

0 of M0; see Lemma A.5 below. Now (16) follows from
the case above since by excision

Hl(M, M\K) ' Hl(M
�

0 , M�

0 \K) ' Hl

�
M0 [ id@M0M0, M0 [ id@M0M0 \ K

�
,

where M0[id@M0M0 denotes the doubling of M0, i.e. the closed R-orientable
n-manifold obtained by gluing M0 to a copy of itself along their boundary
via the identity. ⇤
Every compact sits in a compact submanifold. The following lemma
was used above to assure that Alexander duality holds for non-compact
manifolds. We will also use it below for degree calculations.

Lemma A.5. Let M be an n-dimensional manifold. If K ⇢ M is a com-
pact subset, then there exists a compact n-dimensional manifold M0 (with
boundary if K has non-empty intersection with at least one non-compact
component of M) such that the interior of M0 contains K. If M is con-
nected, then M0 can be chosen to be path-connected.

Proof. If K has empty intersection with all non-compact components of M ,
set M0 to be the union of connected components of M that have non-empty
intersection with K. Hence, we consider the case that K has non-empty
intersection with at least one non-compact component of M (in particular,
M is non-compact).

Pick a proper continuous map f : M ! R. (For example, exhaust M by
a countable union of compacts K1 ⇢ K2 ⇢ · · · with Ki ✓ K�

i+1 (possible by
second countability), define f to be i on the compacts Ki \ K�

i
, and extend

it to map Ki+1 \ K�

i
to [i, i + 1] by the Tietze extension theorem.)

Let a, b 2 R be such that a + 1 < f(x) < b � 1 for all x in K. Up to
changing f by a homotopy that is constant outside of the compact f�1([a�
1, a + 1] [ [b � 1, b + 1] (in particular, the resulting f stays proper), we may
and do assume that f is transversal to a and b, which in particular implies
that M0 := f�1([a, b]) is a compact manifold with boundary f�1(a)[f�1(b);
see [FNOP19, Definition 10.7 and Theorem 10.8] for necessary definitions
and statements.3

In case M is connected, one can easily arrange for M0 to be connected.
Indeed, let L be the union of M0 with the image of (finitely many) paths in
M between components of M0. Thus L is a path-connected compact subset
of M that contains the original K. Find a compact submanifold (with
boundary) of dimension n of M that contains L (as done in the previous
paragraph) and take its connected component that contains L. ⇤

3We abstain from providing the details of topological transversality (details and further
references can be found in [FNOP19]). We note that in the rest of the paper we use this
appendix only for smooth manifolds, and the proof is written such that replacing f by a
smooth map the argument works with the notion of transversality and the corresponding
transversality theorems in smooth manifold theory.
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Degree. Let f : M ! N be a proper continuous map, where M and N are
R-oriented n-manifolds.

For y 2 N , we set K := f�1(y) and consider the induced map

fn : Hn(M, M\f�1(y)) ! Hn(N, N\{y}) = Ro(y) ' R .

We define the local degree dy of f at a point y 2 N as the unique dy 2 R
such that fn(oK) = dyo(y).

Remark A.6 (Local degree for y with finite preimage). In the special case
that K is finite, say given by pairwise distinct points x1, · · · xl, we have that

dy =
lX

i=0

r(xi),

where r(xi) 2 R is such that for an open neighborhood U of xi with U \K =
{xi} the induced map of pairs fn : Hn(M, M \ {xi}) ' Hn(U, U \ {xi}) !
Hn(N, N \ {y}) satisfies fn(o(xi)) = r(xi)o(y).

If y1 6= y2 are in the same connected component of N , then dy1 = dy2 .
This follows from the following lemma, which is immediate from naturality
of induced maps in homology of pairs.

Lemma A.7. Let f : M ! N be a proper continuous map, where M and
N are R-oriented n-manifolds.

If J is a compact subset of N such that Hn(N, N \ J) ' R, e.g. J is path
connected and locally contractible (Alexander duality; see (16)), then the
unique d 2 R such that fn(of�1(J)) = doJ satisfies d = dy for all y 2 J . ⇤

And, indeed, it follows that dy1 = dy2 : let J be a closed arc embedded in
N with endpoints y1 and y2 (such an arc exists since connected components
of manifolds are arc-connected), hence dy1 = dy2 by Lemma A.7.

Hence, if N is connected, the degree d of f is defined to be the local degree
of f at a y 2 N .

The proof.

Proof of Theorem A.1. Let f : M ! N be a proper continuous map be-
tween R-oriented manifolds M and N , where N is connected. Fix a non-
negative integer k and cY 2 Hk(N). We choose a compact J ⇢ N such that
PDk(N)([ ]) = cY for some  2 Hn�k(Y, Y \ J). In fact, by increasing J if
necessary (and changing  to the corresponding class given by the inclusion
map), we may and do choose J to be connected and locally contractible
(indeed, we may choose it as a connected submanifold with boundary by
Lemma A.5). We set K := f�1(J) ⇢ M , which is compact since f is proper.
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With this setup we calculate

fk (f!,k(cY )) = fk

⇣
PDk(M) � fn�k

comp � (PDk(N))�1(cY )
⌘

(17)

= fk

⇣
PDk(M)(fn�k

comp([ ]))
⌘

(18)

= fk

⇣
PDk(M)([fn�k( )])

⌘
(19)

= fk

⇣
oK \ fn�k( )

⌘
(20)

= fn(oK) \  (21)

= doJ \  (22)

= dPDk(N)([ ]) = dcY , (23)

where we use the following. (17) holds by the definition of the Umkehrungs-
homomorphism. (18) holds by our choice of  . (19) follows by the definition
of the induced map on cohomology with compact support. (20) holds by
the definition of PDk(M). (21) is an application of the naturality of the cap
product

\ : Hn(M, M \ K) ⇥ Hn�k(M, M \ K) ! Hk(M);

see [Hat02, more general relative cap product, The Duality Theorem, p. 240].
For (22), note that doJ = fn(oK) by Lemma A.7 since K = f�1(J) and by
Alexander duality (see (16)) we have Hn(N, N \ J) ' R by our choice of J .
Finally, (23) holds by the definition of PDk(N) and since PDk(N)([ ]) =
cY . ⇤

Appendix B. A characterization of embeddings

For the lack of a reference to an elementary proof of the following char-
acterization of embeddings, we provide a proof here.

Proposition B.1. Let f : X ! Y be a morphism of varieties. Then the
following are equivalent:

a) f is an embedding;
b) f is proper, injective and for each x 2 X the di↵erential dxf : TxX !

Tf(x)Y is injective.

For the proof, we use the following two lemmas from commutative algebra.

Lemma B.2. Let B be a ring and S ⇢ B be a multiplicative set such that
the localization R := S�1B is a local ring. Denote by n the maximal ideal of
R, by ' : B ! R the canonical homomorphism and set m := '�1(n).

Then there exists an isomorphism  : R ! Bm such that  � ' : B ! Bm

is the canonical homomorphism of the localization.

Proof of Lemma B.2. As '(S) consists of units in R, we get '(S) ⇢ R \ n,
i.e. S ⇢ B \ m. By the universal property of localizations there exists a
homomorphism  : R ! Bm such that  �' is equal to the canonical homo-
morphism ◆ : B ! Bm. Thus it is enough to show that  is an isomorphism.
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By definition '(B \m) ⇢ R\n, i.e. '(B \m) consists of units in R. Hence
' : B ! R factors through ◆ : B ! Bm, there exists ✓ : Bm ! R such that
✓ � ◆ = '. Thus the following commutative diagram exists:

B
'

!!

'

~~

◆

✏✏

R
 
// Bm

✓
// R .

For r 2 R there exist b 2 B and s 2 S with r = b

s
in R and we get

(✓ �  )(r) = (✓ �  )('(b)'(s)�1) = '(b)'(s)�1 = r .

Hence ✓ �  is the identity on R and in particular,  is injective. On the
other hand, let b

t
2 Bm where b 2 B and t 2 B\m. Since '(B\m) consists of

units in R, we get '(b)'(t)�1 2 R and thus  ('(b)'(t)�1) = ◆(b)◆(t)�1 = b

t
.

This shows that  is surjective. ⇤
Lemma B.3. Let A ⇢ B be a ring extension of Noetherian local rings where
mA and mB denote the maximal ideals of A and B, respectively. If

a) mA ⇢ mB,
b) the induced field extension A/ mA ⇢ B/ mB is trivial,
c) the induced homomorphism mA / m2

A
! mB / m2

B
is surjective,

d) B is a finite A-module,

then A = B.

Proof of Lemma B.3. We claim that mA B = mB. Indeed, by a) we know
that mA B ⇢ mB. Since mA / m2

A
! mB / m2

B
is surjective, we get mB =

mA + m2
B

and inductively

mB = mA + mn

B for each n � 2 . (24)

Let ⇡ : B ! B/ mA B be the canonical projection. Since B/ mA B is a
Noetherian local ring and ⇡(mB) is a proper ideal of B/ mA B, Krull’s in-
tersection theorem implies the second equality below:

⇡(mB)
(24)
=

\

n�1

⇡(mB)n = (0) .

This implies mB ⇢ mA B and proves the claim.
Since by b), we have that the field extension A/ mA ⇢ B/ mB is trivial,

the claim implies now that

B = A + mB = A + mA B .

This in turn gives us M = mA M for M = B/A. Since B is a finite A-module,
M is a finite A-module as well. Since A is a local ring with maximal ideal
mA, we conclude by Nakayama’s lemma that M = 0, A = B. ⇤
Proof of Proposition B.1. Clearly, a) implies b), hence we are left with the
proof of the reverse implication and thus we assume b) holds.
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Note that f(X) is closed in Y , since f is proper. We may therefore replace
Y with f(X) and assume in addition that f is surjective. Now, we have to
show that f is locally an isomorphism. Since f is proper and injective, it
is finite; see [GW10, Corollary 12.89]. Thus, for each x 2 X there exists
an open a�ne neighbourhood U ⇢ Y of f(x) such that f�1(U) is a�ne
and OX(f�1(U)) is a finite OY (U)-module via the induced homomorphism
f⇤

U
: OY (U) ! OX(f�1(U)). As f is surjective, f⇤

U
is injective.

Let A := OY (U), B := OX(f�1(U)) and denote by mA, mB the maximal
ideals corresponding to the points f(x), x, respectively. We identify A with
a subring of B and then mA = mB \A. By the flatness of A ! AmA

the
homomorphism AmA

! AmA
⌦A B is injective and it is finite, since A ⇢ B

is finite. Let R := AmA
⌦A B. Then R is the localization of B at the

multiplicative set A \mA. Hence, we have a commutative push-out diagram

AmA
⇢ R

A

◆A

OO

⇢ B

'

OO

(25)

where ◆A and ' denote the canonical homomorphisms into the corresponding
localizations.

Let n be a maximal ideal in R. We claim that n = '(mB)R. Indeed,
n\AmA

is a maximal ideal of AmA
, since AmA

⇢ R is finite; see [Mat86,
Lemma 2, 9]. This implies the first equality below and the second one
follows from the commutativity of (25):

mA = ◆�1
A

(n\AmA
) = '�1(n) \ A . (26)

Since '�1(n) is a prime ideal of B, '�1(n) \ A = mA is a maximal ideal
of A and since A ⇢ B is finite, it follows from [Mat86, Lemma 2, 9] that
'�1(n) is a maximal ideal of B. Since f : X ! Y is injective, mB is the only
maximal ideal in B with mB \A = mA. By (26), we get now '�1(n) = mB,
which implies the claim.

Using the claim, '(mB)R is the unique maximal ideal in R. In particu-
lar R is a local ring and mB = '�1('(mB)R). By Lemma B.2 there is an
isomorphism  : R ! BmB

such that  � ' is equal to the canonical homo-
morphism ◆B : B ! BmB

of the localization. Hence we may identify R with
BmB

and ' with ◆B and we have to show now that AmA
= BmB

. However,
this follows from Lemma B.3 applied to the ring extension AmA

⇢ BmB

(condition c) in Lemma B.3 follows from the injectivity of dxf : TxX !
Tf(x)Y and condition b) follows from the fact that A/ mA = AmA

/ mA AmA
,

B/ mB = BmB
/ mB BmB

and from the assumption that the ground field is
algebraically closed). ⇤
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Appendix C. Non-existence of proper surjective morphisms of

affine spaces into homogeneous spaces

In this last appendix, we prove a version of Proposition D that works over
an arbitrary algebraically closed field k of characteristic zero:

Proposition C.1. Let d � 1. If G/H is a d-dimensional homogeneous space
of a simple algebraic group G, then there is no proper surjective morphism
from Ad to G/H.

The idea is simply to reduce the situation to the case of complex numbers
and then to use Proposition D. In other words, we check that the Lefschetz
principle holds for the specific statement we need.

For the proof we make the following convention. If X is a variety over k
and if k ⇢ K is a field extension such that K is algebraically closed as well,
we denote by XK the fiber product X ⇥Speck Spec K. In case X is a�ne,
we will denote the coordinate ring of X by k[X]; in particular we then have
K[XK ] = K ⌦k k[X]. In the proof we will use the following properties of
GK for an algebraic group G over k:

Lemma C.2. Let k ⇢ K be a field extension such that K is algebraically
closed and let G be an algebraic group over k. Then the following holds:

(1) The algebraic group G is connected if and only if GK is connected.
(2) The group of k-rational points G(k) is dense in GK .
(3) Let H be a closed subgroup over k of G. Then GK/HK = (G/H)K .
(4) If G� denotes the identity component of G, then (G�)K = (GK)�.
(5) Assume that G is connected. Then, G is simple (semisimple, reductive)

if and only if GK is simple (semisimple, reductive).

Remark C.3. Let G be a non-trivial algebraic group G over k. Then G is
reductive if and only if the identity component G� is reductive or trivial.
Hence, for any field extension k ⇢ K where K is algebraically closed, the
algebraic group G is reductive if and only if GK is (see Lemma C.2).

Proof of Lemma C.2. (1): If G is connected, then k[G] is an integral domain.
There is a canonical inclusion K[GK ] = K ⌦kk[G] ⇢ K ⌦kk(G) where k(G)
denotes the field of rational functions on G. Since k is algebraically closed,
by [ZS58, Corollary 1, 15, Ch. III], we get that K ⌦k k(G) is an integral
domain and thus GK is connected.

If GK is connected, then K[GK ] = K ⌦k k[G] is an integral domain. As
k ⇢ K is an inclusion, it follows that k[G] ! K ⌦k k[G] is an inclusion and
thus k[G] is an integral domain as well. This shows that G is connected.

(2): Note that a k-rational point of G corresponds to a k-algebra ho-
momorphism k[G] ! k which in turn induces a K-algebra homomorphism
K[GK ] = K ⌦k k[G] ! K ⌦k k = K and thus gives a (closed) point in GK .
In this way we see G(k) as a subgroup of GK .

Denote by G� the identity component. Hence there exists a finite set
E ⇢ G(k) such that G =

`
e2E

e · G�. Since (G�)K is connected (see (1)),
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it follows from [Bor91, 18.3 Corollary] that G�(k) is dense in (G�)K . Hence

G(k) =
a

e2E

e · G�(k) is dense in GK =
a

e2E

e · (G�)K .

(3): Denote by ⇡K : GK ! (G/H)K the pull-back of the natural projec-
tion ⇡ : G ! G/H. Let pr : H ⇥ G ! G be the projection onto the second
factor. Since ⇡ is H-invariant, we get the commutativity of

G ⇥ H

pr

✏✏

(g,h) 7!g·h
// G

⇡

✏✏

G
⇡

// G/H

and thus of

GK ⇥ HK

pr
K

✏✏

(g,h) 7!g·h
// GK

⇡K

✏✏

GK

⇡K
// (G/H)K .

This shows that ⇡K is HK-invariant. In particular, there exists a morphism
✓ : GK/HK ! (G/H)K such that ⇡K factors as

GK ! GK/HK

✓! (G/H)K (27)

where the first morphism denotes the canonical projection.
Let U ⇢ G/H be an open a�ne subvariety and let V ! U be a finite

étale morphism such that V ⇥U ⇡�1(U) ! V is a trivial principal H-bundle.
In particular, V ⇥U ⇡�1(U) ' U ⇥H is a�ne and since V ⇥U G ! ⇡�1(U) is
finite, it follows that ⇡�1(U) is a�ne by Chevalley’s Theorem [GW10, Theo-
rem 12.39]. Using (27), we get that the restriction ⇡K |⇡�1(U)K

: ⇡�1(U)K !
UK factorizes as

⇡�1(U)K ! ⇡�1(U)K/HK

✓UK�! UK ,

where ✓UK
denotes the restriction of ✓ to ⇡�1(U)K/HK . Since ⇡�1(U) is

a�ne, we get K[⇡�1(U)K ] = K ⌦k k[⇡�1(U)].
We claim that ✓UK

is an isomorphism. To achieve this it is enough to show
that the induced map of ✓UK

on global sections of the structure sheaves is
a K-algebra isomorphism (since UK is a�ne). Since UK = (⇡�1(U)/H)K ,
this amounts to showing that the invariant rings satisfy

(K ⌦k k[⇡�1(U)])HK = K ⌦k k[⇡�1(U)]H inside K ⌦k k[⇡�1(U)] .

The inclusion ‘◆’ follows from the existence of ✓UK
. For the reverse inclu-

sion let (ei)i be a k-basis of the k-vector space K and let
P

i
ei ⌦k fi 2

K ⌦k k[⇡�1(U)] be HK-invariant (almost all fi 2 k[⇡�1(U)] are zero). In
particular, we get for all h 2 H(k) and g 2 ⇡�1(U) that

X

i

eifi(h · g) =
X

i

eifi(g) inside K .

As (ei)i is a k-basis for K, we get fi(h · g) = fi(g) for each h 2 H(k), each
g 2 ⇡�1(U) and each i. This implies fi 2 k[⇡�1(U)]H for each i and shows
‘✓’. Hence ✓UK

is an isomorphism.
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As we may cover G/H by open a�ne subvarieties U such that there is a
finite étale morphism V ! U that trivializes ⇡ over U , it follows that ✓ is
an isomorphism.

(4): The connectedness of (G�)K follows from the connectedness of G�;
see (1). Since (G/G�)K = GK/(G�)K is finite (see (3)), we get that (G�)K

is the identity component in GK .
(5): Let T be a maximal algebraic torus of G, denote by X(T ) the charac-

ter lattice of T and denote by g the Lie algebra of G. Moreover, let R ⇢ X(T )
be the roots of g with respect to T and for each ↵ 2 R, let g↵ denote the
corresponding eigenspace. Hence we get

g = g0 �
M

↵2R

g↵ .

Note that K ⌦k g is the Lie algebra of GK , that we may naturally identify
X(T ) with X(TK) and that the natural T -action on g induces naturally a
TK-action on K ⌦k g. Since (K ⌦k g)↵ � K ⌦k g↵ for each ↵ 2 R and
(K ⌦k g)0 � K ⌦k g0, we get

(K ⌦k g)0 �
M

↵2R

(K ⌦k g)↵ = K ⌦k g = K ⌦k g0 �
M

↵2R

K ⌦k g↵

and

(K ⌦k g)0 = K ⌦k g0 , (K ⌦k g)↵ = K ⌦k g↵ for each ↵ 2 R .

We assume first that G is semisimple (reductive). Using that GK is
connected, it follows from [DG11, Proposition 1.12, Corollaire 1.13, Exp.
XIX] that TK is a maximal algebraic torus in GK and GK is semisimple
(reductive). If G is simple, then GK is semisimple. Moreover, the roots
system of G with respect to T is irreducible, and thus the root system of
GK with respect to TK is irreducible as well. Hence, if G is simple, then
GK is simple as well.

Assume now that GK is simple. If there exists a proper connected nor-
mal subgroup N over k of G, then NK is a proper connected normal sub-
group of GK , since G(k) is dense in GK and N(k) is dense in NK ; see (2).
Hence, NK contains only the identity and thus N as well. Moreover, as
GK is non-commutative and G(k) is dense in GK , we get that G is non-
commutative. Analogously one shows that G is semisimple (reductive) in
case GK is semisimple (reductive). ⇤

Proof of Proposition C.1. We assume towards a contradiction that there ex-
ists a proper surjective morphism ' : An ! G/H. In particular, ' is quasi-
finite and since ' is proper, we conclude that ' is finite; see [GW10, Corol-
lary 12.89]. By Chevalley’s Theorem [GW10, Theorem 12.39], G/H is a�ne.
In particular, we get a finite ring extension

k[G/H] ✓ k[x1, . . . , xn] ,
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where x1, . . . , xn are variables. By the assumption there exist monic poly-
nomials f1, . . . , fn 2 k[G/H][T ] such that f1(x1) = . . . = fn(xn) = 0.

There exists an algebraically closed subfield k0 ⇢ k of finite transcendence
degree over Q, an algebraic group G0 over k0, and a proper subgroup H 0 over
k0 of G0 such that G = G0

k and H = H 0

k.
Since G/H is a�ne and G is reductive, H is reductive or trivial (see

[Tim11, Theorem 3.8]). By Remark C.3, H 0 is reductive or trivial, and thus
G0/H 0 is a�ne. Hence, k0[G0/H 0] is a finitely generated k0-algebra, and
thus there exists a surjective k0-algebra homomorphism ⌘0 : k0[y1, . . . , ym] !
k0[G0/H 0], where y1, . . . , ym are new variables. By Lemma C.2(3)

⌘ := k ⌦k0 ⌘ : k[y1, . . . , ym] ! k ⌦k0 k0[G0/H 0] = k[G/H]

is a surjective k-algebra homomorphism. For each i = 1, . . . , n, let di :=
deg(fi) > 0 and let pij 2 k[y1, . . . , ym], where j = 0, . . . , di � 1, such that

fi = T di +
di�1X

j=0

⌘(pij)T
j .

By enlarging k0 we may assume in addition that the coe�cients of all the
pij 2 k[y1, . . . , ym] and all the ⌘(yi) 2 k[x1, . . . , xn] are contained in k0. In
particular, the polynomial fi has coe�cients in k0[G0/H 0] for each i and

k0[G0/H 0] ✓ k0[x1, . . . , xn] . (28)

As fi(xi) = 0 for each i, we get that (28) is a finite ring extension.
Since the field extension Q ⇢ k0 has finite transcendence degree, there

exists an embedding of k0 into the field of complex numbers C. Hence,

C[(G0/H 0)C] = C ⌦k0 k0[G0/H 0] ⇢ C[x1, . . . , xn]

is a finite ring extension and G0

C/H 0

C = (G0/H 0)C is a�ne. Thus, we get a
finite surjective morphism An

C ! G0

C/H 0

C. Since G simple, we get that G0

is simple, and thus also G0

C is simple; see Lemma C.2(5). This contradicts
Proposition D. ⇤
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DYNAMICAL DEGREES OF AFFINE-TRIANGULAR
AUTOMORPHISMS OF AFFINE SPACES

JÉRÉMY BLANC AND IMMANUEL VAN SANTEN

Abstract. We study the possible dynamical degrees of automorphisms of
the affine space An. In dimension n = 3, we determine all dynamical degrees
arising from the composition of an affine automorphism with a triangular one.
This generalises the easier case of shift-like automorphisms which can be stud-
ied in any dimension. We also prove that each weak Perron number is the
dynamical degree of an affine-triangular automorphism of the affine space An

for some n, and we give the best possible n for quadratic integers, which is
either 3 or 4.
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1. Introduction

1.1. Dynamical degrees of polynomial endomorphisms. In this text, we
work over an arbitrary field k. For each n � 1, recall that an endomorphism
f 2 End(An) of An = An

k is given by

f : (x1, . . . , xn) 7! (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

where f1, . . . , fn 2 k[x1, . . . , xn]. To simplify the notation, we often write f =
(f1, . . . , fn) and thus identify End(An) with (k[x1, . . . , xn])n.

The degree of an endomorphism f = (f1, . . . , fn), denoted by deg(f), is defined
to be deg(f) = max(deg(f1), . . . , deg(fn)). The set End(An) of endomorphisms of
An is a monoid, for the composition law, and the subset of invertible elements is
the group Aut(An) of automorphisms of An.

The dynamics of endomorphisms of An, specially in the case of the ground field
k = C, was studied intensively in the last decades, see for instance [FsW98, Sib99,
Mae00, BFs00, Mae01a, Mae01b, Gue02, GS02, Gue04, Ued04, FJ11, JW12, Xie17,

2010 Mathematics Subject Classification. 14R10, 37F10.
1
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DL18]. For each dominant endomorphism f 2 End(An), the (first) dynamical degree
is defined as the real number

�(f) = lim
r!1

deg(fr)
1
r 2 R�1

(the limit exists by Fekete’s subadditivity Lemma, see Lemma 2.2.1). If f 2
End(A1) or f 2 Aut(A2), then �(f) is an integer, but in higher dimensions, it
can be quite complicated to understand the possible dynamical degrees. In [DF,
Corollary 3], the authors conjecture that �(f) is an algebraic integer of degree  n,
and of degree  n�1 if f 2 Aut(An), a conjecture proven until now only for n  2.

In this article, we study some particular family of automorphisms of An, that we
call affine-triangular. These are compositions consisting of one affine automorphism
and one triangular automorphism (see Definition 2.1.1) below. Our two main results
are Theorem 1 and Theorem 2 below:

Theorem 1. For each field k and each integer d � 2, the set of dynamical degrees
of all affine-triangular automorphisms of A3 of degree  d is equal to

(
a +

p
a2 + 4bc

2

����� (a, b, c) 2 N3, a + b  d, c  d

)
\ {0}.

Moreover, for a, b, c 2 N such that � = a+
p

a2+4bc
2

6= 0, the dynamical degre � is
achieved by either of the automorphisms

(x3 + xa
1
xb

2
, x2 + xc

1
, x1) and (x3 + xa

1
xbc

2
, x1, x2) .

Using Theorem 1, we prove in [BvS, Theorem 2] that the set of dynamical degrees
of all automorphisms of degree 3 of A3 is equal to
(

1,
p

2,
1 +

p
5

2
,

p
3, 2,

1 +
p

13

2
, 1 +

p
2,

p
6,

1 +
p

17

2
,

3 +
p

5

2
, 1 +

p
3, 3

)
.

Note that 3+
p

5

2
is the only number that does not belong to the list in Theorem 1

and thus it is the dynamical degree of an automorphism of degree 3 of A3 that is
not conjugate to an affine-triangular automorphism of any degree.

For the next theorem, we recall the definition of (weak)-Perron numbers (see
Theorem 3.2.4 for some equivalent characterisations).

Definition 1.1.1. A Perron number (respectively weak Perron number) is a real
number � � 1 that is an algebraic integer such that all other Galois conjugates
µ 2 C satisfy |µ| < � (respectively |µ|  �).

Theorem 2. Each weak-Perron number � is the dynamical degree of an affine-
triangular automorphism of An for some integer n. Moreover:

(1) If � > 1 is an integer, the least n possible is 2.
(2) If � is a quadratic integer and its conjugate is negative, the least possible n

is 3.
(3) If � is a quadratic integer and its conjugate is positive, the least possible n

is 4.

Note that Statement (1) in Theorem 2 is well-known, as {�(f) | f 2 Aut(A2)} =
Z�1. We include it to emphasise the relation between the degree of the weak-Perron
numbers and the possible n. In view of the above theorems and of the techniques
developped in this text, it is natural to ask the following
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Question 1.1.2. Is every dynamical degree of any element of End(An) (respectively
Aut(An)) equal to a weak Perron number of degree  n (respectively of degree
 n � 1)?

As already mentioned above, a positive answer to this question, where “weak
Perron number” is replaced by ”algebraic integer”, was conjectured in the recent
preprint [DF, Corollary 3] (that appeared after we asked the above question in a
first version of this text). In [DF], it is also proven that the dynamical degree of any
element in Aut(A3) is an algebraic number of degree at most six. More generally
they prove that the dynamical degree of any element of End(An) is an algebraic
number of degree at most n in case the square of the first dynamical degree is bigger
than the second dynamical degree of f [DF, Theorem 2].

Theorem 1 shows in particular that the dynamical degree of every affine-triangular
automorphism of A3 is equal to the dynamical degree of a shift-like automorphism.
However, for each d � 3 the set of dynamical degrees of all affine-triangular au-
tomorphisms of A3 of degree d strictly contains the set of dynamical degrees of
all shift-like automorphisms of A3 of degree d. Indeed, the latter set of dynamical
degrees consists of the numbers (a +

p
a2 + 4d � 4a)/2 where 0  a  d and does

not contain (1+
p

1 + 4d)/2 , which is the dynamical degree of the affine-triangular
automorphism (x3 + x1x2, x2 + xd

1
, x1), see Corollary 4.3.7.

dynamical degrees of shift-like dynamical degrees of affine-triangular
d automorphisms of A3 of degree automorphisms of A3 of degree d

d not appearing in degree < d not appearing in degree < d
1 {1} {1}
2 {

p
2, 1+

p
5

2
, 2} {

p
2, 1+

p
5

2
, 2}

3 {
p

3, 1 +
p

2, 3} {
p

3, 1+
p

13

2
, 1 +

p
2,

p
6, 1+

p
17

2
, 1 +

p
3, 3}

4 { 1+
p

13

2
, 1 +

p
3, 3+

p
13

2
, 4} {2

p
2, 1 +

p
5, 3+

p
13

2
, 1+

p
33

2
, 2

p
3, 1+

p
37

2
,

3+
p

17

2
, 1 +

p
7, 3+

p
21

2
, 4}

Note that 2
p

2 and
p

3 appear as dynamical degrees of affine-triangular auto-
morphisms in degree 4 and 3, respectively (and not smaller), even if 2

p
2 < 3 andp

3 < 2. Similarly, for each prime p, the number p
p is the dynamical degree of

a shift-like automorphism of degree p, but it is not the dynamical degree of an
affine-triangular automorphism of degree < p.

1.2. Dynamical degrees of affine-triangular automorphisms in higher di-
mensions. In dimension n � 4, we are not able to compute all dynamical degrees
of all affine-triangular automorphisms, but can get some large families. The case
of shift-like automorphisms is covered by our method, and we retrieve a proof of
the result of Mattias Jonsson (Proposition 4.2.5), but we can also study wider
classes. We give the dynamical degrees of all permutation-elementary automor-
phisms (a family that strictly includes the shift-like automorphisms) in §4.2 (es-
pecially Proposition 4.2.3) and also give the dynamical degrees of other affine-
triangular automorphisms. In particular, we show that in any dimension n � 4,
there are affine-triangular automorphisms of An whose dynamical degrees are not
those of a shift-like automorphisms or more generally of a permutation-elementary
automorphisms, contrary to the case of dimension n  3. The reason is that dynam-
ical degrees of shift-like automorphisms are special kinds of weak Perron numbers.
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Indeed, they are positive real numbers that are roots of a monic integral polyno-
mial where all coefficients (except the first one) are non-positive. These numbers
are called Handelman numbers in [Bas97] (see especially [Bas97, Lemma 10]) and
they have no other positive real Galois conjugates (Lemma 3.2.7). This implies that
Handelman numbers are weak Perron numbers (see Corollary 3.2.8). Theorem 1
implies that the dynamical degree of an affine-triangular automorphism of A3 is a
Handelman number (and the same holds for all automorphisms of A1 and A2), but
for any n � 4, there are affine-triangular automorphisms of An whose dynamical
degrees are not Handelman numbers. This follows in particular from Theorem 2,
applied to any weak Perron quadratic integer with a positive conjugate, for instance
to (3 +

p
5)/2. We can also apply Theorem 2 to weak Perron numbers of arbitrary

large degree.

1.3. Results in the literature on dynamical degrees of endomorphisms of
An. Let us recall what is known on the dynamical degrees of elements of End(An).

(1) The case where n = 1 is obvious: in this case we have �(f) = deg(f), so
each dynamical degree is an integer, which is moreover equal to 1 in the case of
automorphisms.

(2) When n = 2, the case of automorphisms follows from the Jung-van der
Kulk Theorem [Jun42, vdK53]: every dynamical degree is an integer, as deg(fr) =
deg(f)r for each r, when f is taken to be cyclically reduced (this is explained in
Corollary 2.4.3 below, or in [Fur99, Proposition 3]). The set of all dynamical degrees
of quadratic endomorphisms of A2

C is equal to {1,
p

2, (1 +
p

5)/2, 2} by [Gue04,
Theorem 2.1]. Moreover, the dynamical degree of every element of End(A2

C) is a
quadratic integer, by [FJ07, Theorem A’].

(3) The case of dimension n � 3 is open in general: there is for the moment no
hope of classifying all dynamical degrees, even when studying only automorphisms.

The set of dynamical degrees of all automorphisms of A3

C of degree 2 is equal to
{1,

p
2, (1+

p
5)/2, 2} by [Mae01a, Theorem 3.1] (and the same holds over any field

[BvS, Theorem 2]).

Apart from the above classification results, two natural families are also known:
the monomial endomorphisms and the shift-like automorphisms.

(A) A monomial endomorphism of An is an endomorphism of the form f =
(f1, . . . , fn), where each fi is a monomial. When we write fi = ↵ix

mi,1

1
· · · xmi,n

n

with ↵i 2 k⇤ and mi,1, . . . , mi,n 2 N and assume that f is dominant, then the
dynamical degree of f is the spectral radius of the corresponding matrix M =
(mi,j)n

i,j=1
2 Matn(N). This classical result is proven again in Corollary 3.2.5 below.

The numbers arising this way are the weak Perron numbers (see Theorem 3.2.4).
(B) For each n � 1, a shift-like automorphism of An+1 is an automorphism of the

form (xn+1+p(x1, . . . , xn), x1, . . . , xn) for some polynomial p 2 k[x1, . . . , xn]. These
are particular examples of affine-triangular automorphisms. The dynamics of such
automorphisms have been studied in various texts (see for instance [BP98, Mae00,
Mae01b, Ued04, BV18]). The dynamical degrees of shift-like automorphisms are
known, by a result of Mattias Jonsson (see Proposition 4.2.5 below). For a proof
of this result, together with a generalisation, see §4.2.

1.4. Description of the techniques associated to degrees. In the rest of this
introduction, we describe the main technique that we introduce in order to compute
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dynamical degrees of endomorphisms of An. This is related to degree functions (or
monomial valuations), and may be applied to endomorphisms of An, not only affine-
triangular automorphisms. We also give an outline of the whole article.

Definition 1.4.1. For each µ = (µ1, . . . , µn) 2 (R�0)n \ {0}, we define a degree
function degµ : k[x1, . . . , xn] ! R�0 [ {�1} by degµ(0) = �1 and

degµ(
X

(a1,...,an)2Nn

c(a1,...,an)| {z }
2k

·xa1
1

xa2
2

· · · xan

n ) = max

(
nX

i=1

aiµi

����� c(a1,...,an) 6= 0

)
.

We say that a polynomial p 2 k[x1, . . . , xn] is µ-homogeneous of degree ✓ 2 R
if p is a finite sum of monomials pi with degµ(pi) = ✓ for each i (where the zero
polynomial is µ-homogeneous of degree ✓ for each ✓).

We can then write every element q 2 k[x1, . . . , xn] \ {0} uniquely as

q =
X

✓2R�0

q✓ ,

where each q✓ 2 k[x1, . . . , xn] is µ-homogeneous of degree ✓ (and only finitely many
q✓ are non-zero). We then say that q✓ is the µ-homogeneous part of q of degree ✓.
The µ-leading part of q is the µ-homogeneous part of q of degree degµ(q).

Remark 1.4.2. Note that if µ 2 (R�0)n \ {0}, then
k(x1, . . . , xn) ! R [ {1} , f/g 7! degµ(g) � degµ(f)

is a valuation in the sense of [Mat89, p.75] where k(x1, . . . , xn) denotes the field of
rational functions in x1, . . . , xn over k. Such valuations are often called “monomial
valuations” in the literature.

Definition 1.4.3. Let µ = (µ1, . . . , µn) 2 (R�0)n\{0}. For each f = (f1, . . . , fn) 2
End(An) \ {0} we denote the µ-degree of f by

degµ(f) = inf{✓ 2 R�0 | degµ(fi)  ✓µi for each i 2 {1, . . . , n}}
and we say that degµ(f) = 1 if the above set is empty.

We moreover say that f is µ-algebraically stable if degµ(f) < 1 and degµ(fr) =
degµ(f)r for each r � 1.

Remark 1.4.4. If µ = (1, . . . , 1), then degµ(f) = deg(f) is the standard degree and
the notion of being µ-algebraically stable is the standard notion of “algebraically
stable”, studied for instance in [GS02, Bis08, Bla16]. The fact of being algebraically
stable can be interpreted geometrically by looking at the behaviour of the endo-
morphism at infinity: [Bla16, Corollary 2.16].

In order to compute the dynamical degree of an endomorphism f 2 End(An),
the following endomorphism associated to f will be of great importance for us:

Definition 1.4.5. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism,
let µ = (µ1, . . . , µn) 2 (R�0)n be such that degµ(f) = ✓ < 1. We define the µ-
leading part of f to be the endomorphism g = (g1, . . . , gn) 2 End(An), where gj 2
k[x1, . . . , xn] is the µ-homogeneous part of fj of degree ✓µj for each j 2 {1, . . . , n}.

The degree functions are studied in §2. Basic properties are given in §2.3, and
the relation with µ-homogeneous endomorphisms is given in §2.5 (we explain in
particular when degµ(f) = 1 in Lemma 2.5.6). In §2.6, we explain how degree
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functions allow us to give an estimate on the dynamical degrees, and sometimes to
compute it exactly. In particular, we prove the following result (at the end of §2.6).

Proposition A. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism.
For each µ = (µ1, . . . , µn) 2 (R>0)n the following hold:

(1) ✓ := degµ(f) < 1,
(2) The dynamical degree of f satisfies 1  �(f)  ✓.
(3) Let g 2 End(An) be the µ-leading part of f . If ✓ > 1, then

�(f) = ✓ , f is µ-algebraically stable , gr 6= 0 for each r � 1.

Remark 1.4.6. Let µ = (1, . . . , 1). In this case, the µ-degree is the classical degree
and Proposition A(2) is the classical inequality �(f)  deg(f).

Remark 1.4.7. Proposition A is false when we apply it to µ 2 (R�0)n \ {0}. For
instance, if f = (x1, x2

2
), µ = (1, 0), then degµ(f) = 1 but 1 < �(f) = 2.

To apply Proposition A to compute the dynamical degree, we need to find some
eigenvectors and eigenvalues. This is done here by looking at monomial maps
associated to endomorphisms in End(An). These behave quite well with respect to
degree functions (see Corollary 3.2.5).

Definition 1.4.8. Let f = (f1, . . . , fn) 2 End(An) be an endomorphism such that
fi 6= 0 for each i. We will say that a square matrix M = (mi,j)n

i,j=1
2 Matn(N) is

contained in f if for each i 2 {1, . . . , n}, the coefficient of the monomial
Qn

j=1
x

mi,j

j

in fi is nonzero. The set of matrices that are contained in f is then finite and
non-empty.

The maximal eigenvalue of f is defined to be

✓ = max { |⇠| 2 R | ⇠ is an eigenvalue of a matrix that is contained in f } .

An element µ = (µ1, . . . , µn) 2 (R�0)n \ {0} is a maximal eigenvector of f if
degµ(fi) = ✓µi for each i 2 {1, . . . , n}. In particular, we then get degµ(f) = ✓ < 1.

It often happens that we cannot apply Proposition A to compute the dynamical
degree, but that we can do it by allowing µ to have some coordinates, but not all,
to be equal to zero. In fact, the following generalization of Proposition A is our
main tool to compute dynamical degrees:

Proposition B. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism
with maximal eigenvalue ✓. Then the following holds:

(1) There exists a maximal eigenvector µ = (µ1, . . . , µn) 2 (R�0)n \ {0} of f .
(2) We have 1  �(f)  ✓  deg(f).
(3) For each maximal eigenvector µ of f , we have ✓ = degµ(f), and the following

hold:
(i) If f is µ-algebraically stable, then �(f) = ✓.
(ii) If �(f) = ✓, ✓ > 1 and µ 2 (R>0)n, then f is µ-algebraically stable.
(iii) Let g 2 End(An) be the µ-leading part of f . If ✓ > 1, then f

is µ-algebraically stable if and only if for each r � 1 there is i 2
{1, . . . , n} with µi > 0 and such that the i-th component of gr is
non-zero.

Remark 1.4.9. In Proposition B(1), there are examples with no possibility for µ to
be in (R>0)n, as the examples f = (x1, x2

2
) 2 End(A2) or f = (x1, x3, x2 + x2

3
) 2
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Aut(A3) show. Hence, Proposition A cannot be directly applied in order to prove
Proposition B. However, if some coordinates of µ are zero, then a linear projection
is preserved (this follows from Lemma 2.5.6, see also Corollary 2.6.2). To prove
Proposition B, we will use Lemma 2.6.1, that is a version of Proposition A that
also works for µ 2 (R�0)n \ {0}.

Remark 1.4.10. The implication of Proposition B(3)(i) is not an equivalence, as we
show in Example 3.4.2 below.

The proof of Proposition B is given in Section 3. For each dominant endomor-
phism f 2 End(An), Proposition B(1) gives the existence of a maximal eigenvec-
tor µ. Moreover, Proposition B(3) shows that if f is µ-algebraically stable then
�(f) is equal to the maximal eigenvalue ✓ of f . We will use this to compute the
dynamical degree of many endomorphisms of An.

The following result allows to compute all dynamical degrees of permutation-
elementary endomorphism of An, and generalises in particular Proposition 4.2.5.
Its proof is given in §4.2:

Proposition C. Let f 2 Aut(An) be a permutation-elementary automorphism. If
the maximal eigenvalue ✓ of f is bigger than 1, there exists a maximal eigenvector
µ of f such that f is µ-algebraically stable. In particular, the dynamical degree �(f)
is equal to the maximal eigenvalue ✓ of f , which is a Handelman number.

Proposition C is false if we replace “permutation-elementary” by “permutation-
triangular” (see Example 4.3.4 for examples in dimension 3). We can however obtain
the following result, which is proven in §4.3:

Proposition D. Every affine-triangular automorphism f 2 Aut(A3) is conju-
gate to a permutation-triangular automorphism f 0 2 Aut(A3) such that deg(f 0) 
deg(f) and such that f 0 has the following property: either the maximal eigenvalue
✓ of f 0 is equal to 1, or f 0 is µ-algebraically stable for each maximal eigenvector
µ. In particular, the dynamical degrees �(f) and �(f 0) are equal to the maximal
eigenvalue ✓ of f 0, which is a Handelman number.

The proof of Theorem 1 is given at the end of §4.3, directly after proving Propo-
sition D, as it follows almost directly from this result. We use these results in §4.4,
to prove Theorem 2.

Acknowledgements. The authors thank the referee for his careful reading and
helpful suggestions. We thank Jean-Philippe Furter and Pierre-Marie Poloni for
helpful discussions on dynamical degrees of automorphisms of A3 and Christian
Urech for indicating us the result of Mattias Jonsson (Proposition 4.2.5) that in-
spired our generalisation.

2. Inequalities associated to degree functions and the proof of

Proposition A

2.1. Definitions of elementary, affine and triangular automorphisms. Let
us recall the following classical definitions (even if our definition of elementary is
slightly more restrictive than what is used in the literature):

Definition 2.1.1. An endomorphism f = (f1, . . . , fn) 2 End(An) is said to be
• triangular if fi 2 k[x1, . . . , xi] for each i 2 {1, . . . , n},
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• elementary if fi = xi for for each i 2 {1, . . . , n � 1}.
• an affine automorphism if f 2 Aut(An) and if deg(f) = 1,
• a permutation of the coordinates if {f1, . . . , fn} = {x1, . . . , xn},
• affine-triangular if f = ↵ � ⌧ where ↵ is an affine automorphism and ⌧ is a

triangular endomorphism,
• affine-elementary if f = ↵ � e where ↵ is an affine automorphism and e is an

elementary endomorphism,
• permutation-triangular if f = ↵�⌧ where ↵ is a permutation of the coordinates

and ⌧ is a triangular endomorphism.
• permutation-elementary if f = ↵�e where ↵ is a permutation of the coordinates

and e is an elementary endomorphism.

For each n  4, if char(k) 6= 2, every automorphism of An of degree 2 is conju-
gate, by an affine automorphism, to an affine-triangular automorphism, see [MO91].
This result is false in dimension n = 5 [Sun14], as for example

f = (x1 + x2x4, x2 + x1x5 + x3x4, x3 � x2x5, x4, x5) 2 Aut(A5)

shows: the Jacobian of the homogeneous part of degree 2 of an affine-triangular
automorphism of degree  2 contains a zero-column, but the Jacobian of the ho-
mogeneous part of degree 2 of f contains linearly independent columns (see also
[Sun14, Theorem 3.2]).

There are quite a few automorphisms of A3 of degree 3 that are not conjugate,
by an affine automorphism, to affine-triangular automorphisms. More precisely,
when k is algebraically closed, then each automorphism of A3 = Spec(k[x, y, z])
of degree 3 is conjugate, by an affine automorphism, either to an affine-triangular
automorphism or to an automorphism of the form

(⇤) ↵(x + yz + za(x, z), y + a(x, z) + r(z), z) 2 Aut(A3)

where a 2 k[x, z] \ k[z] is homogeneous of degree 2, r 2 k[z] is of degree  3
and ↵ is an affine automorphism, see [BvS, Theorem 3]. In fact, non of the auto-
morphisms in (⇤) is conjugated, by an affine automorphism, to an affine-triangular
automorphism, see [BvS, Proposition 3.9.4].

For k = C various (dynamical) properties of the affine-elementary automor-
phisms (x0 + x1 + xq

0
xd

2
, x0, ↵x2) 2 Aut(A3) with ↵ 2 C, 0 < |↵|  1, q � 2, d � 1

are studied in [DL18] and in particular their dynamical degree is computed, which
is equal to the integer q.

2.2. Existence of dynamical degrees. We recall the following folklore result,
which implies that the dynamical degree is well-defined.

Lemma 2.2.1. Let (ar)r�1 be a sequence of real numbers in R�1 such that ar+s 
ar · as for each r, s � 1. Then, ((ar)1/r)r�1 is a sequence that converges towards
infr�1((ar)1/r) 2 R�1.

Proof. As (log(ar))r�1 is subbadditive, ( log(ar)

r )r�1 converges to infr�1(
log(ar)

r ) � 0
by Fekete’s subadditivity Lemma (see [Fek23, Satz II] or [Ste97, Lemma 1.2.1]). ⇤

In case µ = (µ1, . . . , µn) 2 (R�0)n \ {0} is of the from µ1 = . . . = µm = 0
and µm+1 = . . . = µn = 1 for some 0  m < n we denote for any polynomial
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p 2 k[x1, . . . , xn] its µ-degree degµ(p) by degxm+1,...,xn
(p). Moreover, we denote for

an endomorphism f = (f1, . . . , fn) 2 End(An)

degxm+1,...,xn
(f) = max

j2{1,...,n}
degxm+1,...,xn

(fj) .

If m = 0, then degµ(f) is simply the classical degree that we denote by deg(f). If
m > 0, then degµ(f) is in general not equal to degxm+1,...,xn

(f). In fact, degµ(f)
is equal to degxm+1,...,xn

(f) in case degx1,...,xm
(fi) = 0 for all i 2 {1, . . . , m} and

otherwise it is equal to 1.

Corollary 2.2.2. Let f 2 End(An) be an endomorphism. For each integer m 2
{0, . . . , n � 1}, the sequence

degxm+1,...,xn
(fr)1/r

converges to a real number µm � 1. This gives in particular the dynamical degree
�(f) = µ0, which satisfies �(fd) = �(f)d for each d � 1.

Proof. This follows from Lemma 2.2.1, as

degxm+1,...,xn
(fr+s)  degxm+1,...,xn

(fr) · degxm+1,...,xn
(fs),

for all r, s � 1. ⇤

2.3. Basic properties of degree functions. Below we list several properties of
degree functions (see Definition 1.4.1). Apart from the easy observations degµ |k⇤ =
0, degµ(f ·g) = degµ(f)+degµ(g) and degµ(f +g)  max(degµ(f), degµ(g)), which
correspond to say that � degµ is a valuation (see Remark 1.4.2), we have:

Remark 2.3.1. We fix µ = (µ1, . . . , µn) 2 (R�0)n \ {0} and get:

(1) As explained in Definition 1.4.1, each polynomial p 2 k[x1, . . . , xn] \ {0} can
be written uniquely as a finite sum

p =
X

✓2R�0

p✓

where each p✓ 2 k[x1, . . . , xn] is µ-homogeneous of degree ✓. We then obtain
degµ(p) = max{✓ | p✓ 6= 0}.

(2) Let m 2 {0, . . . , n � 1} and assume that µi = 0 for i  m, but µi > 0 for
i > m. Then we have for each polynomial p 2 k[x1, . . . , xn] \ {0}

µmin · degxm+1,...,xn
(p)  degµ(p)  µmax · degxm+1,...,xn

(p)

where µmin = minm+1in µi and µmax = maxm+1in µi. In particular,
for each dominant endomorphism f 2 End(An) we have

lim
r!1

degxm+1,...,xn
(fr)

1
r = lim

r!1
max

i2{1,...,n}
degµ((fr)i)

1
r

where (fr)i denotes the i-th coordinate function of fr. Note that the left
hand side is the dynamical degree �(f) in case m = 0, i.e. when µ 2 (R>0)n.
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2.4. Endomorphisms that preserve a linear projection. The following is an
algebraic analogue of the application of [DN11, Theorem 1.1] to endomorphisms of
An that preserve a linear projection:

Lemma 2.4.1. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism. For
each r � 1, we write

fr = ((fr)1, . . . , (f
r)n) .

Let m 2 {0, . . . , n�1} be such that f1, . . . , fm 2 k[x1, . . . , xm]. Then, the dynamical
degree of f is given by �(f) = max{�1, �2}, where

�1 = lim
r!1

max{deg((fr)1), . . . , deg((fr)m)}1/r = �((f1, . . . , fm))

�2 = lim
r!1

max{degxm+1,...,xn
((fr)m+1), . . . , degxm+1,...,xn

((fr)n)}1/r

= lim
r!1

degxm+1,...,xn
(fr)1/r

are two limits which exist. (If m = 0, by convention we set �1 = 1.)

Proof. For each r � 1, we write
ar = max{deg((fr)1), . . . , deg((fr)m)}
br = max{deg((fr)m+1), . . . , deg((fr)n)}
cr = max{degxm+1,...,xn

((fr)m+1), . . . , degxm+1,...,xn
((fr)n)}

= degxm+1,...,xn
(fr).

As br � cr, we obtain for each r � 1

deg(fr) = max{ar, br} � max{ar, cr}.

It follows from Corollary 2.2.2 that the limits

�1 = lim
r!1

a1/r
r , �2 = lim

r!1
c1/r
r and �(f) = lim

r!1
deg(fr)1/r

exist (and all belong to R�1). We obtain

�(f) = lim
r!1

max{a1/r
r , b1/r

r } � lim
r!1

max{a1/r
r , c1/r

r } = max {�1, �2} .

We may thus assume that �(f) > �1, which implies that limr!1 b1/r
r exists, and is

equal to �(f). It remains to see that in this case �(f)  max{�1, �2}.
For all r, s � 1 and each i 2 {m + 1, . . . , n}, the polynomial (fr+s)i is obtained

by replacing x1, . . . , xn with (fr)1, . . . , (fr)n in (fs)i, so the degree of (fr+s)i is at
most

degx1,...,xm
((fs)i) · deg((fr)1, . . . , (f

r)m)

+ degxm+1,...,xn
((fs)i) · deg((fr)m+1, . . . , (f

r)n) .

This gives br+s  bs · ar + cs · br. When we choose then s = r, we obtain
b2r  br · (ar + cr) .

As �(f) = lim
r!1

b1/2r
2r , we have �(f)2 = lim

r!1
b1/r
2r . The above inequality gives

�(f)2 = lim
r!1

b1/r
2r

 lim
r!1

b1/r
r · lim sup

r!1
(ar + cr)1/r

 �(f) · lim sup
r!1

(2 max{ar, cr})1/r

= �(f) · max{�1, �2},

so �(f)  max{�1, �2}. ⇤
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Corollary 2.4.2. Let n � 2 and let f 2 Aut(An) be an automorphism such
that f1, . . . , fn�2 2 k[x1, . . . , xn�2] and such that the dynamical degree of g =
(f1, . . . , fn�2) 2 Aut(An�2) is an integer. Then, the dynamical degree of f is
an integer.

Proof. By Lemma 2.4.1, one has �(f) = max{�(g), �2}, where

�2 = lim
r!1

max{degxn�1,xn
((fr)n�1), degxn�1,xn

((fr)n)}1/r .

It remains to see that �2 is an integer. As k[x1, . . . , xn�2, fn�1, fn] = k[x1, . . . , xn],
one has K[fn�1, fn] = K[xn�1, xn], where K = k(x1, . . . , xn�2). Hence, one can
see the automorphism (x1, . . . , xn) 7! (x1, . . . , xn�1, fn�1, fn) of An as an auto-
morphism F 2 AutK(A2) of A2 defined over K. For each i � 0, the auto-
morphism g�i � (x1, . . . , xn�1, fn�1, fn) � gi of An can be seen as an element of
AutK(A2) that we denote by F gi

where we identify g with the automorphism
(f1, . . . , fn�2, xn�1, xn) 2 Aut(An). This gives

max{degxn�1,xn
((fr)n�1), degxn�1,xn

((fr)n)} = deg(Gr)

where Gr = F gr�1 � · · · � F g2 � F g � F 2 AutK(A2), since Gr = g�r � fr when we
consider Gr, g and f as automorphisms of An.

According to the Jung-van der Kulk Theorem [Jun42, vdK53], one can write
F = F1 � · · · � Fs where each Fi 2 AutK(A2) is either triangular or affine. One can
moreover assume that two consecutive Fi are not both affine or both triangular (as
otherwise one may reduce the description), and get then deg(F ) =

Qs
i=1

deg(Fi)
(follows by looking at what happens at infinity or by [vdE00, Lemma 5.1.2]). We
prove that �2 is an integer by induction on s. If s = 1, then F is either affine or
triangular; this implies that the set {deg(Gr) | r � 1} is bounded, so �2 = 1. If
s > 1 and F1, Fs are both affine or both triangular, we replace F with (F1)g�F�F�1

1
.

This replaces Gr = F gr�1�· · ·�F g�F with G̃r = (F1)gr �Gr�F�1

1
. As deg((F1)gr

) =
deg(F1) for each r � 1, one has

1

deg(F1)2
deg(Gr)  deg(G̃r)  deg(Gr) · deg(F1)

2 ,

so this replacement does not change the value of �2. As this decreases the value
of s, we may assume that F1 and Fs are not both triangular or affine. Hence, for
each r � 1, Gr is a product of rs elements that are affine or triangular, with no
two consecutive in the same group. This gives deg(Gr) =

Qr�1

i=0

Qs
j=1

deg(F gi

j ) =
Qr�1

i=0

Qs
j=1

deg(Fj) = deg(F )r. Hence, �2 = deg(F ) is an integer. ⇤

Corollary 2.4.3. The dynamical degree of any element of Aut(A2) is an integer.
Similarly, the dynamical degree of any element of Aut(A3) (respectively Aut(A4))
which preserves the set of fibres of a linear projection A3 ! A1 or A3 ! A2

(respectively A4 ! A2) is an integer.

Proof. The fact that the dynamical degree of any element of Aut(A2) is an integer
follows from Corollary 2.4.2 applied to n = 2. If f 2 Aut(A3) is an automorphism
that preserves the set of fibres of a linear projection A3 ! A1 or A3 ! A2, then
one may conjugate by an element of GL3 and obtain f = (f1, f2, f3) with either
f1 2 k[x1] or f1, f2 2 k[x1, x2]. The fact that �(f) is an integer follows then from
Corollary 2.4.2 and Lemma 2.4.1, respectively (in the second case, one uses the
fact that the dynamical degree of (f1, f2) 2 Aut(A2) is an integer). Similarly, in
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the case of an automorphism of A4 preserving a linear projection A4 ! A2, one
restricts to the case f = (f1, . . . , f4) 2 Aut(A4) with f1, f2 2 k[x1, x2], and applies
Corollary 2.4.2. ⇤

2.5. Homogeneous endomorphisms.

Lemma 2.5.1. Let h = (h1, . . . , hn) 2 End(An), let µ = (µ1, . . . , µn) 2 (R�0)n \
{0} and let ✓ 2 R�0. The following conditions are equivalent:

(1) The polynomial hi is µ-homogeneous of degree ✓µi for each i 2 {1, . . . , n}.
(2) For each µ-homogeneous polynomial p of degree ⇠ and each integer r � 1,

the polynomial p � hr is µ-homogeneous of degree ✓r⇠.
If additionally hi 6= 0 for each i 2 {1, . . . , n}, then (1) and (2) are equivalent to

(3) For each Matrix M contained in h, µ is an eigenvector to the eigenvalue ✓.

Proof. The implication (2) ) (1) is given by choosing p = xi for i = 1, . . . , n, so
we may assume (1) and prove (2). It suffices to prove (2) for r = 1, as the general
result follows by induction.

If p = 0, then h(p) = 0 is µ-homogeneous of any degree. It then suffices to
do the case where p is a monomial: we write p = ⇣xa1

1
xa2

2
· · · xan

n with ⇣ 2 k⇤,
a1, . . . , an � 0, which is µ-homogeneous of degree degµ(p) =

Pn
i=1

aiµi. As hi is µ-
homogeneous of degree ✓µi, the polynomial p�h = ⇣ha1

1
ha2

2
· · · han

n is µ-homogeneous
of degree

Pn
i=1

ai✓µi = ✓ degµ(p).
Now, we assume additionally that hi 6= 0 for each i 2 {1, . . . , n}. The equivalence

between (1) and (3) follows immediately from the definition of the µ-degree. ⇤

Definition 2.5.2. Let µ = (µ1, . . . , µn) 2 (R�0)n \ {0} and let ✓ 2 R�0. We say
that h 2 End(An) is µ-homogeneous of degree ✓ if the conditions of Lemma 2.5.1
are satisfied.

Lemma 2.5.3. Let µ = (µ1, . . . , µn) 2 (R�0)n \ {0}. For each f = (f1, . . . , fn) 2
End(An) and each ✓ 2 R�0, the following are equivalent:

(1) We can write f as a finite sum f =
P

0⇠✓ g⇠, where each g⇠ 2 End(An) is
µ-homogeneous of degree ⇠.

(2) degµ(f)  ✓.

Proof. (1) ) (2): For each i 2 {1, . . . , n}, the polynomial fi is the sum of the i-th
components of the endomorphisms g⇠. As each of these polynomials has degree
⇠µi  ✓µi, the polynomial fi is of µ-degree degµ(fi)  ✓µi.

(2) ) (1): As in Remark 2.3.1(1), we write each fi, i 2 {1, . . . , n} as fi =P
0✓µi

pi, where each pi, is µ-homogeneous of degree .
We define g0 = (p1,0, . . . , pn,0) 2 End(An), which is µ-homogeneous of degree 0.
For each ⇠ 2 R with 0  ⇠  ✓, we define the i-th component (g⇠)i of g⇠ as

follows: if µi = 0 and ⇠ > 0, then (g⇠)i = 0 and otherwise, we choose (g⇠)i = pi,⇠µi
.

By construction, g⇠ is µ-homogeneous of degree ⇠.
Moreover, fi =

P
0✓µi

pi, =
P

0⇠✓(g⇠)i for each i 2 {1, . . . , n} with µi >
0. If µi = 0, then fi =

P
0✓µi

pi, = pi,0 =
P

0⇠✓(g⇠)i. This yields f =P
0⇠✓ g⇠. ⇤

Remark 2.5.4. In the decomposition of Lemma 2.5.3(1), the i-th component of each
g⇠ is unique, if µi > 0, but is not unique if µi = 0.
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Example 2.5.5. We have deg(1,...,1)(f) = deg(f) and degµ(idAn) = 1 for each µ 2
(R�0)n \ {0}. However, deg(2,3,0)(x1, x2 + x2

1
x3, x3) = 4

3
.

Lemma 2.5.6. Let µ = (µ1, . . . , µn) 2 (R�0)n \ {0}. For each f = (f1, . . . , fn) 2
End(An), the following are equivalent:

(1) degµ(f) < 1.
(2) For each i 2 {1, . . . , n} such that µi = 0, the element fi is a polynomial in

the variables {xj | j 2 {1, . . . , n}, µj = 0}.
In particular, if µ 2 (R>0)n then the above conditions hold.
Proof. (1) ) (2): Suppose that ✓ = degµ(f) < 1. For each i 2 {1, . . . , n}, we get
degµ(fi)  ✓µi (Definition 1.4.3). If µi = 0, then degµ(fi) = 0, which means that
fi is a polynomial in the variables {xj | j 2 {1, . . . , n}, µj = 0}.

(2) ) (1): it follows from (2) that degµ(fi)  0 for each i 2 {1, . . . , n} such that
µi = 0. This gives degµ(f) = max

�
degµ(fi)/µi

�� µi > 0
 

< 1. ⇤
Lemma 2.5.7. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism. For
each maximal eigenvector µ of f , the µ-leading part g = (g1, . . . , gn) 2 End(An) of
f has the following properties:

(1) The maximal eigenvalue ✓ of f is such that degµ(g) = degµ(f) = ✓ < 1;
(2) For each i 2 {1, . . . , n}, the polynomial gi is non-constant.

Proof. As µ = (µ1, . . . , µn) 2 (R�0)n is a maximal eigenvector of f , we have
degµ(fi) = ✓µi for each i 2 {1, . . . , n}, where ✓ is the maximal eigenvalue of f .
This gives degµ(f) = ✓ < 1 and therefore degµ(gi) = ✓µi = degµ(fi) for each
i 2 {1, . . . , n}. Hence, we get (1). In case µi > 0, we have degµ(gi) = ✓µi > 0 and
thus gi is non-constant. In case µi = 0, we have degµ(fi) = ✓µi = 0 and thus gi = fi.
As f is dominant, the latter polynomial is non-constant. This shows (2). ⇤
2.6. Inequalities obtained by iterations.
Lemma 2.6.1. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism.
Suppose that µ = (µ1, . . . , µn) 2 (R�0)n and that ✓ = degµ(f) 2 R�0. Let g =
(g1, . . . , gn) 2 End(An) be the µ-leading part of f . Then the following hold:

(1) We can write f as a finite sum f = g+
P

0⇠<✓ g⇠, where each g⇠ 2 End(An)
is µ-homogeneous of degree ⇠.

(2) The i-the coordinate function (gr)i of gr is the µ-homogeneous part of degree
✓rµi of (fr)i for each i 2 {1, . . . , n} and each r � 1.

(3) degµ(fr)  ✓r for each r � 1.
(4) We have

1  lim
r!1

max
i2{1,...,n}

degµ((fr)i)
1/r = lim

r!1
(degµ(fr))1/r  ✓ .

(5) If ✓ > 1, the following are equivalent:
(i) limr!1(degµ(fr))1/r = ✓.
(ii) f is µ-algebraically stable.
(iii) For each r � 1 there is i 2 {1, . . . , n} with µi > 0 and (gr)i 6= 0.

Proof. As degµ(f) = ✓, we have degµ(fi)  ✓µi for each i 2 {1, . . . , n}. Moreover,
as f is dominant and µ 6= 0, there are i, j 2 {1, . . . , n} such that µi > 0 and
degxi

(fj) � 1. This implies that degµ(fj) � µi > 0 and thus

0 < degµ(f) = ✓ .
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We now observe that degµ(f � g) < ✓. Indeed, for each j 2 {1, . . . , n}, the j-th
component gj of g is the µ-homogeneous part of fj of degree ✓µj � degµ(fj). If
µj = 0, then fj = gj , and if µj > 0, then degµ(fj � gj) < ✓µj .

By Lemma 2.5.3, we can write f � g as a finite sum f � g =
P

0⇠<✓ g⇠, where
each g⇠ 2 End(An) is µ-homogeneous of degree ⇠. This gives (1).

We now prove (2)-(3) by induction on r � 1. For r = 1, (2) follows from the
definition of g. Moreover, (3) is given by hypothesis.

We now assume (2)-(3) for some integer r � 1 and prove them for r + 1. For
each i 2 {1, . . . , r}, we write (fr)i = (gr)i + si, where (gr)i is µ-homogeneous of
degree ✓rµi and degµ(si) < ✓rµi. This gives

(fr+1)i = ((gr)i + si) � f
(1)

= (gr+1)i + si � g +
P

0⇠<✓
((gr)i + si) � g⇠

As g is µ-homogeneous of degree ✓, the polynomial (gr+1)i is µ-homogeneous of
degree ✓r+1µi (Lemma 2.5.1). As si is a sum of µ-homogeneous polynomials of
degree < ✓rµi and g⇠ is µ-homogeneous of degree ⇠ < ✓, we have

degµ(si � g +
X

0⇠<✓

((gr)i + si) � g⇠) < ✓r+1µi

(by using Lemma 2.5.1 again). This yields (2)-(3) for r + 1.
We now prove (4). We choose i 2 {1, . . . , n} such that µi = max{µ1, . . . , µn},

and observe that for each r � 1, there is j 2 {1, . . . , n} such that degxi
((fr)j) > 0

(as f is dominant), so degµ((fr)j) � µi = max{µ1, . . . , µn} > 0. This implies that

1  lim
r!1

max
i2{1,...,n}

degµ((fr)i)
1/r

(the limit exists by Remark 2.3.1(2)). Let us write I0 = {i 2 {1, . . . , n} | µi = 0}.
For each i 2 I0, we have degµ(fi)  ✓µi = 0, so fi is a polynomial in the variables
{xj | j 2 I0}. This implies that the same holds for (fr)i, for each integer r � 1.
Hence, degµ((fr)i) = 0 for each i 2 I0. Writing I>0 = {i 2 {1, . . . , n} | µi > 0}, we
get for each r � 1,

degµ(fr) = max

⇢
degµ((fr)i)

µi

��i 2 I>0

�
.

As degµ(fr)  ✓r (Assertion (3)), we obtain

lim
r!1

✓
max

i2{1,...,n}
degµ(fr)i

◆1/r

= lim
r!1

�
degµ(fr)

�1/r  ✓ .

It remains to prove (5); for this, we assume that ✓ > 1. For each r � 1,
Assertion (3) gives degµ(fr)  ✓r, or equivalently degµ((fr)i)  ✓rµi for each
i 2 {1, . . . , n}. The equality degµ(fr) = ✓r holds if and only if there exists
i 2 {1, . . . , n} such that µi > 0 and degµ((fr)i) = ✓rµi. Since (gr)i is the µ-
homogeneous part of (fr)i of degree ✓rµi (follows from (2)), this gives the equiva-
lence between (ii) and (iii). It remains then to prove (i) , (iii).

“(iii) ) (i)”: Suppose that for each r � 1 there is i 2 {1, . . . , n} such that µi > 0
and (gr)i 6= 0. There is then j 2 {1, . . . , n} and an infinite set I ⇢ N such that
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µj > 0 and (gr)j 6= 0 for each r 2 I. Assertion (2) implies that degµ((fr)j) � ✓rµj ,
for each r 2 I, which implies that

lim
r!1

✓
max

i2{1,...,n}
degµ(fr)i

◆1/r

� ✓ .

This, together with (4), gives limr!1(degµ(fr))1/r = ✓.
“(i) ) (iii)”: Conversely, suppose that there exists s � 1 such that (gs)i = 0 for

each i 2 {1, . . . , n} with µi > 0. For all such i we obtain degµ((fs)i) < ✓sµi (by
(2) and (3)). As ✓ > 1, there exists then ✓0 2 R with 1 < ✓0 < ✓ such that

degµ((fs)i)  ✓0sµi

for each i 2 {1, . . . , n}. Applying the inequality of (4) for fs, we obtain

lim
r!1

✓
max

i2{1,...,n}
(degµ(fsr)i)

1/r

◆
 ✓0s

which gives, by taking the s-th root,

lim
r!1

✓
max

i2{1,...,n}
(degµ(fr)i)

1/r

◆
 ✓0 < ✓.

⇤

Now we can give a short proof of Proposition A.

Proof of Proposition A. (1): As µ 2 (R>0)n, we have ✓ := degµ(f) < 1 (Lemma 2.5.6).
Using Remark 2.3.1(2) we get

�(f) = lim
r!1

max
i2{1,...,n}

(degµ(fr)i)
1/r .

By definition, g is the µ-leading part of f . Now, Lemma 2.6.1(4) implies that
1  �(f)  ✓. If ✓ > 1, we moreover obtain

�(f) = ✓ , degµ(fr) = ✓r for each r � 1 , gr 6= 0 for each r � 1

(by Lemma 2.6.1(4) and Lemma 2.6.1(5)). ⇤

Another consequence of Lemma 2.6.1 is the following result, that generalises
Proposition A to the case where some coordinates of µ are zero.

Corollary 2.6.2. Let f = (f1, . . . , fn) 2 End(An) be a dominant endomorphism
and let µ = (µ1, . . . , µn) 2 (R�0)n be such that ✓ = degµ(f) < 1, and assume
that m 2 {0, . . . , n} exists, such that µi = 0 for i 2 {1, . . . , m} and µi > 0 for
i 2 {m+1, . . . , n} (which can always be obtained by conjugating with a permutation).
Then, the following hold:

(1) For each i 2 {1, . . . , m}, we have fi 2 k[x1, . . . , xm]. Hence, the element
f̂ = (f1, . . . , fm) belongs to End(Am).

(2) If �(f̂) = ✓, then �(f) = ✓.
(3) If �(f̂) < ✓, then �(f) = ✓ , f is µ-algebraically stable.

Proof. Assertion (1) follows from the fact that degµ(f) < 1 and the choice of m
(Lemma 2.5.6(2)).
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Lemma 2.4.1 then gives �(f) = max{�(f̂), limr!1 degxm+1,...,xn
(fr)1/r}. By

using the equality limr!1 degxm+1,...,xn
(fr)1/r = limr!1 degµ(fr)1/r (see Re-

mark 2.3.1(2) and Lemma 2.6.1(4)), we obtain

�(f) = max{�(f̂), lim
r!1

degµ(fr)1/r}.

Moreover, Lemma 2.6.1(4) implies that limr!1 degµ(fr)1/r  degµ(f) = ✓. This
provides (2). To show (3), we assume that �(f̂) < ✓ and obtain �(f) = ✓ ,
limr!1 degµ(fr)1/r = ✓. This is equivalent to ask that f is µ-algebraically stable,
by Lemma 2.6.1(5) (note that 1  �(f̂), since f and thus f̂ is dominant). ⇤

We finish this section by the following simple observation:

Lemma 2.6.3. Let f 2 End(An) be a dominant endomorphism. For each µ 2
(R>0)n such that ✓ = degµ(f) 2 R>1 and each translation ⌧ = (x1 + c1, . . . , xn +
cn) 2 Aut(An) where c1, . . . , cn 2 k, the following hold:

f is µ-algebraically stable , ⌧ � f is µ-algebraically stable .

Proof. Denote by g the µ-leading part of f . As µ 2 (R>0)n, no component of g con-
tains any constant. Hence, g is also the µ-leading part of ⌧ �f . By Lemma 2.6.1(5),
f (respectively ⌧ � f) is µ-algebraically stable if and only if for each r � 1 there is
i 2 {1, . . . , n} such that (gr)i 6= 0. ⇤

3. Matrices associated to endomorphisms and the proof of

Proposition B

3.1. Spectral radii of N-uples of matrices. In the sequel, we fix the usual
Euclidean norm on Rn, and on n ⇥ n-matrices:

Definition 3.1.1. Let n � 1.
(1) We endow Rn will the usual norm:

kxk =

vuut
nX

i=1

x2

i , for each x = (x1, . . . , xn) 2 Rn.

(2) This endows the ring Matn(R) of n ⇥ n-real matrices with the norm

kMk = sup

⇢
kMvk
kvk

���� v 2 Rn \ {0}
�

, for each M 2 Matn(R).

(3) The spectrum of M 2 Matn(R) is the finite subset �(M) ⇢ C of eigenvalues
of M .

(4) The spectral radius of M 2 Matn(R) is defined by

⇢(M) = max
�2�(M)

|�|

and satisfies
⇢(M) = lim

n!1
kMnk1/n .

If M = (mi,j)n
i,j=1

and N = (ni,j)n
i,j=1

are matrices in Matn(R) such that
for each (i, j) we have 0  mi,j  ni,j , then ⇢(M)  ⇢(N).
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(5) We have a partial order on Rn given by

x  y iff xi  yi for all i = 1, . . . , n

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Note that for 0  x  y we
have kxk  kyk.

(6) For M 2 Matn(R) we denote by �M the characteristic polynomial of M .

3.2. The Perron-Frobenius Theorem and its applications. The Perron-Frobe-
nius theory was first established for matrices with positive coefficients, then gener-
alised to irreducible matrices with non-negative coefficients and then to any matrices
with non-negative coefficients. There are three equivalent definitions of reducible
matrices (see [Gan59, Vol. 2, Chap. XIII, §1, Definitions 2,2’,2”]). Let us recall one
of them:

Definition 3.2.1. [Gan59, Vol. 2, Chap. XIII, §1, Definition 2’] For each n � 1,
a matrix M 2 Matn(R�0) is called reducible if there is a permutation matrix
S 2 GLn(Z) such that the matrix SMS�1 2 Matn(R�0) is block-triangular, i.e.

SMS�1 =

✓
A 0
C D

◆

where A, D are square matrices, and where the zero matrix has positive dimensions.
A matrix M 2 Matn(R�0) is called irreducible if it is not reducible.

Lemma 3.2.2. [Gan59, Vol. 2, Chap. XIII, §4] For each reducible matrix M 2
Matn(R�0), there is a permutation matrix S 2 GLn(Z) such that SMS�1 is a lower
triangular block-matrix

0

BBBB@

A1,1 0 · · · 0

A2,1 A2,2
. . . 0

...
. . . . . . 0

Am,1 · · · Am,m�1 Am,m

1

CCCCA

where A1,1, . . . , Am,m are irreducible matrices.

Theorem 3.2.3 (Perron-Frobenius Theorem). [Gan59, Vol. 2, Chap. XIII, §2
and §3, Theorems 2 and 3] For each M 2 Matn(R�0), there exists an eigenvector
v 2 (R�0)n \ {0} to the eigenvalue ⇢(M). If M is moreover irreducible, we can
choose v in (R>0)n.

Theorem 3.2.4 (Theorem of Lind on weak-Perron numbers). For each � 2 R, the
following conditions are equivalent:

(1) � is a weak Perron number (see Definition 1.1.1);
(2) � is the spectral radius of a non-zero square matrix with non-negative integral

coefficients;
(3) � is the spectral radius of an irreducible square matrix with non-negative

integral coefficients;
(4) � > 0 and �m is a Perron number for some m � 1.

Proof. The equivalence between (1) and (3) follows from [Lin84, Theorem 3, page
291], and the equivalence between (2) and (3) follows from Lemma 3.2.2. The
equivalence between (1) and (4) can be found for instance in [Sch97, Lemma 4] or
[Bru13, Theorem 2]. ⇤
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As a consequence of Corollary 2.6.2 and of the Perron-Frobenius theorem, we
obtain the following result (which is classical, see for instance [FW12, Lin12]):

Corollary 3.2.5. For each matrix M = (mi,j)n
i,j=1

2 Matn(N) and for each
(↵1, . . . , ↵n) 2 (k⇤)n, the monomial endomorphism

fM = (↵1x
m1,1

1
· · · xm1,n

n , · · · , ↵nx
mn,1

1
· · · xmn,n

n ) 2 End(An)

is dominant if and only if det(M) 6= 0. In this case, the dynamical degree of fM is
equal to the spectral radius of M :

�(fM ) = ⇢(M) 2 R�1.

Proof. Note that the endomorphism fM 2 End(An) restricts to an endomorphism
hM 2 End((A1 \ {0})n).

If det(M) = 0, any non-zero element of the kernel of the transpose of M gives
rise to a non-constant element p in the Laurent polynomial ring k[x±

1
, . . . , x±

n ] such
that p �hM is constant, so hM and thus fM is not dominant. We then assume that
det(M) 6= 0. This implies that hM 2 End((A1 \{0})n) is surjective on k-points and
thus fM is dominant. In particular, �(fM ) � 1. Thus we only have to show that
�(fM ) = ⇢(M). By the Perron-Frobenius-Theorem (Theorem 3.2.3), there exists
an eigenvector µ 2 (µ1, . . . , µn) 2 (R�0)n of M to the eigenvalue ⇢(M). Since the
spectral radius of M and the dynamical degree of fM do not change if we conjugate
M with a permutation matrix, we may assume that there is m < n such that
µ1 = . . . = µm = 0 and µi > 0 for each i � m + 1. Since (fM )r = fMr we get
for each r � 1 and each i 2 {1, . . . , n} that degµ(((fM )r)i) = (Mrµ)i = ⇢(M)rµi.
This implies that degµ((fM )r) = ⇢(M)r for each r � 1. Thus fM is µ-algebraically
stable and degµ(fM ) = ⇢(M) < 1. By Corollary 2.6.2(1), we may write

M =

✓
M̂ 0
⇤ ⇤

◆

where M̂ 2 Matm(N) with det(M̂) 6= 0. By induction, the endomorphism fM̂ 2
End(Am) satisfies �(fM̂ ) = ⇢(M̂)  ⇢(M). By Corollary 2.6.2(2),(3) we get then
�(fM ) = degµ(fM ) = ⇢(M). ⇤

Corollary 3.2.6. For each endomorphism f 2 End(An) and each matrix M 2
Matn(N) that is contained in f , we have ⇢(M)  deg(f).

Proof. By the Perron-Frobenius-Theorem (Theorem 3.2.3), there exists an eigenvec-
tor µ = (µ1, . . . , µn) 2 (R�0)n of M to the eigenvalue ⇢(M). Hence,

Pn
j=1

mi,jµj =
⇢(M)µi for each i 2 {1, . . . , n}. By choosing an integer r 2 {1, . . . , n} such that
µr = max{µ1, . . . , µn}, we obtain

⇢(M)µr =
nX

j=1

mr,jµj  µr

nX

j=1

mr,j .

The coefficient of the monomial
Qn

j=1
x

mr,j

j in fr is nonzero (as M is contained in f ,
see Definition 1.4.8). This monomial has degree

Pn
j=1

mr,j , so deg(f) �
Pn

j=1
mr,j .

As µr > 0, this gives ⇢(M)  deg(f). ⇤

In the following we will use the next basic property of Handelman numbers. It
is a straightforward application of Descarte’s Rule of Signs, see e.g. [Str86, p.91]:



AFFINE-TRIANGULAR AUTOMORPHISMS 19

Lemma 3.2.7 (Basic property of Handelman numbers). Let n � 1. For each
(a0, . . . , an�1) 2 (R�0)n \ {0}, the polynomial xn �

Pn�1

i=0
aixi 2 R[x] has a unique

positive real root. In particular, a Handelman number has no other positive real
Galois conjugate.

Corollary 3.2.8. Each Handelman number is a weak Perron number.

Proof. Let � 2 R>0 be a Handelman number. There exists (a0, . . . , an�1) 2 Zn\{0}
such that � is a root of P (x) = xn �

Pn�1

i=0
aixi 2 Z[x]. By Lemma 3.2.7, all

roots of P , except �, are either non-real or real and non-positive. Since P is the
characteristic polynomial of the matrix

A =

0

BBB@

an�1 · · · a1 a0

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

1

CCCA
2 Matn(R�0) ,

it follows by the Perron-Frobenius-Theorem (Theorem 3.2.3) that the spectral ra-
dius of A is equal to �. This implies that � is a weak Perron number (Theo-
rem 3.2.4). ⇤
3.3. Sequences of matrices. To study endomorphisms of An, we will need to
consider finite sets of elements of Matn(R) that have the property that we can
exchange rows. In order to take the norm on such sets, we will have to see them
ordered, and thus see these in Matn(R)N for some N � 1.

Notation 3.3.1. Let n, N � 1. We denote by cMn,N ⇢ Matn(R)N the R-vector
subspace of N -tuples (M1, . . . , MN ) that have the following property:
For each i, j 2 {1, . . . , N} and each l 2 {1, . . . , n}, the replacement of the l-th row

of Mi with the l-th row of Mj gives a matrix which lies in {M1, . . . , MN}.
We then denote by Mn,N ⇢ cMn,N the subset that consists of the N -tuples

(M1, . . . , MN ) where M1, . . . , MN are N distinct matrices with non-negative coef-
ficients.

Remark 3.3.2. If f 2 End(An) is an endomorphism, then there exists some integer
N � 1 and some N -tuple (S1, . . . , SN ) 2 Mn,N such that {S1, . . . , SN} is the set
of matrices that are contained in f (as in Definition 1.4.8).

The following two lemmas build the key ingredients for proving the existence of
maximal eigenvectors of endomorphisms of An in the next subsection (see Propo-
sition 3.4.1). This eventually leads then to a proof of Proposition B.

Lemma 3.3.3. Let n, N � 1. For each M = (M1, . . . , MN ) 2 Mn,N , there
exists a sequence (Dt)t2N of elements Dt = (Dt,1, . . . , Dt,N ) 2 Mn,N that converges
towards M (with respect to the topology of Matn(R)N that is given by the norm as
in Definition 3.1.1) and such that for each t 2 N, there is no complex number which
is an eigenvalue of two elements of Dt,1, . . . , Dt,N .

Proof. The result being trivially true for N = 1, we will assume N � 2. For each
i 2 {1, . . . , n}, we denote by �i ⇢ Rn the finite set of i-th rows of the matrices
M1, . . . , MN :

�i = {r 2 Rn | r is the i-th row of one of the matrices M1, . . . , MN}.
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We then write �i = {ri,1, . . . , ri,si
}, where si � 1 is the cardinality of �i.

As all matrices M1, . . . , MN are pairwise distinct and as one can “exchange rows”
(see Notation 3.3.1), we have N = s1 · · · · sn, and obtain a unique R-linear map

' :
nY

i=1

(Rn)si ! cMn,N

with the following properties:
(1) For each k 2 {1, . . . , N}, the composition of ' with the projection map

⇡k : Matn(R)N ! Matn(R) onto the k-th factor is of the form

⇡k � ' :
Qn

i=1
(Rn)si ! Matn(R)

(vi,j)1in,1jsi
7!

0

B@
v1,j1

...
vn,jn

1

CA

where ji 2 {1, . . . , si} for each i 2 {1, . . . , n}.
(2) (M1, . . . , MN ) = '((ri,j)1in,1jsi

).
Indeed, the possibilities for maps ⇡k � ' as in (1) are parametrised by the N pos-
sible choices of ji 2 {1, . . . , si} for each i 2 {1, . . . , n}, and by (2) the image of
(ri,j)1in,1jsi

by the maps ⇡1 � ', . . . , ⇡N � ' give the matrices M1, . . . , MN ;
this gives the existence and the unicity of '.

We now identify
Qn

i=1
(Rn)si with the real locus X(R) of the affine space X =

An
P

si .
For any two matrices A, B 2 Matn(R), the resultant of the characteristic poly-

nomials �A and �B is denoted by r(A, B). Recall that r(A, B) = 0 if and only if
A and B have a common eigenvalue. Hence, for any distinct a, b 2 {1, . . . , N}, the
set

Za,b =

(
x 2

nY

i=1

(Rn)si

�����
the matrices ⇡a('(x)) and ⇡b('(x))
have a common eigenvalue

)

corresponds to the elements of X(R) that satisfy one polynomial equation Pa,b 2
R[X].

We now prove that Pa,b 6= 0, or equivalently that Za,b 6= X(R) =
Qn

i=1
(Rn)si ,

by showing that ⇡a('(x)) and ⇡b('(x)) have no common eigenvalue for at least
one x 2 X(R). We consider j1, . . . , jn and j0

1
, . . . , j0

n so that ⇡a � ' and ⇡b � ' are
respectively given by

Qn
i=1

(Rn)si ! Matn(R)

(vi,j) 1  i  n
1  j  si

7!

0

B@
v1,j1

...
vn,jn

1

CA
and

Qn
i=1

(Rn)si ! Matn(R)

(vi,j) 1  i  n
1  j  si

7!

0

B@
v1,j0

1

...
vn,j0

n

1

CA
.

Since the matrices Ma and Mb are distinct, the linear maps ⇡a � ' and ⇡b � ' are
also distinct. There is thus l 2 {1, . . . , n} such that jl 6= j0

l . Suppose first that
l = 1, i.e. j1 6= j0

1
. We may choose x 2 X(R) such that

⇡a('(x)) =

✓
0 1

In�1 0

◆
and ⇡b('(x)) =

✓
0 0

In�1 0

◆
.

These matrices have characteristic polynomials tn �1 and tn, respectively. If l > 1,
we simply consider conjugation of the above matrices by permutations. In all cases,
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we find an x 2 X(R) such that ⇡a('(x)) and ⇡b('(x)) are matrices without common
eigenvalue in C. This shows that Za,b 6= X(R), i.e. Pa,b 6= 0.

The product of all polynomials Pa,b with distinct a, b 2 {1, . . . , n} gives a non-
zero polynomial P 2 R[X]. We can thus take a real affine linear map ` : A1 ! X =
An

P
si such that `(0) = (ri,j)1in,1jsi

, such that the coordinates of `(R�0) are
non-negative and such that the restriction of P to `(R) is non-zero. We obtain that
P (`( 1

n )) 6= 0 for any sufficiently large positive integer n. It suffices then to fix a
sufficiently large c � 1 and to define Dt = '(`( 1

t+c )) for each integer t � 0. ⇤

Lemma 3.3.4. Let S = (S1, . . . , SN ) 2 Mn,N and let v � 0 be an eigenvector of S1

to the eigenvalue � � 0. Suppose moreover that � > ⇢(Si) for each i 2 {2, . . . , N}.
Then Siv  �v for each i 2 {1, . . . , N}.

Proof. Assume for contradiction that there is i 2 {2, . . . , N} such that Siv 6 �v.
Denote by vj the j-th component of v for each j 2 {1, . . . , n}. Since we may replace
each row Rj in Si such that Rjv < �vj with the j-th row from S1 and still get an
element in {S1, . . . , SN}, we may assume that Siv � �v � 0. As the coefficients of
v and Si are non-negative, we obtain by induction that (Si)rv � �rv � 0 for each
r � 1. In particular,

k(Si)
rk � k(Si)rvk

kvk � �r

and we obtain ⇢(Si) = limr!1k(Si)rk1/r � �. This contradicts the assumption
that � > ⇢(Si). ⇤

3.4. Existence of maximal eigenvectors of endomorphisms of An.

Proposition 3.4.1. For each n, N � 1 and each S = (S1, . . . , SN ) 2 Mn,N , there
exists j 2 {1, . . . , N} and an eigenvector v 2 (R�0)n \ {0} of Sj to the eigenvalue
� = max{⇢(S1), . . . , ⇢(SN )} such that for each i 2 {1, . . . , N} we have

Siv  Sjv = �v .

Proof. Let S = (S1, . . . , SN ) 2 Mn,N . By Lemma 3.3.3, there exists a sequence
(Dt)t2N of elements Dt = (Dt,1, . . . , Dt,N ) 2 Mn,N that converges towards S and
such that for each t 2 N, there is no complex number which is an eigenvalue of two
elements of Dt,1, . . . , Dt,N . In particular, ⇢(Dt,i) 6= ⇢(Dt,j) for distinct i, j by the
Perron-Frobenius-Theorem (Theorem 3.2.3).

By possibly replacing this sequence with a subsequence, we may assume that
there is a j 2 {1, . . . , N} such that ⇢(Dt,j) > ⇢(Dt,i) for all i 2 {1, . . . , N} \ {j}
and each t 2 N. After exchanging the ordering of S1, . . . , SN , we may assume
that j = 1. For each i 2 {1, . . . , N}, the sequence (Dt,i)t2N converges towards
Si, so (⇢(Dt,i))t2N converges towards ⇢(Si) [Ost73, Theorem in Appendix A]. In
particular, ⇢(S1) = � = max{⇢(S1), . . . , ⇢(Sn)}. By the Perron-Frobenius-Theorem
(Theorem 3.2.3), there is for each t 2 N an eigenvector vt � 0 of Dt,1 to the
eigenvalue ⇢(Dt,1). Lemma 3.3.4 then gives for each i 2 {1, . . . , N} and each t 2 N

Dt,ivt  ⇢(Dt,1)vt .

Now, we may assume that kvtk = 1 for all t (after normalizing vt). Let

Sn�1 = { w 2 Rn | kwk = 1 } .
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Since Sn�1 is compact (with respect to the Euclidean topology), we may take a
subsequence and assume that (vt)t2N converges to a v � 0 in Sn�1. Thus we get

�v = ⇢(S1)v = lim
t!1

⇢(Dt,1)vt = lim
t!1

Dt,1vt = S1v

and for each i 2 {1, . . . , N}

Siv = lim
t!1

Dt,ivt  lim
t!1

⇢(Dt,1)vt = ⇢(S1)v = �v .

This finishes the proof of the proposition. ⇤

Proof of Proposition B. By Remark 3.3.2, there exists (S1, . . . , SN ) 2 Mn,N such
that {S1, . . . , SN} is the set of matrices contained in f . By Proposition 3.4.1 there
exists j 2 {1, . . . , N} and an eigenvector µ = (µ1, . . . , µn) 2 (R�0)n \ {0} of Sj

to the eigenvalue ✓ = max{⇢(S1), . . . , ⇢(SN )} such that Siµ  Sjµ = ✓µ for each
i 2 {1, . . . , N}. We now prove that this implies that degµ(fl) = ✓µl for each
l 2 {1, . . . , n}, which shows that µ = (µ1, . . . , µn) is a maximal eigenvector of f ,
and thus proves (1). For each monomial m = �xr1

1
· · · xrn

n of fl with � 2 k⇤ there
is a matrix Si with its l-th line equal to (r1 r2 · · · rn). The l-th component of
Siµ is equal to r1µ1 + · · · + rnµn = degµ(m). The inequality Siµ  ✓µ then yields
degµ(m)  ✓µl. As this holds for each monomial of fl, we obtain degµ(fl)  ✓µl.
The equality follows from Sjµ = ✓µ, since the monomial m that corresponds to the
l-th row of Sj has µ-degree equal to ✓µl.

We now prove (2). The dominance of f implies that 1  deg(fr) for each r and
this in turn gives 1  �(f). The inequality ✓  deg(f) follows from Corollary 3.2.6,
so we only need to prove �(f)  ✓. This is done by induction on n. If n = 1, then
µ 2 (R>0)1 and the statement follows from Proposition A(2). Now, let n > 1. We
may assume (after a permutation of the coordinates) that µ1  µ2  . . .  µn.
Now, let m 2 {0, . . . , n � 1} with µi = 0 for i  m and µi > 0 for i > m. From
Remark 2.3.1(2) we get

�2 := lim
r!1

degxm+1,...,xn
(fr)

1
r = lim

r!1
max

i2{1,...,n}
degµ((fr)i)

1
r .

From Lemma 2.5.6 we get that for each i 2 {1, . . . , m}, the element fi is a
polynomial in the variables {x1, . . . , xm}. Thus we get from Lemma 2.4.1 that
�(f) = max{�1, �2} where

�1 = �(f̂) = lim
r!1

deg(f̂r)
1
r and f̂ := (f1, . . . , fm) 2 End(Am) .

Since m  n � 1, by induction hypothesis we have

�1  ✓1 := max
n

|⇠| 2 R | ⇠ is an eigenvalue of a matrix that is contained in f̂
o

.

Note that each eigenvalue of a matrix that is contained in f̂ is an eigenvalue of a
matrix that is contained in f . Thus we get ✓1  ✓. From Lemma 2.6.1(4), it follows
that �2  ✓. In summary we proved that �(f) = max{�1, �2}  ✓, i.e. (2) holds
for n.

We now prove (3). We take a maximal eigenvector µ of f . As degµ(fi) = ✓µi

for each i 2 {1, . . . , n}, we have degµ(f) = ✓. If ✓ = 1, (i) follows from (2) and (ii)
is trivially true, so we may assume that ✓ > 1. If f is µ-algebraically stable, then
Lemma 2.6.1(5) gives �2 = ✓ and thus �(f) = ✓, so (i) is proven. Conversely, if
µ 2 (R>0)n and �(f) = ✓ > 1, then f is µ-algebraically stable by Proposition A(3).
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This achieves the proof of (ii). As ✓ = degµ(f) 2 R�0 (i.e. is not equal to +1),
(iii) is a direct consequence of Lemma 2.6.1(5). ⇤

We now give an example that shows that the implication of Proposition B(3)(i)
is not an equivalence.

Example 3.4.2. We consider the automorphism

f = (f1, f2, f3, f4) = ((x1)
2 + x2, x1, x3 + (x3 + x4)

2, x4 � (x3 + x4)
2) 2 Aut(A4) .

As deg(f) = 2, the maximal eigenvalue ✓ of f (see Definition 1.4.8) satisfies ✓  2
(Corollary 3.2.6). Moreover, ✓ = 2, as the matrix

0

BB@

2 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA

is contained in f . When we choose µ = (0, 0, 1, 1), we get degµ(f) = 2, and we see
that f is not µ-algebraically stable, as degµ(f2) = 2 < 4. Moreover, degµ(fi) = 0
for i 2 {1, 2} and degµ(fi) = 2 for i 2 {3, 4}. Thus µ is a maximal eigenvector
of f (see Definition 1.4.8). However, �(f) = ✓. Indeed, �(f)  deg(f) = 2, and
((x1)2 + x2, x1) is algebraically stable for the standard degree, as its homogeneous
part of degree 2 is ((x1)2, 0), which satisfies ((x1)2, 0)r = ((x1)2

r

, 0) for each r � 1
(see Proposition A).

4. Explicit calculation of dynamical degrees of affine-triangular

automorphisms

In this section, we apply Proposition B to compute the dynamical degrees of
affine-triangular dominant endomorphisms of An. We prove Proposition 4.2.3,
which implies Propositions 4.2.5 and C.

Notation 4.0.1. We denote by TEnd(An) and TAut(An) (respectively EEnd(An)
and EAut(An)) the monoid and group of triangular (respectively elementary) en-
domorphisms and automorphisms of An. We denote by A↵(An) the group of affine
automorphisms of An and by Sym(An) ⇢ A↵(An) the group of permutations of the
coordinates.

4.1. From affine-triangular to permutation-triangular endomorphisms.
We can restrict ourselves to permutation-triangular endomorphisms, as the next
simple result shows.

Proposition 4.1.1. Each affine-triangular endomorphism of An is conjugate by
an element of A↵(An) to a permutation-triangular endomorphism.

Proof. We take ↵ 2 A↵(An) and ⌧ 2 TEnd(An) and show that we can conjugate
f = ↵ � ⌧ to a permutation-triangular endomorphism by an element of A↵(An).

Let p = (p1, . . . , pn) 2 An be the point such that ↵(p) = 0 and consider the
translation ⌧p = (x1 + p1, . . . , xn + pn) 2 A↵(An) \ TAut(An). Then ↵0 = ↵ � ⌧p 2
A↵(An) fixes the origin (0, . . . , 0) 2 An. We then replace ↵ with ↵0 and ⌧ with
⌧�1
p �⌧ , and may assume that ↵ belongs to the subgroup GLn = GLn(k) ⇢ A↵(An)

of elements that fix the origin.
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The group B = TAut(An) \ GLn is a Borel subgroup of GLn. It consists of all
lower triangular matrices. The so-called Bruhat decomposition of GLn:

GLn = B Sym(An)B

yields �, � 2 B and � 2 Sym(An) such that ↵ = � � � � �. This gives
��1 � f � � = ��1 � ↵ � ⌧ � � = � � � � ⌧ � �

where � � ⌧ � � 2 TEnd(An). This achieves the proof. ⇤
4.2. Permutation-elementary automorphisms. Up to conjugation, each per-
mutation-elementary automorphism has a particular form. This shows the following
easy observation.

Lemma 4.2.1. Let n � 1 and let h 2 End(An+1) be a permutation-elementary
automorphism. There is a permutation of the coordinates ↵ 2 Sym(An+1) such
that

f = ↵ � h � ↵�1 = (f1, . . . , fm, ⇠xn+1 + p(x1, . . . , xn), xm+1, . . . , xn),

where 0  m  n, {x1, . . . , xm} = {f1, . . . , fm}, ⇠ 2 k⇤ and p 2 k[x1, . . . , xn].

Proof. We write h = � � ⌧ where � 2 Sym(An+1) and ⌧ 2 EAut(An+1). We may
choose ↵ = (↵1, . . . , ↵n+1) 2 Sym(An+1) such that ↵n+1 = xn+1 and ↵ � � � ↵�1

induces the following cyclic permutation on the last coordinates
(↵ � � � ↵�1)m+1 = xn+1 , (↵ � � � ↵�1)m+2 = xm+1 , . . . , (↵ � � � ↵�1)n+1 = xn ,

for some integer m with 0  m  n. This gives
↵ � � � ↵�1 = (f1, . . . , fm, xn+1, xm+1, . . . , xn)

where {x1, . . . , xm} = {f1, . . . , fm}. As ↵n+1 = xn+1, we obtain
↵ � ⌧ � ↵�1 = (x1, . . . , xn, ⇠xn+1 + p(x1, . . . , xn))

for some ⇠ 2 k⇤ and p 2 k[x1, . . . , xn]. This implies that ↵ � h � ↵�1 is equal to
(↵ � � � ↵�1) � (↵ � ⌧ � ↵�1) = (f1, . . . , fm, ⇠xn+1 + p(x1, . . . , xn), xm+1, . . . , xn) .

⇤
We will need the following result to obtain Proposition 4.2.3 below. Proposi-

tion 4.2.3 will be the key ingredient to show Proposition 4.2.5 and Proposition C.

Lemma 4.2.2. Let 0  m  n, let f̂ = (f1, . . . , fm) 2 Aut(Am) and let q 2
k[x1, . . . , xn+1] \ {0}. For each r � 1, every component of gr is non-zero where

g = (f1, . . . , fm, q, xm+1, . . . , xn) 2 End(An+1) .

Proof. For each r � 1, we write gr = ((gr)1, . . . , (gr)n+1). The result is true by
assumption when r = 1. For each r � 1 and 1  i  m we have (gr)i = (f̂r)i 6= 0.

As (f1, . . . , fm) 2 Aut(Am), we also have (f1, . . . , fm, xm+1, . . . , xn) 2 Aut(An).
In particular, g is dominant if q 62 k[x1, . . . , xn], i.e. if degxn+1

(q) � 1. Thus we
assume that q 2 k[x1, . . . , xn] \ {0}.

Suppose first that m = n, in which case g = (f1, . . . , fm, q). For each r � 2, we
get gr = ((gr)1, . . . , (gr)m, q((gr�1)1, . . . , (gr�1)m)). As f̂ is dominant and q is not
the zero polynomial, every component of gr is not zero.

We then assume that n > m and prove the result by induction on n � m.
As (f1, . . . , fm, xm+1, . . . , xn) 2 Aut(An), there is a polynomial h 2 k[x1, . . . , xn]
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such that h(f1, . . . , fm, xm+1, . . . , xn) = q, since q 2 k[x1, . . . , xn]. We denote by
� : An ,! An+1 the closed embedding that is given by

(x1, . . . , xn) 7! (x1, . . . , xm, h(x1, . . . , xn), xm+1, . . . , xn)

and we write ⌧ = (f1, . . . , fm, h, xm+1, . . . , xn�1) 2 End(An). We now prove that
g � � = � � ⌧ :

g � �(x1, . . . , xn)

= (f1, . . . , fm, q(x1, . . . , xm, h, xm+1, . . . , xn�1), h, xm+1, . . . , xn�1)

= (f1, . . . , fm, h(f1, . . . , fm, h, xm+1, . . . , xn�1), h, xm+1, . . . , xn�1)

= � � ⌧(x1, . . . , xn).

Hence, gr � � = � � ⌧ r for each r � 1. By induction, every component of ⌧ r is
non-zero, so every component of gr is non-zero, except maybe the (m + 1)-th one.
But if the (m+1)-th component of gr were zero, then the (m+2)-th of gr+1 would
be zero, impossible as the (m + 2)-th component of gr+1 � � = � � ⌧ r+1 is not equal
to zero. ⇤

Proposition 4.2.3. Let 0  m < n, let f̂ = (f1, . . . , fm) 2 Aut(Am), ⇠ 2 k⇤ and
p 2 k[x1, . . . , xn]. Denote by I ⇢ Nn the finite subset of indices of the monomials
of p, and define

✓ = max

8
<

:� 2 R

������
�n�m =

nX

j=m+1

ij�
n�j for some (i1, . . . , in) 2 I

9
=

; .

Then,

f = (f1, . . . , fm, ⇠xn+1 + p(x1, . . . , xn), xm+1, . . . , xn) 2 Aut(An+1)

has the following properties:
(1) If degxm+1,...,xn

(p)  1, then �(f) = �(f̂).
(2) If degxm+1,...,xn

(p) � 2, define

µ = (µ1, . . . , µn+1) = (0, . . . , 0, ✓n�m, ✓n�m�1, . . . , ✓, 1) ,

i.e. µj = 0 for j  m and µj = ✓n+1�j for j � m + 1. Then we have
✓ > 1, degµ(fj) = ✓µj for each j (in particular degµ(f) = ✓) and f is µ-
algebraically stable. If moreover �(f̂)  ✓ (in particular, if m = 0), then
�(f) = ✓.

(3) Assume {f1, . . . , fm} = {x1, . . . , xm}. If degxm+1,...,xn
(p)  1, then the

maximal eigenvalue of f is equal to 1 and otherwise it is equal to ✓.

Remark 4.2.4. The case m = n, not treated in Proposition 4.2.3, is rather trivial.
We have f = (f1, . . . , fn, ⇠xn+1 + p(x1, . . . , xn)) where {f1, . . . , fn} = {x1, . . . , xn}.
Every matrix contained in f is then a block-matrix with a (n ⇥ n)-permutation-
matrix and a (1 ⇥ 1)-matrix with a 0 or a 1 on the diagonal, so every eigenvalue
is either 0 or a root of unity. This implies that ✓ = 1 is the only possible maximal
eigenvalue.

Proof of Proposition 4.2.3. (1) Since degxm+1,...,xn
(p)  1, Lemma 2.4.1 implies

that
�(f) = max{�(f̂), lim

r!1
degxm+1,...,xn+1

(fr)1/r} = �(f̂)
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where by convention �(f̂) = 1 in case m = 0.
(2): For each i = (i1, . . . , in) 2 I, we set

pi =
nX

j=m+1

ijx
n�j 2 Z[x]

and qi = xn�m �pi 2 Z[x]. Then ✓ is the biggest real root of one of the polynomials
in {qi | i 2 I}. Note that qi is monic and of degree n�m > 0. As degxm+1,...,xn

(p) �
2, there is i = (i1, . . . , in) 2 I such that pi(1) � 2. This implies that qi(1) =
1 � pi(1) < 0, so qi has a real root that is bigger than 1. This proves that ✓ > 1.
For each i 2 I, we moreover have qi(✓) � 0, since qi has no real root bigger than ✓.
This gives ✓n�m � pi(✓), with equality for at least one i 2 I.

We now prove that degµ(fj) = ✓µj for each j 2 {1, . . . , n + 1} where fj denotes
the j-th component of f : For each j 2 {1, . . . , m} we have degµ(fj) = 0 = ✓µj and
for each j 2 {m + 2, . . . , n + 1}, we have degµ(fj) = degµ(xj�1) = µj�1 = ✓µj . We
moreover have

degµ(fm+1) = max

0

@{degµ(xn+1)} [

8
<

:

nX

j=m+1

ijµj

��� (i1, . . . , in) 2 Nn

9
=

;

1

A

= max ({1} [ { ✓ · pi(✓) | i = (i1, . . . , in) 2 Nn }) = ✓n�m+1 = ✓µm+1.

This gives in particular ✓ = degµ(f).
It remains to prove that f is µ-algebraically stable, i.e. that degµ(fr) = ✓r for

each r � 1; this will then give the result by Corollary 2.6.2.
By Lemma 2.6.1(5), this corresponds to ask that for each r � 1, there exists

j 2 {m + 1, . . . , n} such that (gr)j 6= 0, where g = (g1, . . . , gn+1) 2 End(An+1) is
the µ-leading part of f and (gr)j denotes the j-th component of gr. We observe
that

g = (f1, . . . , fm, gm+1, xm+1, . . . , xn)

where gm+1 2 k[x1, . . . , xn+1] \ {0}. The result then follows from Lemma 4.2.2
(3): The maximal eigenvalue of f is the biggest real number that is an eigenvalue

of one of the matrices contained in f . Each such matrix is either contained in
(f1, . . . , fm, ⇠xn+1, xm+1, . . . , xn), but then has spectral radius equal to 1, or is
contained in (f1, . . . , fm,

Qn
j=1

x
ij

j , xm+1, . . . , xn) for some (i1, . . . , in) 2 I. In this
latter case, the spectral radius is the one of the matrix

0

BBB@

im+1 · · · in 0
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

1

CCCA

and thus equal to the biggest real root of the polynomial xn�m�
Pn

j=m+1
ijxn�j . If

degxm+1,...,xn
(p)  1, the maximal eigenvalue is again equal to 1, and if degxm+1,...,xn

(p) �
2, we get that ✓ is the maximal eigenvalue of f . ⇤

As mentioned in the introduction, the following result is due to Mattias Jonsson
(unpublished).
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Proposition 4.2.5. For each n � 1 and each polynomial p 2 k[x1, . . . , xn] of degree
� 2, let ep 2 Aut(An+1) be the automorphism

ep = (xn+1 + p(x1, . . . , xn), x1, . . . , xn) 2 Aut(An+1).

Let I ⇢ Nn be the finite subset of indices of the monomials of p. We get

�(ep) = max

8
<

:� 2 R

������
�n =

nX

j=1

ij�
n�j for some (i1, . . . , in) 2 I

9
=

;

Proof. Apply Proposition 4.2.3(2) with m = 0 and ⇠ = 1. ⇤

Proof of Proposition C. Let h 2 End(An+1) be a permutation-elementary auto-
morphism. By Lemma 4.2.1 there is a permutation of the coordinates ↵ 2 Sym(An+1)
such that

f = ↵ � h � ↵�1 = (f1, . . . , fm, ⇠xn+1 + p(x1, . . . , xn), xm+1, . . . , xn),

where 0  m  n, {x1, . . . , xm} = {f1, . . . , fm}, ⇠ 2 k⇤ and p 2 k[x1, . . . , xn]. In
particular �(f̂) = 1 where f̂ = (f1, . . . , fm) 2 Sym(Am).

As the maximal eigenvalue ✓ of f is bigger than 1, we have m < n (see Re-
mark 4.2.4). Moreover, Proposition 4.2.3(3) yields that degxm+1,...,xn

(p) � 2. Then,
Proposition 4.2.3(2),(3) give the existence of a maximal eigenvector µ such that f
is µ-algebraically stable and prove that the dynamical degree �(f) is equal to the
maximal eigenvalue ✓ of f (this latter fact also follows from Proposition B). Since
↵ 2 Sym(An+1) we get that ↵�1(µ) is a maximal eigenvector of h = ↵�1 � f � ↵,
h is ↵�1(µ)-algebraically stable and ✓ is the maximal eigenvalue of h. Moreover,
�(h) = �(f). Proposition 4.2.3(2) shows that ✓ is the root of a monic integral
polynomial where all coefficients (except the first one) are non-positive, so it is a
Handelman number by definition. ⇤

4.3. Affine-triangular automorphisms of A3. In this section, we apply Propo-
sition B to affine-triangular automorphisms f 2 Aut(A3) and prove Proposition D
and Theorem 1. By Proposition 4.1.1, we can reduce to the case of permutation-
triangular automorphisms. If the maximal eigenvalue ✓ of f is equal to 1, then
Proposition B gives �(f) = ✓. If ✓ > 1, there is a maximal eigenvector µ =
(µ1, . . . , µn) 2 (R�0)n \ {0} of f , and if f is µ-algebraically stable, we obtain
�(f) = ✓ (Proposition B(3)). We will then study the cases where f is not µ-
algebraically stable. This implies that the µ-leading part g of f is such that one
component of gr is equal to zero for some r � 1. The possibilities for such endo-
morphisms g are studied in Lemma 4.3.2 below. The following result is a simple
observation, whose proof is left as an exercise.

Lemma 4.3.1. Let n � 1 and let f = (f1, . . . , fn) 2 TEnd(An) be a triangular
endomorphism. Then,

(1) f is dominant if and only if degxi
(fi) � 1 for each i 2 {1, . . . , n};

(2) f is an automorphism if and only if degxi
(fi) = 1 for each i 2 {1, . . . , n}.

Lemma 4.3.2. Let g = (g1, g2, g3) = � � ⌧ 2 End(A3) where ⌧ 2 TEnd(A3) is a
triangular endomorphism, � 2 Sym(A3) is a permutation of the coordinates, where
all gi are non-constant and such that one of the components of gr is a constant for
some r � 2. Then, one of the following holds:
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(1) g2, g3 2 k[x1], g1 2 k[x1, x2, x3] \ (k[x1, x2] [ k[x1, x3]) and there exists ⇣ 2 k
such that g1(t, g2, g3) = ⇣ for each t 2 k;

(2) g1, g3 2 k[x1], g2 2 k[x1, x3] \ k[x1];
(3) g1, g2 2 k[x1], g3 2 k[x1, x2] \ k[x1];
(4) g1, g2 2 k[x1, x2] \ k[x1], g3 2 k[x1] and g1(g1, g2) = ⇣1, g2(g1, g2) = ⇣2 for

some ⇣1, ⇣2 2 k.

Proof. We distinguish some cases, depending on which of the polynomials g1, g2, g3

belong to k[x1].
We first observe that g1, g2, g3 2 k[x1] is impossible, as each component of gr,

for each r � 1, would then be obtained by composing dominant endomorphisms of
A1 and thus would not be constant.

• Suppose that g1, g3 2 k[x1]. By induction, we obtain (gr)1, (gr)3 2 k[x1]\k for
each r � 1, so (gr)2 2 k for some r � 2. If g2 2 k[x1, x3], we obtain (2). Otherwise,
degx2

(g2) = d � 1 and proceeding by induction we obtain degx2
((gr)2) = dr � 1

for each r � 1, impossible.
• If g1, g2 2 k[x1] we do the same argument as before (by exchanging the roles

of x2 and x3) and obtain (3).
• Suppose now that g2, g3 2 k[x1]. As g1 2 k[x1, x2, x3] \ k[x1], the closure of

the image of g 2 End(A3) is then equal to A1 ⇥ �, where � ⇢ A2 is the irreducible
curve that is the closure of the image of A1 ! A2, x1 7! (g2(x1), g3(x1)). The
restriction of g gives an endomorphism h = g|A1⇥� 2 End(A1 ⇥ �).

We now prove that h is not dominant. For each r � 1 and each i 2 {1, 2, 3},
the restriction of (gr)i to A1 ⇥ � is equal to ⇡i � hr, where ⇡i : A1 ⇥ � ! A1 is the
i-th projection. Choosing i and r such that (gr)i is constant, we find that ⇡i � hr

is constant, so hr is not dominant, as ⇡i is dominant. This proves that h is not
dominant.

Denote by �0 ⇢ A1 ⇥ � the closure of h(A1 ⇥ �), which is an irreducible curve,
that contains

�
(g1(x, g2(y), g3(y)), g2(x), g3(x)) | (x, y) 2 A2

 
. This implies that

the polynomial s = g1(x, g2(y), g3(y)) 2 k[x, y] is contained in k[x]. We moreover
observe that s is a constant. Indeed, otherwise the restriction of h to �0 would
be a dominant map �0 ! �0 and since ⇡i|�0 : �0 ! A1 is non-constant for each
i 2 {1, 2, 3}, the restriction of (gr)i to �0 would be non-constant for each r � 1 and
each i 2 {1, 2, 3}, contradiction. Hence, ⇡1 � h = g1|A1⇥� : A1 ⇥ � ! A1 is equal
to a constant ⇣ 2 k. This yieldsg1(t, g2, g3) = ⇣ for each t 2 k and implies that
g1 62 k[x1, x2] [ k[x1, x3], since g1, g2, g3 are non-constant, whence (1).

• It remains to assume that at most one of the gi belongs to k[x1]. We write
⌧ = (⌧1, ⌧2, ⌧3), and observe that {g1, g2, g3} = {⌧1, ⌧2, ⌧3}. As ⌧1 2 k[x1] \ k,
we get that exactly one of the gi belongs to k[x1] and that ⌧2 2 k[x1, x2] \ k[x1].
As g is not dominant, neither is ⌧ ; Lemma 4.3.1 then implies that ⌧3 2 k[x1, x2].
So g1, g2, g3 2 k[x1, x2] and exactly one of the three belongs to k[x1]. Note that
the endomorphism h = (g1, g2) 2 End(A2) is not dominant. Indeed, otherwise no
component of gr is constant for each r � 1, as g3 2 k[x1, x2] is non-constant. It is
thus impossible that g1 2 k[x1] or g2 2 k[x1], as (g1, g2) (respectively (g2, g1)) would
be a dominant triangular endomorphism of A2 (Lemma 4.3.1). Hence, g3 2 k[x1]\k
and g1, g2 2 k[x1, x2] \ k[x1]. As h is not dominant, the closure of h(A2) is an
irreducible curve � ⇢ A2.

If gj(�) is not a point for j = 1 or j = 2, then the restriction h|� : � ! � would
be dominant. As g3 is not constant on � (because g3(g1(x1, x2)) is not constant),
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we get that (gr)i is non-constant for each r � 1 and each i 2 {1, 2, 3}, contradiction.
Thus gi(�) = {⇣i} for i = 1, 2 where ⇣i 2 k. This gives (4). ⇤
Lemma 4.3.3. Let f = ��⌫ 2 Aut(A3) be a permutation-triangular automorphism,
where � 2 Sym(A3) and ⌫ 2 TAut(A3). Suppose that the maximal eigenvalue ✓ of
f is bigger than 1 and let µ be a maximal eigenvector of f such that f is not
µ-algebraically stable. Then, one of the following cases holds:

(i) f = (⇠3x3 + p3(x1, x2), p1(x1), ⇠2x2 + p2(x1)) where ⇠2, ⇠3 2 k⇤, p1, p2 2
k[x1], p3 2 k[x1, x2], deg(p1) = 1, and deg(p2) = ✓2 > 1. Moreover, there
exists s 2 k[x2] such that the conjugation of f by (x1, x2, x3 + s(x2)) does
not increase the degree of p3 and (strictly) decreases the degree of p2.

(ii) f = (⇠2x2 + p2(x1), ⇠3x3 + p3(x1, x2), p1(x1)) where ⇠2, ⇠3 2 k⇤, p1, p2 2
k[x1], p3 2 k[x1, x2], deg(p1) = 1, and deg(p2) = ✓ > 1. Moreover,
there exists s 2 k[x1] such that the conjugation of f by (x1, x2 + s(x1), x3)
(strictly) decreases the degrees of p2 and p3.

Proof. Denote by g = (g1, g2, g3) the µ-leading part of f . As µ = (µ1, µ2, µ3) 2
(R�0)3\{0} is a maximal eigenvector of f , gi 62 k for each i 2 {1, 2, 3} (Lemma 2.5.7).
Moreover, as f is not µ-algebraically stable, there is some r � 1 such that (gr)i = 0
for all i 2 {1, 2, 3} with µi > 0 (Lemma 2.6.1(5)). We write g = � � ⌧ where
⌧ = (⌧1, ⌧2, ⌧3) 2 TEnd(A3); Lemma 4.3.2 gives then four possibilities (1)-(2)-(3)-
(4) for g, that we consider separately. We will show that (i) and (ii) occur in
Cases (1) and (4), respectively and that (2)-(3) do not occur.

(2)-(3): Let us first observe that Case (2) (respectively (3)) of Lemma 4.3.2
does not occur. Indeed, otherwise the first and the last (respectively the first two)
components of gr belong to k[x1] \ k for each r � 1, so µ = (0, µ2, 0) (respectively
µ = (0, 0, µ3)), since (gr)i = 0 for each i 2 {1, 2, 3} with µi > 0. This gives
degµ(gi) = 0 for i = 1, 2, 3, as g1, g2, g3 belong to k[x1, x3] (respectively k[x1, x2]),
impossible as degµ(g) = degµ(f) = ✓ > 1 (Lemma 2.5.7).

(1): Suppose now that Case (1) of Lemma 4.3.2 occurs: As g1 2 k[x1, x2, x3] \
(k[x1, x2] [k[x1, x3]) and since the monomials of g1 are some of those of f1, that is
one of the coordinates of the triangular automorphism ⌫ 2 TAut(A3), the polyno-
mial f1 is equal to the third coordinate of ⌫ and g1 is of the form g1 = ⇠3x3+q(x1, x2)
for some ⇠3 2 k⇤ and q 2 k[x1, x2] \k[x1]. Since g1(t, g2, g3) = ⇣ 2 k for each t 2 k,
we obtain ⇠3g3 + q(t, g2) = ⇣ for each t 2 k, so q 2 k[x2] \ k and

g = (⇠3x3 + q(x2), g2, (⇣ � q(g2))/⇠3),

where g2 2 k[x1]. By definition (Definition 1.4.5), gi is the µ-homogeneous part of
fi of degree ✓µi, for each i 2 {1, 2, 3} so each monomial of gi is of µ-degree ✓µi.
The explicit form of g1, g2, g3 directly gives
✓µ1 = µ3 = deg(q)µ2 , ✓µ2 = deg(g2)µ1 and ✓µ3 = deg(g3)µ1 = deg(q) deg(g2)µ1 .

In particular, µ1, µ2, µ3 2 R>0 and deg(g3) = deg(q) deg(g2) = ✓2 > 1. Since two
monomials in the same variables have distinct µ-degrees, we moreover find that q,
g2 and g3 are monomials, so ⇣ = 0.

One component of f (and of ⌧) belongs to k[x1] and is of degree 1. As g1 62 k[x1]
and deg(g3) > 1, we find that f2 2 k[x1] is of degree 1. This yields � = (x3, x1, x2)
and deg(f2) = deg(g2) = 1, whence deg(q) = deg(g3) = ✓2 > 1. We obtain the
form given in (i): the automorphism f is equal to

f = (⇠3x3 + p3(x1, x2), p1(x1), ⇠2x2 + p2(x1))
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where ⇠2, ⇠3 2 k⇤, p1, p2 2 k[x1], p3 2 k[x1, x2], deg(p1) = 1. Moreover, g3 =
�q(g2)/⇠3 2 k[x1] is the µ-leading part of f3 = ⇠2x2 + p2(x1), so g3 is only one
monomial, of degree ✓2 = deg(g3) = deg(p2).

To prove that we are indeed in Case (i), it remains to show that the conjugation
by h = (x1, x2, x3 +⇠�1

3
q(x2)) does not increase the degree p3 and strictly decreases

the degree of p2. We calculate

h � f � h�1 = (⇠3x3 + p3(x1, x2) � q(x2), p1(x1), ⇠2x2 + p2(x1) + q(p1(x1))/⇠3).

As every monomial of g1 = ⇠3x3 + q(x2) is contained in f1 = ⇠3x3 + p3(x1, x2), the
degree of p3(x1, x2) � q(x2) is at most the one of p3(x1, x2). It remains to see that
deg(p2 + q(p1)/⇠3) < deg(p2) which follows from the fact that g3 = �q(g2)/⇠3 2
k[x1] is the µ-leading part of f3 = ⇠2x2+p2(x1), and that g2 is the leading monomial
of p1 (of degree 1.

(4): It remains to consider Case (4) of Lemma 4.3.2. As g1, g2 2 k[x1, x2]\k[x1],
the only component of f which belongs to k[x1] (and is of degree 1) is f3, so
� = (x3, x2, x1) or � = (x2, x3, x1). Let j 2 {1, 2} be such that fj = ⌫2, where
⌫ = (⌫1, ⌫2, ⌫3). We then have fj = ⇠2x2 + p2(x1) for some ⇠2 2 k⇤ and some
p2 2 k[x1]. As gj 2 k[x1, x2]\k[x1], we get gj = ⇠2x2+q(x1) for some q 2 k[x1], that
consists of some monomials of p2. Since ⇣j = gj(g1, g2), we obtain ⇣j = ⇠2g2 +q(g1).

We now show that j = 2 leads to a contradiction. It gives

g2 = ⇠2x2 + q(x1) = ⇠�1

2
(⇣2 � q(g1)).

Since ⇠2x2 + q(x1) is irreducible, the polynomial ⇣2 � q(g1) is irreducible, and thus
deg(q) = 1, which in turn implies that g2 and thus g1 is of degree 1. Hence, g1, g2, g3

are of degree 1, impossible, as ✓ > 1 is the eigenvalue of a matrix that is contained
in g (Lemma 2.5.1).

This contradiction proves that j = 1, so � = (x2, x3, x1). This yields

f = (⇠2x2 + p2(x1), ⇠3x3 + p3(x1, x2), p1(x1))

where ⇠2, ⇠3 2 k⇤, p1, p2 2 k[x1], p3 2 k[x1, x2] and deg(p1) = 1, as in (ii).
We also have g1 = ⇠2x2 + q(x1) and ⇣1 = ⇠2g2 + q(g1), which yields g2 =

(⇣1 � q(g1))/⇠2 = (⇣1 � q(⇠2x2 + q(x1)))/⇠2. As g is the µ-leading part of f , the
polynomial g2 is not constant (Lemma 2.5.7), so deg(q) � 1. Recall that gi is the
µ-homogeneous part of fi of degree ✓µi, for each i 2 {1, 2, 3} (Definition 1.4.5) so
each monomial of gi is of µ-degree ✓µi. We thus obtain

✓µ1 = µ2 = deg(q)µ1 and ✓µ3 = µ1 .

This proves that µ1, µ2, µ3 2 R>0, that deg(q) = ✓ > 1 and that µ = (✓µ3, ✓2µ3, µ3).
Since two monomials in the same variables have distinct µ-degrees, we moreover

find that q is a monomial, the leading monomial of p2, so deg(p2) = deg(q) = ✓ > 1,
as stated in (ii).

To prove that we are indeed in Case (ii), it remains to show that the conjugation
by h = (x1, x2+q(x1)/⇠2, x3) strictly decreases the degree of p2 and p3. We calculate

h � f � h�1 = (⇠2x2 + p0
2
(x1), ⇠3x3 + p0

3
(x1, x2), p1(x1)),

where
p0
2
(x1) = p2(x1) � q(x1),

p0
3
(x1, x2) = p3(x1, x2 � q(x1)/⇠2) + q(⇠2x2 + p0

2
(x1))/⇠2 .
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As q is the leading monomial of p2, this conjugation decreases the degree of p2,
i.e. deg(p0

2
) < deg(p2) = ✓. It remains to see that deg(p0

3
) < deg(p3). To simplify

the calculations, we replace µ by a multiple of itself (this is still a maximal eigenvec-
tor) and may assume that µ = (1, ✓, ✓�1). As g2 = (⇣1 � q(⇠2x2 + q(x1)))/⇠2 is the
µ-homogeneous part of f2 = ⇠3x3 +p3(x1, x2) of µ-degree ✓µ2 = ✓2, the polynomial
� = p3 � g2 2 k[x1, x2] is equal to

� =
✓�1X

i=0

xi
2
�i

where each �i 2 k[x1] is such that deg(�i) + i✓ < ✓2. As ✓ > 1, this implies that
deg(xi

2
�i) = i + deg(�i) < ✓2 for each i, so deg(�) < ✓2, which implies that the

degree of p3 = �+g2 is equal to ✓2, since deg(g2) = ✓2. We then need to show that
deg(p0

3
) < ✓2. Since deg(p0

2
) < deg(q) = ✓, we have deg(q(⇠2x2 + p0

2
(x1))/⇠2) < ✓2,

so we only need to show that deg(p3(x1, x2 � q(x1)/⇠2)) < ✓2. This is given by
p3(x1, x2 � q(x1)/⇠2) = �(x1, x2 � q(x1)/⇠2) + g2(x1, x2 � q(x1)/⇠2).

=
✓�1P
i=0

(x2 � q(x1)/⇠2)i�i + (⇣1 � q(⇠2x2))/⇠2

and by the fact that deg(�i) + i✓ < ✓2 for each i. ⇤
Example 4.3.4. We now give two distinct examples to show that Cases (i)-(ii) of
Lemma 4.3.3 indeed occur.

(i) Let n � 2, and let f = (x3 � xn
2
, x1, x2 + xn

1
) 2 Aut(A3). Because of the

matrix contained in (x3, x1, xn
1
), the maximal eigenvalue satisfies ✓ �

p
n > 1

and as f2 = (x2, x3 � xn
2
, x1 + (x3 � xn

2
)n) and f3 = (x1, x2, x3), the map f

is not µ-algebraically stable for any maximal eigenvector µ of f . It has then
to satisfy Case (i) of Lemma 4.3.3, so ✓ =

p
n.

(ii) Let n � 2, and let f = (x2 � xn
1
, x3 + (x2 � xn

1
)n, x1) 2 Aut(A3). Because

of the matrix contained in (�xn
1
, x3, x1), the maximal eigenvalue satisfies

✓ � n > 1 and as f2 = (x3, x1 + xn
3
, x2 � xn

1
) and f3 = (x1, x2, x3), the

element f is not µ-algebraically stable for each maximal eigenvector µ of f .
It has then to satisfy Case (ii) of Lemma 4.3.3, so ✓ = n.

We now give examples of permutation-triangular automorphisms of A3 which
are µ-algebraically stable. These will be useful in the proof of Theorem 1.

Lemma 4.3.5. For all a, b, c 2 N such that � = a+
p

a2+4bc
2

6= 0, the maximal
eigenvalue and the dynamical degree of the automorphisms

f = (xa
1
xb

2
+ x3, x2 + xc

1
, x1) and f 0 = (x3 + xa

1
xbc

2
, x1, x2)

are equal to �. Both automorphisms are µ-algebraic stable for each maximal eigen-
vector µ.

Proof. The matrices that are contained in f are
0

@
a b 0
c 0 0
1 0 0

1

A ,

0

@
a b 0
0 1 0
1 0 0

1

A ,

0

@
0 0 1
c 0 0
1 0 0

1

A and

0

@
0 0 1
0 1 0
1 0 0

1

A

whose characteristic polynomials are x(x2 �ax� bc), x(x�a)(x�1), x(x2 �1) and
(x + 1)(x2 � 1), respectively. The corresponding spectral radii are respectively �,
a, 1 and 1. Hence, the maximal eigenvalue of f is �.
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Similarly, the matrices contained in f 0are
0

@
a bc 0
1 0 0
0 1 0

1

A and

0

@
0 0 1
1 0 0
0 1 0

1

A

whose characteristic polynomials are x(x2 � ax � bc) and x3 � 1. The maximal
eigenvalue of f 0 is then also �.

As neither f nor f 0 satisfies any of the two Cases (i)-(ii) of Lemma 4.3.3, both
f and f 0 are µ-algebraically stable for each maximal eigenvector µ (of f and f 0,
respectively). This gives then �(f) = �(f 0) = � (Proposition B) and achieves the
proof. ⇤
Lemma 4.3.6. The maximal eigenvalue ✓ of a permutation-triangular automor-
phism f 2 Aut(A3) of degree d � 1 is a non-zero number equal to (a+

p
a2 + 4bc)/2

for some (a, b, c) 2 N3 where a + b  d and c  d. It is thus a positive integer or a
quadratic integer and a Handelman number.

Proof. Each real number ✓ = a+
p

a2+4bc
2

6= 0, where (a, b, c) 2 N3 is a root of
the polynomial P (x) = x2 � ax � bc, with a, b, c 2 N2 \ {0} so it is a Handelman
number. If P is irreducible, then ✓ is a quadratic integer, and otherwise it is a
positive integer. It remains to see that the maximal eigenvalue of every f is of the
desired form.

We write f = � � ⌧ , where � 2 Sym(A3) and ⌧ 2 TAut(A3) is a triangular
automorphism, that we write as ⌧ = (⌫1x1 + ✏, ⌫2x2 +p(x1), ⌫3x3 + q(x1, x2)) where
⌫1, ⌫2, ⌫3 2 k⇤, ✏ 2 k, p 2 k[x1] and q 2 k[x1, x2]. The matrices contained in ⌧ are
all of the form0

@
m 0 0
0 1 0
0 0 1

1

A ,

0

@
m 0 0
k 0 0
0 0 1

1

A ,

0

@
m 0 0
0 1 0
i j 0

1

A ,

0

@
m 0 0
k 0 0
i j 0

1

A

where m, k, i, j are non-negative integers and 0  m  1, k  deg(p)  d and
i + j  deg(q)  d. Since the spectral radius is order-preserving on real square
matrices with non-negative coefficients (see Definition 3.1.1(4)) and since ⌫1 6= 0,
the maximal eigenvalue is the spectral radius of a matrix where m = 1. The matrices
contained in f are obtained from one of the above four types by permuting the rows.
Permuting the rows of the identity matrix only gives a spectral radius equal to 1.
In the second case, we conjugate by the permutation of the last two. In any case,
we obtain that ✓ is either equal to 1 or is the spectral radius of a matrix �0M , where
�0 is a permutation matrix and M is of the form

0

@
1 0 0
0 1 0
k 0 0

1

A ,

0

@
1 0 0
0 1 0
i j 0

1

A ,

0

@
1 0 0
k 0 0
i j 0

1

A

where k  d and i + j  d. We obtain

�0M =

0

@
m11 m12 0
m21 m22 0
m31 m32 0

1

A

for some mij 2 N, so ✓ is the spectral radius of the matrix
✓

m11 m12

m21 m22

◆
.
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This last matrix is one of the following:
✓

r 0
s 0

◆
,

✓
r 0
0 s

◆
,

✓
r 0
i j

◆
,

✓
i j
0 1

◆✓
i j
r 0

◆
,

✓
0 1
i j

◆
, or

✓
0 r
s 0

◆
,

where r, s 2 {1, i, j, k}. In the first four cases, ✓ is an integer in {1, . . . , d}, so has
the desired form, with a = ✓, and b = c = 0. In the fifth case, the characteristic
polynomial is x2 � ix � jr. Choosing a = i, b = j and c = r we get ✓ = (a +p

a2 + 4bc)/2. In the sixth case, the characteristic polynomial is x2 � jx� i. When
we choose a = j, b = i and c = 1, we get again ✓ = (a +

p
a2 + 4bc)/2. In the last

case, the characteristic polynomial is x2 � rs. We then choose a = 0, b = r and
c = s. ⇤

We can now give the proof of Proposition D.

Proof of Proposition D. We take an affine-triangular automorphism f 2 Aut(A3).
By Proposition 4.1.1, there exists ↵ 2 A↵(A3) such that f 0 = ↵f↵�1 is a permuta-
tion-triangular automorphism. We then have deg(f 0) = deg(f). Moreover, Propo-
sition B shows that there exists a maximal eigenvector of f . We denote by ✓ the
maximal eigenvalue of f 0. If ✓ = 1 or if f 0 is µ-algebraically stable for each maxi-
mal eigenvector µ, the dynamical degrees �(f) and �(f 0) are equal to the maximal
eigenvalue ✓ of f 0 (Proposition B), which is a Handelman number (Lemma 4.3.6)
so the result holds.

Suppose now that ✓ > 1 and that f 0 is not µ-algebraically stable for some
maximal eigenvector µ. Lemma 4.3.3 gives two possibilities for f 0:

f 0 = (⇠3x3 + p3(x1, x2), p1(x1), ⇠2x2 + p2(x1)) or
f 0 = (⇠2x2 + p2(x1), ⇠3x3 + p3(x1, x2), p1(x1))

where p1, p2 2 k[x1], p3 2 k[x1, x2], ⇠2, ⇠3 2 k⇤, deg(p1) = 1 and deg(p2) > 1. In
both cases, Lemma 4.3.3 shows that one can replace f 0 by a conjugate, decrease
the degree of p2 and do not increase the degree of f 0. After finitely many steps, we
obtain the desired case where ✓ = 1 or f 0 is µ-algebraically stable for each maximal
eigenvector µ. Moreover, we still have deg(f 0)  deg(f). ⇤

Proof of Theorem 1. Let f 2 Aut(A3) is an affine-triangular automorphism of A3

of degree d. Proposition D gives the existence of a permutation-triangular automor-
phism f 0 2 Aut(A3) such that deg(f 0)  deg(f) and such that either the maximal
eigenvalue ✓ of f 0 is equal to 1, or ✓ > 1 and f 0 is µ-algebraically stable for each
maximal eigenvector µ. In the first case, the dynamical degree �(f) is equal to
�(f 0) = 1, by Proposition B(2). In the second case, we obtain �(f) = �(f 0) = ✓,
by Proposition B(3). Moreover, Lemma 4.3.6 proves that ✓ = a+

p
a2+4bc
2

for some
a, b, c 2 N with a + b  d, c  d (and that ✓ 6= 0).

Conversely, for all a, b, c 2 N such that ✓ = a+
p

a2+4bc
2

6= 0, the element ✓ is the
dynamical degree of (xa

1
xb

2
+x3, x2 +xc

1
, x1) and (x3 +xa

1
xbc

2
, x1, x2) (Lemma 4.3.5),

and thus of a permutation-triangular automorphism of A3. This achieves the proof.
⇤

Corollary 4.3.7. For each d � 3 the set of all dynamical degrees of shift-like
automorphisms of A3 of degree d is strictly contained in the set of all dynamical
degrees of affine-triangular automorphisms of degree d.
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Proof. As each shift-like automorphism is also an affine-triangular automorphism,
we have an inclusion, that we need to prove to be strict. From Proposition 4.2.5
it follows that the set of dynamical degrees of all shift-like automorphisms of A3 of
degree d is equal to

n
(a +

p
a2 + 4d � 4a)/2

��� 0  a  d
o

.

From Theorem 1 it follows that �d = (1 +
p

1 + 4d)/2 is the dynamical degree of
the affine-triangular automorphism (x3 + x1x2, x2 + xd

1
, x1). In order to show that

�d is not the dynamical degree of any shift-like automorphism of A3 of degree d, for
each d � 3, we only have to show that there exists no d � 3 and no a 2 {0, . . . , d}
such that p

1 + 4d = (a � 1) +
p

a2 + 4d � 4a .

Indeed, if this would be the case, then 1 + 4d = (a � 1)2 + 2(a � 1)
p

a2 + 4d � 4a +
a2 + 4d � 4a, which yields

a(3 � a) = (a � 1)
p

a2 + 4d � 4a .

This implies that a  3 and a 62 {0, 1}, i.e. a = 2. However, in this case d = 2.
⇤

4.4. Automorphisms of affine spaces associated to weak-Perron numbers.
In this section, we construct some affine-triangular automorphisms associated to
weak-Perron numbers and prove Theorem 2.

Lemma 4.4.1. Let n � 1 and let A = (ai,j)n
i,j=1

2 Matn(N) be an irreducible
matrix with spectral radius ⇢(A) > 1. The automorphism f 2 Aut(A2n) given by

(⇤)

 
xn+1 +

nY

i=1

x
a1,i

i , xn+2 +
nY

i=1

x
a2,i

i , . . . , x2n +
nY

i=1

x
an,i

i , x1, . . . , xn

!

has dynamical degree �(f) = ⇢(A).

Proof. Let us write ✓ = ⇢(A) and choose an eigenvector v = (v1, . . . , vn) 2 (R>0)n

of A to the eigenvalue ✓ (which exists by Theorem 3.2.3). We then choose µ =
(✓v1, . . . , ✓vn, v1, . . . , vn) 2 (R>0)2n. The matrix

M =

✓
A 0
In 0

◆
2 Mat2n(N)

is contained in f , its spectral radius is ✓ and µ is an eigenvector of M to the
eigenvalue ✓. Writing f = (f1, . . . , f2n), we now prove that degµ(fj) = ✓µj for each
j 2 {1, . . . , 2n}, and compute the µ-homogeneous part gj of fj of degree ✓µj :

(1) For each j 2 {1, . . . , n}, we have degµ(xn+j) = vj and degµ(
Qn

i=1
x

aj,i

i ) =Pn
i=1

✓aj,ivi = ✓2vj , so degµ(fj) = ✓2vj = ✓µj and gj =
Qn

i=1
x

aj,i

i .
(2) For each j 2 {n + 1, . . . , 2n} we have degµ(fj) = degµ(xj�n) = ✓vj�n = ✓µj

and gj = fj .
This implies that degµ(f) = ✓. As the endomorphism g = (g1, . . . , g2n) 2 End(A2n)
is monomial, it satisfies gr 6= 0 for each r � 1 (and moreover each component of gr

is not zero). This implies that f is µ-algebraically stable and that �(f) = ✓ (see
Proposition A). ⇤
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Proposition 4.4.2. Let � 2 R be a weak Perron number that is a quadratic integer,
and let x2 � ax � b be its minimal polynomial, with a, b 2 Z. We then have a � 0
and the following hold:

(1) If b � 0, then � is the dynamical degree of the shift-like automorphism

(x3 + xa
1
xb

2
, x1, x2) 2 Aut(A3) .

(2) If b < 0, then � is not the dynamical degree of an affine-triangular auto-
morphism of A3, but is the dynamical degree of a permutation-triangular
automorphism of A4 of the form (⇤) in Lemma 4.4.1.

Proof. Let us write x2�ax�b = (x��)(x�µ) for some µ 2 R. Note that µ 6= �, as
otherwise �2 2 Z and 2� 2 Z would imply that � 2 Z, impossible as � is a quadratic
integer. Since � is a weak-Perron number, we have � � 1 and ��  µ < �. In
particular, a = � + µ � 0. As x2 � ax � b is irreducible and has a real root by
assumption, the discriminant is a2 + 4b � 1.

If b � 0, Assertion (1) follows from Lemma 4.3.5 (and also from Proposi-
tion 4.2.3).

Suppose now that b < 0. As �µ = �b, this implies that µ > 0, so � is not
a Handelman number (Lemma 3.2.7) and thus is not the dynamical degree of an
affine-triangular automorphism of A3 (Proposition D). It is now enough to show
that

f = (x3 + x↵
1
x2, x4 + x↵(a�↵)+b

1
xa�↵

2
, x1, x2) 2 Aut(A4)

is a permutation-triangular automorphism with dynamical degree �(f) = �.
Firstly, we prove that f is a permutation-triangular automorphism of A4 by

showing that the exponents are non-negative. As a � 0, the numbers ↵ = ba/2c
and a � ↵ are non-negative integers, so we only need to see that ↵(a � ↵) + b � 0.
Since a2+4b � 1 we get in case a is even, that ↵(a�↵)+b = ↵2+b = (a2+4b)/4 > 0
and in case a is odd, that ↵ = (a�1)/2, so ↵(a�↵)+b = ((a�1)/2)·((a+1)/2)+b =
(a2 + 4b � 1)/4 � 0.

Secondly, the matrix

A =

✓
↵ 1

↵(a � ↵) + b a � ↵

◆
2 Mat2(N)

has characteristic polynomial x2 � ax � b and thus spectral radius ⇢(A) = �. As
x2 � ax � b is irreducible by assumption, it follows that A is an irreducible matrix.
Moreover, as b  �1 and as x2 � ax � b has a real root, we get a 6= 0, hence a � 1.
Since a2 + 4b � 1, we get � = (a +

p
a2 + 4b)/2 � 1. Now, if � = 1, then 1  a  2

and thus a2 + 4b  0 (as b  �1), contradiction. Thus � > 1 and we can apply
Lemma 4.4.1 and get that the dynamical degree of f is �(f) = ⇢(A) = �. ⇤

Proof of Theorem 2. Let � � 1 be a weak-Perron number. By Theorem 3.2.4, �
is the spectral radius of an irreducible square matrix with non-negative integral
coefficients. Lemma 4.4.1 then shows that � is the dynamical degree of an affine-
triangular automorphism of An for some integer n. We denote by n0 the least
possible such n.

If � = 1, then n0 = 1, by taking the identity.
If � > 1 is an integer, then n0 � 2, as every automorphism of A1 is affine and

thus has dynamical degree 1. Moreover, n0 = 2 as f = (x�
1

+ x2, x1) has dynamical
degree equal to � (f is µ-algebraic stable for µ = (1, 0) and degµ(f) = �).
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If � is not an integer, then n0 � 3, as the dynamical degree of every automor-
phism of A2 is an integer (Corollary 2.4.3). If � is a quadratic integer, the minimal
polynomial of � is equal to x2 � ax� b with a � 0 and b 2 Z (Proposition 4.4.2). If
the conjugate of � is negative, we have b > 0, so n0 = 3 by Proposition 4.4.2(1). If
the conjugate of � is positive, we have b < 0, so n0 = 4 by Proposition 4.4.2(2). ⇤

To complement Theorem 2, we now give a family of examples of quadratic inte-
gers that do not arise as dynamical degrees of affine-triangular automorphisms of
Aut(A3) but which arise as dynamical degrees of some other automorphisms of A3.

Lemma 4.4.3. For all integers r, s, t � 1, the dynamical degree of the automor-
phism

f = (y + xrzt, z, x + zs(y + xrzt)) 2 Aut(A3)

is the biggest root of x2 � ax + b 2 R[x], with a = r + s + t, b = rs and satisfies
�(f) > s + 1. In particular, if �(f) is not an integer, it is not the dynamical
degree of an affine-triangular automorphism of A3, so f is not conjugate to an
affine-triangular automorphism of A3.

Proof. Let ✓ be the biggest root of P (x) = x2 � ax + b = (x � r)(x � s) � tx 2 R[x]
As P (s + 1) = (s + 1 � r) � t(s + 1) = (s + 1)(1 � t) � r < 0, we find that ✓ > s + 1.
In particular, µ = (✓ � s, 1, ✓) 2 R�1.

We compute degµ(xrzs+t) = r(✓ � s) + (s + t)✓ = (r + s + t)✓ � rs = ✓2 and
degµ(xrzt) = ✓2 � s✓ = ✓(✓ � s). This gives degµ(f) = ✓, with µ-leading part
g = (xrzt, z, xrzs+t). Hence, �(f) = ✓ by Proposition A.

If ✓ is not an integer, the other root of P (x) is positive, so ✓ is not the dynamical
degree of an affine-triangular automorphism of A3 (Theorem 2). This implies that
f is not conjugate to an affine-triangular automorphism of A3. ⇤
Example 4.4.4. We now apply Lemma 4.4.3 to small values of r, s, t, and find some
examples of automorphisms f = (y + xrzt, z, x + zs(y + xrzt)) 2 Aut(A3) whose
dynamical degree �(f) is not the one of an affine-triangular automorphism of A3.
We give below all examples of �(f)  5 given by Lemma 4.4.3. Exchanging r and
s does not change the value of �(f), so we will assume that r  s  3.

r s t f �(f)
1 1 1 (y + xz, z, x + z(y + xz)) (3 +

p
5)/2

1 1 2 (y + xz2, z, x + z(y + xz2)) 2 +
p

3
1 1 3 (y + xz3, z, x + z(y + xz3)) (5 +

p
21)/2

1 2 1 (y + xz, z, x + z2(y + xz)) 2 +
p

2
1 2 2 (y + xz2, z, x + z2(y + xz2)) (5 +

p
17)/2

1 3 1 (y + xz, z, x + z3(y + xz)) (5 +
p

13)/2
2 3 1 (y + x2z, z, x + z3(y + x2z)) 3 +

p
3

Remark 4.4.5. Let � be a weak-Perron number that is a quadratic integer.
By Theorem 2, � is the dynamical degree of an affine-triangular automorphism

of A4 but is the dynamical degree of an affine-triangular automorphism of A3 if and
only if its conjugate �0 is negative. If �0 > 0, then one can ask if � is the dynamical
degree of an automorphism of A3 (which would then necessarily be not conjugate
to an affine-triangular automorphism). Writing x2 �ax+b the minimal polynomial
of �, with a, b positive integers, Lemma 4.4.3 shows that this is indeed true if one
can write b = rs with r, s � 1 and a > r + s. In particular, this holds if b  4,
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as a2 � 4b > 0, so a > 2
p

b. If b = 5, then a � 5 (as a > 2
p

b), and Lemma 4.4.3
applies as soon as a � 6. The case where a = b = 5 corresponds to � = (5+

p
5)/2,

which is then the “simplest” weak-Perron quadratic integer that is not covered by
Theorem 2 or Lemma 4.4.3.

According to Remark 4.4.5, it seems natural to ask if every quadric weak-Perron
number is the dynamical degree of an automorphism of A3. A first intriguing case
concerns the following question, which was in fact already asked to us by Jean-
Philippe Furter and Pierre-Marie Poloni:

Question 4.4.6. Is (5 +
p

5)/2 the dynamical degree of an automorphism of A3?
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AUTOMORPHISMS OF THE AFFINE 3-SPACE OF DEGREE 3

JÉRÉMY BLANC AND IMMANUEL VAN SANTEN

Abstract. In this article we give two explicit families of automorphisms of
degree  3 of the affine 3-space A3 such that each automorphism of degree
 3 of A3 is a member of one of these families up to composition of affine
automorphisms at the source and target; this shows in particular that all of
them are tame. As an application, we give the list of all dynamical degrees of
automorphisms of degree  3 of A3; this is a set of 3 integers and 9 quadratic
integers. Moreover, we also describe up to compositions with affine automor-
phisms for n � 1 all morphisms A3

! An of degree  3 with the property that
the preimage of every affine hyperplane in An is isomorphic to A2.
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1. Introduction

1.1. The results. In this text, we fix an algebraically closed field k of any charac-
teristic. We denote by An or sometimes An

k the affine n-space Spec(k[x1, . . . , xn])
over k for a specified choice of coordinates x1, . . . , xn. Every morphism f : An !
Am is given by

An f�! Am

(x1, . . . , xm) 7�! (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

for polynomials f1, . . . , fm 2 k[x1, . . . , xn]. If n = 3, we often use x, y, z instead of
x1, x2, x3 as coordinates. For simplicity we denote the above morphism sometimes
by f = (f1, . . . , fm). For a morphism f = (f1, . . . , fn) : An ! Am we denote
by deg(f) its degree which is by definition equal to the maximum of the degrees
deg(f1), . . . , deg(fn).

Let Autk(An) be the group of all automorphisms of An over k. In the last
decades, there has been done a lot of research on this group Autk(An), see e.g.
the survey [vdE00]. There are two prominent subgroups of Autk(An), namely the
group of affine automorphisms

A↵k(An) =

⇢
(f1, . . . , fn) 2 Autk(An)

��� fi 2 k[x1, . . . , xn] and deg(fi) = 1
for all i = 1, . . . , n

�

and the group of triangular automorphisms

Triangk(An) =

⇢
(f1, . . . , fn) 2 Autk(An)

��� fi 2 k[xi, . . . , xn]
for all i = 1, . . . , n

�
.

The subgroup generated by A↵k(An) and Triangk(An) inside Autk(An) is called
the group of tame automorphisms and we denote it by Tamek(An). In case n = 1,
all automorphisms of A1 are tame (in fact they are affine) and for n = 2 it is proven
by Jung and van der Kulk [Jun42, vdK53] that all automorphisms of A2 are tame.
Since a long time it was conjectured that the famous Nagata-automorphism

(x � 2y(zx + y2) � z(zx + y2)2, y + z(zx + y2), z) 2 Autk(A3)

is non-tame, until Shestakov and Umirbaev gave fifteen years ago an affirmative
answer if char(k) = 0, see [SU04]. It is still an open problem whether Tamek(An) 6=
Autk(An) for n � 4 and when char(k) 6= 0 also for n = 3.

It is conjectured by Rusek [Rus88] that all automorphisms of An of degree 2 are
tame. If n = 3 and k = C, Fornaes and Wu [FsW98] classified all automorphisms
of A3

C of degree 2 up to conjugation by affine automorphisms and it turned out that
all of them are triangular up to composition of affine automorphisms at the source
and target. For n = 4 and k = R, Meisters and Olech [MO91] and for n = 5 and
k = C, Sun [Sun14] gave affirmative answers to Rusek’s conjecture.

Motivated by these investigations of the tame automorphisms in Autk(An), we
study in this paper automorphisms of A3 of degree 3. For this let us introduce
the following equivalence relation: f, g 2 Autk(An) are equivalent if there exist
↵,� 2 A↵k(An) such that f = ↵ � g � �. The main theorem of this article is the
following description of degree 3 automorphisms of A3:

Theorem 1 (see Theorem 3). Each automorphism of A3 of degree  3 is either
equivalent to a triangular automorphism or to an automorphism of the form

(⇤) (x + yz + za(x, z), y + a(x, z) + r(z), z) 2 Autk(A3)
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where a 2 k[x, z] \ k[z] is homogeneous of degree 2 and r 2 k[z] is of degree  3.

In fact we prove that none of the automorphisms of (⇤) is equivalent to a trian-
gular automorphism, see Proposition 3.9.4.

Theorem 1 implies in particular that all automorphisms of degree  3 of A3 are
tame, see Corollary 3.9.5.

As an other application of Theorem 1 we compute all dynamical degrees of au-
tomorphisms of degree  3. Recall, that the dynamical degree of an automorphism
f 2 Aut(An) is defined by

�(f) = lim
r!1

deg(fr)
1
r 2 R�1,

satisfies 1  �(f)  deg(f) and is invariant under conjugation (in Aut(An) but
also in the bigger group Bir(An) of birational transformations of An). It gives
information about the iteration of the automorphism f . The dynamical degree of
an automorphism of A2 is always an integer, and all possible integers are possible,
by simply taking (x, y) 7! (y, x + yd), for each d � 1. The set of dynamical
degrees of automorphisms of A3 is still quite mysterious. In 2001, K. Maegawa
proved that the set of dynamical degrees of all automorphisms of A3

C of degree 2 is
equal to {1,

p
2, (1+

p
5)/2, 2} [Mae01, Theorem 3.1]. This also holds for each field

(Theorem 2 below). Recently, we proved that for each d � 1 and each ground field
k, the set of all dynamical degrees of automorphisms of A3

k
of degree  d that are

equivalent to a triangular automorphism is
(

a +
p

a2 + 4bc

2

��� (a, b, c) 2 N3, a + b  d, c  d

)
\ {0} ,

see [BvS19a, Theorem 1], reproduced below as Theorem 4.1.1. Using Theorem 1,
we prove the following result:

Theorem 2. For each d � 1 and each field k, let us denote by ⇤d,k ⇢ R the set of
dynamical degrees of all automorphisms of A3

k
of degree d. We then have

⇤1,k = {1}
⇤2,k = {1,

p
2, (1 +

p
5)/2, 2}

⇤3,k = {1,
p

2, 1+
p

5

2
,

p
3, 2, 1+

p
13

2
, 1 +

p
2,

p
6, 1+

p
17

2
, 3+

p
5

2
, 1 +

p
3, 3} .

Note that the automorphisms in (⇤) in Theorem 1 all fix a linear projection
A3 ! A1 and thus the dynamical degree of these automorphisms are integers, see
e.g. [BvS19a, Corollary 2.4.3]. Thus one has to permute the coordinate functions
of these automorphisms in order to produce interesting dynamical degrees. The
most interesting number in Theorem 2 is (3 +

p
5)/2. It is the dynamical degree

of f = (y + xz, z, x + z(y + xz)) 2 Aut(A3

k
), for each field k. It follows from

[BvS19a, Theorem 1] that �(f) = (3 +
p

5)/2 is not the dynamical degree of any
automorphism of A3 that is equivalent (over k or over its algebraic closure k = k)
to a triangular automorphism, of any degree, see [BvS19a, Example 4.4.6]. The
fact that all dynamical degrees above arise essentially follows from [BvS19a], the
main contribution of this text to Theorem 2 is to show that we cannot get more
dynamical degrees. Theorem 2 implies that every dynamical degree of an element
of Aut(A3) of degree 2 is also the dynamical degree of an element of Aut(A3) of
degree 3, contrary to the case of dimension 2 (an element of Aut(A2) of degree 3
has dynamical degree equal to either 1 or 3).



4 JÉRÉMY BLANC AND IMMANUEL VAN SANTEN

1.2. Outline of the article. In order to classify all automorphisms of degree  3
up to equivalence we study first degree 3 polynomials in k[x, y, z] that define the
affine plane A2 in A3 in Section 2. The closure in P3 of such a hypersurface in
A3 is singular, so the polynomial has the form xp + q for some p, q 2 k[y, z] up to
an affine automorphism, see Corollary 2.1.2. These polynomials were studied by
Sathaye [Sat76] for fields with char(k) = 0 and by Russell [Rus76] for all fields and
it turns out that all of them are variables of k[x, y, z], i.e. there are polynomials
g, h 2 k[x, y, z] with k[xp + q, g, h] = k[x, y, z], see also Propositions 2.2.1, 2.2.2
and Corollary 2.2.3 for more detailed informations. We then give a description
of all such hypersurfaces up to affine automorphisms (Proposition 2.3.5). As the
polynomials of degree 3 of the form xp + q correspond to cubic hypersurfaces of
A3 whose closures in P3 are singular at [0 : 1 : 0 : 0] (Lemma 2.1.1), it is also
useful to classify them up to affine automorphisms that fix this point; this is done
in Proposition 2.3.4, where a bigger list is given. Corollary 2.3.7 then corresponds
to the case where we focus on a line at infinity instead of a point.

Then we investigate these hypersurfaces in families in Section 3. The best suited
notion for us is the following: a morphism f : Ad ! An is called an affine linear
system of affine spaces if the preimage of each affine hyperplane of An is isomorphic
to Ad�1, see Definition 3.2.1. In case d = 3, we say that f is in standard form if
f = (xp1 + q1, . . . , xpn + qn) for some polynomials pi, qi 2 k[y, z]. An affine linear
system of affine spaces g : A3 ! An of degree 3 is equivalent to one in standard
form if and only if for general affine hyperplanes H ⇢ A3 the closures of g�1(H)
in P3 have a common singularity, see Lemma 2.1.1. Two affine linear systems of
affine spaces f, g : Ad ! An are called equivalent if there are ↵ 2 A↵k(An) and
� 2 A↵k(A3) such that f = ↵ � g � �. The key point in the proof of Theorems 1
and 3 is to show that each affine linear system of affine spaces A3 ! A3 of degree
 3 is equivalent to one in standard form, see Proposition 3.6.1.

In Section 3.9, we give a description of all affine linear systems of affine spaces
A3 ! An of degree  3 which implies Theorem 1. We call a morphism f : Y ! X
an A1-fibration if each closed fiber is (schematically) isomorphic to A1 and we call
f a trivial A1-fibration if there exists an isomorphism ' : X ⇥ A1 ! Y such that
the composition f � ' : X ⇥ A1 ! X is the projection onto the first factor. Note
that the above definition of an A1-fibration differs from the notions of A1-fibrations
in [GMM12] and [KM78]. In fact we show:
Theorem 3. Every affine linear system of affine spaces A3 ! An of degree  3
is equivalent to an element of the following eleven families. Case I) corresponds to
n = 1, Cases IIa) and IIb) correspond to n = 2 and Case III) corresponds to n = 3.
I) variables of k[x, y, z]:

(1) x + r2(y, z) + r3(y, z) where ri 2 k[y, z] is homogeneous of degree i;
(2) xy + yr2(y, z) + z where r2 2 k[y, z] \ k[y] is homogeneous of degree 2;
(3) xy2 + y(z2 + az + b) + z where a, b 2 k.

IIa) trivial A1-fibrations:
(4) (x + p2(y, z) + p3(y, z), y + q2z2 + q3z3) where pi 2 k[y, z] is homogeneous of

degree i and q2, q3 2 k;
(5) (yz + za2(x, z) + x, y + a2(x, z) + r1z + r2z2 + r3z3) where a2 2 k[x, z] \ k[z]

is homogeneous of degree 2 and ri 2 k;
(6) (yz + za2(x, z) + x, z) where a2 2 k[x, z] \ k[z] is homogeneous of degree 2;
(7) (xy2 + y(z2 + az + b) + z, y) where a, b 2 k.
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IIb) non-trivial A1-fibrations:
(8) (x + z2 + y3, y + x2) where char(k) = 2;
(9) (x + z2 + y3, z + x3) where char(k) = 3.

III) automorphisms of A3:
(10) (x+ p2(y, z)+ p3(y, z), y + q2z2 + q3z3, z) where pi 2 k[y, z] is homogeneous

of degree i and q2, q3 2 k;
(11) (yz + za2(x, z) + x, y + a2(x, z) + r2z2 + r3z3, z) where a2 2 k[x, z] \ k[z] is

homogeneous of degree 2 and r2, r3 2 k.

The proof of Theorem 3 is given towards the end of Section 3.9. All the eleven
cases in our list are in fact pairwise non-equivalent, see Proposition 3.9.4. For
n = 1 and k = C, Ohta gave in [Oht99, Theorem 1] a list of all possibilities for
affine linear systems of affine spaces A3 ! A1 of degree  3, together with a
description of the curve at infinity. This corresponds then to a refined list of the
items (1)-(2)-(3) of Theorem 3. Note that the fact that each affine linear system
A3 ! A1 of affine spaces of degree  3 is equivalent to one of the items (1)-(2)-(3)
is proven in Proposition 2.3.5 below, and is thus the very first part of our study.
Moreover, Ohta gave in [Oht01, Theorem 2] and [Oht09, Theorem 2] lists of all
possible affine linear systems A3 ! A1 of affine spaces of degree 4 in case the
closure of the corresponding hypersurface in P3 is normal. In particular, he proves
that all of them are variables of A3.

Let us give the connection of our results to the Jacobian conjecture. Recall
that an endomorphism f 2 Endk(An) has a constant non-zero Jacobian deter-
minant det(Jac(f)) 2 k⇤ if and only if for all affine hyperplanes H ⇢ An the
preimage f�1(H) is a smooth hypersurface of An, see Lemma 3.2.6. Thus for all
f 2 Endk(An) we have the following implications

f 2 Autk(An) =) f is an affine linear system
of affine spaces =) det(Jac(f)) 2 k⇤ .

For fields with char(k) = 0, the Jacobian conjecture asserts that the implica-
tions are equivalences. For n = 3, Vistoli proved the Jacobian conjecture in case
f 2 Endk(A3) has degree 3, see [Vis99]. For fields with char(k) = p > 0, the last im-
plication is certainly not an equivalence, take e.g. (x1+xp

1
, x2, . . . , xn) 2 Endk(An).

However, Theorem 3 shows that in case n = 3 and f 2 Endk(A3) is of degree  3,
the first implication is an equivalence.

It is also worth to mention that in case n = 2, there are affine linear systems of
affine spaces A3 ! An of degree  3 that are A3�n-fibrations which are not trivial
A3�n-fibrations, contrary to the cases n = 1 and n = 3. In fact, an affine linear
system of affine spaces A3 ! An of degree  3 is a trivial A3�n-fibration if and only
if it is equivalent to a linear system in standard form, see Corollary 3.9.2. Note
that there are even non-trivial A1-fibrations A2 ! A1 in positive characteristic,
see [KM78, Example on p.670].

In the last Section, we then compute the dynamical degree of all automorphisms
of A3 of degree  3 by using the technique introduced in [BvS19a] and we prove
Theorem 2 at the end of this section.

Acknowledgements. The authors would like to thank Pierre-Marie Poloni for
many fruitful discussions and the indication of the references [Oht99, Oht01, Oht09].
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Moreover, we would like to thank the anonymous referee for the very helpful com-
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gives (3))(1).

1.3. Conventions. All schemes, varieties, rational maps and morphisms between
them are defined over k. Points of varieties refer to closed points of the associated
scheme. If f : X ! Y is a morphism of varieties, then the fibre over a point y 2 Y
refers to the schematic fibre of f over y, i.e. f�1(y) = Spec((y)) ⇥Y X where
Spec((y)) ! Y corresponds to the embedding of the point y in Y . More generally,
the preimage of a closed subvariety Y 0 of Y corresponds to the schematic preimage
of Y 0 under f , i.e. f�1(Y 0) = Y 0 ⇥Y X. If we speak of an n-dimensional scheme X,
then we mean that every irreducible component of X has dimension n.

We denote for each d � 0 by k[x1, . . . , xn]d the vector space of homogeneous
polynomials of degree d in the variables x1, . . . , xn. By convention, the zero poly-
nomial will be assumed to be homogeneous of any degree d � 0 (even if it has
degree �1).

2. Hypersurfaces of A3
that are isomorphic to A2

2.1. Existence of singularities at infinity. In the sequel, we always see A3 as
an open subvariety of P3 via the open embedding A3 ,! P3, (x, y, z) 7! [1 : x : y : z]
and denote by [w : x : y : z] the homogeneous coordiantes of P3.

Recall that the multiplicity m of a hypersurface Y ✓ Pn at a given point p 2 Y
is the multiplicity of the equation at this point, that can be computed locally, or is
equivalently the multiplicity at p of the polynomial obtained by restriction of Y to
a general line through p.

Lemma 2.1.1. Let F 2 k[w, x, y, z] be a homogeneous polynomial of degree d, let
f = F (1, x, y, z) 2 k[x, y, z] and let X = Spec(k[x, y, z]/(f)) ⇢ A3 be the corre-
sponding hypersurface. The following conditions are equivalent:

(1) f = xp + q for some polynomials p, q 2 k[y, z].
(2) The closure X in P3 has multiplicity � d � 1 at the point [0 : 1 : 0 : 0].

Proof. We write f =
Pd

i=0
xd�ifi(y, z) where fi 2 k[y, z] is of degree  i for

i = 0, . . . , d. For each i, we denote by Fi 2 k[w, y, z] the homogeneous polynomial
of degree i such that Fi(1, y, z) = fi. This implies that F =

P
i=0

xd�iFi. Note
that deg(F ) = d and that X is given by F in P3. Note that the multiplicity of
X, or equivalently of F , at the point [0 : 1 : 0 : 0] is the smallest integer m � 0
such that Fm is not zero. Hence, this multiplicity m satisfies m � d � 1 if and only
F = xFd�1 + Fd, which corresponds to ask that f = xfd�1 + fd. ⇤
Corollary 2.1.2. Let X ⇢ A3 be a hypersurface of degree d  3 with X ' A2.

(1) If d = 3, then the closure X in P3 is singular.
(2) Up to an affine coordinate change, X is given by xp + q = 0 for polynomials

p, q 2 k[y, z] with max(deg(p) + 1, deg(q)) = d.

Proof. (1): If X is a smooth cubic hypersurface of P3, then Pic(X) ' Z7, see
[Har77, Chp. V, Proposition 4.8(a)]. However, since X \X has at most 3 irreducible
components Pic(X) is not trivial, so X cannot be isomorphic to A2.

(2): There exists a point in X ⇢ P3 having multiplicity � d � 1: this is clear
if d  2 and follows from (1) if d = 3. Applying an affine automorphism of A3,
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we can assume that this point is [0 : 1 : 0 : 0], and the result then follows from
Lemma 2.1.1. ⇤
Remark 2.1.3. Corollary 2.1.2(1) is also true for d � 4: If X̄ is smooth, then it is
a K3-surface in case d = 4 and of general type in case d > 4. In both situations X
is not rational.

Corollary 2.1.2(2) is false for d � 4: Consider the hypersurface X in A3 which is
given by f := z + (x + yz)2 · yd�4 = 0. Note that X is isomorphic to A2, since f is
the first component of the composition '2 � '1 of the automorphisms

A3
'1�! A3

(x, y, z) 7�! (x + yz, y, z)
and A3

'2�! A3

(x, y, z) 7�! (x, y, z + x2yd�4) .

Note that the closure X in P3 is singular only along the lines w = y = 0 and
w = z = 0 and that the multiplicity at each of these points is  d�2. In particular,
by Lemma 2.1.1 there is no affine coordinate change of A3 such that X is given by
xp + q = 0 for p, q 2 k[y, z].

2.2. Hypersurfaces of A3 of degree 1 in one variable. Motivated by Corol-
lary 2.1.2, this section is devoted to the study of hypersurfaces X ⇢ A3 given
by

xp(y, z) + q(y, z) = 0

for some polynomials p, q 2 k[y, z] where p 6= 0. We start with the following result
which is due to Russell [Rus76, Theorem 2.3]

Proposition 2.2.1. Let p, q 2 k[y, z] be such that

X = Spec(k[x, y, z]/(xp + q))

is isomorphic to A2 and such that p 62 k. Then there is an automorphism of k[y, z]
that sends p onto an element of k[y]. In particular, the irreducible components of
the scheme Spec(k[y, z]/(p)) are disjoint and isomorphic to A1.

By Proposition 2.2.1 we are led to study the case of hypersurfaces in A3 of the
form xp(y) + q(y, z). This is done in the next result.

Proposition 2.2.2. Let p 2 k[y] \ k, q 2 k[y, z] and consider the polynomial

f = xp(y) + q(y, z) 2 k[x, y, z] .

Write p̃ =
Qr

i=1
(y � ai) where a1, . . . , ar 2 k are the r distinct roots of p. Then the

following statements are equivalent:
(1) X = Spec(k[x, y, z]/(f)) is isomorphic to A2;
(2) There exists ' 2 Autk(k[x, y, z]) such that '(x) = f and '(y) = y;
(3) There exist a 2 k[y, z], r0, r1 2 k[y] with deg(ri) < r for i = 0, 1 such that

r1(ai) 6= 0 for each i 2 {1, . . . , r} and

q(y, z) = ap̃ + zr1 + r0 .

Proof. (1) ) (2): This is done in [Rus76, Theorem 2.3], see also [Sat76] for the
case char(k) = 0.

(2) ) (1): The automorphism ' corresponds to an automorphism of A3 that
sends X onto Spec(k[x, y, z]/(x)) ' A2.

(1) ) (3): We consider the morphism ⇡ : X ! A1 given by (x, y, z) 7! y. Then,
outside of {a1, . . . , ar}, ⇡ is a trivial A1-bundle. If X is isomorphic to A2, then
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each fibre of ⇡ needs to be isomorphic to A1 (this follows for instance from [Gan11,
Theorem 4.12]). We write q(y, z) =

Pd
j=0

zj(qj p̃ + rj), with qj , rj 2 k[y] and
deg(rj) < r = deg(p̃) for each j.

For each i 2 {1, . . . , r}, the fibre of ⇡ over ai is Spec(k[x, z]/(q(ai, z))), so q(ai, z)
is a polynomial of degree 1 in z (as each fibre of ⇡ is isomorphic to A1). This implies
that rj(ai) = 0 for each j � 2 and that r1(ai) 6= 0. As deg(rj) < r, we obtain that
rj = 0 for j � 2. This gives (3) with a =

Pd
j=0

zjqj .
(3) ) (1): Let R = k[x, y, z]/(f) be the ring of regular functions on X. For

each i 2 {1, . . . , r}, Assertion (3) gives f(x, ai, z) = q(ai, z) = zr1(ai) + r0(ai), so
R/(y � ai) ' k[A1], which implies that (y � ai) is a prime ideal of R and that
⇡�1(ai) = X \ {y = ai} is isomorphic to A1. Hence, every (closed) fibre of ⇡ is
isomorphic to A1.

We consider h0 = z and construct inductively a finite sequence h0, h1, . . . , hN1

of regular functions on X such that (⇡, hi) : X ! A2 restricts to an isomorphism
⇡�1(U)

'�! U ⇥ A1, where U = A1 \ {a1, . . . , ar}.
If hi is constant on ⇡�1(a1), then there is a ci 2 k such that hi � ci is a multiple

of y�a1. We then choose hi+1 2 R such that hi�ci = (y�a1) ·hi+1. This sequence
ends up at some point, i.e. that there exists N1 � 0 such that hN1 is not constant
on ⇡�1(a1). Indeed, this is a direct application of [KW85, Lemma 1.1] where we
use that R is a Noetherian integral domain.

Now, we start with hN1 2 R. With the same argument as above, there exists
now hN2 2 R that is not constant on ⇡�1(a1), not constant on ⇡�1(a2) and (⇡, hN2)

restricts to an isomorphism ⇡�1(U)
'�! U ⇥ A1. Proceeding the same way with

i = 3, . . . , r we find h 2 R that is not constant on each ⇡�1(aj) for j = 1, . . . , r and
such that (⇡, h) restricts to an isomorphism ⇡�1(U)

'�! U ⇥ A1.
We observe that (⇡, h) : X ! A2 is birational, quasi-finite and surjective. By

Zariski’s Main Theorem [Gro61, Corollaire (4.4.9)] it is thus an isomorphism. ⇤

Remark that the implication (3) ) (1) of Proposition 2.2.2 also follows from [BvS19b,
Lemma 3.10] (the argument is essentially due to Asanuma [Asa87, Corollary 3.2]),
but the argument given above is much simpler and goes back to [KW85].

Corollary 2.2.3. Let f 2 k[x, y, z] be a polynomial of degree  3. Then f is a
variable of k[x, y, z] if and only if Spec(k[x, y, z]/(f)) ' A2. In particular, if this
holds, then Spec(k[x, y, z]/(f � �)) ' A2 for each � 2 k.

Proof. If f is a variable of k[x, y, z], then Spec(k[x, y, z]/(f ��)) ' A2 for each � 2
k, and thus in particular for � = 0. Conversely, we suppose that Spec(k[x, y, z]/(f))
is isomorphic to A2, and prove that f is a variable.

After an affine coordinate change we may assume f = xp(y) + q(y, z) with
p 2 k[y] \ {0} and q 2 k[y, z] (Proposition 2.3.5). If p 2 k⇤, then f is a variable
as (f, y, z) 2 Aut(A3). If p 2 k[y] \ k, then Proposition 2.2.2(2) implies that f is a
variable. ⇤

2.3. Hypersurfaces of A3 of small degree that are isomorphic to A2.

Lemma 2.3.1. Let p, q 2 k[t] be two polynomials such that

k[t] = k[p, q] and deg(p) < deg(q).

Then, either 1 2 {deg(p), deg(q)} or 2  deg(p)  deg(q) � 2.
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Proof. Suppose first that deg(p)  0, which is equivalent to p 2 k. We obtain
k[t] = k[q], which implies that deg(q) = 1. Indeed, deg(q) � 1 since q 62 k and
deg(q) > 1 is impossible, as the degree of any element of k[q] is a multiple of deg(q).

If deg(p) = 1, the result holds, so we may assume that deg(p) � 2. It remains to
see that deg(p) < deg(q) � 1. We then consider the closed embedding f : A1 ,! A2

given by t 7! (p(t), q(t)), which extends to a morphism f̂ : P1 ! P2 given by
[t : u] 7! [ud : P (t, u) : Q(t, u)], where d = deg(q) and where P (t, u) = ud · p( t

u ),
Q(t, u) = ud · q( t

u ) are homogeneous polynomials of degree d. The image � = f̂(P1)

is a closed curve of P2 that is rational and smooth outside of [0 : 0 : 1] = f̂([1 : 0]).
The degree of � is the intersection of � with a general line, which is then equal
to d = deg(q) � 3. The multiplicity m of � at the point [0 : 0 : 1] satisfies then
m > 1, as a smooth curve of degree d � 3 has genus (d�1)(d�2)

2
� 1. It remains to

observe that m = deg(q) � deg(p). This can be checked in coordinates, or simply
seen geometrically: a general line of P2 passing through [0 : 0 : 1] intersects the
curve � \ {[0 : 0 : 1]} in deg(q) � m points and these points correspond to the roots
of p � � for some general �. ⇤

Corollary 2.3.2. Let C ⇢ A2 = Spec(k[x, y]) be a closed curve isomorphic to A1,
of degree  3. Then, up to applying an element of A↵(A2), the curve C is given by
x + p(y) = 0 for some p 2 k[y] of degree  3 with no constant or linear term.

Proof. Let p, q 2 k[t] be such that t 7! (p(t), q(t)) is an isomorphism A1 ! C
defined over k. The polynomials p, q satisfy then k[p, q] = k[t]. After applying an
affine automorphism of A2, we may assume that deg(p) < deg(q). By Lemma 2.3.1,
we obtain 1 2 {deg(p), deg(q)}.

We first assume that deg(q) = 1, which implies that deg(p) < 1, so p 2 k. After
applying an affine automorphism of A2, we get p = 0 and q = t, so the curve C is
given by x = 0.

We then assume that deg(p) = 1. After applying an automorphism of A1, we
may assume that p = t. Hence, C is given by y � q(x) = 0. After applying
the automorphism (x, y) 7! (y, x), the equation is x � q(y) = 0. By using an
automorphism of the form (x, y) 7! (x+ay+b, y) for some a, b 2 k, we may assume
that q has no constant or linear term. ⇤

Lemma 2.3.3. Let f 2 k[x, y, z] be a polynomial of the form

f = xp(y, z) + q(y, z) ,

for some p, q 2 k[y, z] with p 6= 0 and deg(p)  3. If the surface Spec(k[x, y, z]/(f))
is isomorphic to A2, then after applying an affine automorphism on y and z, one
of the following cases hold:

(1) p 2 k[y] has degree  3;
(2) p = y + r(z) for some r 2 k[z] of degree 2 or 3.

Proof. If p 2 k, then we are in case (1). We may thus assume that p 62 k. By
Proposition 2.2.1, the irreducible components of Fp = Spec(k[y, z]/(p)) are disjoint
and isomorphic to A1.

We use the embedding A2 ,! P2, (y, z) 7! [1 : y : z] and denote by L1 = P2 \A2

the line at infinity.
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If the irreducible components of Fp are lines, then their closures in P2 have to
pass through the same point in L1. After applying an affine automorphism, we
may assume that the point is [0 : 0 : 1], which implies that p 2 k[y].

It remains to study the case where at least one irreducible component has degree
� 2. This component corresponds to an irreducible curve C ⇢ A2 of degree d 2
{2, 3} whose closure C in P2 is again an irreducible curve of degree d.

By Corollary 2.3.2, we may apply an affine automorphism and assume that C
is the zero locus of y + r(z) for some polynomial r of degree d. If Fp is equal to
C, then p = y + r(z) (up to some constant which can be removed by an affine
automorphism). Otherwise, as Fp has degree  3, we get that Fp is reduced, and
it is the disjoint union of the degree 2 curve C with some line. But there is no such
line in A2: by Bézout’s theorem, the closure of the line in P2 would be tangent to
the conic C at the point at infinity of C, impossible as already L1 is tangent to C
at that point. ⇤

Proposition 2.3.4. Let f 2 k[x, y, z] be a polynomial of degree  3 of the form

f = xp(y, z) + q(y, z) ,

for some p, q 2 k[y, z]. If the surface Spec(k[x, y, z]/(f)) is isomorphic to A2, then
after applying an affine automorphism that fixes the point [0 : 1 : 0 : 0], one of the
following cases occurs:

(1) f = y + s(z) for some polynomial s 2 k[z] of degree  3;
(2) f = x(y + z2) + z;
(3) f = x + r2(y, z) + r3(y, z) for some homogeneous ri 2 k[y, z] of degree i;
(4) f = xy + yr2(y, z)+ z for a homogeneous polynomial r2 2 k[y, z] of degree 2;
(5) f = xy2 + ys(z) + z for a polynomial s 2 k[z] of degree  2;
(6) f = xy(y + 1) + s(y)z + t(y) for some polynomials s, t 2 k[y] of degree  1

with s(0)s(�1) 6= 0.

Proof. If p = 0, then f = q 2 k[y, z], so Spec(k[x, y, z]/(f)) = A1⇥Spec(k[y, z]/(f)),
which implies that Spec(k[y, z]/(f)) ' A1. By Corollary 2.3.2, we may apply an
affine automorphism on y and z in order to be in case (1). We may thus assume in
the sequel that p 6= 0.

According to Lemma 2.3.3, we only need to consider the following two cases:
either p 2 k[y] or p = y + r(z) for some r 2 k[z] of degree 2.

Suppose first that p = y + r(z) for some r 2 k[z] of degree 2. By using the
(non-affine) automorphism (x, y, z) 7! (x, y � r(z), z) of A3, we get

Spec(k[x, y, z]/(f)) ' Spec(k[x, y, z]/(xy + q(y � r(z), z)).

Then, Proposition 2.2.2 shows that q(y�r(z), z) = ay+�z+µ for some a 2 k[y, z],
� 2 k⇤ and µ 2 k. This gives

f = xp + q = (x + s)(y + r) + �z + µ,

where s = a(y + r, z) 2 k[y, z]. As deg(r) = 2, we obtain that deg(s)  1. Hence,
after applying the affine automorphism (x, y, z) 7! (x�s(y, z), y, z), we may assume
that f is equal to x(y + r(z)) + �z + µ. Using the affine automorphism (x, y, z) 7!
(x, y,��1(z � µ)), we obtain x(y + r0(z)) + z for some r0 =

P
2

i=0
µiz2 2 k[z] of

degree 2. After replacing y with y � µ0 � µ1z we get x(y + µ2z2) + z. We then
apply (x, y, z) 7! (µ�1

2
x, µ2y, z) in order to be in case (2).
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It remains to consider the case where p 2 k[y]. We distinguish the different
cases:

If p 2 k⇤, we may assume that p = 1 and after applying (x, y, z) 7! (x � q0 �
q1(y, z)) we are in case (3), where q0, q1 2 k[y, z] are the constant and linear part
of q, respectively.

If p has one single root, we may assume that p = yi for some i 2 {1, 2}. Then,
Proposition 2.2.2 shows that q(y, z) = ay + �z + µ for some a 2 k[y, z], � 2 k⇤ and
µ 2 k. After applying the affine automorphism (x, y, z) 7! (x, y,��1(z � µ)) we
may assume that � = 1 and µ = 0.

If i = 1, then f = xy + yr(y, z) + z for some polynomial r of degree  2. Let
r1, r0 2 k[y, z] be the homogeneous parts of degree 1 and degree 0 of r, respectively.
We may apply the affine automorphism (x, y, z) 7! (x � r1(y, z) � r0, y, z) and thus
we may assume that r is homogeneous of degree 2. Hence, we are in case (4).

If i = 2, then f = xy2 + yr(y, z) + z for some polynomial r of degree  2.
Now, after applying a suitable affine automorphism of the form (x, y, z) 7! (x �
b(y, z), y, z) we may assume that r 2 k[z] and thus we are in case (5).

We then assume that p has two distinct roots. We may assume that p = y(y+1).
Proposition 2.2.2 shows that q(y, z) = ay(y + 1) + sz + t for some a 2 k[y, z] of
degree  1, and some s, t 2 k[y] of degree  1 with s(0) 6= 0, s(�1) 6= 0. After
applying (x, y, z) 7! (x � a(y, z), y, z) we are in case (6). ⇤

Proposition 2.3.5 (Hypersurfaces isomorphic to A2 of degree  3). Let f 2
k[x, y, z] be an irreducible polynomial of degree  3. If the surface Spec(k[x, y, z]/(f))
is isomorphic to A2, then there is ↵ 2 A↵(A3), such that one of the following cases
occur:

A) ↵⇤(f) = x + r2(y, z) + r3(y, z) for some homogeneous ri 2 k[y, z] of degree i;
B) ↵⇤(f) = xy + yr2(y, z) + z for a homogeneous r2 2 k[y, z] \ k[y] of degree 2;
C) ↵⇤(f) = xy2 + y(z2 + az + b) + z for some a, b 2 k.

Moreover, if f 2 k[x, y, z] is one of the polynomials from cases (3)-(6) of Proposi-
tion 2.3.4, then we may in addition assume that ↵⇤(y) 2 k[y].

Proof. By Corollary 2.1.2 we may assume that

f = xp + q

for some p, q 2 k[y, z] with deg(p)  2 and deg(q)  3. We go through the different
cases of Proposition 2.3.4.

(1): We exchange x, y and get f = x+s(z) and then we replace x with x+a+bz
for some a, b 2 k in order to be in case A).

(2): We exchange x, y and get f = y(x + z2) + z = xy + yz2 + z which is a
subcase of B).

(3) and (4) directly give A) and B), except if we are in case (4) with r2 2 k[y],
in which case we exchange x, z in order to be in case A).

(5): We have f = xy2 + ys(z) + z for some polynomial s of degree  2. We
distinguish three cases:

If deg(s)  0, we have s 2 k. After the coordinate change (x, y, z) 7! (x, y, z�sy)
and the exchange of x, z we are in case A).

If deg(s) = 1, we have f = xy2 + y(az + b) + z for some a 2 k⇤ and b 2 k.
We replace x, y, z with a(az + b), (y � 1)/a, x and obtain xy + yr2(y, z) + z where
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r2 = yz +uy + vz +w for some u, v, w 2 k. After replacing x with x�uy � vz �w,
we may assume that r2 is homogeneous and still not in k[y]; this gives B).

If deg(s) = 2 we apply a homothety in x and y, and obtain C).
(6): We exchange x and z and get f = xs(y) + y(y + 1)z + t(y) for some

polynomials s, t 2 k[y] of degree  1 with s(0)s(�1) 6= 0. If s 2 k, then s 6= 0
and after applying (x, y, z) 7! (s�1(x � t(y)), y, z) we are in case A). Otherwise,
we replace s(y) with y and get xy + u(y)z + v(y) where u, v 2 k[y], deg(u) = 2,
deg(v)  1 and u(0) 6= 0. Hence, we get xy + ya(y, z) + �z + µ with a 2 k[y, z],
� 2 k⇤ and µ 2 k. After replacing �z + µ with z we get f = xy + yb(y, z) + z
for some b 2 k[y, z]. When we write b as b0 + b1 + b2, where each bi 2 k[y, z] is
homogeneous of degree i, we may replace x with x � b0 � b1 and obtain B), except
when b2 2 k[y]: then we exchange x and z in order to be in case A).

Moreover, in cases (3)-(6) we see that the constructed affine coordinate change
maps k[y] onto itself. This shows the last statement. ⇤

In the next corollary, we list several properties of the closure in P3 of a hyper-
surface in A3 of degree 3 which is isomorphic to A2.

Corollary 2.3.6. Let f 2 k[x, y, z] be a polynomial of degree 3 such that X =
Spec(k[x, y, z]/(f)) ' A2 and write f = f0 + f1 + f2 + f3 where fi 2 k[x, y, z] is
homogeneous of degree i.

(1) If f3 defines a conic � and a tangent line L in P2, then the singular locus of
X ⇢ P3 equals the point (� \ L)red.

(2) If f3 defines one line (with multiplicity 3) in P2, then f2 is either zero or
defines some lines in P2 and all the lines given by f3 and f2 have a point
in P2 in common. Moreover, the singular locus of X ⇢ P3 is given by
w = f2 = f3 = 0.

(3) If f3 neither defines a conic and a tangent line in P2, nor one line in P2,
then f3 defines several lines in P2 and all these lines pass through the same
point q 2 P2. Moreover, q lies in the singular locus of X ⇢ P3.

Proof. Applying an affine automorphism, we are in one of the three cases A)-B)-C)
of Proposition 2.3.5. The affine automorphism induces an automorphisms of the
plane at infinity and thus an isomorphism between the curve in P2 given by f3 = 0
and respectively r3(y, z) = 0, yr2(y, z) = 0 and y(xy + z2) = 0 where ri 2 k[y, z] is
homogeneous of degree i for i = 1, 2. We thus obtain two cases for f3 = 0, namely
a conic and a tangent line (1), or a set of lines through the same point: (2)-(3).
The distinction between (2) and (3) corresponds to ask whether the lines are all
the same or not. We study the three cases separately.

(1): Here we are in Case C) of Proposition 2.3.5. There exist thus  2 A↵(A3)
and a, b 2 k with f =  ⇤(g) where g = xy2 +y(z2 +az+b)+z. Let G 2 k[w, x, y, z]
be the homogeneous polynomial of degree 3 such that G(1, x, y, z) = g. The gradient
of G

✓
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y(az + 2bw) + 2zw, y2, 2xy + z2 + azw + bw2, y(2z + aw) + w2

�

is equal to zero if and only if w = y = z = 0 and thus [0 : 1 : 0 : 0] is the only
singularity of the hypersurface G = 0 in P3.
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(2): Here we are in Case A) of Proposition 2.3.5. There exist thus  2 A↵(A3)
and a homogeneous r2 2 k[y, z] of degree 2 such that f =  ⇤(h) where h =
x + r2(y, z) + y3. Let ' 2 GL3(k) be the linear part of  . Then f3 = '⇤(y)3 and
f2 = r2('⇤(y),'⇤(z)) + 3�'⇤(y)2 where  ⇤(y) = '⇤(y) + �. Thus f2, f3 2 k[s, t] for
s = '⇤(y), t = '⇤(z) and the first claim follows. Let H 2 k[w, x, y, z] such that
H(1, x, y, z) = h. The gradient of H
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is equal to zero if and only if
⇢

w = y = r2(y, z) = 0 if char(k) 6= 3
w = r2(y, z) = 0 if char(k) = 3

.

Since the intersection of H = 0 with the plane w = 0 at infinity only consists of
the line w = y = 0, the singular locus of H = 0 is equal to w = y = r2(y, z) = 0
(where k has any characteristic). Note that this singular locus is mapped via  �1

onto w = s = r2(s, t) + 3�s2 = 0 and thus the second claim follows.
(3): The first claim directly follows from Proposition 2.3.5 and we may assume

(after an affine automorphism) that f is as in case A) or in case B). In both cases
the common intersection point of the lines defined by f3 is [0 : 1 : 0 : 0] which is a
singularity of X ⇢ P3 by Lemma 2.1.1. ⇤
Corollary 2.3.7. Let f 2 k[x, y, z] be an irreducible polynomial of degree 3 such
that the hypersurface X = VA3(f) is isomorphic to A2 and such that the closure of
X in P3 contains the line w = y = 0. After applying an affine automorphism of A3

that preserves the line w = y = 0, we obtain one of the following cases:
a) f = x + r2(y, z) + ys2(y, z) for some homogeneous r2, s2 2 k[y, z] of degree

2, with s2 6= 0;
b) f = xy + yr2(y, z) + z for a homogeneous r2 2 k[y, z] \ k[y] of degree 2;
c) f = xz+yzr1(y, z)+y+�z for some homogeneous r1 2 k[y, z]\{0} of degree

1 and � 2 k;
d) f = xy2 + y(z2 + az + b) + z for some a, b 2 k;

Proof. There exists an affine automorphism that sends f onto a g 2 k[x, y, z] wich
is one of the polynomials from Proposition 2.3.5. We then look at the image ` of
the line w = y = 0 in the plane at infinity H1 = {[w : x : y : z] 2 P3 | w = 0} and
apply an affine automorphism to send it back to w = y = 0.

In case A), g = x + r2(y, z) + r3(y, z) for some homogeneous ri 2 k[y, z] of
degree i. As deg(g) = 3, we get r3 6= 0, and the line ` is given by p1(y, z) = 0 for
some homogeneous polynomial p1 2 k[y, z] of degree 1 that divides r3. We apply
an element of GL2(k) acting on y, z and obtain a).

In case B), g = xy+yr2(y, z)+z for a homogeneous polynomial r2 2 k[y, z]\k[y]
of degree 2. The line ` is given by p1(y, z) = 0 for some homogeneous polynomial
p1 2 k[y, z] of degree 1 that divides yr2(y, z). If ` is the line y = 0 we get b).
Otherwise, the line is ↵y + �z with � 6= 0 and g = xy + y(↵y + �z)s1(y, z) + z
for some homogeneous degree 1 polynomial s1 2 k[y, z] \ {0}. We apply a linear
coordinate change and send ↵y + �z and y respectively to y and z; this sends z
onto �y + �z with � 2 k⇤, � 2 k, and sends g onto xz + yzs0

1
(y, z) + �y + �z for

some homogeneous degree 1 polynomial s0
1

2 k[y, z] \ {0}. We replace y with ��1y
and get c).
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In case C), g = xy2 + y(z2 + az + b) + z for some a, b, 2 k and thus the line ` is
y = 0. Hence we obtain d). ⇤

Corollary 2.3.8 (Hypersurfaces isomorphic to A2 of degree 2). Let f 2 k[x, y, z]
be an irreducible polynomial of degree 2 and assume that X = Spec(k[x, y, z]/(f))
is isomorphic to A2. Then, after applying an affine automorphism, one of the
following cases occur:

(1) f = x + y2;
(2) f = x + yz.

Proof. Since f is of degree 2, it follows from Proposition 2.3.5 that f is equal to
x + r2(y, z) for a non-zero homogeneous polynomial of degree 2 up to an affine
automorphism. Depending whether r2(y, z) = 0 has one ore two zeros in P1 we are
in case (1) and case (2), respectively. ⇤

3. Families of cubic hypersurfaces of A3
, all isomorphic to A2

In this section, we study families of cubic hypersurfaces of A3 that are isomorphic
to A2. In order to to this we begin with linear systems on P2.

3.1. Linear systems on P2. To study families of hypersurfaces of A3, it is natural
too look at the behaviour at infinity. In the following, for d � 0, we denote by
k[x, y, z]d the vector space of homogeneous polynomials of degree d in k[x, y, z] and
we consider it as an affine space (of dimension

�d+2

2

�
). In particular, k[x, y, z]d

carries the Zariski topology. Moreover, for any vector space V , we let P(V ) =
Projk(SymV ⇤) be the projectivisation of the symmetric algebra SymV ⇤ of the dual
vector space V ⇤.

Lemma 3.1.1. Let f, g 2 k[x, y, z] be two homogeneous polynomials of degree d � 1
without common factor. The following are equivalent:

(1) The polynomial �f + µg is divisible by a linear factor, for all �, µ 2 k.
(2) The polynomial �f + g is divisible by a linear factor, for infinitely many

� 2 k.
(3) There are two linear polynomials s, t 2 k[x, y, z]1 such that f, g 2 k[s, t].

Proof. Observe that the subset Rd ⇢ k[x, y, z]d of elements that are divisible by a
linear factor is closed. Indeed, P(Rd) is the image of the morphism P(k[x, y, z]1) ⇥
P(k[x, y, z]d�1), (p, q) 7! pq. Hence, the set

�
[� : µ] 2 P1 | �f + µg is divisible by a linear factor

 

is a closed subset of P1. Thus it is infinite if and only if it is the whole P1. This
gives the equivalence (1) , (2).

Let us prove (3) ) (1). As f and g have no common factor, s, t are linearly
independent. We apply a linear coordinate change and may assume that s = x and
t = y. Now, it is enough to remark that every homogeneous polynomial of k[x, y]
is a product of linear factors.

It remains to prove (1) ) (3). We prove this by induction on d = deg(f) =
deg(g). The case where d = 1 holds by choosing s = f and t = g. We consider
the dominant rational map ⌘ : P2 99K P1, [x : y : z] 7! [f(x, y, z) : g(x, y, z)]. If
k( f

g ) is separably closed in k(x
z , y

z ), then a general fibre of ⌘ is irreducible [FOV99,
Theorem 3.3.17, page 105] (but not necessarily reduced). After replacing f, g with
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another basis of kf � kg, we may thus assume that the zero locus of f and g
are irreducible curves in P2. The assumption (1) implies that two linear factors
s, t 2 k[x, y, z] exist such that f = sd and g = td. This gives (3). If k( f

g ) is not
separably closed in k(x

z , y
z ), then there is a rational map a

b (where a, b 2 k[x, y, z] are
homogeneous of the same degree without common factor) such that k( f

g ) ( k(a
b ) is

a proper algebraic field extension, by the Primitive Element Theorem. Hence, we
may decompose ⌘ as ⌘ = ⌫ �⌘0, where ⌫ : P1 ! P1 is a finite morphism which is not
an isomorphism and ⌘0 : P2 99K P1 is given by [x : y : z] 7! [a(x, y, z) : b(x, y, z)].
Note that deg(a) = deg(b) < d, since ⌫ is not an isomorphism. As infinitely many
fibres of ⌘ contain lines, the same holds for ⌘0, so (2) holds for a and b. By induction,
we find two homogeneous linear polynomials s, t 2 k[x, y, z] such that a, b 2 k[s, t]
and hence f, g 2 k[s, t] too. ⇤

Lemma 3.1.2. Let d � 2 and let V ✓ k[x, y, z]d be a vector subspace such that
the gcd of all elements of V is 1, and such that each element of V is divisible by a
linear factor. Then, one of the following holds:

(1) There are two linear polynomials s, t 2 k[x, y, z]1 such that V ✓ k[s, t].
(2) The degree d is a power of char(k) = p > 0, and V = kxd � kyd � kzd.

Proof. Since the gcd of all elements in V is 1, we get dim V � 2. Suppose first
that every element of V is a d-th power in k[x, y, z]. Then up to a linear coordinate
change we may assume that xd, yd 2 V . Since xd�yd is a d-th power and is divisible
by x�y, we get xd �yd = (x�y)d. As d � 2, this implies that char(k) = p > 0 and
that d is a power of p. We get (1) if V is generated by xd and yd and (2) otherwise.

Suppose now that some element f 2 V is not a d-th power. By Lemma 3.1.1, we
may apply a linear coordinate change and may assume that f 2 k[x, y]. For each
element g 2 V that has no common factor with f , there exist two linear polynomials
s, t 2 k[x, y, z]1 such that f, g 2 k[s, t] by Lemma 3.1.1. As f 2 k[x, y] is not a
power of an element of k[x, y, z]1 and as f 2 k[x, y] is homogeneous, there are
linearly independent p1, q1 2 k[x, y]1 such that f is divisible by the product p1q1.
Since k[s, t] is factorially closed in k[x, y, z] and as f 2 k[s, t], we get p1, q1 2 k[s, t]
and thus x, y 2 k[s, t], i.e. k[x, y] = k[s, t]. In particular, g 2 k[x, y]. Since the set
of elements g 2 V that have no common factor with f is Zariski open in V , this set
spans V as a k vector space and so V ⇢ k[x, y]. ⇤

Lemma 3.1.3. Assume that char(k) = 2 and let g1, . . . , gn 2 k[x, y]2, such that
kg1 + · · ·+kgn = kx2 �ky2. If s � 0 and h1, . . . , hn 2 k[x, y]s are such that

P
i �igi

and
P

i �ihi have a common non-zero linear factor for all (�1, . . . ,�n) 2 kn, then
either hi = 0 for all i or s � 2 and there exists h 2 k[x, y]s�2 \ {0} with hi = hgi

for all i.

Proof. Note that n � 2. After a linear coordinate change in x, y and after replacing
h1, . . . , hn and g1, . . . , gn with certain linear combinations we may assume that
g1 = x2 and gi = y2 for all i = 2, . . . , n. For each i 2 {2, . . . , n} and each ↵,� 2 k,
(↵x + �y)2 = ↵2g1 + �2gi and ↵2h1 + �2hi have a common non-zero linear factor,
so ↵x + �y divides ↵2h1 + �2hi, which means that ↵2h1(�,↵) + �2hi(�,↵) = 0. As
this last equation is true for all ↵,� 2 k, the polynomial y2h1 + x2hi is zero. We
get a polynomial h̃i such that h1 = h̃ix2 and hi = h̃iy2. The equality h1 = h̃ix2

yields that h̃i is independent of i, so writing h = hi gives the result. ⇤
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Lemma 3.1.4. Assume that char(k) > 0 and denote by � : P2 ! P2 the Frobenius
endomorphism.

(1) For each A 2 PGL3, there exists v 2 P2 such that A�(v) = v.
(2) For each B 2 PGL3, there exists v 2 P2 such that �(Bv) = v.

Proof. We denote by ✓ : PGL3 ! PGL3 the endomorphism that sends a matrix C
to the matrix obtained from C by taking the p-th power of each entry.

We will only prove (1), as (2) follows from it by choosing A = ✓(B). We then
have to show that

� =
�

A 2 PGL3 | A�(v) = v for some v 2 P2
 

is equal to PGL3. We consider

M =
�

(A, v) 2 PGL3 ⇥P2 | A�(v) = v
 

and obtain � = ⇡1(M), where ⇡1 : M ! PGL3 is the first projection. As ⇡1

is proper, we get that � is closed in PGL3 and thus we only have to show that
dim � = 8. We observe that the identity matrix I 2 PGL3 belongs to � and that
⇡�1

1
(I) = P2(Fp) is finite. By Chevalley’s Upper Semi-continuity Theorem for the

dimension of fibres [Gro66, Corollaire 13.1.5], the set
�

A 2 � | dim⇡�1

1
({A}) � 1

 

is closed in �. It then suffices to show that M is irreducible and of dimension 8.
To show this, we will prove that the second projection ⇡2 : M ! P2 is a locally

trivial P -bundle, where P is the parabolic subgroup of PGL3 that fixes [1 : 0 : 0].
Note that ⇡2 : M ! P2 is PGL3-equivariant with respect to the natural action
on P2 and the PGL3-action on M given by B · (A, v) := (BA✓(B)�1, Bv). We
then only need to show that ⇡2 is a trivial P -bundle over the open subset U =�

[p0 : p1 : p2] 2 P2 | p0 6= 0
 
. We consider the morphism h : U ! PGL3 given by

[p0 : p1 : p2] 7!

0

@
p0 0 0
p1 p0 0
p2 0 p0

1

A ,

which satisfies h(p)([1 : 0 : 0]) = p for each p 2 U . We get a V -isomorphism

P ⇥ V
'�! ⇡�1

2
(V )

(A, p) 7�! (h(p)A✓(h(p)�1), p),

whose inverse sends (A, p) onto (h(p)�1A✓(h(p)), p). ⇤

3.2. Affine linear systems of affine spaces. It turns out that the following
definition is very useful for us:

Definition 3.2.1. Let f1, . . . , fn 2 k[x1, . . . , xd]. We say that a morphism

Ad �! An

(x1, . . . , xd) 7�! (f1(x1, . . . , xd), . . . , fn(x1, . . . , xd))

is an affine linear system of affine spaces if for each �0 2 k and each (�1, . . . ,�n) 2
kn \ {0} the polynomial �0 + �1f1 + . . . + �nfn is not constant and the corre-
sponding hypersurface in Ad is isomorphic to Ad�1. This is equivalent to say
that the preimage of every affine linear hypersurface in An under the morphism
(f1, . . . , fn) : Ad ! An is isomorphic to Ad�1.
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We call two affine linear systems of affine spaces (f1, . . . , fn), (g1, . . . , gn) : Ad !
An equivalent if there exist affine automorphisms ↵ 2 A↵(Ad), � 2 A↵(An) such
that

(g1, . . . , gn) = � � (f1, . . . , fn) � ↵ .

If the preimage of every linear hypersurface in An under the morphism f =
(f1, . . . , fn) : Ad ! An is isomorphic to Ad�1, then we say that f is a linear system
of affine spaces. Hence, every affine linear system of affine spaces is a linear system
of affine spaces.

Remark 3.2.2. Every automorphism f : An ! An is an affine linear system of affine
spaces and two automorphisms f, g : An ! An are equivalent, if they are the same
up to affine automorphisms at the source and target.

Remark 3.2.3. Note that the notions “affine linear hypersurface” and “affine linear
system of affine spaces” are not intrinsic notions of the affine space and of morphisms
between them. They depend on the choice of coordinate systems of the affine spaces
(up to affine automorphisms). Therefore, as mentioned in the introduction, we
always make a particular choice of the coordinates of the affine spaces involved.

Example 3.2.4. Let f1, . . . , fn 2 k[x1 . . . , xd]. If deg(fi)  1 for each i, then f :=
(f1, . . . , fn) : Ad ! An is called an affine linear morphism. In case f is surjective,
it is an affine linear system of affine spaces.

Next, we list some basic properties of affine linear systems of affine spaces.

Lemma 3.2.5. Let f1, . . . , fn 2 k[x1, . . . , xd] be polynomials and let f = (f1, . . . , fn)
be the corresponding morphism Ad ! An.

(1) If f = (f1, . . . , fn) is an affine linear system of affine spaces and if fi,1 de-
notes the homogeneous part of fi of degree 1 for i = 1, . . . , n, then f1,1, . . . , fn,1

are linearly independent over k in k[x1, . . . , xd]1. In particular, n  d.
(2) Assume that f is an affine linear system of affine spaces. Then for all

automorphisms ' 2 Aut(Ad) and all ↵ 2 A↵(An), the composition ↵ � f �
' : Ad ! An is an affine linear system of affine spaces.

(3) Assume that deg(f) = max1in deg(fi) = 1. Then f is an affine linear
system of affine spaces if and only if f : Ad ! An is surjective. In particular,
if d � n, then up to equivalence there is exactly one affine linear system of
affine spaces Ad ! An of degree 1.

(4) If f1, . . . , fn 2 k[x, y, z] are of degree  3, then (f1, . . . , fn) : A3 ! An defines
a linear system of affine spaces if and only if it defines an affine linear system
of affine spaces.

(5) Let ⇡ : An ! Al be a surjective affine linear morphism. If f is an affine
linear system of affine spaces, then the composition ⇡ � f : Ad ! Al as well.

(6) Let ⇢ : Ar ! Ad be a surjective affine linear morphism. If f is an affine
linear system of affine spaces, then f � ⇢ as well. If d  3 and if f � ⇢ is an
affine linear system of affine spaces, then f as well.

(7) Assume that d = n. If f = (f1, . . . , fn) : An ! An is an affine linear system
of affine spaces, then the determinant of the Jacobian of f lies in k⇤.

Proof. (1): If there exists (�1, . . . ,�n) 2 kn \ {0} such that
Pn

i=1
�ifi,1 = 0, we

write �0 =
Pn

i=1
�ifi(0) 2 k and obtain that the polynomial

Pn
i=1

�ifi � �0 is
either 0 or defines a singular hypersurface of An. In both cases

Pn
i=1

�ifi ��0 does
not define an Ad�1 in Ad.
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(2): This follows directly from the definition.
(3): If f is surjective, then the statement is clear. If f is not surjective, then the

image of f is contained in an affine linear hypersurface in An and thus f is not an
affine linear system of affine spaces.

(4): This follows from Corollary 2.2.3.
(5): This follows, since the preimage of an affine linear hypersurface under ⇡ is

again an affine linear hypersurface.
(6): Let H ⇢ An be an affine linear hypersurface. Then the preimage (f�⇢)�1(H)

is isomorphic to f�1(H)⇥Ar�d. Hence, the first claim follows. On the other hand,
as f�1(H) has dimension d � 1 and since Zariski’s Cancellation Problem has an
affirmative answer for the affine line (see [AHE72, Corollary 2.8]) and the affine
plane (see [Fuj79, MS80] and [Rus81, Theorem 4]), the second claim follows.

(7): This follows from Lemma 3.2.6 below. ⇤
The next Lemma is essentially due to Derksen, see [vdES97, Lemma 2.3]:

Lemma 3.2.6. Let f1, . . . , fn 2 k[x1, . . . , xn] and let f = (f1, . . . , fn) : An ! An.
Then the determinant of the Jacobian of f lies in k⇤ if and only if the preimage of
each affine linear hypersurface under f is a smooth hypersurface in An.

Proof. The determinant of the Jacobian of f does not lie in k⇤ if and only if there
exist �1, . . . ,�n 2 k, not all equal to zero, and there is a point a 2 An such that

nX

i=0

�i
@fi

@xj
(a) = 0 for each j = 1, . . . , n .

However, this last condition is equivalent to the existence of some �0 2 k and some
(�1, . . . ,�n) 2 kn \ {0} such that either �0 + �1f1 + . . . + �nfn is zero or defines a
singular hypersurface in An. ⇤

In the next Proposition, we study affine linear systems of affine spaces A2 ! A2

of degree  3 up to affine automorphisms at the source and target.

Proposition 3.2.7. Let f1, f2 2 k[x, y] of degree  3 such that f = (f1, f2) : A2 !
A2 is a linear system of affine spaces. Then, up to affine coordinate changes at the
source and target, we get f = (x + q(y), y) where q 2 k[y].

Proof. By Corollary 2.3.2, we may assume after an affine coordinate change in (x, y)
that f1 = x + q(y) for some q 2 k[y] of degree  3. Set  = (x � q, y) 2 Aut(A2).
The determinant of the Jacobian of (x, f2(x � q, y)) = f �  is a non-zero constant
(due to Lemma 3.2.5(7)) and it is equal to the y-derivative of f2(x � q, y). Hence,
f2(x � q, y) = ay + p(x) for some a 2 k⇤ and p 2 k[x], i.e. f2 = ay + p(x + q).
After scaling f2 we may assume a = 1. If deg(q)  1, then  2 A↵(A2) and since
f �  = (x, y + p(x)), the result follows after conjugation with (x, y) 7! (y, x). If
deg(q) � 2, then deg(p)  1, since otherwise deg(f2) = deg(p) deg(q) � 4. Thus
' = (x, y � p(x)) 2 A↵(A2) and since ' � f = (x + q(y), y), the result holds. ⇤
3.3. Linear systems of affine spaces of degree 3 with a conic in the base
locus. In this subsection we study linear systems f : A3 ! An of degree 3 such
that the rational map P3 99K Pn which extends f contains a conic in the base locus.
In fact, this study will be important in order to prove that every automorphism of
degree 3 of A3 can be brought into standard form (Proposition 3.6.1 below). As
explained in the introduction, we say that an affine linear system of affine spaces



AUTOMORPHISMS OF THE AFFINE 3-SPACE OF DEGREE 3 19

f : A3 ! An is in standard form if f = (xp1+q1, . . . , xpn+qn) for some polynomials
pi, qi 2 k[y, z].

Proposition 3.3.1. Let f1, . . . , fn 2 k[x, y, z] be polynomials and assume that f =
(f1, . . . , fn) : A3 ! An is a linear system of affine spaces of degree 3 such that there
is a homogeneous irreducible polynomial of degree 2 that divides the homogeneous
parts of degree 3 of f1, . . . , fn. Then f is equivalent to a linear system of affine
spaces in standard form.

Proof. For i = 1, . . . , n, we write fi =
P

3

j=0
fi,j where fi,j 2 k[x, y, z]j . Applying

an automorphism of An we may assume that fi,3 6= 0 for each i. By assumption,
there is an irreducible conic � ⇢ P2 that is contained in the zero locus of fi,3, for each
i 2 {1, . . . , n}. Moreover, for each i, fi defines an A2 inside A3, so the polynomial
fi,3 defines in P2 the conic � and a tangent line to that conic in a point qi and the
closure in P2 of the hypersurface given by fi is singular at qi (see Corollary 2.3.6).
If all the points q1, . . . , qn are the same, we can assume that these are [1 : 0 : 0],
and obtain the result by Lemma 2.1.1. We thus assume that two of the qi’s are
distinct and derive a contradiction. We may assume that q1 6= q2 by applying a
permutation of An. Applying automorphisms of A3, we may moreover assume that
f1 = xy2 + y(z2 + az + b) + z for some a, b 2 k (see Proposition 2.3.5). Hence,
q1 = [1 : 0 : 0], � is the conic xy + z2 = 0 and q2 2 � \ {q1}, so q2 = [�⇠2 : 1 : ⇠] for
some ⇠ 2 k. Replacing f2 with f2� for some � 2 k⇤, we obtain

f1,3 = y(xy + z2) , f2,3 = (x � ⇠2y + 2⇠z)(xy + z2) .

For each µ 2 k, the polynomial f2 +µ2f1 defines a hypersurface Xµ ⇢ A3 and its
homogeneous part of degree 3 is (x�⇠2y+µ2y+2⇠z)(xy+z2). By Corollary 2.3.6(1),
the line `µ given by x � ⇠2y + µ2y + 2⇠z is tangent to �. Choosing µ = ⇠ when
⇠ 6= 0 and choosing µ = 1 when ⇠ = 0 gives char(k) = 2. We may then replace f2

with f2 + ⇠2f1 and assume that ⇠ = 0. The point of tangency of � and `µ is then
pµ = [µ2 : 1 : µ].

Suppose first that f1,2 = f2,2 = 0. We obtain

f1 = y(xy + z2) + by + z , f2 = x(xy + z2) + ↵x + �y + �2z + �

for some ↵,�, �, � 2 k. The polynomial f2 + �2f1 = (x+ �2y)(xy + z2)+↵x+(�+
b�2)y+� defines an A2, so the same holds when we replace x and z with x+�2y, z+
�y respectively, hence for the polynomial x(xy + z2) + ↵x + (� + (b + ↵)�2)y + �,
impossible by Proposition 2.2.2 (applied to the polynomial obtained by exchanging
x and y).

We now assume that f1,2 and f2,2 are not both zero. There is an affine automor-
phism of A3 that sends f2 +µ2f1 onto h = xy2 +y(z2 + cz +d)+z for some c, d 2 k
(Proposition 2.3.5). Thus, f2 + µ2f1 is obtained by applying an element of GL3(k)
to h0 = h(x + "1, y + "2, z + "3) for some "1, "2, "3 2 k. As h0 = h0

0
+ h0

1
+ h0

2
+ h0

3

where h0
i 2 k[x, y, z]i and h0

3
= y(xy + z2), h0

2
= "1y2 + cyz + "2z2 are both singular

at [1 : 0 : 0], the homogeneous part of degree 2 of f2 + µ2f1 is singular at pµ.
As f1,2 and f2,2 are not both zero and the set {pµ | µ 2 k} is not contained in a

line, there is no linear factor that divides both f1,2 and f2,2. However, as f2,2+µ2f1,2

is divisible by a linear factor for each µ 2 k, there exist s, t 2 k[x, y, z]1 such that
f1,2, f2,2 2 k[s, t](Lemma 3.1.1). Remembering that f1,2 = ayz, we prove first that
a = 0. Indeed, otherwise k[s, t] = k[y, z] and f2,2 +µ2f1,2 2 k[y, z] is singular at pµ

so is a multiple of (µy + z)2 = µ2y2 + z2, impossible as it contains yz for infinitely
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many µ. Now that a = 0 is proven, the polynomial f2,2 + µ2f1,2 = f2,2 is singular
at each point pµ, so f2,2 = 0, in contradiction with the above assumption. ⇤
3.4. Affine linear systems in characteristic 2 and 3. We call a morphism
f : Y ! X an A1-fibration if each closed fiber is (schematically) isomorphic to A1.
We moreover say that the A1-fibration f is locally trivial in the Zariski (respectively
étale) topology if for each x 2 X there is an open neighbourhood U ⇢ X of x
(respectively an étale morphism U ! U 0 onto an open neighbourhood U 0 of x in
X) such that the fiber product U ⇥X Y ! U is isomorphic to U ⇥ A1 over U .

Recall from the introduction, that an A1-fibration f : Y ! X is called trivial if
there exists an isomorphism ' : X ⇥ A1 ! Y such that the composition f �' : X ⇥
A1 ! X is the projection onto the first factor.

An A1-bundle is then simply an A1-fibration that is locally trivial in the Zariski
topology.

We now give two examples of linear systems of affine spaces of degree 3 that are
not equivalent to linear systems in standard form.

Lemma 3.4.1. Assume that char(k) = 2 and let
f = x + z2 + y3 and g = y + x2

Then, ⇡ = (f, g) : A3 ! A2 is an affine linear system of affine spaces, which is
not equivalent to an affine linear system in standard form. Moreover, ⇡ is an A1-
fibration that is not locally trivial in the étale topology.

Proof. If � 6= 0, then �2f +g = �2x+y+(x+�z)2 +�2y3 defines an A2 in A3, since
the linear polynomials �2x + y, x +�z and y are linearly independent in k[x, y, z]1.
On the other hand, both f and g define an A2 in A3 as well. This implies that
⇡ = (f, g) : A3 ! A2 is a linear system of affine spaces and thus an affine linear
system of affine spaces by Lemma 3.2.5(4).

Let X,Y ⇢ P3 be the closures of the hypersurfaces in A3 which are given by f
and f + g, respectively. By Corollary 2.3.6(2) the singular locus of X is equal to
[0 : 1 : 0 : 0] and the singular locus of Y is equal to [0 : 1 : 0 : 1]. In particular,
X, Y have no common singularity and thus, ⇡ is not equivalent to an affine linear
system in standard form by Lemma 2.1.1.

It remains to see that all closed fibres of ⇡ are isomorphic to A1 but that ⇡ is
not locally trivial in the étale topology. To simplify the situation, we apply some
non-affine automorphisms at the source and the target. We first apply (x, y+x2, z)
(at the source) to get (x+ z2 +(y +x2)3, y). Applying (x+ y3, y) at the target and
(x, y, z + x3 + xy) at the source gives

� = (x + x4y + z2, y) : A3 ! A2 .

The fibre over a point (x0, y0) with y0 = 0 is isomorphic to A1, via its projection
onto z. The fibre over a point (x0, y0) 2 A2 with y0 6= 0 is isomorphic to A1, as one
can apply z 7! z +

p
y0x2 to reduce to the previous case.

It remains to see that � is not locally trivial in the étale topology. The fibre F of
� over the (non-closed) generic point of {x = 0} is the scheme given by x+x4y+z2

inside A2

k(y)
= Spec(k(y)[x, z]). By [Rus70, Corollary 2.3.1 and Lemma 1.2], F

is non-isomorphic to the affine line A1

k(y)
over k(y), however after extending the

scalars to k(
p

y) we get

F ⇥Spec(k(y)) Spec(k(
p

2)) ' A1

k(
p

y)
.
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By [Rus76, Lemma 1.1] there doesn’t exist any separable field extension k(y) ✓ K
such that F ⇥Spec(k(y)) Spec(K) ' A1

K . Hence, � and thus ⇡ are not locally trivial
in the étale topology.

⇤
Lemma 3.4.2. Assume that char(k) = 3 and let

f = x + z2 + y3 and g = z + x3

Then, ⇡ = (f, g) : A3 ! A2 is an affine linear system of affine spaces, which is
not equivalent to an affine linear system in standard form. Moreover, ⇡ is an A1-
fibration that is not locally trivial in the étale topology.

Proof. For each � 2 k, the polynomial f + �3g = �3z + x + z2 + (y + �x)3 defines
an A2 in A3: replacing y with y � �x and x with x � �3z gives x + z2 + y3. On the
other hand, g also defines an A2 in A3. This implies that ⇡ = (f, g) : A3 ! A2 is
a linear system of affine spaces and thus an affine linear system of affine spaces by
Lemma 3.2.5(4).

Let X,Y ⇢ P3 be the closures of the hypersurfaces of A3 which are given by f
and g, respectively. Then the singular locus of X is only the point [0 : 1 : 0 : 0] and
the singular locus of Y is the line w = x = 0, by Corollary 2.3.6(2)). Hence, (f, g)
is not equivalent to an affine linear system in standard form (see Lemma 2.1.1).

It remains to see that all closed fibres of ⇡ are isomorphic to A1 but that ⇡
is not a trivial A1-fibration. To simplify the situation, we apply some non-affine
automorphisms at the source and the target. We first apply (x, y � x2, z � x3) (at
the source) to get (x + y3 + z2 + x3z, z), then apply (x � y2, y) at the target to
obtain

� = (x + y3 + x3z, z) : A3 ! A2 .

The fibre over a point (x0, y0) with y0 = 0 is isomorphic to A1, via its projection
onto y. The fibre over a point (x0, y0) 2 A2 with y0 6= 0 is isomorphic to A1, as one
can apply y 7! y � 3

p
y0x to reduce to the previous case.

Now, the fibre F of � over the generic point of {z = 0} is the scheme given by
x+ y3 +x3z inside A2

k(z)
= Spec(k(z)[x, y]). Using again [Rus70], we find the same

way as in the proof of Lemma 3.4.1, that there exists no separable field extension
k(z) ✓ K such that F ⇥Spec(k(z)) Spec(K) ' A1

K , however

F ⇥Spec(k(z)) Spec(k( 3
p

z)) ' A1

k(
3pz)

.

This implies again, that neither � nor ⇡ is locally trivial in the étale topology. ⇤
We now prove that these two examples of linear systems are unique in some

sense (see Lemma 3.4.4 and 3.4.5 below).

Lemma 3.4.3. Let `1, `2, `3 2 k[x, y, z]1 be three linear polynomials such that `2
and `3 are linearly independent. Then,

P
3

i=1
(`i)i defines an A2 in A3 if and only

if `1, `2, `3 are linearly independent.

Proof. If `1, `2, `3 are linearly independent, we may apply an element of GL3(k)
and assume that `1 = x, `2 = y, `3 = z. Thus,

P
3

i=1
(`i)i = x + y2 + z3 defines

an A2 in A3. Otherwise, we may assume that `1 = ax + by, `2 = x, `3 = y, so
the hypersurface of A3 given by

P
3

i=1
(`i)i = 0 is isomorphic to � ⇥ A1, where

� ⇢ A2 is the curve given by ax + by + x2 + y3 = 0. It remains to see that � is
not isomorphic to A1 (by the positive answer to Zariski’s Cancellation Problem,
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see [AHE72, Corollary 2.8]). Indeed, the closure of � in P2 would otherwise be an
irreducible curve singular at infinity, which is here not the case. ⇤

Lemma 3.4.4. Assume that char(k) = 2 and let f = (f1, . . . , fn) : A3 ! An be an
affine linear system of affine spaces. Suppose that fi =

P
3

j=0
fi,j 2 k[x, y, z] for

each i 2 {1, . . . , n}, where fi,j 2 k[x, y, z]j and that

spank(f1,3, . . . , fn,3) = ky3 and spank(f1,2, . . . , fn,2, y
2) = kx2 + ky2 + kz2.

Then, n = 2 and f is equivalent to the linear system (x + z2 + y3, y + x2) of
Lemma 3.4.1.

Proof. As spank(f1,2, . . . , fn,2, y2) = kx2 + ky2 + kz2, we have n � 2. Applying
a linear automorphism of An, we may assume that f1,3 = y3 and that fi,3 = 0
for i � 2. We may moreover assume that spank(f1,2, f2,2, y2) = kx2 + ky2 + kz2

by possibly adding multiples of fi, i � 2 to f1 and then permuting the fi, i � 2.
Hence, f1,2 = `2

1
+ ↵y2 and f2,2 = `2

2
+ �y2, where `1, `2 2 k[x, z]1 are linearly

independent and ↵,� 2 k. Applying a linear automorphism at the source that fixes
y, we may reduce to the case where f1,2 = z2 and f2,2 = x2. We may moreover
assume that fi,0 = 0 for each i, by applying a translation at the target.

We then choose a, b, c, d 2 k such that f1,1 = ax+bz mod ky and f2,1 = cx+dz
mod ky. For each � 2 k, the polynomial

f1 + �2f2 = ((a + �2c)x + (b + �2d)z + ⇣y) + (z + �x)2 + y3

defines an A2 in A3 (where ⇣ 2 k depends on �). This implies that ((a + �2c)x +
(b + �2d)z + ⇣y), y and z + �x are linearly independent (Lemma 3.4.3), and thus
that (a + �2c) + (b + �2d)� 6= 0. As this is true for all �, we obtain a 6= 0 and
b = c = d = 0, so f1 = ax + ⇠y + z2 + y3 and f2 = ⌫y + x2 for some ⇠, ⌫ 2 k. As f2

defines an A2 in A3, we have ⌫ 6= 0. Applying x 7!
p
⌫x at the source and replacing

f2 by ⌫�1f2, we may assume that ⌫ = 1. We then replace f1 with f1 + ⇠f2 and z
with z +

p
⇠x to assume ⇠ = 0. This gives (f1, f2) = (ax + z2 + y3, y + x2). After

replacing x, y, z with µx, µ2y, µ3z at the source where µ 2 k is chosen with µ5 = a
and after replacing f1, f2 with f1/µ6, f2/µ2, respectively, we may assume further
that a = 1. This achieves the proof if n = 2.

It remains to see that n � 3 leads to a contradiction. We add a multiple of f2 to f3

and may assume that f3,2 is equal to "2y2+⌧2z2 = ("y+⌧z)2 for some ", ⌧ 2 k. For
each � 2 k, the polynomial �2f1+f2+f3 = (�2x+y+f3,1)+(x+"y+(�+⌧)z)2+�2y3

defines an A2 in A3. Hence, for each � 2 k⇤, the polynomials �2x + y + f3,1,
x + "y + (� + ⌧)z and y are linearly independent (Lemma 3.4.3). Writing f3,1 =
↵x + �z + �y, with ↵,�, � 2 k, the polynomials

(�2 + ↵)x + �z and x + (�+ ⌧)z

are linearly independent, so 0 6= (�2 + ↵)(�+ ⌧) + � = �3 + �2⌧ + �↵+ (↵⌧ + �),
for each � 2 k⇤. Hence, ↵ = ⌧ = � = 0, which yields f3 2 k[y]. As f3 defines an
A2, we obtain f3 = �y with � 2 k⇤. But then f2 + ��1f3 = x2 does not define an
A2, contradiction. ⇤

Lemma 3.4.5. Assume that char(k) = 3, let f1, . . . , fn 2 k[x, y, z] of degree  3
such that f = (f1, . . . , fn) : A3 ! An is an affine linear system of affine spaces
and that the linear span of the homogeneous parts of degree 3 of the f1, . . . , fn is
a subspace of dimension � 2 of kx3 � ky3 � kz3. Then either f is equivalent to a
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linear system in standard form or n = 2 and f is equivalent to the linear system
(x + z2 + y3, z + x3) in Lemma 3.4.2.

Proof. Let fi,j 2 k[x, y, z] be the homogeneous part of degree j of fi for i = 1, . . . , n,
and let us define Vj = spank(f1,j , . . . , fn,j) ✓ k[x, y, z]j for each j. By assumption,
V3 ✓ kx3 � ky3 � kz3, so

P
�ifi,3 is a third power for all (�1, . . . ,�n) 2 kn. We

may moreover assume that V0 = 0 by applying a translation at the target.
It follows from Corollary 2.3.6(2) that for each (�1, . . . ,�n) 2 kn such thatP
�ifi,3 6= 0 (which is true for a general (�1, . . . ,�n)), the polynomial

P
�ifi,2 is

either zero or defines a conic in P2 that is singular on a point of the triple line
defined by

P
�ifi,3.

Suppose first that gcd(V2) = 1, and thus that dim V2 � 2. Lemma 3.1.2 gives
two polynomials s, t 2 k[x, y, z]1 such that V2 ✓ k[s, t]. Changing coordinates on
A3, we may assume that s = y and t = z. For general (�1, . . . ,�n) 2 kn, the
hypersurface in P2 given by the homogeneous polynomial

P
�ifi,2 is only singular

at the point p = [1 : 0 : 0] 2 P2 (as char(k) 6= 2), which is on the triple line defined
by

P
�ifi,3. This implies that V3 ✓ ky3 � kz3, so f is a linear system in standard

form.
We may now assume that a linear polynomial h 2 k[x, y, z]1 divides each element

of V2. Applying an element of GL3 at the source, we may thus assume that h = z.
If a point p 2 P2 is such that all elements of V2 and V3 vanish at p, we apply
an element of GL3 at the source to assume p = [1 : 0 : 0] and obtain that f is
in standard form. Hence, we may assume that the elements of V3 do not share a
common zero on the line z = 0.

We now prove that z2 divides fi,2 for each i 2 {1, . . . , n}. We suppose the
converse to derive a contradiction. Applying a general element of GLn at the
target, we obtain that f1,2 is not a multiple of z2 and that f1,3 and f2,3 do not
share a common zero on the line z = 0. Choosing `1, `2 2 k[x, y, z]1 such that
f1,3 = `3

1
and f1,3 = `3

1
, the elements `1, `2, z are linearly independent. We may

thus apply an element of GL3 and assume that f1,3 = x3 and f2,3 = y3. We write
f1,2 = z(ax + by + cz) f2,2 = zg for some a, b, c 2 k with a, b not both equal to zero
and g 2 k[x, y, z]1. For each � 2 k, the polynomial f1 + �3f2 defines an A2 in A3

and as f1,3 + �3f2,3 = (x + �y)3, the hypersurface in P2 given by the homogeneous
polynomial f1,2 + �3f2,2 = z(ax + by + cz + �3g) is singular at a point p� of the
line in P2 given by x + �y = 0 (Corollary 2.3.6(2)). This yields p� = [�� : 1 : 0],
and thus ��a + b+�3g(��, 1, 0) = 0. This being true for each �, we get a = b = 0,
giving the desired contradiction.

We now show that dim(V3) = 2. If dim(V3) = 3, we may assume (f1,3, f2,3, f3,3) =
(x3, y3, z3). By Lemma 3.1.4, there exists (�1,�2,�3) 6= (0, 0, 0) and " 6= 0 such
that

P
�3

i fi,1 = "`1, where `1 = �1x + �2y + �3z. Hence, the polynomial
P
�3

i fi

is equal to "`1 + ⌫z2 + (`1)3 for some ⌫ 2 k and does not define an A2 in A3: it is
reducible if ⌫ = 0 or if z and `1 are collinear, and otherwise does not define an A2

by Lemma 3.4.3.
Now that dim(V3) = 2 and that the elements of V3 do not share a common zero

point on z = 0, we may apply an element of GL3 that fixes z to get V3 = kx3 +ky3.
Moreover, V2 = kz2 (as otherwise V2 = {0} would give a linear system in standard
form after exchanging x and z). We apply an element of GLn at the target and
assume that f1,2 = z2 and f1,3 6= 0. We then add to f2 a linear combination of the
other fi and assume that f2,2 = 0 and that f2,3 is not a multiple of f1,3. Applying
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again at the source an element of GL3 that fixes z, we obtain f1,3 = y3, f2,3 = x3.
We get ↵,�, �, �, ", ⇣ 2 k such that

f1 = (↵x + �y + �z) + z2 + y3 , f2 = (�x + "y + ⇣z) + x3 .

For each � 2 k, the polynomial f1 + �3f3 defines an A2 in A3. This implies
that (↵ + �3�)x + (� + �3")y + (� + �3⇣)z, z and y + �x are linearly independent
(Lemma 3.4.3). Hence, �(� + �3") � (↵+ �3�) 6= 0. This being true for each �, we
obtain � = � = " = 0 and ↵ 6= 0. Hence f1 = ↵x + �z + z2 + y3, f2 = ⇣z + x3, with
↵⇣ 6= 0. Replacing f1 with f1�(�/⇣)·f2 and replacing y with y+x where 3 = �/⇣,
we may assume that � = 0. It remains then to choose ⇠ 2 k⇤ with ↵3⇣ = ⇠15, to
replace x, y, z with ⇠6/↵x, ⇠2y, ⇠3z at the source and f1, f2 with f1/⇠6, f2↵3/⇠18 at
the target, to obtain

f1 = x + z2 + y3 , f2 = z + x3 .

Thus, f is the linear system of affine spaces in Lemma 3.4.2 if n = 2. It remains to
see that n � 3 yields a contradiction. Adding to f3 a linear combination of f1, f2

we obtain that f3,3 = 0. This gives f3 = ↵x + �y + �z + ✓z2 with ↵,�, �, ✓ 2 k.
Replacing f3 by a multiple, we may assume that ↵ 6= �1 and ✓ 6= �1. For each
� 2 k, the polynomial f1+�3f2+f3 = (1+↵)x+�y+(�+�3)z+(1+✓)z2+(y+�x)3

defines an A2 in A3, so y +�x, z, (1+↵)x+�y +(�+�3)z are linearly independent
(Lemma 3.4.3). This implies that ���(1+↵) 6= 0. As this is true for each �, we get
� = 0. But then the linear parts of f1, f2, f3 are linearly dependent, contradicting
Lemma 3.2.5(1). ⇤

3.5. Linear systems of affine spaces of degree 3 with a line in the base
locus. In the following lemma we give necessary conditions for a polynomial of
degree  3 such that it defines an A2 in A3 and this hypersurface contains in its
closure in P3 a specific line.

Lemma 3.5.1. Let F 2 k[w, x, y, z] be a homogeneous polynomial of degree 3 such
that f = F (1, x, y, z) satisfies Spec(k[x, y, z]/(f)) ' A2 and such that F (0, x, 0, z) =
0. Write F as

F = wa2(x, z) + yb2(x, z) + w2c1(x, z) + wyd1(x, z) + y2e1(x, z) + F3(w, y)

where a2, b2 2 k[x, z] are homogeneous of degree 2, c1, d1, e1 2 k[x, z] are homoge-
neous of degree 1 and F3 2 k[w, y] is homogeneous of degree 3. Then:

(1) The polynomial b2 2 k[x, z] is a square;
(2) The polynomials a2, b2 2 k[x, z] have a common linear factor;
(3) If b2 = 0, then a2, e1 2 k[x, z] have a common linear factor;
(4) If b2 = e1 = 0 and a2 is a square, then the polynomials a2, d1 2 k[x, z] have

a common linear factor;
(5) If a2 = b2 = d1 = e1 = 0 and deg(f) � 2, then c1 6= 0.

Under the additional assumption that deg(f) = 3, we have:
(6) If b2 = e1 = 0, then the polynomial a2 2 k[x, z] is a square;
(7) If b2 = e1 = 0 and (a2, d1) 6= (0, 0), then gcd(a2, c1, d1) = 1;
(8) If a2 is not a square, then b2 6= 0 or e1 6= 0;

Proof. The fact that F (0, x, 0, z) = 0 implies that F can be written in the above
form. Note that F = F1 + F2 + F3, where F1 = wa2(x, z) + yb2(x, z), F2 =
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w2c1(x, z) + wyd1(x, z) + y2e1(x, z) and F3 are homogeneous in w, y of degree 1, 2
and 3, respectively. It remains to see that the above eight assertions hold.

First, we assume that w divides F . Then deg(f) < 3 and b2 = e1 = 0, so (1), (2)
and (3) hold. If in addition a2 is a square and if a2 and d1 would have no common
non-zero linear factor, then the homogeneous part of f of degree 2 would be f2 =
a2 +y(d1 +�y) for some � 2 k. As a2 is a square, we may apply a linear coordinate
change in x, z and assume that a2 = x2. We then write d1 = d1,0x + d1,1z with
d1,0, d1,1 2 k, and obtain

f2 = x2 + d1,0yx + y(�y + d1,1z) .

Since d1,1 6= 0, the polynomial f2 2 k[x, y, z] is irreducible (e.g. by the Eisenstein
criterion) which contradicts Proposition 2.3.5 and therefore (4) holds. If a2 = d1 =
0 and deg(f) � 2, then c1 6= 0, since otherwise f 2 k[y] would not be irreducible.
Hence, (5) holds.

We may now assume that w does not divide F , which implies that deg(f) = 3.
We observe that the group of affine automorphisms G ⇢ A↵(A3) ⇢ Aut(P3)

which preserve the line L =
�

[w : x : y : z] 2 P3 | w = y = 0
 

is generated by the
following two subgroups:

G1 =

⇢
'↵,�,�,� 2 Aut(P3)

���

↵ �
� �

�
2 GL2(k)

�

G2 =
n
 ",⌧1,⌧2,⌧3,⇠1,⇠3 2 Aut(P3)

��� " 2 k⇤, ⌧1, ⌧2, ⌧3, ⇠1, ⇠3 2 k
o

where
P3

'↵,�,�,�

��������! P3

[w : x : y : z] 7��������! [w : ↵x + �z : y : �x + �z]

and

P3

 ",⌧1,⌧2,⌧3,⇠1,⇠3

�������������! P3

[w : x : y : z] 7�������������! [w : x + ⇠1y + ⌧1w : "y + ⌧2w : z + ⇠3y + ⌧3w] .

Indeed, this follows from the facts that the action of G on L gives a group homo-
morphism G ! Aut(L) ' PGL2(k) that is surjective on G1, and that the kernel
is generated by G2 and the homotheties of G1. The fact that all assertions (1)-(8)
hold is preserved under elements of G1 and G2. We may thus assume that f is
of the form given in Corollary 2.3.7 and we check that the assertions (1)-(8) are
satisfied.

In case a), (a2, b2, c1, d1, e1) = (�z2, µz2, x, "z, ⌫z) for some �, µ, ⌫, " 2 k.
In case b), (a2, b2, c1, d1, e1) = (0, µz2, z, x, ⌫z) for some µ, ⌫ 2 k.
In case c), f = xz + yz(�y + µz) + y + �z where �, µ, � 2 k and (�, µ) 6= (0, 0),

so (a2, b2, c1, d1, e1) = (xz, µz2, �z, 0,�z).
In case d), f = xy2 + y(z2 + az + b) + z for some a, b 2 k, so (a2, b2, c1, d1, e1) =

(0, z2, z, az, x).
In each case, b2 is a square, and there is a linear factor that divides a2, b2 and a

linear factor that divides a2, e1. Moreover, a2 is not a square only in case c) and
thus b2 or e1 is non-zero. This shows that (1), (2), (3) and (8) are satisfied. The
equalities a2 = b2 = d1 = e1 = 0 are only possible in case a), where c1 = x 6= 0,
thus (5) is satisfied. The equalities b2 = e1 = 0 are only possible in the cases a)
and b); and then a2, d1 have a common non-zero linear factor, a2 is a square, and
if (a2, d1) 6= (0, 0), then gcd(a2, c1, d1) = 1. Thus (4), (6) and (7) are satisfied. ⇤
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Proposition 3.5.2. Let f1, . . . , fn 2 k[x, y, z] be polynomials and assume that
f = (f1, . . . , fn) : A3 ! An is an affine linear system of affine spaces of degree
3 such that y divides the homogeneous parts of degree 3 of f1, . . . , fn. Then, the
following hold:

(i) Either f is equivalent to a linear system of affine spaces in standard form,
or char(k) = 2 and f is equivalent to (x + z2 + y3, y + x2) : A3 ! A2.

(ii) Writing the homogeneous part of degree 3 of fi as y(⌘iy2 +yei,1 +bi,2) where
⌘i 2 k and ei,1, bi,2 2 k[x, z] are homogeneous of degree 1 and 2, the polynomials
b1,2, . . . , bn,2 are collinear.

Proof. For each i we denote by Fi 2 k[w, x, y, z] a homogeneous polynomial of
degree 3 such that fi = Fi(1, x, y, z) and write it as

wai,2(x, z) + ybi,2(x, z) + w2ci,1(x, z) + wydi,1(x, z) + y2ei,1(x, z) + Fi,3(w, y)

where ai,2, bi,2 2 k[x, z] are homogeneous of degree 2, ci,1, di,1, ei,1 2 k[x, z] are ho-
mogeneous of degree 1, Fi,3 2 k[w, y] is homogeneous of degree 3, and the following
hold for all (�1, . . . ,�n) 2 kn (see Lemma 3.5.1):

(1)
P
�ibi,2(x, z) is a square;

(2)
P
�iai,2(x, z) and

P
�ibi,2(x, z) have a common non-zero linear factor;

(3) If
P
�ibi,2(x, z) = 0, then

P
�iai,2(x, z) and

P
�iei,1(x, z) have a common

non-zero linear factor;
(4) If

P
�ibi,2(x, z) =

P
�iei,1(x, z) = 0 and

P
�iai,2(x, z) is a square, thenP

�iai,2(x, z),
P
�idi,1(x, z) have a common non-zero linear factor;

and if deg(
P
�ifi) = 3, then:

(8) If
P
�iai,2(x, z) is not a square, then

P
�ibi,2(x, z) 6= 0 or

P
�iei,1(x, z) 6= 0.

We distinguish, whether all bi,2 are collinear (case (A)) or not (case (B)). It turns
out that in fact case (B) cannot occur, which proves (ii).

(A): Any two bi,2 are collinear: After applying an element of GL2(k) on x, z, we
may assume that z2 divides all bi,2 by assertion (1). If z divides each ai,2, the point
[0 : 1 : 0 : 0] will be a singular point of the hypersurface in P3 given by Fi for each
i, so f is in standard form. We may thus assume that there is j such that z does
not divide aj,2. Assertion (2) then implies that bi,2 = 0 for each i.

If a linear factor divides all ai,2, we apply an element of GL2 on x, z and assume
that z divides all ai,2, giving again that f is in a standard form. We then assume
that no linear factor divides all ai,2. In particular, dim spank(a1,2, . . . , an,2) � 2.

We assume that each
P
�iai,2 is a square, which implies that char(k) = 2 and

spank(a1,2, . . . , an,2) = kx2 � kz2. By assertion (3), we can apply Lemma 3.1.3 in
order to get ei,1 = 0 for each i = 1, . . . , n. Then, by assertion (4) we can apply
Lemma 3.1.3 once again and get di,1 = 0 for i = 1, . . . , n. Hence, the result follows
from Lemma 3.4.4.

We now assume that
P
�iai,2 is not a square for general (�1, . . . ,�n) 2 kn.

Assertion (8) implies that
P
�iei,1 is a non-zero linear polynomial for general

(�1, . . . ,�n) 2 kn, which then needs to divide
P
�iai,2 by Assertion (3). As no

linear factor divides all ai,2, we may apply a general element of GLn at the target
and may assume that a1,2 and a2,2 have no common factor, and then the same holds
for e1,1 and e2,1 (as ei,1 divides ai,2 for i = 1, 2). We then apply GL2 on x, z at the
source to get e1,1 = x and e2,1 = z. We get a1,2 = x(↵x + �z), a2,2 = z(�x + �z)
for some ↵,�, �, � 2 k. For each � 2 k, the polynomial e1,1 +�e2,1 = x+�z divides
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a1,2 + �a2,2 = ↵x2 + (� + ��)xz + ��z2, so replacing x = � and z = �1 gives
0 = �2(↵ � �) + (� � �)�. This being true for all �, we obtain ↵ = � and � = �,
contradicting the fact that a1,2 and a2,2 have no common factor.

(B): It remains to suppose that not all bi,2, i = 1, . . . , n are collinear and to
derive a contradiction. Since by assertion (1) each

P
�ibi,2 is a square, we get

char(k) = 2. After applying a linear automorphism at the target, we may assume
that b1,2 = z2 and b2,2 = x2. According to (2), we can apply Lemma 3.1.3 and get
a 2 k with a1,2 = az2, a2,2 = ax2. Replacing y with y + a at the source, we may
assume a = 0. This gives

f1 = yz2 + ↵x + �z + " and f2 = yx2 + �x + �z + ⌫

where ↵,�, �, �, ", ⌫ 2 k[y] (the first four of degree  2 and the last two of degree
 3). For each � 2 k, the polynomial f1 + �2f2 = y(z + �x)2 + (↵+ �2�)x + (� +
�2�)z + "+ �2⌫ defines an A2 in A3. Replacing z with z + �x, the polynomial

R� = yz2 + (↵+ �� + �2� + �3�)x + (� + �2�)z + "+ �2⌫

defines an A2 in A3. Let us write p� = ↵+ �� + �2� + �3� 2 k[y].
Let us write ↵ =

P
i�0

↵iyi, � =
P

i�0
�iyi, � =

P
i�0

�iyi, � =
P

i�0
�iyi,

where ↵i,�i, �i, �i 2 k for each i � 0. If there is some i � 0 such that the coefficient
of yi of p� is zero for a general (or equivalently for all) � 2 k, then ↵i +��i +�2�i +
�3� = 0 for each � 2 k, so ↵i = �i = �i = �i = 0.

Suppose first that p� 2 k[y] \ k for a general � 2 k. In this case, we may apply
Proposition 2.2.2: writing R� = xp�(y) + q�(y, z) with q� 2 k[y, z], the polynomial
q�(y0, z) 2 k[z] is of degree 1 for each root y0 2 k of p�. As the coefficient of z2 in
q�(y, z) is y, we find that 0 is the only possible root of p�(y), and in fact is a root
for a general �, as we assumed p� 2 k[y] \ k. Applying the above argument with
i = 0 implies that ↵0 = �0 = �0 = �0 = 0, but then, for each � 2 k the polynomial
� + �2� is zero at y = 0, so q�(0, z) 2 k[z] is not of degree 1.

The last case is when p� 2 k for each � 2 k. This implies (again by the above
argument) that ↵i = �i = �i = �i = 0 for each i � 1, so ↵,�, �, � 2 k. We have
� 6= 0, since otherwise f2 2 k[x, y] would define in A2

x,y a curve with two points
at infinity. There exists thus � 2 k such that p� = 0, so R� does not define an
A2 (it belongs to k[y, z] and the curve that it defines in A2

y,z has two points at
infinity). ⇤
3.6. Reduction to affine linear systems of affine spaces in standard form.

Proposition 3.6.1. Let n � 1 and let f1, . . . , fn 2 k[x, y, z] be polynomials of
degree  3 such that f = (f1, . . . , fn) : A3 ! An is a linear system of affine spaces.
Then either f is equivalent to a linear system of affine spaces in standard form, or
f is equivalent to one of the following linear systems of affine spaces:

(1) (x + z2 + y3, y + x2) : A3 ! A2 where char(k) = 2, or
(2) (x + z2 + y3, z + x3) : A3 ! A2 where char(k) = 3.

Remark 3.6.2. The families of linear systems of affine spaces in (1) and (2) from
Proposition 3.6.1 are the linear systems of affine spaces from Lemmata 3.4.1 and 3.4.2.
In particular, the linear systems of affine spaces in (1) and (2) are all non-equivalent
to linear systems of affine spaces in standard form.

Proof of Proposition 3.6.1. If n = 1, the result follows from Corollary 2.1.2, so we
will assume that n � 2. By Lemma 3.2.5(1), we get n  3.
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Let d = deg(f). Since the statement holds when d = 1, we assume d 2 {2, 3}.
Let fi,j 2 k[x, y, z] be the homogeneous part of degree j of fi for i = 1, . . . , n,

and let us define Vj = spank(f1,j , . . . , fn,j) ✓ k[x, y, z]j for each j  d.
First, we consider the case d = 2. Due to Corollary 2.3.8, each element in V2 is

reducible and due to Lemma 3.1.2 one of the following cases occur:
• There exists h 2 k[x, y, z]1 which divides each element of V2;
• V2 ⇢ k[s, t] for linearly independent s, t 2 k[x, y, z]1;
• char(k) = 2 and V2 = kx2 � ky2 � kz2.

In the first case we may assume that h = y and in the second case we may assume
that (s, t) = (y, z), so f is in standard form in both cases. If we are in the last
case, then n = 3 and we may assume that f1,2 = x2, f2,2 = y2, f3,2 = z2. Due
to Lemma 3.1.4 there exists (�1,�2,�3) 6= (0, 0, 0) and " 6= 0 such that

P
�2

i fi,1 =
"(�1x+�2y+�3z) and hence we get a contradiction to the irreducibility of

P
�2

i fi.
It remains to do the case where d = 3. If a linear factor or an irreducible poly-

nomial of degree 2 divides all elements of V3, the result follows respectively from
Proposition 3.5.2 (after applying an element of GL3 at the source) and Proposi-
tion 3.3.1. By Corollary 2.3.6, no element of V3 is irreducible, so we may assume
that gcd(V3) = 1. In particular, dim V3 � 2.

If each element of V3 is a third power, then char(k) = 3 and the result follows
from Lemma 3.4.5. Thus we may assume that a general element in V3 is not
a third power. Now, Lemma 3.1.2 implies that there exist linearly independent
s, t 2 k[x, y, z]1 such that V3 ⇢ k[s, t]. We may assume that (s, t) = (y, z). As a
general element of V3 is not a third power, then by Corollary 2.3.6(3) the closure
of the cubic

P
�ifi = 0 in P3 has a singularity at [0 : 1 : 0 : 0] for general

(�1, . . . ,�n) 2 kn and thus f is in standard form. ⇤

Corollary 3.6.3. Let 1  n  3 and let f1, . . . , fn 2 k[x, y, z] be polynomials of
degree  3 such that f = (f1, . . . , fn) : A3 ! An is a trivial A3�n-bundle. Then f
is equivalent to a linear system of affine spaces in standard form.

Proof. This follows directly from Proposition 3.6.1, since the linear systems of affine
spaces from Lemma 3.4.1 and Lemma 3.4.2 are not trivial A1-bundles. ⇤

3.7. Study of affine linear systems of affine spaces A3 ! A2 in standard
form. Towards the description of the automorphisms of degree  3, we study in
this subsection certain affine linear systems of affine spaces (f1, f2) : A3 ! A2 in
standard form, i.e. such that fi = xpi + qi for i = 1, 2, with pi, qi 2 k[y, z].

Lemma 3.7.1. For i = 1, 2, let pi, qi 2 k[y, z] such that (xp1 + q1, xp2 + q2) is a
linear system of affine spaces. Then, k[p1, p2] 6= k[y, z], i.e. (p1, p2) : A2 ! A2 is
not an automorphism.

Proof. If k[p1, p2] = k[y, z], then we apply a (possibly non-affine) automorphism of
k[y, z] and may assume that p1 = y, p2 = z. We choose ↵,�, �, �, ", ⌧ 2 k such that

q1(y, z) = ↵y+�z+" mod (y2, yz, z2) , q2(y, z) = �y+�z+⌧ mod (y2, yz, z2) .

Proposition 2.2.2 implies that q1(0, z) 2 k[z] and q2(y, 0) 2 k[y] have degree 1, so
�, � 2 k⇤. For each � 2 k, the polynomial in (xy + q1) � �(xz + q2) = x(y � �z) +
(q1 ��q2) 2 k[x, y, z] defines an A2 in A3. Replacing y with y +�z, the polynomial

R� = xy + q1(y + �z, z) � �q2(y + �z, z)
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defines an A2 in A3. Proposition 2.2.2 implies that R�(x, 0, z) = R�(0, 0, z) 2 k[z]
is of degree 1, for each � 2 k. However,

R�(0, 0, z) = q1(�z, z) � �q2(�z, z) = ↵�z + �z + "� �(��z + �z + ⌧) (mod z2)

and as � 6= 0, there is � 2 k such that the coefficient of z of R�(0, 0, z) is zero,
contradiction. ⇤

Lemma 3.7.2. For i = 1, 2, let pi 2 k[y] and qi 2 k[y, z] and assume that f =
(f1, f2) = (xp1 + q1, xp2 + q2) : A3 ! A2 is an affine linear system of affine spaces.
Then the following hold:

(1) If p1 and p2 have a common root, then they are linearly dependent.
(2) If p1 62 k and p2 = 0, then q2 2 k[y] and deg(q2) = 1.
(3) If p1 = y and q1 = ay+zr1 +r0 for a 2 k[y, z], r1 2 k⇤, r0 2 k and if p2 = 1,

then a � q2 2 k[y].
(4) If p1 = y2 and q1 = ys(z) + z for some s 2 k[z] and deg(f)  3, then:

(i) If p2 = 1, then s 2 k and q2 2 k[y].
(ii) If p2 = y +1, then s = �z + b and q2 = �z + r for some b 2 k and

r 2 k[y] with deg(r)  3.
(5) If p1 = y(y+1) and q1 = s(y)z+t(y) for s, t 2 k[y] of degree  1 and p2 = 1,

then s 2 k⇤ and q2 2 k[y].

Proof. By assumption for each (�, µ) 6= (0, 0), the equation

�f1 + µf2 = x(�p1 + µp2) + �q1 + µq2 = 0

defines an A2 in A3. Hence, by Proposition 2.2.2, for each y0 2 k the following
holds:

if �p1(y0) + µp2(y0) = 0 and �p1 + µp2 6= 0,(⇤)
then the degree of �q1(y0, z) + µq2(y0, z) 2 k[z] is 1 .

We will use this fact constantly, when we consider the cases (1)-(5).
(1): After an affine coordinate change in y, we may assume that y divides p1 and

p2. By Proposition 2.2.2 it follows that qi(0, z) is a polynomial of degree 1 in z for
i = 1, 2. Hence there exists µ 2 k such that q1(0, z) � µq2(0, z) is constant. This,
together with (⇤), implies that p1 = µp2.

(2): Since p1 62 k, there exists � 2 k with p1(�) = 0. After applying an
affine coordinate change in y, we may assume that � = 0. By (⇤), the degree of
q1(0, z) + µq2(0, z) 2 k[z] is 1 for each µ 2 k, so q2(0, z) 2 k. Hence, y divides
q2 � q2(0, 0) in k[y, z]. Since q2 � q2(0, 0) = 0 defines an A2 in A3, the polynomial
q2 � q2(0, 0) is irreducible and thus q2 = ↵y + q2(0, 0) for some ↵ 2 k⇤.

(3): Choosing (�, µ) = (1, �⌘) for some ⌘ 2 k, we get �p1 + µp2 = y � ⌘. Thus
by (⇤), the degree of the polynomial

⌘a(⌘, z) + r1z + r0 � ⌘q2(⌘, z) = r1z + r0 + ⌘(a(⌘, z) � q2(⌘, z)) 2 k[z]

is 1 for each ⌘ 2 k. This implies that a(⌘, z) � q2(⌘, z) 2 k[⌘].
(4)(i): Choosing (�, µ) = (1, �⌘2), we get �p1 + µp2 = (y � ⌘)(y + ⌘). By (⇤) it

follows that for all ⌘ 2 k the degree of

⌘s(z) + z � ⌘2q2(⌘, z) 2 k[z]
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is 1, i.e. ⌘s(z) + z � ⌘2q2(⌘, z) = ↵z + � for some ↵ 2 k⇤ and � 2 k[⌘]. In order to
use
(⇤⇤) zk[z] � k � ⌘k[z] � ⌘2k[⌘, z] = k[⌘, z] ,

we write � = �0 + ⌘�1 + ⌘2�2 where �0,�1 2 k, �2 2 k[⌘] and get
(z, 0, ⌘s(z), �⌘2q2(⌘, z)) = (↵z,�0, ⌘�1, ⌘

2�2) ,

so s = �1 2 k and q2(⌘, z) = ��2 2 k[⌘].
(4)(ii): We now choose (�, µ) = (1 + ⌘, �⌘2) for some ⌘ 2 k and obtain

�p1 + µp2 = (1 + ⌘)y2 � ⌘2(y + 1) = (y � ⌘)((1 + ⌘)y + ⌘) .

Due to (⇤), for all ⌘ 2 k the degree of the polynomial
(1 + ⌘)(⌘s(z) + z) � ⌘2q2(⌘, z) = z + ⌘(s(z) + z) + ⌘2(s(z) � q2(⌘, z)) 2 k[z]

is 1. Writing this polynomial as above as ↵z + �0 + ⌘�1 + ⌘2�2 with ↵ 2 k⇤,
�0,�1 2 k, �2 2 k[⌘], the decomposition (⇤⇤) gives

(z, 0, ⌘(s(z) + z), ⌘2(s(z) � q2(⌘, z))) = (↵z,�0, ⌘�1, ⌘
2�2) ,

so s(z) + z = �1 2 k and s(z) � q2(⌘, z) = �2 2 k[⌘]. Choosing b = �1 and r 2 k[y]
such that �2 = b � r(⌘), we obtain s(z) = �z + b and q2(y, z) = s(z) � b + r(y) =
�z + r(y). Since deg(q2)  3 it follows that deg(r)  3.

(5): Let (�, µ) = (1, �⌘(⌘ + 1)). Then
�p1 + µp2 = y(y + 1) � ⌘(⌘ + 1) = (y � ⌘)(y + ⌘ + 1)

Due to (⇤), for all ⌘ 2 k, the degree of
s(⌘)z + t(⌘) � ⌘(⌘ + 1)q2(⌘, z) 2 k[z]

is 1. This implies that the polynomial
h = s(⌘)z � ⌘(⌘ + 1)q2(⌘, z) 2 k[⌘, z]

is of the form ↵z + � for some ↵ 2 k⇤ and � 2 k[⌘].
When we write q2 =

P
i�0

q2,i(y)zi for q2,i 2 k[y], we obtain q2,i = 0 for each
i � 2 (as h has degree 1 in z) and s(y) � y(y + 1)q2,1(y) 2 k⇤. As deg(s)  1, this
yields q2,1 = 0, and then s(y) 2 k⇤. Moreover, q2 = q2,0(y) 2 k[y]. ⇤
Lemma 3.7.3. Let p, q 2 k[y, z] such that deg(p)  1 and deg(q)  3. Assume
that (x(y + z2) + z, xp + q) : A3 ! A2 is an affine linear system of affine spaces.
Then

p 2 k , q = a · (y + z2) + b for some a, b 2 k and (p, a) 6= (0, 0) .

Proof. Suppose first that p 2 k. When we write r = q(y�z2, z) 2 k[y, z], we obtain
q = r(y + z2, z). For each � 2 k, the polynomial

x(y + z2) + z � �(xp + q) = x(y + z2 � �p) + z � �r(y + z2, z)

defines an A2 in A3, so the same holds for xy+z��r(y+�p, z). By Proposition 2.2.2,
the polynomial z � �r(�p, z) 2 k[z] is of degree 1 for each � 2 k. This implies
that the polynomial r(�p, z) 2 k[�, z] lies in k[�]. As p 2 k, either p 6= 0 and
r(y, z) 2 k[y] or p = 0 and r(y, z) 2 k+ yk[y, z]. The first case yields q 2 k[y + z2],
so q = a · (y + z2) + b for some a, b 2 k, since deg q  3. In the second case, we
write b = q(0, 0) and obtain that q � b is irreducible, as it defines the preimage of
the hyperplane y = b. Hence, r(y, z) � b 2 yk[y, z] is irreducible, so equal to ay for
some a 2 k⇤. As before we get q = a · (y + z2) + b. In both cases (p, a) 6= (0, 0).



AUTOMORPHISMS OF THE AFFINE 3-SPACE OF DEGREE 3 31

It remains to see that p 62 k is impossible. We write p = ay + bz + c for some
(a, b) 2 k2 \ {(0, 0)} and c 2 k. If a = 0, then b 6= 0 which yields k[y + z2, p] =
k[y + z2, z] = k[y, z], impossible by Lemma 3.7.1. We may thus assume that a = 1.
We write q = r + z + µ, with µ 2 k and r 2 k[y, z] such that r(0, 0) = 0. For each
� 2 k, the polynomial

�(x(y + z2) + z) + (1 � �)(xp + q � µ) = x(y + �z2 + (1 � �)(bz + c)) + z + (1 � �)r

defines an A2 in A3, so the same holds for xy+z+(1��)·r(y��z2+(��1)(bz+c), z).
We again apply Proposition 2.2.2, and find that z + (1 � �) · r(��z2 + (�� 1)(bz +
c), z) 2 k[z] is of degree 1 for each � 2 k, so the polynomial

R = r(��z2 + (�� 1)(bz + c), z) 2 k[�, z]

is an element of k[�] (independent of z). If r(y, z) 62 k, then d := degy(r) � 1 and
we may write r = r0(z) + r1(z)y + . . . + rd(z)yd where rd 6= 0. Thus we get

R = r(�(bz + c � z2) � (bz + c), z) =
dX

i=0

�iqi

where q0, . . . , qd 2 k[z] and qd = (bz + c � z2)drd(z) 2 k[z] \ k. This contradicts
R 2 k[�]. Hence r(y, z) 2 k, so r = r(0, 0) = 0. This proves that q = z + µ. But
this is impossible, as the zero locus of the polynomial x(y + z2)+ z � (xp+ q �µ) =
x(z2 � bz � c) is not isomorphic to A2 (it is reducible). ⇤

3.8. Linear systems of affine spaces of degree  3 in standard form. We
start with a lemma, which lists the possibilities for the polynomials p1, . . . , pn in
case of a linear system of affine spaces A3 ! An of degree  3 in standard from
where the polynomials p1, . . . , pn lie in k[y].

Lemma 3.8.1. Let n � 1 and let pi 2 k[y], qi 2 k[y, z] for i = 1, . . . , n such that
f = (f1, . . . , fn) = (xp1 + q1, . . . , xpn + qn) : A3 ! An is a linear system of affine
spaces of degree  3. Let us assume that

V := spank{p1, . . . , pn} ✓ spank{1, y, y2} .

Then, up to affine coordinate changes in y at the source, one of the following cases
holds:

case n V
(1) 2 or 3 k(y + 1) � ky2

(2) 2 or 3 k � ky2

(3) 2 or 3 k � ky(y + 1)
(4) 2 or 3 k � ky
(5) 1 , 2 or 3 k
(6) 1 or 2 kp where p 2 {0, y, y2, y(y + 1)}

Proof. We first prove that ky � ky2 is not contained in V . Indeed, we could then
assume that p1 = y and p2 = y2, but then (f1, f2) is not a linear system of affine
spaces by Lemma 3.7.2(1). This proves in particular that dim V  2.

Suppose now that dim V  1. If n  2, we are in case (5) or (6) up to an affine
coordinate change in y. If n = 3 and V = k, we obtain case (5). We then prove that
n = 3 and V 6= k is impossible. Indeed, otherwise, there is y0 2 k with pi(y0) = 0
for i = 1, 2, 3 and the Jacobian of f would be non-invertible in all points (x, y0, z),
which contradicts Lemma 3.2.5(7).
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We may now assume that dim V = 2, so n 2 {2, 3}. After a reordering of
f1, . . . , fn, we get V = kp1 � kp2. If deg(pi)  1 for i = 1, 2 we are in case
(4). After a possible exchange of f1, f2 we may assume that deg(p2) = 2. After
adding a certain multiple of f2 to f1 we may assume that deg(p1) 2 {0, 1}. If
deg(p1) = 0, then after an affine coordinate change in y at the source, we are in
case (2) or (3) depending on whether p2 is a square or not. If deg(p1) = 1, then
we may assume after an affine coordinate change in y at the source that p1 = y
and p2 = a2y2 + by + c2 for a, b, c 2 k with ac 6= 0 (indeed, 0 is not a common
root of p1, p2, as they are linearly independent, see Lemma 3.7.2(1)). After adding
�(2ac + b)f1 to f2 we obtain p2 = (ay � c)2. Thus after the coordinate change
y 7! c

a (y + 1) we get p2 = c2y2, p1 = c
a (y + 1) and thus we are in case (1). ⇤

Remark 3.8.2. If char(k) 6= 2, then in case (2) of Lemma 3.8.1, one gets V =
k � k(y + 1

2
)2. Thus after the coordinate change y 7! y � 1

2
we are in case (3).

In the case of a linear system of affine spaces of degree 3 of A3 in standard form
such that one component is of the form x(y + z2) + z, the remaining components
are almost determined, up to affine automorphisms at the target:

Lemma 3.8.3. Let n 2 {2, 3} and let pi, qi 2 k[y, z] for i = 1, . . . , n such that
f = (f1, . . . , fn) = (x(y +z2)+z, xp2 + q2, . . . , xpn + qn) is a linear system of affine
spaces of degree 3. Then, up to an affine coordinate change at the target we have:

(1) n = 2 and f = (x(y + z2) + z, a(y + z2) + bx) for (a, b) 2 k2 \ {0} or
(2) n = 3 and f = (x(y + z2) + z, y + z2, x).

Proof. For i = 2, . . . , n, let pi,2, qi,3 2 k[y, z] be the homogeneous parts of degree 2
and 3 of pi and qi, respectively.

We now prove that pi,2 is divisible by z2 for each i 2 {2, . . . , n}. If qi,3 = 0, this
follows from Proposition 3.5.2(ii), applied to the linear system (f1(y, x, z), fi(y, x, z)).
Now, assume qi,3 6= 0 and that pi,2 is not a multiple of z2 to derive a contradiction.
Since for each � 2 k the polynomial �f1 + fi = x(�(y + z2)+ pi)+ (�z + qi) defines
an A2 in A3, we get that for general � 2 k the polynomial �(y + z2) + pi 2 k[y, z]
defines a disjoint union of curves in A2 which are isomorphic to A1 (see Propo-
sition 2.2.1). In particular, for general (and thus for all) � 2 k, the polynomial
�z2 + pi,2 is a square. Since pi,2 is not a multiple of z2 we get that char(k) = 2 and
for general � 2 k, the polynomials �z2 + pi,2 and qi,3 in k[y, z] have no common
non-zero linear factor (remember that qi,3 6= 0). This implies that the homogeneous
part of degree 3 of �f1 + fi, which is equal to x(�z2 + pi,2) + qi,3, is irreducible for
general � 2 k and thus �f1 +fi does not define an A2 in A3 (see Proposition 2.3.5),
contradiction.

For each i 2 {2, . . . , n}, we may now add multiples of f1 to fi and assume that
deg(pi)  1. Lemma 3.7.3 implies that pi 2 k and gives the existence of ai, bi 2 k
such that

fi = xpi + ai(y + z2) + bi and (pi, ai) 6= (0, 0) .

After applying a translation at the target, we may assume that bi = 0. If n = 2,
then we are in case (1). Hence, we assume n = 3. Since f2 and f3 are linearly
independent, it follows that p2a3 � p3a2 6= 0; thus after a linear coordinate change
in y, z at the target, we may assume that

✓
a2 p2

a3 p3

◆
=

✓
1 0
0 1

◆
.
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This proves the lemma. ⇤

Lemma 3.8.4. Let n � 1. For i 2 {1, . . . , n}, let fi = xpi +qi where pi, qi 2 k[y, z]
and deg(pi)  2, deg(qi)  3. If f = (f1, . . . , fn) : A3 ! An is a linear system of
affine spaces, then one may apply affine automorphisms at the target and source
and reduce to the case where p1, . . . , pn 2 k[y] (and still have q1, . . . , qn 2 k[y, z]).

Proof. Assume first that deg(pi)  1 for all i. Lemma 3.7.1 implies that no two
of the linear parts of p1, . . . , pn are linearly independent, so we reduce to the case
pi 2 k[y] for all i by applying an automorphism on y, z.

Applying a permutation at the target we may now assume that deg(p1) = 2.
If p1 is irreducible, we apply an affine coordinate change at the source that fixes

[0 : 1 : 0 : 0] and obtain one of the cases of Proposition 2.3.4 for f1. The action of
this on p1 corresponds to the action of an affine automorphism on y, z and thus does
not change the fact that p1 is irreducible; it thus gives Case (2) of Proposition 2.3.4,
namely f1 = x(y + z2) + z. We apply Lemma 3.8.3 and obtain two possible cases.
Exchanging x and y at the source gives the result.

We may now assume that for each (�1, . . . ,�n) 2 kn \ {0}, the polynomial
�1p1 + . . .+�npn is reducible if it has degree 2. Indeed, otherwise we reduce to the
previous case by applying an affine automorphism at the target.

We may moreover assume that deg(pi) = 2 for each i 2 {1, . . . , n} by adding
multiples of p1 to the pi for i � 2.

Let pi,j 2 k[y, z] be the homogeneous part of degree j of pi for i = 1, . . . , n,
j = 0, 1, 2. Let V = spank(p1,2, . . . , pn,2). Applying Proposition 2.3.4 to each linear
combination

P
�ifi, we see that each element of V is a square. If dim(V ) = 1, then

applying a linear automorphism on y, z, we get pi,2 2 ky2 for each i 2 {1, . . . , n}.
For each i, the polynomial pi 2 k[y, z] is reducible, so pi 2 k[y] as desired.

It remains to see that dim(V ) � 2 leads to a contradiction. As every element of
V is a square, we get char(k) = 2 and V = ky2 + kz2. For each (�1, . . . ,�n) 2 kn,
the polynomial x

P
�ipi,2 +

P
�iqi,3 is reducible as it is the homogeneous part

of degree 3 of
P
�ifi (Corollary 2.3.6), so

P
�ipi,2 and

P
�iqi,3 have a common

linear factor. Hence, we may apply Lemma 3.1.3 to p1,2, . . . , pn,2 and q1,3, . . . , qn,3

and get h 2 k[y, z]1 with qi,3 = hpi,2 for i = 1, . . . , n. After applying the linear
automorphism (x � h, y, z) at the source, we reduce to the case where qi,3 = 0 for
i = 1, . . . , n. The vector space generated by the homogeneous parts of degree 3 of
f1, . . . , fn is then equal to kxy2 +kxz2. This is impossible, as Proposition 3.5.2(ii)
applied to (f1(y, x, z), . . . , fn(y, x, z)) shows. ⇤

3.9. The proof of Theorem 3. In this section, we give a description of all linear
systems A3 ! An of degree  3 up to composition of affine automorphisms at the
source and target and prove in particular Theorem 3.

Proposition 3.9.1. Let n � 2. For i 2 {1, . . . , n}, let fi = xpi + qi where pi, qi 2
k[y, z] and deg(pi)  2, deg(qi)  3. If f = (f1, . . . , fn) : A3 ! An is a linear
system of affine spaces, then n  3 and f is equivalent to (g1, . . . , gn) : A3 ! An

with one of the following possibilities:
(i) (g1, g2, g3) = (x + p(y, z), y + q(z), z) where p 2 k[y, z], q 2 k[z];
(ii) (g1, g2, g3) = (xy+ya(y, z)+z, x+a(y, z)+r(y), y) where a 2 k[y, z], r 2 k[y];
(iii) (g1, g2) = (xy + ya(y, z) + z, y) where a 2 k[y, z];
(iv) (g1, g2) = (xy2 + y(z2 + az + b) + z, y) where a, b 2 k.
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Proof. Using Lemma 3.8.4, we may assume that pi 2 k[y] for all i.
We then apply Lemma 3.8.1, and may assume that p3 = 0 if n = 3 and that

(p1, p2) is in one of the following cases:
(1) (y2, y + 1) (4) (y, 1)
(2) (y2, 1) (5) (1, 0)
(3) (y(y + 1), 1) (6) (p, 0) with p 2 {0, y, y2, y(y + 1)} and n = 2

We now go through the different cases.
In Cases (1)-(4), if n = 3 then f3 = q3 is an element of k[y] of degree 1. This

follows from Lemma 3.7.2(2) applied to (f1, f3), as p3 = 0 and p1 2 k[y] \ k. One
can then, if one needs, replace f3 with ↵f3 +� for some ↵,� 2 k, ↵ 6= 0 and obtain
f3 = y.

In Cases (1)-(2), p1 = y2. There is ↵ 2 A↵(A3) that fixes [0 : 1 : 0 : 0] such that
↵⇤(f1) is one of the cases of Proposition 2.3.4. As ↵⇤(y2) is the coefficient of x in
↵⇤(f1) up to non-zero scalars, we obtain that ↵⇤(f1) is the polynomial of Case (5)
in Proposition 2.3.4 and ↵⇤(y) 2 k[y], so we reduce to the case where p1 = y2 and
q1 = ys(z) + z for some s 2 k[z] of degree  2.

(1): Here p2 = y + 1, so Lemma 3.7.2(4) (ii) shows that s(z) = �z + µ and
q2 = �z + r(y) where µ 2 k and r 2 k[y] has degre  3. After performing
(x, y, z) 7! (x, y, z + µ) at the source and adding constants at the target we may
assume µ = 0. Hence,

(f1, f2) = (xy2 � zy + z, x(y + 1) � z + r(y)) .

We apply (x, y, z) 7! (z, y + 1, �x) at the source and get
(f1, f2) = (xy + yz(y + 2) + z, x + z(y + 2) + r(y + 1)) .

This gives case (ii) if n = 2. If n = 3, then f3 is still an element of k[y] of degree 1
and we can then assume f3 = y to obtain Case (ii).

(2): Here p2 = 1, so f2 = x + q2(y, z) and if n = 3, then f3 2 k[y] is of degree 1,
so we may assume f3 = y. Lemma 3.7.2(4)(i) gives q2 2 k[y] and s 2 k, thus after
a permutation of x, y, z at the source we are in case (i).

(3): Here p1 = y(y+1), so q1 = a(y, z)y(y+1)+s(y)z + t(y) for polynomials a 2
k[y, z], s, t 2 k[z] of degree  1 with s(0)s(�1) 6= 0 (Proposition 2.2.2). Replacing
x with x � a(y, z), we may assume that a = 0. Lemma 3.7.2(5) then implies that
s(y) 2 k⇤ and q2(y, z) 2 k[y]. Hence,

(f1, f2) = (xy(y + 1) + sz + t(y), x + q2(y))

and if n = 3, we may assume f3 = y. After a permutation of x, y, z at the source
and a rescaling of f1, we are in case (i).

(4): Here p1 = y, so q1 = ã(y, z)y + ↵z + � where ã 2 k[y, z], ↵ 2 k⇤ and � 2 k
(Proposition 2.2.2). Replacing z with ↵�1(z � �), we get f1 = xy + a(y, z)y + z for
some a 2 k[y, z]. By Lemma 3.7.2(3) there is r(y) 2 k[y] with f2 = x+a(y, z)+r(y).
Hence, we are in case (ii).

(5): If n = 2, then according to Lemma 2.3.2 we may apply an affine auto-
morphism in (y, z) at the source in order to get f2 = q2 = y + q(z) and thus we
are in case (i). If n = 3, then f = (x + q1, q2, q3). Since A3 ! A2, (x, y, z) 7!
(q2(y, z), q3(y, z)) is an affine linear system of affine spaces, by Lemma 3.2.5(6) the
same holds for (q2, q3) : A2 ! A2. By Proposition 3.2.7, we get up to affine auto-
morphisms in y, z at the source and target that (q2, q3) = (y + q(z), z) for some
q 2 k[z] and thus we are again in case (i).
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(6): Assume first that p = 0. Then by Proposition 3.2.7 we may assume that
f = (y + q(z), z) for some q 2 k[z]. After replacing y with x and z with y we are
in case (i). In all other cases p 2 k[y] \ k and by Lemma 3.7.2(2) we get that f2

is a polynomial of degree 1 in k[y]. By Proposition 2.3.4 there is ↵ 2 A↵(A3) that
fixes [0 : 1 : 0 : 0] such that ↵⇤(f1) is one of the polynomials in the cases (1)-(6) of
Proposition 2.3.4. Since up to scalars, ↵⇤(p) is the factor of x in ↵⇤(f1) (when we
consider it as a polynomial in x over k[y, z]) and since p 2 {y, y2, y(y+1)}, it follows
that ↵⇤(f1) belongs to one of the Cases (4)-(6) of Proposition 2.3.4 and ↵⇤(y) 2 k[y].
In particular, ↵⇤(f2) is a polynomial of degree 1 in y. Proposition 2.3.5 then gives
� 2 A↵(A3) such that �⇤(y) 2 k[y] and such that �⇤(f1) is one of the polynomials
in cases A), B) or C) of Proposition 2.3.5. As �⇤(f2) is again a polynomial of degree
1 in k[y], we may replace it with y and get cases (i), (iii) or (iv).

⇤
As an immediate consequence we get

Corollary 3.9.2. Let n � 1 and let f : A3 ! An be a linear system of affine spaces
of degree  3. Then f is equivalent to a linear system of affine spaces in standard
form if and only if f is a trivial A3�n bundle. Moreover, the latter condition is
satisfied if char(k) 62 {2, 3}.

Proof. If f : A3 ! An is a trivial A3�n-bundle, then f is equivalent to a linear
system of affine spaces in standard form by Corollary 3.6.3. Conversely, we assume
that f is a linear system of affine spaces in standard form and prove that f is a trivial
A3�n-bundle. If n = 1, then f is a variable of k[x, y, z] (Corollary 2.2.3), so it defines
a trivial A2-bundle. If n � 2, we go through the four cases of Proposition 3.9.1. In
case (i) and (ii), the morphism (g1, g2, g3) : A3 ! A3 defines an automorphism and
in case (iii) and (iv), Proposition 2.2.2(2) gives the existence of g3 2 k[x, y, z] such
that (g1, g2, g3) 2 Aut(A3). The second claim follows from Proposition 3.6.1. ⇤

We now come to the proof of our description of linear systems of affine spaces
A3 ! An of degree  3:

Proof of Theorem 3. Let f1, . . . , fn 2 k[x, y, z] such that f = (f1, . . . , fn) : A3 !
An is a linear system of affine spaces of degree  3. If f : A3 ! An is not a trivial
A3�n-bundle, then by Corollary 3.9.2 and Proposition 3.6.1, we are in cases (8)
or (9). Thus we may assume that f : A3 ! An is a trivial A3�n-bundle. If n = 1,
this means that f = f1 is a variable, and the description of f follows from Propo-
sition 2.3.5. We may then assume that n � 2, that f is in standard form (applying
again Corollary 3.9.2) and then go through the different cases of Proposition 3.9.1:

(i): (f1, f2) = (x+p(y, z), y+q(z)) with p 2 k[y, z] and q 2 k[z], and f3 = z if n =
3. Since deg(f)  3, we may write p =

P
3

i=0
pi(y, z) and q(z) =

P
3

i=0
qizi where

pi 2 k[y, z] is homogeneous of degree i and qi 2 k. After applying a translation at
the target we may assume that p0 = 0 and q0 = 0. After composing f with the
automorphism (x � p1(y � q1z, z), y � q1z, z) at the source we are either in case (4)
or (10).

(ii) and (iii): There exist a 2 k[y, z] of degree  2 and r 2 k[y] of degree  3
such that g = (xy+ya(y, z)+z, x+a(y, z)+r(y), y) satisfies: f is either equal to g,
or f is equal to ⇡�g where ⇡ : A3 ! A2 is one of the projections (x, y, z) 7! (x, z) or
(x, y, z) 7! (x, y). Write r(y) = r0+r1y+r2y2+r3y3 and a = a0+a1(y, z)+a2(y, z)
where ri 2 k and ai 2 k[y, z] is homogeneous of degree i. After adding constants
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at the target, we may assume r0 = 0. After applying (x � a0 � a1(y, z), y, z) at
the source, we may further assume that a = a2 is homogeneous of degree 2. After
applying the permutation of the coordinates (x, y, z) 7! (y, z, x) at the source, we
have replaced g with g = (yz + za2(z, x) + x, y + a2(z, x) + r1z + r2z2 + r3z3, z).

If a2(z, x) 2 k[z] and f2 6= z, then after applying (x, y � r1z, z) at the source we
are in case (4) or case (10). If a2(z, x) 2 k[z] and f2 = z, then after exchanging y and
z at the source we are again in case (4). Thus we may assume that a2(z, x) 62 k[z].
If n = 2, then we are in case (5) or (6) and if n = 3, then we are in case (11) after
applying (x, y � r1z, z) at the target.

(iv): This is case (7). ⇤
Next, we will show that the cases in Theorem 3 are all pairwise non-equivalent.

For this we need the following lemma.

Lemma 3.9.3. For each r2 2 k[y, z] \ k[y], homogeneous of degree 2, it is not
possible to find p 2 k[y, z], � 2 k and ↵ 2 A↵(A3) such that

↵⇤(xy + yr2(y, z) + z) = �x + p(y, z) .

Proof. Suppose for contradiction that p,�,↵ exist. We may assume that ↵ 2 GL3,
as a translation sends �x + p(y, z) onto �x + p̃(y, z) for some p̃ 2 k[y, z]. Hence,
the homogeneous part of degree 2 of ↵⇤(xy +yr2(y, z)+ z) is ↵⇤(xy) 2 k[y, z]. This
implies that ↵⇤(x),↵⇤(y) are linearly independent elements of ky + kz, as k[y, z] is
factorially closed in k[x, y, z]. Replacing ↵ by its composition with an element of
GL2 acting on y, z (which simply replaces p with another polynomial in k[y, z]), we
may assume that ↵⇤(x) = z and ↵⇤(y) = y. Hence, ↵⇤(z) = ax + by + cz for some
a, b, c 2 k, a 6= 0. This gives

�x + p(y, z) = ↵⇤(xy + yr2(y, z) + z) = yz + yr2(y, ax + by + cz) + ax + by + cz ,

impossible as r2 2 k[y, z] \ k[y] and a 6= 0, so the coefficient of x of the right hand
side is not constant. ⇤
Proposition 3.9.4. The eleven families in Theorem 3 define disjoint sets of equiv-
alence classes of affine linear systems of affine spaces, i.e. if (k), (l) 2 {(1), (2),
. . . , (11)}, and f, g : A3 ! An are equivalent affine linear systems of affine spaces
as in family (k) and (l) of Theorem 3, respectively, then (k) = (l).

Proof. If f or g is a non-trivial A1-fibration, then both are. As char(k) = 2 in (8)
and char(k) = 3 in (9), we obtain (k) = (l) =(8) or k = l =(9). We may now
assume that (k) and (l) are both contained in one of the sets {(1), (2), (3)}, {(4),
(5), (6), (7)} or {(9), (10), (11)}.

We write f = (f1, . . . , fn) and g = (g1, . . . , gn).
Assume that f1 = xy2 +y(z2 +az+b)+z for some a, b 2 k, i.e. (k) 2 {(3), (7)}.

Then for general (�1, . . . ,�n), the homogeneous part of degree 3 of
P
�ifi does not

factor into linear polynomials. This has to be the same for the homogeneous part
of degree 3 of

P
�igi, so (k) = (l) 2 {(3), (7)} by inspecting the cases that are

different from (3), (7). The same holds when (l) 2 {(3), (7)}, so we may exclude
these two cases.

Assume now that f1 = x + r2(y, z) + r3(y, z) for homogeneous polynomials
r2, r3 2 k[y, z] of degree 2 and 3, respectively, i.e. (k) 2 {(1), (4), (10)}. For
each (�1, . . . ,�n), the polynomial

P
�ifi is equal to �x + p(y, z) for some � 2 k

and p 2 k[y, z]. Lemma 3.9.3 implies that g1 is not equivalent to xy + ya2(y, z) + z
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for some a2 2 k[y, z] \ k[y], homogeneous of degree 2, so (l) /2 {(2), (5), (6), (11)}.
This yields (k) = (l) 2 {(1), (4), (10)}. As before, we may now exclude the cases
(1), (4) and (10).

It remains to see that (k) =(5) and (l) =(6) are not equivalent. We take ho-
mogeneous polynomials a2, b2 2 k[x, z] \ k[z] of degree 2 and r1, r2, r3 2 k such
that

f = (f1, f2) = (yz + za2(x, z) + x, y + a2(x, z) + r1z + r2z
2 + r3z

3)

g = (g1, g2) = (yz + zb2(x, z) + x, z) .

and prove that f, g are not equivalent. For i = 1, 2, denote by fi,3, gi,3 2 k[x, y, z]
the homogeneous part of degree 3 of fi and gi, respectively. If r3 6= 0, then f1,3, f2,3

are linearly independent as a2 62 k[z], but g1,3, g2,3 are not, so f and g are not
equivalent. If r3 = 0, as a2 62 k[z], we get that deg(�1f1 + �2f2) 2 {2, 3} for each
(�1,�2) 6= (0, 0). As deg(g2) = 1, f and g are not equivalent. ⇤

Corollary 3.9.5. Every automorphism of degree  3 of A3 is tame.

Proof. As for each a 2 k[x, z] and each r 2 k[z] we have the decomposition

(x + yz + za(x, z), y + a(x, z) + r(z), z) = h1 � ◆ � h2 � ◆
where h1 = (x+yz, y+r(z), z) 2 Triangk(A3), h2 = (x+a(y, z), y, z) 2 Triangk(A3)
and ◆ = (y, x, z) 2 A↵k(A3), it follows from Theorem 3 that all automorphisms of
degree  3 of A3 are tame. ⇤

4. Dynamical degrees of automorphisms of A3
of degree at most 3

As an application of our description of automorphisms of A3 of degree  3
(see Theorem 3), we list in this section all possible dynamical degrees of these
automorphisms. Recall that the dynamical degree satisfies �(f)  deg(f) and that
�(f) = �(g) if f, g are conjugated automorphisms in Aut(An) and more generally
if f, g are only conjugated in the bigger group Bir(An) of birational maps of An.

4.1. Affine-triangular automorphisms. We say that an element f 2 Aut(An)
is affine-triangular if f = ↵ � ⌧ , where ↵ 2 A↵(An) is an affine automorphism and
⌧ 2 Triangk(An) is a triangular automorphism. Note that an element g 2 Aut(An)
is equivalent to a triangular automorphism if and only if it is conjugate to an affine-
triangular automorphism by an affine automorphism. The dynamical degrees of
affine-triangular automorphisms of A3 can be computed, using a simple algorithm
described in [BvS19a]. In particular, one has the following result.

Theorem 4.1.1. [BvS19a, Theorem 1] For each field k and each integer d � 2, the
set of dynamical degrees of all affine-triangular automorphisms of A3 of degree  d
is equal to

(
a +

p
a2 + 4bc

2

����� (a, b, c) 2 N3, a + b  d, c  d

)
\ {0}.

Moreover, for all a, b, c 2 N such that � = a+
p

a2+4bc
2

6= 0, the dynamical degree of
the automorphism

(z + xayb, y + xc, x)

is equal to �.
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Corollary 4.1.2. For each d � 1 and each field k, let us denote by ⇤d,k ⇢ R the
set of dynamical degrees of all automorphisms of A3

k
of degree d. We then have

⇤1,k = {1}
⇤2,k = {1,

p
2, (1 +

p
5)/2, 2}

⇤3,k ◆ {1,
p

2, 1+
p

5

2
,

p
3, 2, 1+

p
13

2
, 1 +

p
2,

p
6, 1+

p
17

2
, 1 +

p
3, 3} .

Moreover, if f 2 Aut(A3

k
) is conjugated in Aut(A3

k
) to an affine triangular auto-

morphism of degree  3 (where k is a fixed algebraic closure of k), then

�(f) 2 {1,
p

2, (1+
p

5)/2,
p

3, 2, (1+
p

13)/2, 1+
p

2,
p

6, (1+
p

17)/2, 1+
p

3, 3} .

Proof. Let us write

Ld =

(
a +

p
a2 + 4bc

2

����� (a, b, c) 2 N3, a + b  d, c  d

)
\ {0} for each d � 1 .

This gives then
L1 = {1}
L2 = {1,

p
2, (1 +

p
5)/2, 2}

L3 = {1,
p

2, 1+
p

5

2
,

p
3, 2, 1+

p
13

2
, 1 +

p
2,

p
6, 1+

p
17

2
, 1 +

p
3, 3} .

For each d 2 {1, 2, 3} holds: If f 2 Aut(A3

k
) is conjugated in Aut(A3

k
) to an affine

triangular automorphism of degree  d, then Theorem 4.1.1 implies that �(f) 2 Ld.
In particular, ⇤1,k ✓ L1 and ⇤2,k ✓ L2, as every element of Aut(A3

k
) of degree  2

is equivalent to a triangular automorphism and is thus conjugate in Aut(A3

k
) to an

affine triangular automorphism (Theorem 3).
It remains to see that Ld ✓ ⇤i,k for d = 1, 2, 3, by giving explicit examples. For

d = 1, we simply take the identity. For d 2 {2, 3}, we use elements of the form

fa,b,c = (z + xayb, y + xc, x) 2 Aut(A3

k)

whose dynamical degrees are equal to �(fa,b,c) = (a +
p

a2 + 4bc)/2 when this
number is not zero (Theorem 4.1.1).

For d = 2, we use f1,0,2, f0,1,2, f1,1,1 and f1,1,2, which all have degree 2 and
dynamical degrees 1,

p
2, (1 +

p
5)/2, 2 respectively.

For d = 3, we first use f1,0,3, f0,1,3, f2,0,3, f1,1,3, f2,1,1, f0,2,3, f1,2,2, f2,1,2 and
f0,3,3 which all have degree 3 and dynamical degrees 1,

p
3, 2, (1+

p
13)/2, 1+

p
2,p

6, (1 +
p

17)/2, 1 +
p

3 and 3, respectively. In order to obtain the values
p

2 and
(1+

p
5)/2, we conjugate f0,1,2 = (z + y, y +x2, x) and f1,1,1 = (z +xy, y +x, x) by

(x, y+z3, z) and (x, y+z2, z), respectively, to get two automorphisms of A3 of degree
3 having dynamical degree equal to to �(f0,1,2) =

p
2 and �(f1,1,1) = (1 +

p
5)/2,

respectively. ⇤

4.2. List of dynamical degrees of all automorphisms of degree 3. An au-
tomorphism f 2 Aut(An) is called algebraically stable, if deg(fr) = deg(f)r for all
r > 0. In this case, �(f) = deg(f). Now, let ◆ : An ! Pn be the standard embed-
ding, i.e. ◆(x1, . . . , xn) = [1 : x1 : · · · : xn]. Note that f is algebraically stable, if
and only if the extension of f to a birational map f̄ : Pn 99K Pn via ◆ satisfies the
following: f̄r maps the hyperplane at infinity H1 = Pn \ ◆(An) not into the base
locus of f̄ for each r > 0 (follows for instance from [Sib99, Proposition 1.4.3] or
[Bla16, Lemma 2.14]).
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The computation of the dynamical degrees in Theorem 2 is heavily based on the
results of [BvS19a]. Let us recall the notations and results that we need here.

Definition 4.2.1. Let µ = (µ1, . . . , µn) 2 (R�0)n and r 2 R�0. For a polynomial
p =

P
pi1,...,in

xi1
1

· · · xin

n 2 k[x1, . . . , xn] (where pi1,...,in
2 k) its µ-homogeneous

part of degree r is the polynomial
X

i1µ1+...+inµn=r

pi1,...,in
xi1

1
· · · xin

n 2 k[x1, . . . , xn] .

For each p 2 k[x1, . . . , xn] \ {0}, we define degµ(p) to be the maximum of the real
numbers r 2 R�0 such that the µ-homogeneous part of degree r of p is non-zero.
We then set degµ(0) = �1.

Definition 4.2.2. Let f = (f1, . . . , fn) 2 Aut(An) and let µ = (µ1, . . . , µn) 2
(R�0)n. We define the µ-degree of f by

degµ(f) = inf
�
✓ 2 R�0 | degµ(fi)  ✓µi for each i 2 {1, . . . , n}

 
.

In particular, degµ(f) = 1 if the above set is empty. If ✓ = degµ(f) < 1, then for
each i 2 {1, . . . , n}, let gi 2 k[x1, . . . , xn] be the µ-homogeneous part of degree ✓µi

of fi. Then g = (g1, . . . , gn) 2 End(An) is called the µ-leading part of f .

The following result from [BvS19a] will serve as the main technique to compute
dynamical degrees.

Proposition 4.2.3. [BvS19a, Proposition A] Let f 2 Aut(An) and let µ = (µ1, . . . , µn) 2
(R>0)n be such that ✓ = degµ(f) 2 R>1. If the µ-leading part g : An ! An of f
satisfies gr 6= 0 for each r > 0, then the dynamical degree �(f) is equal to ✓.

Proposition 4.2.4. Let f = (f1, f2, f3) = ↵ � g 2 Aut(A3), where ↵ 2 A↵(A3),

g = (x + yz + za(x, z) + ⇠z, y + a(x, z) + r(z), z),

⇠ 2 k, a(x, z) = a0x2 + a1xz + a2z2 + a3x + a4z 2 k[x, z], a0, . . . , a4 2 k, r 2 k[z]
has degree  3 and (a0, a1) 6= (0, 0).

If ↵⇤(z) 2 k[z], then �(f) = degx(a) 2 {1, 2}. Otherwise, either f is algebraically
stable (in which case �(f) = 3) or f is conjugate by an element of Aut(A3) to an
affine-triangular automorphism of degree  3, or we can conjugate f by an affine
automorphism and reduce to one of the following cases:

(1) deg(r) = 3, ↵⇤(x) 2 k[z] and the coefficient of z3 in f3 is zero;
(2) deg(r)  2, ↵⇤(y) 2 k[z] and ↵⇤(z) 2 k[y, z];
(3) deg(r)  2, ↵⇤(y) 2 k[z], ↵⇤(x) 2 k[y, z] and a2 = 0;
(4) deg(r)  2, ↵⇤(x) 2 k[z], ↵⇤(y) 2 k[y, z], a1 6= 0 and a2 = 0.

Proof. (A) Suppose first that ↵⇤(z) 2 k[z]. Since the dynamical degree of the
automorphism z 7! ↵⇤(z) of A1 is 1, by [BvS19a, Lemma 2.3.1] the dynamical degree
of f is given by �(f) = limr!1 degx,y(fr)

1
r . If degx(a) = 1, then degx,y(fr) = 1

for each r � 1, so �(f) = 1. We then suppose that degx(a) = 2 and prove
that �(f) = 2. Choosing µ = (1, 1, 0), we find degx,y(p) = degµ(p) for each p 2
k[x, y, z]. As za(x, z) and a(x, z) are k-linearly independent, one finds degµ(f1) =
degµ(f2) = 2 and degµ(f3) = 0. Hence, degµ(f) = 2 and the µ-leading part of
f is g = (g1, g2, g3), where g3 = f3 2 k⇤z + k and g1, g2 2 (kx2z + kx2) \ {0}.
This implies by induction on r that no component of gr is zero, for each r � 1,
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which implies that limr!1 degµ(fr)
1
r = 2 [BvS19a, Lemma 2.6.1(5)]. This gives

�(f) = 2.
We may thus assume that ↵⇤(z) 62 k[z] in the sequel. We denote by f, g 2 Bir(P3)

and ↵, ⌧ 2 Aut(P3) the extensions of f, g and ↵, ⌧ , via the standard embedding
A3 ,! P3, (x, y, z) 7! [1 : x : y : z] and denote as usual by H1 the hyperplane
P3 \ A3 given by w = 0 where w, x, y, z denote the homogeneous coordinates of P3.
Denoting by fi,j the homogeneous part of fi of degree j, the restriction of f to H1
is given by [0 : x : y : z] 7! [0 : f1,3(x, y, z) : f2,3(x, y, z) : f3,3(x, y, z)].

(B) Suppose now that deg(r) = 3. This implies that spank(f1,3, f2,3, f3,3) ⇢
k[x, z]3 has dimension 2. Hence, the image by f of H1 is a line ` ⇢ H1 (as
(a0, a1) 6= (0, 0)) and the base-locus of f is the line `z ⇢ H1 given by z = 0.
As g(H1) is the line `z and as ↵⇤(z) 62 k[z], the line ` = ↵(`z) ⇢ H1 satisfies
` 6= `z. If f restricts to a dominant rational map ` 99K `, then f is algebraically
stable, and the same holds if f(` \ `z) is a point of ` \ `z. We may thus assume that
f(` \ `z) = ` \ `z 2 H1. The fact that f(` \ `z) and thus also g(` \ `z) is a point
implies that ` = ↵(`z) passes through the point [0 : 0 : 1 : 0] and thus ` is given
by x = µz for some µ 2 k. We may conjugate f with  = (x � µz, y, z) 2 A↵(A3)
(this replaces ↵ with  � ↵ and g with g � �1 so does not change the form of g)
and assume that µ = 0.

Since f(` \ `z) = ` \ `z = [0 : 0 : 1 : 0], the coefficient of z3 of f3 (and of f1)
is equal to zero. As ↵(`z) is the line x = 0, we get ↵⇤(x) 2 k[z]. We are thus in
Case (1).

(C): We may now assume that deg(r) < 3 (and still ↵⇤(z) 62 k[z]). We write

↵ = (↵11x + ↵12y + ↵13z + �1,↵21x + ↵22y + ↵23z + �2,↵31x + ↵32y + ↵33z + �3)

where ↵ij 2 k and �i 2 k for all i, j 2 {1, 2, 3}. As deg(r) < 3 the vector space
spank(f1,3, f2,3, f3,3) ⇢ k[x, z]3 has dimension 1. The image of H1 by f is the point
q = [0 : ↵11 : ↵21 : ↵31] 2 H1 and the base-locus of f is the union of three lines
(maybe with multiplicity). If q is not in the base-locus, then f is algebraic stable.
We may thus assume that fi,3(q) = 0 for each i. We distinguish the possible cases,
depending on whether ↵11 and ↵31 are zero or not.

(C1): Assume first that ↵11 = ↵31 = 0. As ↵⇤(z) 62 k[z], we get ↵32 6= 0.
Conjugating by  = (x � ↵12/↵32z, y, z) (this replaces ↵ with  � ↵ and g with
g � �1 so does not change the form of g), we may assume that ↵12 = 0.

As g = (x + yz + ⇠z, y + r(z), z) � (x, y + a(x, z), z), we find

h = (h1, h2, h3) = (x, y + a(x, z) + r(z), z) � f � (x, y � a(x, z) � r(z), z)
= (x, y + a(x, z) + r(z), z) � ↵ � (x + (y � r(z))z + ⇠z, y, z)

with

h1 = ↵13z + �1

h3 = ↵32y + ↵33z + �3

h2 = ↵21(x + (y � r(z))z + ⇠z) + ↵22y + ↵23z + �2 + a(h1, h3) + r(h3)

We see that h is affine-triangular of degree  3 and thus f is conjugate to an affine
triangular automorphism of degree  3.

(C2): Assume now that ↵11 6= 0 and ↵31 = 0. The equality ↵31 = 0 corresponds
to ↵⇤(z) 2 k[y, z]. As ↵⇤(z) 62 k[z], we have ↵32 6= 0. Conjugating by  = (x, y �
↵21/↵11x, z) we may assume that ↵21 = 0 (as before, this replaces g with g � �1
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and thus does not change the form of g). We then conjugate by (x, y �↵22/↵32z, z)
and may assume that ↵22 = 0, so ↵⇤(y) 2 k[z]. We are thus in Case (2).

(C3): Assume now that ↵31 6= 0. Conjugating by  = (x � ↵11/↵31z, y �
↵21/↵31z, z), we may assume that ↵11 = ↵21 = 0, so ↵⇤(x),↵⇤(y) 2 k[y, z] and
q = [0 : 0 : 0 : 1]. As f3,3(q) = 0 and as the coefficient of x in ↵⇤(z) is non-zero,
we get a2 = 0. If ↵12 6= 0, we conjugate by (x, y � ↵22/↵12x, z) and may assume
that ↵22 = 0, so ↵⇤(y) 2 k[z], giving Case (3). If ↵12 = 0 and a1 6= 0, we get
Case (4). We may thus assume that ↵11 = ↵12 = ↵21 = 0 and a1 = a2 = 0. This
gives ↵⇤(x) 2 k[z], ↵⇤(y) 2 k[y, z] and a(x, z) = a0x2 + a3x + a4z, with a0 6= 0.
Then,

h = (h1, h2, h3) = (x, y + a3x + a0x2, z) � f � (x, y � a3x � a0x2, z)
= (x, y + a3x + a0x2, z) � ↵ � (x + yz + a4z2 + ⇠z, y + a4z + r(z), z)

is such that h1 2 k[z], h2 2 k[y, z] and h3 2 k[x, y, z] are of degree  2. Hence,
f is conjugate by an element of Aut(A3) to an affine-triangular automorphism of
degree  2. ⇤

Proposition 4.2.5. The dynamical degree of any f = ↵�g as in the four Cases (1)-
(2)-(3)-(4) of Proposition 4.2.4, is given as follows:

(1) �(f) =

⇢
1 +

p
2 if a1 6= 0;

(1 +
p

13)/2 if a1 = 0.

(2) �(f) =

⇢
1 +

p
3 if a0 6= 0;

1 +
p

2 if a0 = 0.
(3) Writing the coefficient of z2 in f1 as ", we obtain

�(f) =

8
>><

>>:

1 +
p

3 if a1 6= 0 and " 6= 0;
(3 +

p
5)/2 if a1 6= 0 and " = 0;

(1 +
p

17)/2 if a1 = 0 and " 6= 0;
2 if a1 = 0 and " = 0.

(4) �(f) = 1 +
p

2.

Proof. (1): We have deg(r) = 3, ↵⇤(x) 2 k[z] and the coefficient of z3 in f3 is zero.
This gives f1 = f1,0 + f1,1 2 k[z] and implies that the coefficient of z3 in f2 is not
zero. Let ✓ be in the open intervall (2, 3) and choose µ = (1, 3, ✓). The µ-degree of
z3 is bigger than any other monomial that occurs in f1, f2 or f3, as ✓ > 2. We get
degµ(f1) = ✓, degµ(f2) = 3✓, with µ-leading parts equal to ⇣1z and ⇣2z3 for some
⇣1, ⇣2 2 k⇤, respectively. As the coefficient of z3 in f3 is zero, the monomial yz
occurs in f3. Hence, the µ-leading part of f3 belongs to (kyz +kxz2)\{0}. Indeed,
as degµ(y) > degµ(z) > degµ(x), degµ(yz) = 3 + ✓ is the biggest µ-degree of the
monomials of degree  2 appearing in f ; moreover degµ(yz) > degµ(x2z) = 2 + ✓.

If a1 6= 0, the coefficient of xz2 in f3 is not zero, so t 2 kxz2 (since ✓ > 2). We
choose ✓ = 1+

p
2 and observe that ✓2 = 2✓+1. Thus we obtain degµ(f) = ✓, with

µ-leading part g = (⇣1z, ⇣2z3, ⇣3xz2), where ⇣3 2 k⇤.
If a1 = 0, then t 2 kyz. We choose ✓ = (1+

p
13)/2 and observe that ✓2 = ✓+3.

Thus we obtain degµ(f) = ✓, with µ-leading part g = (⇣1z, ⇣2z3, ⇣3yz), where
⇣3 2 k⇤.

As g is monomial, we have gr 6= 0 for each r � 1, so �(f) is equal to ✓ in both
cases (Proposition 4.2.3).
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(2): We have deg(r)  2, ↵⇤(y) 2 k[z] and ↵⇤(z) 2 k[y, z]. This gives

f1 = f1,0 + f1,1 + f1,2 + ⇣1z(a0x2 + a1xz + a2z2),
f2 = f2,0 + ⇣2z,
f3 = f3,0 + f3,1 + ⇣3(a0x2 + a1xz) + "3z2,

where ⇣1, ⇣2, ⇣3 2 k⇤, "3 2 k.
If a0 6= 0, we choose ✓ = 1 +

p
3, µ = (✓ + 1, 1, ✓) and observe that ✓2 = 2✓ + 2.

Then, degµ(f) = ✓, with µ-leading part (⇣1a0x2z, ⇣2z, ⇣3a0x2). This gives �(f) = ✓
by Proposition 4.2.3.

If a0 = 0, then a1 6= 0. We choose ✓ = 1 +
p

2, µ = (✓+ 1, 1, ✓) and observe that
✓2 = 2✓ + 1. Then, degµ(f) = ✓, with µ-leading part (⇣1a1xz2, ⇣2z, ⇣3a1xz). This
gives �(f) = ✓ by Proposition 4.2.3.

(3): We have deg(r)  2, ↵⇤(y) 2 k[z], ↵⇤(x) 2 k[y, z] and a2 = 0. This gives

f1 = f1,0 + f1,1 + ⇣1(a0x2 + a1xz) + "3z2,
f2 = f2,0 + ⇣2z,
f3 = f3,0 + f3,1 + f3,2 + ⇣3z(a0x2 + a1xz),

where ⇣1, ⇣2, ⇣3 2 k⇤, "3 2 k.
If a1 6= 0 and "3 6= 0, then we choose ✓ = 1 +

p
3, µ = (2, 1, ✓) and observe that

✓2 = 2✓ + 2. Then, degµ(f) = ✓, with µ-leading part ("3z2, ⇣2z, ⇣3a1xz2). This
gives �(f) = ✓ by Proposition 4.2.3.

If a1 6= 0 and "3 = 0, then we choose ✓ = (3+
p

5)/2, µ = (1, ✓�2, ✓�1) and ob-
serve that ✓2 = 3✓�1. Then degµ(f) = ✓, with µ-leading part (⇣1a1xz, ⇣2z, ⇣3a1xz2).
This gives �(f) = ✓ by Proposition 4.2.3.

If a1 = 0 and "3 6= 0, then a0 6= 0 and we choose ✓ = (1 +
p

17)/2, µ = (2, 1, ✓).
Observe that ✓2 = ✓+4. Then degµ(f) = ✓, with µ-leading part ("3z2, ⇣2z, ⇣3a0x2z).
This gives �(f) = ✓ by Proposition 4.2.3.

If a1 = "3 = 0, then a0 6= 0 and we choose ✓ = 2, µ = (1, 1, ✓). Then degµ(f) = ✓,
with µ-leading part q = (⇣1a0x2 + ⇠1z, ⇣2z, ⇣3a0x2z + ⇠3z2) for some ⇠1, ⇠3 2 k.
Let q̂ : A2 ! A2, (x, z) 7! (⇣1a0x2 + ⇠1z, ⇣3a0x2z + ⇠3z2) and observe that q̂ is
dominant (as ⇣1a0 and ⇣3a0 are both non-zero). As ⇡ � q = q̂ � ⇡ for ⇡ : A3 ! A2,
(x, y, z) 7! (x, z), it follows that qr 6= 0 for each r � 1. This gives �(f) = ✓ by
Proposition 4.2.3.

(4): We have deg(r)  2, ↵⇤(x) 2 k[z], ↵⇤(y) 2 k[y, z], a1 6= 0 and a2 = 0. This
gives

f1 = f1,0 + ⇣1z,
f2 = f2,0 + f2,1 + ⇣2(a0x2 + a1xz) + "2z2,
f3 = f3,0 + f3,1 + f3,2 + ⇣3z(a0x2 + a1xz),

where ⇣1, ⇣2, ⇣3 2 k⇤, "2 2 k. We choose ✓ = 1 +
p

2, µ = (1, 2, 1 +
p

2) and observe
that ✓2 = 2✓ + 1. Then degµ(f) = ✓ with µ-leading part (⇣1z, "2z2, ⇣3a1xz2). As
a1 6= 0 and ⇣1, ⇣3 6= 0, this gives �(f) = ✓ by Proposition 4.2.3. ⇤

Example 4.2.6. We illustrate the different cases (1)-(4) of Proposition 4.2.4 and
Proposition 4.2.5, by giving a simple example in each possible case and we give
examples for the two cases where ↵⇤(z) = z and the case where f is algebraically
stable. All of them are of the form ↵ � g, where ↵ 2 A↵(A3), g = (x + yz +
za(x, z), y+a(x, z)+r(z), z), a = a0x2 +a1xz+a2z2 2 k[x, z]\k[z] is homogeneous
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of degree 2 and r 2 k[z] is of degree  3.

Case a r f 2 Aut(A3) �(f)
xz 0 (x + yz + xz2, y + xz, z) 1
x2 0 (x + yz + x2z, y + x2, z) 2
xz z3 (x + yz + xz2, z, y + xz + z3) 3

(1) xz z3 (z, y + xz + z3, x + yz + xz2) 1 +
p

2
(1) x2 z3 (z, y + x2 + z3, x + yz + x2z) (1 +

p
13)/2

(2) x2 0 (x + yz + zx2, z, y + x2) 1 +
p

3
(2) xz 0 (x + yz + xz2, z, y + xz) 1 +

p
2

(3) xz z2 (y + xz + z2, z, x + yz + xz2) 1 +
p

3
(3) xz 0 (y + xz, z, x + yz + xz2) (3 +

p
5)/2

(3) x2 z2 (y + x2 + z2, z, x + yz + x2z) (1 +
p

17)/2
(3) x2 0 (y + x2, z, x + yz + x2z) 2
(4) xz 0 (z, y + xz, x + yz + xz2) 1 +

p
2

Proof of Theorem 2. Corollary 4.1.2 gives the values of ⇤1,k and ⇤2,k, proves that
⇤3,k contains L3 = {1,

p
2, 1+

p
5

2
,

p
3, 2, 1+

p
13

2
, 1+

p
2,

p
6, 1+

p
17

2
, 1+

p
3, 3} and

that for each f 2 Aut(A3

k
) which is conjugated in Aut(A3

k
) to an affine triangular

automorphism of degree  3 (where k is a fixed algebraic closure of k), we have
�(f) 2 L3.

Moreover, the element (y +xz, z, x+z(y +xz)) 2 Aut(A3

k
) has dynamical degree

(3 +
p

5)/2 (follows from Proposition 4.2.5 as it belongs to Case (3) with a1 6= 0
and " = 0, see also Example 4.2.6).

It remains then to see that each element f 2 Aut(A3

k
) of degree 3 has a dynamical

degree which is either equal to (3 +
p

5)/2 or belongs to L3. By Theorem 3, f
is conjugate in Aut(A3

k
) either to an affine-triangular automorphism or to f =

↵� (yz +za(x, z)+x, y +a(x, z)+ r(z), z) where a 2 k[x, z]\k[z] is homogeneous of
degree 2 and r 2 k[z] is of degree  3. In the first case, �(f) 2 L3 by Corollary 4.1.2.
In the second case, Propositions 4.2.4 and 4.2.5 show that either �(f) = (3+

p
5)/2

or �(f) 2 L3. This achieves the proof. ⇤
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CHARACTERIZING SMOOTH AFFINE SPHERICAL

VARIETIES VIA THE AUTOMORPHISM GROUP

by Andriy Regeta & Immanuel van Santen

Abstract. — Let G be a connected reductive algebraic group. We prove that for a quasi-a�ne
G-spherical variety the weight monoid is determined by the weights of its non-trivial Ga-
actions that are homogeneous with respect to a Borel subgroup of G. As an application we
get that a smooth a�ne spherical variety that is non-isomorphic to a torus is determined
by its automorphism group (considered as an ind-group) inside the category of smooth a�ne
irreducible varieties.

Résumé (Caractérisation des variétés sphériques a�nes lisses par le groupe des automorphismes)
Soit G un groupe réductif connexe. Nous montrons que le monoïde des poids d’une variété

G-sphérique quasi-a�ne est déterminé par les poids de ses Ga-actions non triviales homo-
gènes sous l’action d’un sous-groupe de Borel de G. Comme application, nous obtenons qu’une
variété sphérique a�ne lisse non isomorphe à un tore est déterminée par son groupe des auto-
morphismes (considéré comme un ind-groupe) dans la catégorie des variétés irréductibles a�nes
lisses.
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1. Introduction

In this article, we work over an algebraically closed field k of characteristic zero if
it is not specified otherwise.

In [Kra17, Th. 1.1], Kraft proved that An is determined by its automorphism group
Aut(An) seen as an ind-group inside the category of connected a�ne varieties (see [FK]
for a reference of ind-groups) and in [KRvS19, Main Th.], this result was partially
generalized (over the complex numbers) in case Aut(An) is seen only as an abstract
group. In [CRX19, Th. A], the last results are widely generalized in the following
sense: An is completely characterized through the abstract group Aut(An) inside the
category of connected a�ne varieties. The result of Kraft was partially generalized
(over the complex numbers) to other a�ne varieties than the a�ne space in [Reg17]
and [LRU19]. More precisely, there is the following statement (formulated over the
complex numbers, but valid with the same proof over k):

Theorem 1 ([LRU19, Th. 1.4]). — Let X be an a�ne toric variety di�erent from the
torus and let Y be an irreducible normal a�ne variety. If Aut(X) and Aut(Y ) are
isomorphic as ind-groups, then X and Y are isomorphic as varieties.

Remark 2. — In fact, in both [Kra17] and [LRU19, Th. 1.4], the authors prove the
statements under the slightly weaker assumption that there is a group isomorphism
Aut(X) ' Aut(Y ) that preserves algebraic subgroups (see Section 5 for the defini-
tion).

A natural generalization of toric varieties are the so-called spherical varieties. Let G
be a connected reductive algebraic group. Recall that a normal variety X endowed
with a faithful G-action is called G-spherical if some (and hence every) Borel subgroup
in G acts on X with an open dense orbit, see e.g. [Bri10] for a survey and [Tim11]
for a reference of the topic. If G is a torus, then a G-spherical variety is the same
thing as a G-toric variety. If X is G-spherical, then X has an open G-orbit which is
isomorphic to G/H for some subgroup H ⇢ G. The family of G-spherical varieties is,
in a sense, the widest family of G-varieties which is well-studied: in fact, G-equivariant
open embeddings of G-homogeneous G-spherical varieties are classified by certain
combinatorial data (analogous to the classical case of toric varieties) by Luna-Vust
[LV83] (see also the work of Knop [Kno91]) and homogeneous G-spherical varieties are
classified for k equal to the complex numbers by Luna, Bravi, Cupit-Foutou, Losev
and Pezzini [Lun01, BP05, Bra07, Lun07, Los09b, BCF10, CF14].

In this paper, we generalize partially Theorem 1 to quasi-a�ne G-spherical vari-
eties. In order to state our main results, let us introduce some notation. Let X be an
irreducible G-variety for a connected algebraic group G with a fixed Borel subgroup
B ⇢ G. We denote by X(B) the character group of B, i.e., the group of regular group
homomorphisms B ! Gm. The weight monoid of X is defined by

⇤+(X) = {� 2 X(B) | O(X)(B)

� 6= 0},

J.É.P. — M., 2021, tome 8
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where O(X)(B)

� ⇢ O(X) denotes the subspace of B-semi-invariants of weight � of the
coordinate ring O(X) of X, i.e.,

O(X)(B)

� = {f 2 O(X) | b · f = �(b)f for all b 2 B}.

Our main result in this article is the following:

Main Theorem A. — Let X, Y be irreducible normal quasi-a�ne varieties, let
✓ : Aut(X) ' Aut(Y ) be a group isomorphism that preserves algebraic subgroups
(see Section 5 for the definition) and let G be a connected reductive algebraic group.
Moreover, we fix a Borel subgroup B ⇢ G. If X is G-spherical and not isomorphic to
a torus, then the following holds:

(1) Y is G-spherical for the induced G-action via ✓;
(2) the weight monoids ⇤+(X) and ⇤+(Y ) inside X(B) are the same;
(3) if one of the following assumptions holds

(i) X, Y are smooth and a�ne or
(ii) X, Y are a�ne and G is a torus,

then X and Y are isomorphic as G-varieties.

We prove Main Theorem A(1) in Proposition 7.7, Main Theorem A(2) in Corol-
lary 8.6 and Main Theorem A(3) in Theorem 8.7.

In case X is isomorphic to a torus and X is G-spherical, it follows that G is in
fact a torus of dimension dim X. Indeed, as each unipotent closed subgroup of G acts
trivially on X ' (k⇤)dim X and since G acts faithfully on X, it follows that G has no
unipotent elements; hence G is a torus [Hum75, Prop. B, §21.4]. Thus X ' G. Then
[LRU19, Exam. 6.17] gives an example of an a�ne variety Y such that there is a group
isomorphism ✓ : Aut(X)! Aut(Y ) that preserves algebraic subgroups, but Y is not
G-toric. Thus the assumption that X is not isomorphic to a torus in Main Theorem A
is essential.

Moreover, in general, we cannot drop the normality condition in Main Theorem A:
We provide an example in Proposition 9.1 where the weight monoids of X and Y are
di�erent, see Section 9.

Outline of the proof of Main Theorem A(1). — We introduce generalized root sub-
groups of Aut(X) and study these subgroups and their weights for a G-variety X (see
Section 7 for details). We show that if G is not a torus, then an irreducible normal
quasi-a�ne variety with a faithful G-action is G-spherical if and only if the dimension
of all generalized root subgroups of Aut(X) with respect to B is bounded (see Def-
inition 7.1, Proposition 7.3 and Lemma 7.6). This characterization of the sphericity
is stable under group isomorphisms of automorphism groups that preserve algebraic
groups and thus we get Main Theorem A(1).

J.É.P. — M., 2021, tome 8
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Outline of the proof of Main Theorem A(2). — We show that the weight monoid
⇤+(X) of a quasi-a�ne G-spherical variety X is encoded in the following set:

D(X) =

⇢
� 2 X(B)

���
there exists a non-trivial B-homogeneous
Ga-action on X of weight �

�

(see Section 4.2 for the definition of a B-homogeneous Ga-action). We call D(X) the
set of B-homogeneous Ga-weights of X. To D(X) ⇢ X(B) we may associate its asymp-
totic cone D(X)1 inside X(B)⌦Z R and consider the convex cone Conv(D(X)1) of it
(see Section 2 for the definitions). We prove then the following “closed formula” for
the weight monoid:

Main Theorem B. — Let G be a connected reductive algebraic group, B ⇢ G a Borel
subgroup, and X a quasi-a�ne G-spherical variety that is non-isomorphic to a torus.
If neither G is a torus nor Spec(O(X)) 6' A1 ⇥ (A1 r {0})dim(X)�1, then

⇤+(X) = Conv(D(X)1) \ SpanZ(D(X)),

where the asymptotic cones and linear spans are taken inside X(B)⌦Z R.

Main Theorem B is proved in Theorem 8.2. As a consequence of this result, we
get that the set of B-homogeneous Ga-weights determines the weight monoid, see
Corollary 8.4:

Main Theorem C. — Let G be a connected reductive algebraic group and let X, Y be
quasi-a�ne G-spherical varieties with D(X) = D(Y ). Then ⇤+(X) = ⇤+(Y ).

Using this last result, we get then Theorem A(2), as the existence of a group
isomorphism Aut(X)! Aut(Y ) that preserves algebraic groups implies that D(X) =
D(Y ), see Lemma 5.1.

Outline of the proof of Main Theorem A(3). — Note that the statement of Main
Theorem A(3ii) is the same as Theorem 1 together with Remark 2. We mentioned
it here as it is a direct consequence of Main Theorem A(2). Again using Main The-
orem A(2), the statement of Main Theorem A(3i) is a direct consequence of the
following beautiful result of Losev that proves Knop’s Conjecture:

Theorem 3 ([Los09a, Th. 1.3]). — If X and Y are smooth a�ne G-spherical varieties
with ⇤+(X) = ⇤+(Y ), then X and Y are isomorphic as G-varieties.

Outline of the structure of the paper. — In Section 2 we introduce the concept
of the asymptotic cone D1 associated to a given set D in a Euclidean vector space.
One can think of D1 as the set one receives if one looks at D from “infinitely far
away”. We provide in this Section several properties of (asymptotic) cones used for
our study of homogeneous Ga-actions on toric varieties in Section 6 and also for the
proof of our “closed formula” of the weight monoid in terms of the set of homogeneous
Ga-weights, i.e., Main Theorem B.
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In Sections 3, 4, 5 we gather general results about quasi-a�ne varieties, vector
fields, automorphism groups of varieties and root subgroups. This material is con-
stantly used in the rest of the article. For several results we don’t have an appropriate
reference to the literature and thus we provide full proofs.

In Section 6 we study homogeneous Ga-actions on quasi-a�ne toric varieties. Let us
highlight the two main results. For this, let X be a quasi-a�ne toric variety described
by some fan ⌃ of convex cones. Then the associated a�ne variety Xa↵ := Spec(O(X))
is again toric (see Lemma 3.4) and thus can be described by some convex cone �.
Our first main result in this section (Corollary 6.7) provides a full description of
the homogeneous Ga-actions on X in terms of the fan ⌃. In our second main result
(Corollary 6.9) we describe the asymptotic cone of the set D(X) of homogeneous
Ga-weights of X in terms of the convex cone �.

In Section 7 we show that the automorphism group determines the sphericity, i.e.,
we prove Main Theorem A(1). As already mentioned, the idea is to characterize the
sphericity in terms of so-called generalized root subgroups, see Proposition 7.3.

In Section 8 we prove Theorem 8.2 which gives the closed formula in Main Theo-
rem B. Note that for a quasi-a�ne G-spherical variety X the following fact holds: the
algebraic quotient Xa↵//U is an a�ne toric variety, where U denotes the unipotent
radical of a Borel subgroup of G. Using this fact and our study of the homogeneous
Ga-actions presented in Section 6, we prove Theorem 8.2. We then get Main The-
orem C as a consequence, see Corollary 8.4. At the end of this Section we prove
Theorem 8.7 which is the statement of Main Theorem A(3).

In Section 9 we provide an example that shows that the normality condition in
Main Theorem A is essential.

Acknowledgements. — The authors would like to thank Michel Brion for giving them
the idea to study asymptotic cones, which eventually led to a proof of the main
results. The authors also thank the anonymous referees for very helpful suggestions
and comments.

2. Cones and asymptotic cones

In the following section we introduce some basic facts about cones and asymptotic
cones. As a reference for cones we take [Ful93, §1.2] and as a reference for asymptotic
cones we take [AT03, Chap. 2].

Throughout this section V denotes a non-zero Euclidean vector space, i.e., a finite
dimensional R-vector space V 6= {0} together with a scalar product

V ⇥ V �! R, (u, v) 7�! hu, vi.

The induced norm on V we denote by k·k : V ! R.
A subset C ⇢ V is a cone if for all � 2 R>0 and for all c 2 C we have � · c 2 C.

The asymptotic cone D1 of a subset D ⇢ V is defined as follows:

D1 =
n

x 2 V r {0}
���

there exists a sequence (xi)i in D with kxik ! 1
such that xi/kxik ! x/kxk

o
[ {0}.
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The asymptotic cone satisfies the following basic properties, see e.g. [AT03,
Prop. 2.1.1, Prop. 2.1.9].

Lemma 2.1 (Properties of asymptotic cones)
(1) If D ⇢ V , then D1 ⇢ V is a closed cone.
(2) If C ⇢ V is a closed cone, then C1 = C.
(3) If D ⇢ D0 ⇢ V , then D1 ⇢ (D0)1.
(4) If D ⇢ V and v 2 V , then (v + D)1 = D1.
(5) If D1, . . . , Dk ⇢ V , then (D1 [ · · · [Dk)1 = (D1)1 [ · · · [ (Dk)1. ⇤

In order to illustrate the definition of the asymptotic cone, we draw the picture of
two sets D in R2 and their asymptotic cones D1 in R2. In the first case, D is given
by xy = 1, x > 0 and in the second case, D is the union of two translated copies of a
cone in the plane.

D

x

y

D1

x

y

and
x

y

D

x

y

D1

Lemma 2.2 (Asymptotic cone of a �-neighbourhood). — Let D ⇢ V and let � 2 R
with � > 0. Then the �-neighbourhood of D

D� := {x 2 V | there is y 2 D with kx� yk 6 �}

satisfies (D�)1 = D1.

Proof of Lemma 2.2. — We only have to show that (D�)1 ⇢ D1. Let 0 6= x 2 (D�)1
and let (xi)i be a sequence in D� such that kxik ! 1 and xi/ kxik ! x/ kxk.
By definition, there is a sequence (yi)i in D such that kxi � yik 6 �. In particular,
we get kyik ! 1. Let mi := min{kxik , kyik}. Then mi !1 and for su�ciently big i

0 6
����

xi

kxik
� yi

kyik

���� 6 kxi � yik
mi

6 �

mi
.

As �/mi ! 0, the above inequality implies x/kxk=limi!1 xi/kxik=limi!1 yi/kyik.
⇤

For a subset D ⇢ V we denote by int(D) the topological interior of D inside the
linear span of D.

Lemma 2.3 (Intersection of a cone with an a�ne hyperplane.) — Let C ⇢ V be a
cone and let H1 be an a�ne hyperplane in V such that 0 62 H1. If C \H1 6= ?, then
int(C) \H1 6= ?.

Proof. — Let ⇡ : V ! R be a linear map such that H1 = ⇡�1(1). By assumption,
there is c 2 C \ H1. We may assume that c lies in the topological boundary of C
inside the linear span of C (otherwise we are finished). By the continuity of ⇡, there
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is c0 2 int(C) such that |⇡(c) � ⇡(c0)| < 1. As ⇡(c) = 1, we get ⇡(c0) > 0. Then
� = 1/⇡(c0) 2 R>0 and thus �c0 2 int(C) \H1. ⇤

A subset C ⇢ V is called convex if for all x, y 2 C and all ↵ 2 [0, 1], we have
↵x + (1 � ↵)y 2 C. A convex cone C ⇢ V is called strongly convex if it contains no
linear subspace of V except the zero subspace. For a subset D ⇢ V , we denote by
Conv(D) the convex cone generated by D in V , i.e.,

Conv(D) = {�1v1 + · · · + �kvk 2 V | v1, . . . , vk 2 D and �1, . . . ,�k 2 R>0}.

Lemma 2.4 (Asymptotic cone of the intersection of a closed convex cone with an a�ne
hyperplane)

Let C ⇢ V be a closed convex cone and let H ⇢ V be a hyperplane. Then for each
v 2 V such that C \ (v + H) 6= ?, we have

(C \ (v + H))1 = C \H.

Proof. — We denote D := C\(v+H) ⇢ V . As D 6= ? we can take x 2 D. If y 2 C\H,
then x + y 2 C and x + y 2 v + H, thus x + y 2 D. This shows that x + (C \H) ⇢ D
and by Lemma 2.1, we get C \ H ⇢ D1. Now, from Lemma 2.1 we get also the
reverse inclusion (here we use that C is a closed cone):

D1 = (C \ (v + H))1 ⇢ C1 \ (v + H)1 = C1 \H1 = C \H. ⇤

A subset C⇢V is a convex polyhedral cone if there is a finite subset F ⇢V such that

C = Conv F.

For a convex polyhedral cone C in V , set

C_ = {x 2 V | hc, xi > 0 for all c 2 C}.

By [Ful93, Propty (1), p. 9] we have C = (C_)_. In particular C is closed in V .
A hyperplane H ⇢ V passing through the origin is called a supporting hyperplane

of a convex polyhedral cone C ⇢ V if C is contained in one of the closed half spaces
in V delimited by H, i.e., there is a normal vector u 2 V to H such that

C ⇢ {x 2 V | hu, xi > 0}.

A face of a convex polyhedral cone C ⇢ V is the intersection of C with a supporting
hyperplane of C in V . A face of dimension one of C is called an extremal ray of C.

For a fixed lattice ⇤ ⇢ V (i.e., a finitely generated subgroup of (V, +) of rank
dim V ), a convex polyhedral cone C ⇢ V is called rational (with respect to ⇤) if there
is a finite subset F ⇢ ⇤ such that C = Conv(F ). In case C is strongly convex, then C
is rational if and only if each extremal ray of C is generated by some element from
C\⇤, see [Ful93, p. 14]. Note that a face of a rational convex polyhedral cone is again
a rational convex polyhedral cone, see [Ful93, Prop. 2].

Lemma 2.5. — Let ⇤ ⇢ V be a lattice.
(1) If C ⇢ V is a rational convex polyhedral cone, then C = (C \ ⇤)1.
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(2) If v0 2 V , S ⇢ V denotes the unit sphere with center 0 and ⇢ : V r {0} ! S
denotes the map given by v 7! v/kvk, then ⇢((v0 + ⇤) r {0}) is dense in S.

Proof
(1) Let v1, . . . , vr 2 C \ ⇤ such that C = Conv(v1, . . . , vr). Then

K :=
�Pr

i=1
tivi 2 V | 0 6 ti 6 1 for i = 1, . . . , r

 

is a compact subset of C. In particular, there is a real number � > 0 such that
kvk 6 � for all v 2 K. Now, let c 2 C. Then there exist m1, . . . , mr 2 Z>0 and
0 6 t1, . . . , tr 6 1 such that

c =
rX

i=1

mivi

| {z }
2C\⇤

+

✓ rX

i=1

tivi

◆

| {z }
2K

.

This shows that c is contained in the �-neighbourhood (C \⇤)�. In summary, we get
C \ ⇤ ⇢ C ⇢ (C \ ⇤)� and by using Lemmas 2.1 and 2.2 the statement follows.

(2) By (1) applied to C = V and Lemma 2.1 we get V = ⇤1 = (v0 + ⇤)1.
By definition of the asymptotic cone, thus for every v 6= 0 in V there exists a sequence
(�i)i in ⇤ such that kv0 + �ik ! 1 and ⇢(v) = limi!1 ⇢(v0 + �i). This shows that
⇢((v0 + ⇤) r {0}) is dense in S = ⇢(V r {0}). ⇤

Proposition 2.6. — Let ⇤ ⇢ V be a lattice, let C ⇢ V be a convex polyhedral cone,
let H ⇢ V be a hyperplane, and let H 0 := � + H for some � 2 ⇤ r H.

(1) If C\H 0 6= ?, dim C\H = dim H and H is rational, then int(C)\H 0\⇤ 6= ?.
(2) If int(C) \H 0 \ ⇤ 6= ? and C \H is a rational convex polyhedral cone, then

C \H = (int(C) \H 0 \ ⇤)1.

The pictures below illustrate the setups of Proposition 2.6 in the two cases.

(1)
x

y

⇤

C

H H 0

� (2)
x

y

⇤

C

H H 0

�

Proof
(1) If dim V = 1, then H = {0}. Thus C \H 0 6= ? gives C \H 0 = {�} ⇢ ⇤ r {0}

and the statement follows. Hence, we assume dim V > 2.
As � 62 H, we get 0 62 H 0. Since C \ H 0 6= ? there is thus x 2 int(C) \ H 0

by Lemma 2.3. As dim(C \H) = dimH, the linear span of C \H is H and we get
that int(C \H) is a non-empty open subset of H. Set

D := x + (int(C \H) r {0}) ⇢ (int(C) \H 0) r {x}.

J.É.P. — M., 2021, tome 8



Characterizing smooth affine spherical varieties 387

Denote by S the unit sphere in H with center 0 and consider

⇡ : H 0 r {x} �! S, w 7�! w � x

kw � xk .

For all h 2 int(C \H) we have R>0h ⇢ int(C \H) and thus

⇡�1(⇡(D)) = D.

As dim H > 1 (note that dim V > 2), we get that D is a non-empty open subset of
H 0 r {x}, and thus the same is true for ⇡(D) in S (because ⇡ is open). As � 2 ⇤
and H 0 = � + H, it follows that H 0 \ ⇤ = � + (H \ ⇤). Using that H is rational,
we get that ⇡((H 0 \ ⇤) r {x}) is dense in S by Lemma 2.5(2) applied to the point
� � x 2 H and the lattice H \ ⇤ in H. By the openness of ⇡(D) in S, there is
� 2 (H 0 \ ⇤) r {x} ⇢ ⇤ with ⇡(�) 2 ⇡(D). In particular, � 2 ⇡�1(⇡(D)) = D and
thus � 2 D \ ⇤ ⇢ int(C) \H 0 \ ⇤.

(2) By assumption, there is y 2 int(C) \H 0 \ ⇤. Thus we get

y + (C \H \ ⇤) ⇢ int(C) \H 0 \ ⇤.

This implies by Lemma 2.1

(a) (C \H \ ⇤)1 ⇢ (int(C) \H 0 \ ⇤)1 ⇢ (C \H 0)1.

By Lemma 2.4 we get

(b) (C \H 0)1 = C \H.

By Lemma 2.5(1) applied to the rational convex polyhedral cone C \H ⇢ V we get

(c) C \H = (C \H \ ⇤)1.

Combining (a), (b) and (c) yields the result. ⇤

Proposition 2.7. — Let ⇤ ⇢ V be a lattice, C ⇢ V a convex polyhedral cone and
H0 ⇢ V a hyperplane such that C \ H0 is a rational convex polyhedral cone. Let
H1 ⇢ V be an a�ne hyperplane parallel to H0 and set H�1 := �H1. If C \Hi 6= ?
for each i 2 {±1}, then

C \H�1 \ ⇤ 6= ? () C \H1 \ ⇤ 6= ?.

The picture below illustrates the setup of Proposition 2.7.

x

y

⇤

C

H�1 H0 H1

J.É.P. — M., 2021, tome 8



388 A. Regeta & I. van Santen

Proof. — If H0 = H1, then H0 = H�1 and the statement is trivial. Thus we assume
that H0 6= H1, whence H0 6= H�1 and H1 6= H�1.

Since C \ H±1 6= ? and since H0, H1 and H�1 are pairwise disjoint, there exist
c±1 2 int(C) \ H±1 by Lemma 2.3. As C is convex, the line segment in V that
connects c1 and c�1 lies in int(C) and thus int(C)\H0 6= ?. Let B ⇢ C be the union
of the proper faces of C, i.e., B is the topological boundary of C inside the linear span
of C, see [Ful93, Propty (7), p. 10]. If C \H0 \⇤ ⇢ B, then by Lemma 2.5(1) applied
to the rational convex polyhedral cone C\H0 in V we get C\H0 = (C\H0\⇤)1 ⇢
B1 = B, a contradiction to int(C) \H0 6= ?. In particular, we may choose

�0 2 (C \H0 \ ⇤) r B.

By exchanging H1 and H�1, it is enough to prove “)” of the statement. For this,
let ��1 2 C \ H�1 \ ⇤. Since C is a convex polyhedral cone in V (and thus in the
linear span SpanR(C)), there is a finite set E ⇢ SpanR(C) r {0} with

C =
T

u2E
{v 2 SpanR(C) | hu, vi > 0},

see [Ful93, Propty (8), p. 11]. Since �0 2 C r B, we get hu, �0i > 0 for all u 2 E.
In particular, we may choose an integer m > 0 big enough so that

hu, m�0 � ��1i = mhu, �0i � hu, ��1i > 0

for all u 2 E, i.e., m�0���1 2 C. As �0 2 H0\⇤, we get m�0���1 2 C\H1\⇤. ⇤

3. Quasi-affine varieties

To any variety X, we can naturally associate an a�ne scheme

Xa↵ := Spec O(X).

Moreover this scheme comes equipped with the so-called canonical morphism

◆ : X �! Xa↵

which is induced by the natural isomorphism O(X) = O(Xa↵).

Remark 3.1. — For any variety X, the canonical morphism ◆ : X ! Xa↵ is dominant.
Indeed, let X 0 := ◆(X) ⇢ Xa↵ be the closure of the image of ◆ (endowed with the
induced reduced subscheme structure). Since the composition

O(X) = O(Xa↵) �! O(X 0) �! O(X)

is the identity on O(X), it follows that the surjection O(X) = O(Xa↵) ! O(X 0) is
injective and thus X 0 = X.

Lemma 3.2 ([Gro61, §5, Prop. 5.1.2]). — Let X be a variety. Then X is quasi-a�ne
if and only if the canonical morphism ◆ : X ! Xa↵ is an open immersion. ⇤

If X is quasi-a�ne and endowed with an algebraic group action, then this action
uniquely extends to an algebraic group action on Xa↵ :
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Lemma 3.3. — Let X be a quasi-a�ne H-variety for some algebraic group H. Then
Xa↵ is an a�ne scheme that has a unique H-action that extends the H-action on X
via the canonical open immersion X ,! Xa↵ .

Proof. — By Lemma 3.2, the canonical morphism X ! Xa↵ is an open immersion of
schemes and there is a unique action of H on Xa↵ that extends the H-action on X,
see e.g. [KRvS19, Lem. 5]. ⇤

Now, we compare the G-sphericity of X and Xa↵ .

Lemma 3.4. — Let G be a connected reductive algebraic group and let X be a quasi-
a�ne G-variety. Then

X is G-spherical () Xa↵ is an a�ne G-spherical variety.

Proof. — If Xa↵ is an a�ne G-spherical variety, then X is G-spherical by Lemma 3.2.
For the other implication, assume that X is G-spherical. It follows that O(X) is a

finitely generated algebra over the ground field by [Kno93] and thus Xa↵ = Spec O(X)
is an a�ne variety. Since X is irreducible, Xa↵ is irreducible by Remark 3.1. Moreover,
for each x 2 X, the local ring OX,x is integrally closed and thus O(X) =

T
x2X OX,x

is integrally closed, i.e., Xa↵ is normal. Since X is an open subset of Xa↵ , and since
a Borel subgroup of G acts with an open orbit on X, the same is true for Xa↵ . ⇤

For the rest in this section, we recall two classical facts from invariant theory.

Proposition 3.5 (see [Sha94, Lem. 1.4, part II] and [Kra84, §2.4 Lem.])
Let X be any variety endowed with an H-action for some algebraic group H. The

natural action of H on O(X) satisfies the following: If f 2 O(X), then Spank(Hf)
is a finite dimensional H-invariant subspace of O(X) and H acts regularly on it. ⇤

Proposition 3.6 (see [Sha94, Th. 3.3, part II]). — Let H be a connected solvable alge-
braic group and let X be an irreducible quasi-a�ne H-variety. Then, for every H-inva-
riant rational map f : X k there exist H-semi-invariants f1, f2 2 O(X) such that
f = f1/f2. ⇤

4. Vector fields

4.1. Generalities on vector fields. — Let X be any variety. We denote by Vec(X)
the vector space of all algebraic vector fields on X, i.e., all algebraic sections of the
tangent bundle TX ! X. Note that Vec(X) is in a natural way an O(X)-module.

Now, assume X is endowed with a regular action of an algebraic group H. Then,
Vec(X) is an H-module, via the following action: Let h 2 H and ⇠ 2 Vec(X), then
h · ⇠ is defined via

(h · ⇠)(x) = d'h(⇠('h�1(x))) for each x 2 X,

where 'h denotes the automorphism of X given by multiplication with h and d'h

denotes the di�erential of 'h. For a fixed character � : H ! Gm we say that a vector

J.É.P. — M., 2021, tome 8



390 A. Regeta & I. van Santen

field ⇠ 2 Vec(X) is normalized by H with weight � if ⇠ is a H-semi-invariant of
weight �, i.e., for all h 2 H the following diagram commutes

TX
d'h

// TX

X

⇠

OO

'h
// X

�(h)⇠

OO

We denote by Vec(X)�,H the subspace in Vec(X) of all vector fields which are normal-
ized by H with weight �. If it is clear which action on X is meant, we drop the index H
and simply write Vec(X)�. Note that Vec(X)� is in a natural way an O(X)H -module,
where O(X)H denotes the H-invariant regular functions on X. We denote by VecH(X)
the subspace of all H-invariant vector fields in Vec(X), i.e., VecH(X) = Vec(X)0,
where 0 denotes the trivial character of H.

Now, assume that X is a�ne. There is a k-linear map

Vec(X) �! Derk(O(X)), ⇠ 7�! D⇠,

where D⇠ : O(X) ! O(X) is given by D⇠(f)(x) := ⇠(x)(f) (here we identify the
tangent space of X at x with the k-derivations OX,x ! k in x). In fact, Vec(X) !
Derk(O(X)) is an isomorphism: Indeed, as X is a�ne, we have

Vec(X) =

⇢
⌘ : X �! TX

���
⌘ is a set-theoretical section and for all f 2 O(X)
the map x 7! ⌘(x)(f) is a regular function on X

�
,

see [FK, §3.2].

4.2. Homogeneous Ga-actions and vector fields. — The material of this small sub-
section is contained in [FK, §6.5], however formulated for all varieties.

Let P be an algebraic group that acts regularly on a variety X. Then we get a
k-linear map Lie P ! Vec(X), A 7! ⇠A, where the vector field ⇠A is given by

(⌫) ⇠A : X �! TX, x 7�! (deµx)A

and µx : P ! X, p 7! px denotes the orbit morphism in x: Indeed (⌫) is a morphism
as it is the composition of the morphisms

X �! TeP ⇥ TX, x 7�! (A, 0x) and dµ|TeP⇥TX : TeP ⇥ TX �! TX,

where 0x 2 TX denotes the zero vector inside TxX and µ : P ⇥X ! X denotes the
P -action.

Lemma 4.1. — If P is an algebraic group that acts faithfully on a variety X, then the
k-linear map Lie P ! Vec(X), A 7! ⇠A is injective.

Proof. — For each x 2 X, the kernel of the di�erential deµx : Lie P ! TxX of
the orbit morphism µx : P ! X, p 7! px is equal to Lie Px, where Px denotes the
stabilizer of x in P . If A 2 Lie P satisfies ⇠A = 0, then (deµx)A = 0 for each x 2 X,
i.e., A 2 Lie Px for each x 2 X. As P acts faithfully on X, we get {e} =

T
x2X Px

and thus {0} = Lie(
T

x2X Px) =
T

x2X Lie(Px) which implies A = 0. ⇤
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Let H be an algebraic group. A Ga-action on an H-variety X is called H-homo-
geneous of weight � 2 X(H) if

h � "(t) � h�1 = "(�(h) · t) for all h 2 H and all t 2 Ga,

where " : Ga ! Aut(X) is the group homomorphism induced by the Ga-action.

Lemma 4.2. — Let H be an algebraic group, X an H-variety and ⇢ an H-homogeneous
Ga-action on X of weight � 2 X(H). Then the image of the previously introduced
k-linear map Lie Ga ! Vec(X), A 7! ⇠A associated to ⇢ lies in Vec(X)�,H .

Proof. — As ⇢ is H-homogeneous, we get for each x 2 X and each h 2 H the following
commutative diagram

Ga

µx
✏✏

t 7! �(h)t
// Ga

µhx
✏✏

X
'h

// X

where 'h : X ! X denotes multiplication by h. Taking di�erentials in the neutral
element e 2 Ga gives dx'hdeµx = �(h)deµhx for each A 2 Lie Ga. This implies that
h · ⇠A(x) = �(h)⇠A(x) for each A 2 Lie Ga and thus the statement follows. ⇤

Lemma 4.3. — Let H be an algebraic group and let N ⇢ H be a normal subgroup such
that the character group X(N) is trivial. If X is an irreducible H-variety, then

DH(X) =

⇢
� 2 X(H)

���
there is a non-trivial H-homogeneous
Ga-action on X of weight �

�

is contained in the set of H-weights of non-zero vector fields in VecN (X) that are
normalized by H.

Proof. — Let ⇢ : Ga ⇥ X ! X be a non-trivial Ga-action on X. By Lemmas 4.1
and 4.2 there is a non-zero ⇠ 2 Vec(X) such that for each h 2 H we have h ·⇠ = �(h)⇠.
Moreover, since X(N) = 0, ⇠ is N -invariant. Thus DH(X) is contained in the set of
H-weights of non-zero vector fields in VecN (X) that are normalized by H. ⇤

Now, assume that X is an a�ne variety and fix some non-zero element A0 2
Lie Ga. Moreover, denote by LNDk(O(X)) ⇢ Derk(O(X)) the cone of locally nilpotent
derivations on O(X), i.e., the cone in Derk(O(X)) of k-derivations D of O(X) such
that for all f 2 O(X) there is a n = n(f) > 1 such that Dn(f) = 0, where Dn denotes
the n-fold composition of D. There is a map

{Ga-actions on X} 1:1 ! LNDk(O(X)), ⇢ 7�! D⇠A0
,

where ⇠A0 is defined as in (⌫) with respect to the Ga-action ⇢. As for each f 2 O(X)
we have that D⇠A0

(f) is the morphism x 7! A0(f � µx) (we interpret A0 as a k-
derivation of OGa,e ! k in e), it follows from [Fre17, §1.5] that the above map is in
fact a bijection.
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4.3. Finiteness results on modules of vector fields. — Let G be an algebraic
group. For this subsection, let X be a G-variety. Note that Vec(X) is an O(X)-
G-module via the O(X)- and G-module structures given in §4.1, i.e., Vec(X) is a
G-module, it is an O(X)-module, and both structures are compatible in the sense
that

g · (f · ⇠) = (g · f) · (g · ⇠) for all g 2 G, f 2 O(X) and ⇠ 2 Vec(X).

Lemma 4.4. — Assume that X is a quasi-a�ne G-variety and that O(X) is finitely
generated as a k-algebra. Then the O(X)-G-module Vec(X) is finitely generated
and rational, i.e., Vec(X) is finitely generated as an O(X)-module and the G-repre-
sentation Vec(X) is a sum of finite dimensional rational G-subrepresentations.

Proof. — Since O(X) is finitely generated, Xa↵ = Spec O(X) is an a�ne variety that
is endowed with a natural G-action, see Lemma 3.3. By [Kra84, Satz 2, II.2.S] there
is a rational G-representation V and a G-equivariant closed embedding Xa↵ ✓ V .
We denote by

◆ : X �! V

the composition of the canonical open immersion X ⇢ Xa↵ with Xa↵ ⇢ V . Note that
the image of ◆ is locally closed in V and that ◆ induces an isomorphism of X onto that
locally closed subset of V . Thus, d◆ : TX ! TV |X is a G-equivariant closed embedding
over X which is linear on each fiber of TX ! X. Thus we get an O(X)-G-module
embedding

Vec(X) �! �(TV |X), ⇠ 7�! d◆ � ⇠,

where �(TV |X) denotes the O(X)-G-module of sections of TV |X ! X. However,
since the vector bundle TV |X ! X is trivial, there is a O(X)-G-module isomorphism

�(TV |X) ' Mor(X, V ),

where G acts on Mor(X, V ) via g · ⌘ = (x 7! g⌘(g�1x)). Now, the O(X)-G-module
Mor(X, V ) ' O(X)⌦k V is finitely generated and rational (see Proposition 3.5), and
thus the statement follows. ⇤

For the next result we recall the following definition.

Definition 4.5. — Let G be an algebraic group. A closed subgroup H ⇢ G is called
a Grosshans subgroup if G/H is quasi-a�ne and O(G/H) = O(G)H is a finitely
generated k-algebra.

Let G be a connected reductive algebraic group. Examples of Grosshans subgroups
of G are unipotent radicals of parabolic subgroups of G, see [Gro97, Th. 16.4]. In par-
ticular, the unipotent radical U of a Borel subgroup B ⇢ G is a Grosshans subgroup
in G (see also [Gro97, Th. 9.4]). A very important property of Grosshans subgroups
is the following:
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Proposition 4.6 ([Gro97, Th. 9.3]). — Let A be a finitely generated k-algebra and
let G be a connected reductive algebraic group that acts via k-algebra automorphisms
on A such that A becomes a rational G-module. If H ⇢ G is a Grosshans subgroup,
then the ring of H-invariants

AH = {a 2 A | ha = a for all h 2 H}

is a finitely generated k-subalgebra of A. ⇤

Proposition 4.7. — Let R be a finitely generated k-algebra and assume that a con-
nected reductive algebraic group G acts via k-algebra automorphisms on R such that R
becomes a rational G-module. Let H ⇢ G be a Grosshans subgroup. If M is a finitely
generated rational R-G-module, then MH is a finitely generated RH-module.

Proof. — We consider the k-algebra A = R � "M , where the multiplication on A is
defined via

(r + "m) · (q + "n) = rq + "(rn + qm).

Since R is a finitely generated k-algebra and since M is a finitely generated R-module,
A is a finitely generated k-algebra. Moreover, since R and M are rational G-modules,
A is a rational G-module. Moreover, G acts via k-algebra automorphisms on A.
Since H is a Grosshans subgroup of G, it now follows by Proposition 4.6 that

AH = RH � "MH

is a finitely generated k-algebra. Thus one can choose finitely many elements
m1, . . . , mk 2MH such that "m1, . . . , "mk generate AH as an RH -algebra. However,
since "2 = 0, it follows that m1, . . . , mk generate MH as an RH -module.

As M is a rational G-module, it follows that MH is a rational H-module. ⇤

As an application of Lemma 4.4 and Proposition 4.7 we get the following finiteness
result of VecH(X) for a Grosshans subgroup H of a connected reductive algebraic
group.

Corollary 4.8. — Let H be a Grosshans subgroup of a connected reductive algebraic
group G. If X is a quasi-a�ne G-variety such that O(X) is finitely generated as a
k-algebra, then VecH(X) is a finitely generated O(X)H-module. ⇤

4.4. Vector fields normalized by a group action with an open orbit. — For this
subsection, let H be an algebraic group and let X be an irreducible H-variety which
contains an open H-orbit. Moreover, fix a character � of H. We provide an upper
bound on the dimension of Vec(X)� = Vec(X)�,H .

Lemma 4.9. — Fix x0 2 X that lies in the open H-orbit and let Hx0 be the stabilizer
of x0 in H. Then, there exists an injection of Vec(X)� into the Hx0-eigenspace of the
tangent space Tx0X of weight �|Hx0

given by

⇠ 7�! ⇠(x0).
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In particular, the dimension of Vec(X)� is smaller than or equal to the dimension of
the Hx0-eigenspace of weight �|Hx0

of Tx0X.

Proof. — Let ⇠ 2 Vec(X)�. By definition we have for all h 2 H

(⌘) �(h)⇠(hx0) = d'h⇠(x0),

where 'h : X ! X denotes the automorphism given by multiplication with h. Since x0

lies in the open H-orbit and X is irreducible, ⇠ is uniquely determined by ⇠(x0).
Moreover, (⌘) implies that ⇠(x0) is an Hx0 -eigenvector of weight �|Hx0

of Tx0X. ⇤

5. Automorphism group of a variety and root subgroups

Let X be a variety and denote by Aut(X) its automorphism group. A subgroup
H ⇢ Aut(X) is called an algebraic subgroup of Aut(X) if H has the structure of an
algebraic group such that the action H ⇥X ! X is a regular action of the algebraic
group H on X. It follows from [Ram64] (see also [KRvS19, Th. 2.9]) that this algebraic
group structure on H is unique in the following sense: if H1, H2 are algebraic groups
with group isomorphisms ◆i : Hi ! H for i = 1, 2 such that the induced actions
Hi ⇥X ! X are morphisms for i = 1, 2, then ◆�1

2
� ◆1 : H1 ! H2 is an isomorphism

of algebraic groups.
Let X, Y be varieties. We say that a group homomorphism ✓ : Aut(X)! Aut(Y )

preserves algebraic subgroups if for each algebraic subgroup H ⇢ Aut(X) its image
✓(H) is an algebraic subgroup of Aut(Y ) and if the restriction ✓|H : H ! ✓(H) is a
homomorphism of algebraic groups. We say that a group isomorphism ✓ : Aut(X)!
Aut(Y ) preserves algebraic subgroups if both homomorphisms ✓ and ✓�1 preserve
algebraic subgroups.

Assume now that X is an H-variety for some algebraic group H and that U0 ⇢
Aut(X) is a one-parameter unipotent subgroup, i.e., an algebraic subgroup of Aut(X)
that is isomorphic to Ga. If for some isomorphism Ga ' U0 of algebraic groups the
induced Ga-action on X is H-homogeneous of weight � 2 X(H), then we call U0 a
root subgroup with respect to H of weight � (see §4.2). Note that this definition does
not depend on the choice of the isomorphism Ga ' U0. This notion goes back to
Demazure [Dem70].

Lemma 5.1. — Let X, Y be H-varieties for some algebraic group H. If ✓ : Aut(X)!
Aut(Y ) is a group homomorphism that preserves algebraic subgroups and if ✓ is com-
patible with the H-actions in the way that

H

yy $$

Aut(X)
✓

// Aut(Y )

commutes, then for any root subgroup U0 ⇢ Aut(X) with respect to H, the image
✓(U0) is either the trivial group or a root subgroup with respect to H of the same
weight as U0.
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Proof. — We can assume that ✓(U0) is not the trivial group. Hence, ✓(U0) is a one-
parameter unipotent group.

Let " : Ga ' U0 ⇢ Aut(X) be an isomorphism and let � : H ! Gm be the weight
of U0. Then we have for each t 2 Ga

h � ✓("(t)) � h�1 = ✓(h � "(t) � h�1) = ✓("(�(h) · t)).

Since ✓|U0 : U0 ! ✓(U0) is a surjective homomorphism of algebraic groups that are
both isomorphic to Ga (and since the ground field is of characteristic zero), ✓|U0 is
in fact an isomorphism. Thus ✓ � " : Ga ' ✓(U0) ⇢ Aut(X) is an isomorphism and
hence � is the weight of ✓(U0) with respect to H. ⇤

6. Homogeneous Ga-actions on quasi-affine toric varieties

In this section, we provide a description of the homogeneous Ga-actions on a quasi-
a�ne toric variety. Throughout this section, we denote by T an algebraic torus. Recall
that a T -toric variety is a T -spherical variety. A Ga-action is called homogeneous if it
is T -homogeneous of some weight � 2 X(T ), see §4.2.

Let X be a toric variety. In case X is a�ne, Liendo [Lie10] gave a full description
of all homogeneous Ga-actions. In case X is quasi-a�ne, Xa↵ = Spec(O(X)) is an
a�ne T -toric variety by Lemma 3.4. Moreover, every homogeneous Ga-action on X
extends uniquely to a homogeneous Ga-action on Xa↵ by Lemma 3.3. Thus we are
led to the problem of describing the homogeneous Ga-actions on Xa↵ that preserve
the open subvariety X.

This requires some preparation. First, we provide a description of Xa↵ in case X is
toric and provide a characterization, when X is quasi-a�ne. For this, let us introduce
some basic terms from toric geometry. As a reference we take [Ful93] and [CLS11].

Note that M = X(T ) = HomZ(N, Z), where N denotes the free abelian group
of rank dim T of the regular group homomorphisms Gm ! T and denote by MR =
M ⌦Z R, NR = N ⌦Z R the extensions to R. Moreover, let

MR ⇥NR �! R, (u, v) 7�! hu, vi

be the canonical R-bilinear form. Denote by k[M ] the k-algebra with basis �m for all
m 2M and multiplication �m · �m0

= �m+m0 . Note that there is an identification

T = Speck[M ].

Let � ⇢ NR be a strongly convex rational polyhedral cone in NR, i.e., it is a convex
rational polyhedral cone with respect to the lattice N ⇢ NR and � contains no non-
zero linear subspace of NR. Then its dual

�_ = {u 2MR | hu, vi > 0 for all v 2 �}

is a convex rational polyhedral cone in MR. Denote by �_
M the intersection of �_

with M inside MR. We can associate to � a toric variety

X� = Speck[�_
M ], where k[�_

M ] =
L

m2�_
M

k�m ⇢ k[M ].
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The torus T acts on X� with an open orbit where this action is induced by the coaction
k[�_

M ]! k[�_
M ]⌦kk[M ], �u 7! �u⌦�u. Note that we have an order-reversing bijection

between the faces of � and the faces of its dual �_:

{faces of �} 1:1 ! {faces of �_}, ⌧ 7�! �_ \ ⌧?,

where ⌧? consists of those u 2 MR that satisfy hu, vi = 0 for all v 2 ⌧ , see [Ful93,
Propty (10), p. 12]. Moreover, each face ⌧ ⇢ � determines an orbit of dimension
n� dim(⌧) of the T -action on X� (see [Ful93, §3.1]). We denote its closure in X�

by V (⌧). In particular, V (⌧) is an irreducible closed T -invariant subset of X�.
More generally, for a fan ⌃ of strongly convex rational polyhedral cones in NR we

denote by X⌃ its associated toric variety, which is covered by the open a�ne toric
subvarieties X�, where � runs through the cones in ⌃.

Lemma 6.1. — Let X = X⌃ be a toric variety for a fan ⌃ of strongly convex rational
polyhedral cones in NR. Denote by �1, . . . ,�r ⇢ NR the maximal cones in ⌃ and set

� = Conv
rS

i=1

�i ⇢ NR.

Then:
(1) We have Xa↵ = X� and the canonical morphism ◆ : X ! Xa↵ is induced by the

embeddings �i ⇢ � for i = 1, . . . , r.(1)
(2) The toric variety X is quasi-a�ne if and only if each �i is a face of �. Moreover,

if X is quasi-a�ne, then � is strongly convex.
(3) If X is quasi-a�ne, then the irreducible components of Xa↵ r X are the closed

sets of the form V (⌧), where ⌧ is a minimal face of � with ⌧ 62 ⌃.
(4) If X is quasi-a�ne, then each face ⌧ of � with ⌧ 62 ⌃ has dimension at least 2.

In particular, Xa↵ r X is a closed subset of codimension at least 2 in Xa↵ .

Below we draw a picture where the fan ⌃ with maximal cones �1, . . . ,�4 defines a
3-dimensional quasi-a�ne variety with associated cone � = Conv

S
4

i=1
�i:

⌃

�1

�2

�3�4

�

Proof of Lemma 6.1
(1) Since the a�ne toric varieties X�1 , . . . , X�r

cover X, we get inside O(T )=k[M ]:

O(X) =
rT

i=1

O(X�i
) =

rT
i=1

k[(�i)
_
M ] = k

✓
rT

i=1

�_
i

◆
\M

�
.

(1)Note that we defined X� only for strongly convex rational polyhedral cones �. However, the
definition X� makes sense for every convex rational polyhedral cone �. In this case, the torus T may
act non-faithfully on X� .
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Since

�_ =

✓
Conv

rS
i=1

�i

◆_
= {u 2MR | hu, vi > 0 for all v 2 �i and all i} =

rT
i=1

�_
i ,

we get O(X) = O(X�) which implies the first claim.
For the second claim, denote by ◆i : X�i

! (X�i
)a↵ the canonical morphism of X�i

(which is in fact an isomorphism). Then we have for each i = 1, . . . , r the commutative
diagram

X
◆
// Xa↵ X�

X�i

S
◆i
// (X�i

)a↵

⌘
OO

where ⌘ is induced by the inclusion k[�_
M ] ⇢ k[(�i)_

M ]. As ⌘ � ◆i : X�i
! Xa↵ = X� is

induced by the inclusion �i ⇢ �, the second claim follows.
(2) If �i ⇢ � is a face, then the induced morphism X�i

! X� is an open immersion
(see [Ful93, §1.3 Lem.]). Now, if each �i is a face of �, then by (1) the canonical
morphism ◆ : X ! X� is an open immersion, i.e., X is quasi-a�ne (see Lemma 3.2).

On the other hand, if X is quasi-a�ne, then ◆ : X ! X� is an open immersion
(again by Lemma 3.2) and by (1), the morphism X�i

! X� induced by �i ⇢ � is also
an open immersion. It now follows from [Ful93, §1.3 Exer. p. 18] that �i is a face of �.

If X is quasi-a�ne, then Xa↵ = X� is a toric variety by Lemma 3.4 and thus � is
strongly convex.

(3) We claim that Xa↵ r X is the union of all V (⌧), where ⌧ ⇢ � is a face with
⌧ 62 ⌃.

Let ⌧ ⇢ � be a face such that ⌧ 62 ⌃. In particular we have for all i that ⌧ 6⇢ �i.
Since X is quasi-a�ne, �i is a face of � by (2). Hence, there is a ui 2 �_

M with
u?

i \ � = �i and
X�i

= X� r ZX�
(�ui)

by [Ful93, §1.3 Lem.], where ZX�
(�ui) denotes the zero set of �ui 2 O(X�) inside X�.

As ⌧ ⇢ �, but ⌧ 6⇢ �i, we get ⌧ 6⇢ u?
i and thus ui 2 �_

M r ⌧?. By [Ful93, §3.1], the
closed embedding V (⌧) ⇢ X� corresponds to the surjective k-algebra homomorphism

k[�_
M ] �! k[�_

M \ ⌧?], �m 7�!
(
�m if m 2 ⌧?,

0 if m 2 �_
M r ⌧?.

In particular, �ui vanishes on V (⌧) and thus V (⌧) and X�i
are disjoint for all i =

1, . . . , r, i.e., V (⌧) ⇢ Xa↵ r X. On the other hand, if ⌘ ⇢ � is a face with ⌘ 2 ⌃,
then there is a i 2 {1, . . . , r} such that ⌘ is a face of �i. Then by [Ful93, §3.1, p. 53],
it follows that V (⌘) and X�i

do intersect. In particular, V (⌘) 6⇢ Xa↵ r X. Since
Xa↵ r X is a closed T -invariant subset, it is the union of some V (") for some faces "
of �. This implies then the claim.

Statement (3) now follows from the claim, since the minimal faces ⌧ ⇢ � with
⌧ 62 ⌃ correspond to the maximal V (⌧) in Xa↵ r X.
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(4) Since X is quasi-a�ne it follows from (2) that each �i is a face of �. Since � is
the convex hull of the �i, we get thus that the extremal rays of � are the same as the
extremal rays of all the �i. Hence the extremal rays of � are the same as the cones
of dimension one in ⌃. In particular, each face ⌧ of � with ⌧ 62 ⌃ has dimension at
least 2. ⇤

For the description of the homogeneous Ga-actions, let us set up the following
notation. Let � ⇢ NR be a strongly convex rational polyhedral cone. If ⇢ ⇢ � is an
extremal ray and ⌧ ⇢ � a face, we denote

⌧⇢ := Conv(extremal rays in ⌧ except ⇢) ⇢ NR.

In the picture below, we draw a picture of ⌧ and ⌧⇢:

⌧
⇢

⌧⇢

In particular, if ⇢ is not an extremal ray of ⌧ , then ⌧⇢ = ⌧ . Let us mention the
following easy observations of this construction for future use:

Lemma 6.2. — Let � ⇢ NR be a strongly convex rational polyhedral cone, ⌧ ⇢ � a face
and ⇢ ⇢ � an extremal ray. Then

(1) ⌧⇢ is a face of �⇢;
(2) If dim ⌧⇢ < dim ⌧ , then ⌧⇢ is a face of ⌧ .

Proof
(1) By definition, there is u 2 �_ with ⌧ = � \ u?. Hence ⌧⇢ ⇢ �⇢ \ u? ⇢ ⌧ . Since

u 2 (�⇢)_, �⇢ \ u? is a face of �⇢. If ⇢ 6⇢ ⌧ , then ⌧⇢ = ⌧ and thus ⌧⇢ = �⇢ \ u? is a
face of �⇢. If ⇢ ⇢ ⌧ , then �⇢ \ u? is the convex cone generated by the extremal rays
in ⌧ , except ⇢, i.e., ⌧⇢ = �⇢ \ u?. Thus ⌧⇢ is a face of �⇢.

(2) As dim ⌧⇢ < dim ⌧ , we get ⇢ ⇢ ⌧ and

(�) SpanR(⌧) = R⇢� SpanR(⌧⇢).

Hence, there is u 2M such that SpanR(⌧⇢) = u?\SpanR(⌧). After possibly replacing u
by �u, we may assume hu, v⇢i > 0, where v⇢ 2 ⇢ denotes the unique primitive
generator. As ⌧⇢ ⇢ u?, we get now u 2 ⌧_. Moreover,

u? \ ⌧ = (u? \ SpanR(⌧)) \ ⌧ = SpanR(⌧⇢) \ ⌧ = ⌧⇢,

where the third equality follows from (�) as one may write each element in ⌧ as
�v⇢ + µw for w 2 ⌧⇢ and �, µ > 0. Thus ⌧⇢ is a face of ⌧ . ⇤

For each extremal ray ⇢ in a strongly convex rational polyhedral cone �, let

S⇢ := {w 2 (�⇢)
_ | hw, v⇢i = �1} \M,
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where v⇢ 2 ⇢ denotes the unique primitive generator. In [Lie10, after Def. 2.3] there is
an illuminating picture that shows the situation. We provide below our own picture
of the situation. In the first picture we draw (�⇢)_ in light gray whereas in the second
picture we draw �_ in light gray.

(�⇢)_

⇢? \ �_

�_

{w 2 (�⇢)_ | hw, v⇢i = �1}

Remark 6.3 (see also [Lie10, Rem. 2.5]). — The set S⇢ is non-empty. Indeed, apply
Proposition 2.6(1) to the convex polyhedral cone C = �_

⇢ and the hyperplanes H = ⇢?,
H 0 = {u 2MR | hu, v⇢i = �1} inside V = MR.

Now, we come to the promised description of the homogeneous Ga-actions on toric
varieties due to Liendo:

Proposition 6.4 ([Lie10, Lem. 2.6, Th. 2.7]). — Let � ⇢ NR be a strongly convex
rational polyhedral cone. Then for any extremal ray ⇢ in � and any e 2 S⇢, the
k-linear map

@⇢,e : k[�_
M ] �! k[�_

M ], �m 7�! hm, v⇢i�e+m

is a homogeneous locally nilpotent derivation of degree e, and every homogeneous
locally nilpotent derivation of k[�_

M ] is a constant multiple of some @⇢,e. ⇤

Remark 6.5. — The weight of the homogeneous Ga-action induced by @⇢,e is e 2M .
The kernel of the locally nilpotent derivation @⇢,e is k[�_

M \ ⇢?].

The following lemma is the key for the description of the homogeneous Ga-actions
on a quasi-a�ne toric variety.

Proposition 6.6. — Let � ⇢ NR be a strongly convex rational polyhedral cone, ⌧ ⇢ �
a face, ⇢ 2 � an extremal ray and e 2 S⇢. Then the Ga-action on X� corresponding
to the locally nilpotent derivation @⇢,e leaves V (⌧) invariant if and only if

⇢ 6⇢ ⌧ or e 62 ⌧?
⇢ .

Proof. — As in the proof of Lemma 6.1 (3), the embedding ◆ : V (⌧) ⇢ X� corresponds
to the surjective k-algebra homomorphism

◆⇤ : k[�_
M ] �! k[�_

M \ ⌧?], �m 7�!
(
�m if m 2 ⌧?,

0 if m 2 �_
M r ⌧?.

Thus the Ga-action on X� corresponding to @⇢,e preserves V (⌧) if and only if

@⇢,e(ker ◆⇤) ⇢ ker ◆⇤,
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see [Fre17, §1.5]. Since hm, v⇢i = 0 for all m 2 ⇢? and since e + m 2 �_
M for all

m 2 �_
M r ⇢?, this last condition is equivalent to

(�) m 2 �_
M r (⌧? [ ⇢?) =) e + m 62 ⌧?.

We now distinguish two cases:
(1) Assume ⇢ 6⇢ ⌧ . Then ⌧ ⇢ �⇢. In particular, we get he, vi > 0 for all v 2 ⌧ . Let

m 2 �_
M r ⌧?. Then we get hm, vi > 0 for some v 2 ⌧ and hence

he + m, vi > 0 for some v 2 ⌧ ,

which in turn implies e + m 62 ⌧?. Thus (�) is satisfied.
(2) Assume ⇢ ⇢ ⌧ . In particular, we have ⌧? ⇢ ⇢?. We distinguish two cases:

• e 62 ⌧?
⇢ : Then there exists an extremal ray ⇢0 ⇢ ⌧ with ⇢0 6= ⇢ such that

e 62 (⇢0)? and the unique primitive generator v⇢0 2 ⇢0 satisfies

he + m, v⇢0i = he, v⇢0i
| {z }

>0

+ hm, v⇢0i
| {z }

>0

> 0 for all m 2 �_
M .

In particular e + m 62 ⌧? for all m 2 �_
M and thus (�) is satisfied.

• e 2 ⌧?
⇢ : Now, we want to apply Proposition 2.7. For this we fix the lattice

⇤ = M \ ⌧?
⇢ inside V = ⌧?

⇢ . Since ⌧⇢ is a face of �⇢ (see Lemma 6.2(1)),
C = (�⇢)_ \ ⌧?

⇢ is a rational convex polyhedral cone in MR and thus also in V .
Moreover, we set H0 = ⇢? \ V = ⌧? and H±1 = {u 2 V | hu, v⇢i = ±1}. Since
e 2 (S⇢\⌧?

⇢ )rH0, H0 is a hyperplane in V and C\H�1\⇤ = S⇢\⌧?
⇢ 6= ?. Since

H0 ( V we get thus dim ⌧⇢ < dim ⌧ . Now, by Lemma 6.2(2), ⌧⇢ is a face of ⌧
and therefore �_ \ ⌧?

⇢ ) �_ \ ⌧? by the order-reversing bijection between faces
of � and �_. Hence, there is u 2 (�_ \ ⌧?

⇢ ) r ⌧? and in particular u 2 C r H0.
As hu, v⇢i > 0, after scaling u with a real number > 0, we may assume u 2 C\H1

and hence C \H1 6= ?. Now, as C \H0 = �_ \ ⌧? is rational in MR and thus
also in V , we may apply Proposition 2.7 and get an element

m1 2 (�⇢)
_ \ ⌧?

⇢ \ {m 2M | hm, v⇢i = 1}.

Hence, m1 2 �_
M r ⇢?. Since e, m1 2 ⌧?

⇢ , we get e + m1 2 ⌧?
⇢ . Since

he + m1, v⇢i = he, v⇢i+ hm1, v⇢i = �1 + 1 = 0,

we get thus e + m1 2 ⌧?. This implies that (�) is not satisfied. ⇤

We can use this lemma to provide a full description of all homogeneous Ga-actions
on a quasi-a�ne toric variety X = X⌃. Recall that Xa↵ = X�, where � is the cone
inNR generated by all maximal cones in ⌃, see Lemma 6.1. Moreover, Xa↵ rX is the
union of the sets of the form V (⌧), where ⌧ ⇢ � runs through the minimal faces with
the property that ⌧ 62 ⌃ (again by Lemma 6.1). In the next corollaries (Corollary 6.7-
Corollary 6.10), we use this notation freely.

Corollary 6.7. — Let X = X⌃ be a quasi-a�ne toric variety, let Xa↵ = X� and
let ⌧1, . . . , ⌧s ⇢ � be the minimal faces of � which do not belong to ⌃. Then, the
homogeneous Ga-actions on X are the restricted homogeneous Ga-actions on Xa↵
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that are induced by the constant multiples of @⇢,e 2 LNDk(O(X)) such that for all
i = 1, . . . , s we have

(~) ⇢ 6⇢ ⌧i or e 62 (⌧i)
?
⇢ .

Proof. — Assume that @⇢,e is a locally nilpotent derivation of O(X) such that (~) is
satisfied for all i = 1, . . . , s. Then by Proposition 6.6, the sets V (⌧1), . . . , V (⌧s) ⇢ Xa↵

are left invariant by the homogeneous Ga-action "⇢,e : Ga ⇥ Xa↵ ! Xa↵ which is
induced by @⇢,e. In particular, X = Xa↵ r (V (⌧1)[ . . . V (⌧s)) (see Lemma 6.1) is left
invariant by "⇢,e.

On the other hand, let " : Ga ⇥ X ! X be a homogeneous Ga-action on X. By
Lemma 3.3 and Proposition 6.4 this Ga-action extends to a homogeneous Ga-action
"⇢,e : Ga⇥Xa↵ ! Xa↵ which is induced by some locally nilpotent derivation � ·@⇢,e 2
LNDk(O(X)) for some constant � 2 k, some extremal ray ⇢ in � and some e 2 S⇢.
Since "⇢,e extends ", the subset V (⌧1) [ · · · [ V (⌧s) = Xa↵ r X is left invariant
by "⇢,e. Since the V (⌧1), . . . , V (⌧s) are the irreducible components of Xa↵ r X and
since Ga is an irreducible algebraic group, it follows that "⇢,e preserves each V (⌧i).
By Proposition 6.6 we get that for each i = 1, . . . , s the condition (~) is satisfied. ⇤

For the next consequences of Corollary 6.7 we recall the following notation from
Section 2: For a subset E ⇢ MR we denote by int(E) the topological interior of E
inside the linear span of E. In these consequences we provide a closer description of
the weights in M arising from homogeneous Ga-actions on quasi-a�ne toric varieties
and compute the asymptotic cone of these weights.

Corollary 6.8. — Let X = X⌃ be a quasi-a�ne toric variety, let Xa↵ = X�, let
⇢ ⇢ � be an extremal ray and let D⇢(X) be the set of weights e 2 S⇢ such that the
locally nilpotent derivation @⇢,e of O(X) induces a homogeneous Ga-action on X.
Then

S⇢ \ int(�_
⇢ ) ⇢ D⇢(X) ⇢ S⇢.

Proof. — Let e 2 S⇢ ⇢M such that e is contained in int(�_
⇢ ) ⇢MR. Let ⌧1, . . . , ⌧s be

the minimal faces of � which are not contained in ⌃. According to Corollary 6.7 it is
enough to show that for each ⌧i with ⇢ ⇢ ⌧i we have e 62 (⌧i)?

⇢ . By Lemma 6.1 (4) we
get that dim ⌧i > 2 for every i. Hence, dim(⌧i)⇢ > 1 and thus (⌧i)?

⇢ \ �_
⇢ is a proper

face of �_
⇢ . As e 2 int(�_

⇢ ), we get e 62 (⌧i)?
⇢ \ �_

⇢ and thus e 62 (⌧i)?
⇢ . ⇤

Corollary 6.9. — Let X = X⌃ be a quasi-a�ne toric variety. Let Xa↵ = X� and
let D(X) be the set of homogeneous Ga-weights on X. Then the asymptotic cone of
D(X) ⇢MR satisfies

D(X)1 = �_ r int(�_).

By Corollary 6.8, the set D(X) is contained in the set

S :=
S

⇢ is an extr.

ray of �

{w 2 (�⇢)
_ | hw, v⇢i = �1}.
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Below, we illustrate the dual cone of � in light gray and the set S associated to � in
dark gray:

�_

D(X) ⇢ S

Intuitively (and rigorously with Lemma 2.4 applied to the convex polyhedral cone
(�⇢)_ and the hyperplane ⇢? for each ⇢) it follows that the asymptotic cone of D(X)
is contained in

S
⇢{w 2 (�⇢)_ | hw, v⇢i = 0}. This last set is equal to �_ r int(�_).

Now, we provide a detailed proof.

Proof. — By [Ful93, Propty (7), p. 10] we have

�_ r int(�_) =
S

⇢ is an extr.

ray of �

�_ \ ⇢?.

Since D(X) is the union of the D⇢(X) for the extremal rays ⇢ ⇢ � (with the definition
of D⇢(X) from Corollary 6.8), we get by Lemma 2.1 that

D(X)1 =
S

⇢ is an extr.

ray of �

D⇢(X)1.

Hence, it is enough to show that �_ \ ⇢? = D⇢(X)1 for every extremal ray ⇢ of �.
In order to do this, we want to apply Proposition 2.6. For this we fix the lattice

⇤ = M inside V = MR and consider the convex polyhedral cone C = �_
⇢ inside V

and the hyperplane H = ⇢? ⇢ V . Note that C \ H = �_ \ ⇢? is a rational convex
polyhedral cone in V of dimension dim H and that H is rational. Moreover, setting
H 0 = {u 2MR | hu, v⇢i = �1}, where v⇢ 2 ⇢ denotes the unique primitive generator,
there exists m�1 2 M r H such that H 0 = m�1 + H (as the coordinates of v⇢ are
coprime after identifying N with Zrank N ). Since ⇢ is an extremal ray of �, it follows
that �⇢ ( � and thus �_

⇢ ) �_ = �_
⇢ \ {u 2MR | hu, v⇢i > 0}. This implies that there

is u 2 C with hu, v⇢i < 0. Since C is a cone, we get that C \H 0 is non-empty. Now,
Proposition 2.6 applied to ⇤, C, H, H 0 ⇢ V implies that

(d) �_ \ ⇢? = �_
⇢ \ ⇢? = (S⇢ \ int(�_

⇢ ))1.

By Corollary 6.8, Lemma 2.1 and Lemma 2.4 we get

(e) (S⇢ \ int(�_
⇢ ))1 ⇢ D⇢(X)1 ⇢ (S⇢)1 ⇢ (�_

⇢ \ (m�1 + ⇢?))1 ⇢ �_
⇢ \ ⇢?.

Combining (d) and (e) yields �_ \ ⇢? = D⇢(X)1 which implies the result. ⇤

Corollary 6.10. — Let X be a quasi-a�ne toric variety and let D(X) be the set of
homogeneous Ga-weights. If X 6' T , then D(X) generates M as a group.
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Proof. — Let Xa↵ = X�. Since X is quasi-a�ne and X 6' T , the cone � is strongly
convex and non-zero by Lemma 6.1(2). In particular it has an extremal ray ⇢. Corol-
lary 6.10 follows thus from the next lemma, since S⇢ \ int(�_

⇢ ) ⇢ D(X) (see Corol-
lary 6.8). ⇤

Lemma 6.11. — Let � ⇢ NR be a strongly convex rational polyhedral cone. Then for
every extremal ray ⇢ ⇢ �, the set S⇢ \ int(�_

⇢ ) generates M as a group.

Proof. — Denote by v⇢ 2 ⇢ the unique primitive generator. By Remark 6.3, S⇢ is
non-empty. Thus by Proposition 2.6(1) applied to the convex polyhedral cone C = �_

⇢

and the hypersurfaces H = ⇢?, H 0 = {u 2 V | hu, v⇢i = �1} in V = MR we get
S⇢ \ int(�_

⇢ ) 6= ?. Let A = S⇢ \ int(�_
⇢ ) and choose a 2 A. By definition of S⇢,

a + (�_
M \ ⇢?) ⇢ A.

Since v⇢ 2 N is primitive, we may choose a basis of N = Zn (where n = rank N) such
that v⇢ = (1, 0, . . . , 0). We then identify M = HomZ(N, Z) with Zn by choosing the
dual basis of N = Zn. Since �_\⇢? is a convex rational polyhedral cone of dimension
dim ⇢? in ⇢?, there is m 2 �_

M \ ⇢? such that the closed ball of radius 1 and center m
in ⇢? is contained in �_ \ ⇢?. In particular, m + ei 2 �_

M \ ⇢? for i = 2, . . . , n, where
ei = (0, . . . , 0, 1, 0, . . . , 0) and 1 is at position i. In particular,

ei = (a + m + ei)� (a + m) 2 SpanZ(A) for i = 2, . . . , n.

Since v⇢ = (1, 0, . . . , 0) and ha, v⇢i = �1, it follows that a = (�1, a2, . . . , an) for
certain a2, . . . , an 2 Z. In particular, (1, 0, . . . , 0) = �a +

Pn
i=2

aiei 2 SpanZ(A).
Thus, SpanZ(A) = M . ⇤

7. The automorphism group determines sphericity

Our first goal in this section is to provide a criterion for a solvable algebraic group B
to act with an open orbit on a quasi-a�ne B-variety. For this, we introduce the notion
of generalized root subgroups:

Definition 7.1. — Let H be an algebraic group and let X be an H-variety. We call
an algebraic subgroup U0 ✓ Aut(X) of dimension m which is isomorphic to (Ga)m

a generalized root subgroup (with respect to H) if there exists a character � 2 X(H),
called the weight of U0 such that

h � "(t) � h�1 = "(�(h) · t) for all h 2 H and all t 2 (Ga)
m,

where " : (Ga)m ⇠! U0 is a fixed isomorphism.

Using that a group automorphism of (Ga)m is k-linear, we see that the weight of
a generalized root subgroup U0 does not depend on the choice of an isomorphism
" : (Ga)m ' U0.
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Remark 7.2. — Let H be an algebraic group and let X be an H-variety. Using again
that algebraic group automorphisms of (Ga)m are k-linear, one can see the following:
An algebraic subgroup U0 ⇢ Aut(X) which is isomorphic to (Ga)m for some m > 1
is a generalized root subgroup with respect to H if and only if each one-dimensional
closed subgroup of U0 is a root subgroup of Aut(X) with respect to H. In particular,
root subgroups are generalized root subgroups of dimension one.

Proposition 7.3. — Let B be a connected solvable algebraic group that contains non-
trivial unipotent elements and let X be an irreducible quasi-a�ne variety with a faith-
ful B-action. Then, the following statements are equivalent:

(1) The variety X has an open B-orbit;
(2) There is a constant C such that dim Vec(X)� 6 C for all weights � 2 X(B);
(3) There exists a constant C such that dim U0 6 C for each U0 ✓ Aut(X) that is

a generalized root subgroup with respect to B.

Proof
(1) =) (2) By Lemma 4.9 we get dim Vec(X)� 6 dim Tx0X, where x0 2 X is a

fixed element of the open B-orbit.
(2) =) (3) Let U0 ✓ Aut(X) be a generalized root subgroup of weight � 2 X(B).

By Lemma 4.1, the k-linear map Lie(U0) ! Vec(X), A 7! ⇠A is injective. Now, take
A 2 Lie(U0) which is non-zero. Then there is a one-parameter unipotent subgroup
U0,A ⇢ U0 such that Lie(U0,A) is generated by A. By definition, U0,A is a root subgroup
with respect to B of weight �. By Lemma 4.2, it follows that ⇠A lies in Vec(X)�.
Thus the whole image of Lie(U0) ! Vec(X) lies in Vec(X)� and we get dim U0 6
dim Vec(X)�.

(3) =) (1) Assume that X admits no open B-orbit. This implies by Rosen-
licht’s Theorem [Ros56, Th. 2] that there is a B-invariant non-constant rational
map f : X k. By Proposition 3.6, there exist B-semi-invariant regular functions
f1, f2 : X ! k such that f = f1/f2 and since f is B-invariant, the weights of f1

and f2 under B are the same, say �0 2 X(B).
Moreover, there exists no non-zero homogeneous polynomial p in two variables with

p(f1, f2) = 0. Indeed, otherwise there exist m > 0 and a non-zero tuple (a0, . . . , am) 2
km+1 such that

Pm
i=0

ai(f1)i(f2)m�i = 0 and hence
Pm

i=0
aif i = 0. Since f is non-

constant, we get a contradiction, as k is algebraically closed.
Since B contains non-trivial unipotent elements, the center of the unipotent radical

in B is non-trivial. Since this center is normalized by B, there exists a one-dimensional
closed subgroup U of this center that is normalized by B. Let ⇢ : Ga ⇥ X ! X be
the Ga-action on X corresponding to U . Hence ⇢ is B-homogeneous for some weight
�1 2 X(B). Thus for any m > 0, we get a faithful (Ga)m+1-action on X given by

Gm+1

a
⇥X �! X, ((t0, . . . , tm), x) 7�! ⇢

✓ mX

i=0

ti(f
i
1

· fm�i
2

)(x), x

◆
,
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since
Pm

i=0
tif i

1
·fm�i

2
6= 0 for all non-zero (t0, . . . , tm). The corresponding subgroup U0

in Aut(X) is then a generalized root subgroup of dimension m + 1 with respect to B
of weight �1 + m�0 2 X(B). As m was arbitrary, (3) is not satisfied. ⇤

Example 7.4. — If the connected solvable algebraic group B does not contain unipo-
tent elements, then Proposition 7.3 is in general false: Let B = Gm act on the product
X = Gm ⇥C via t · (s, c) = (ts, c), where C is any a�ne curve of genus > 1. Then X
has no open B-orbit.

On the other hand, X admits no non-trivial Ga-action and thus property (3) of
Proposition 7.3 is satisfied. Indeed, if there is a Ga-action on X with a non-trivial
orbit Ga ' O ⇢ X, then one of the restrictions of the projections

pr1 |O : O �! Gm, (s, c) 7�! s or pr2 |O : O �! C, (s, c) 7�! c

is non-constant, contradiction.

Lemma 7.5. — Let T be an algebraic torus and let X be a quasi-a�ne T -toric variety
such that X 6' T . Then there exists a non-trivial T -homogeneous Ga-action on X and
a subtorus T 0 ⇢ T of codimension one such that the induced Ga oT 0-action on X has
an open orbit.

Proof. — Since X 6' T , there is a non-trivial T -homogeneous Ga-action on X by
Corollary 6.10. Denote by U ⇢ Aut(X) the corresponding root subgroup.

Let x0 2 X such that Tx0 ⇢ X is open in X and let S be the connected component
of the stabilizer in U o T of x0. As dim U o T = dim X + 1, we get dim S = 1. If S
would be contained in U , then S = U and thus ux0 = x0 for all u 2 U . From this we
would get for all t 2 T , u 2 U that

(tut�1) · (tx0) = tx0

and hence U would fix each element of the open orbit Tx0, contradiction. Hence,
S 6⇢U , which implies that there is a codimension one subtorus T 0 ⇢ T with S 6⇢ UoT 0.
This implies that (U o T 0) \ S is finite and thus (U o T 0)x0 is dense in X. As orbits
are locally closed, we get that (U o T 0)x0 is open in X. ⇤

For the sake of completeness let us recall the following well-known fact from the
theory of algebraic groups:

Lemma 7.6. — Let G be a connected reductive algebraic group and let B ⇢ G be a
Borel subgroup. If G is not a torus, then B contains non-trivial unipotent elements.

Proof. — If B contains no non-trivial unipotent elements, then B is a torus and it
follows from [Hum75, Prop. 21.4B] that G = B, contradiction. ⇤

Now, we prove that one can recognize the sphericity of an irreducible quasi-a�ne
normal G-variety from its automorphism group.
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Proposition 7.7. — Let G be a connected reductive algebraic group and let X, Y be
irreducible quasi-a�ne normal varieties. Assume that there is a group isomorphism
✓ : Aut(X) ! Aut(Y ) that preserves algebraic subgroups. If X is non-isomorphic to
a torus and G-spherical, then Y is G-spherical for the induced G-action via ✓.

Proof. — We denote by B ✓ G a Borel subgroup and by T ✓ G a maximal torus.
We distinguish two cases:

• G 6= T : By Lemma 7.6 the Borel subgroup B contains unipotent elements and
thus we may apply Proposition 7.3 in order to get a bound on the dimension of every
generalized root subgroup with respect to B of Aut(X). Since the generalized root
subgroups of Aut(X) (with respect to B) correspond bijectively to the generalized root
subgroups of Aut(Y ) (with respect to ✓(B)) via ✓ (see Remark 7.2 and Lemma 5.1),
it follows by Proposition 7.3 that Y is ✓(G)-spherical.

• G = T : In this case X is T -toric. Since X is not isomorphic to a torus, we
may apply Lemma 7.5 in order to get a codimension one subtorus T 0 ⇢ T and a
root subgroup V ⇢ Aut(X) with respect to T such that V · T 0 acts with an open
orbit on X. As before, it follows from Proposition 7.3 that ✓(V ) · ✓(T 0) acts with an
open orbit on Y . This implies that dim(Y ) 6 dim(V ) + dim(T 0) = dim(T ). On the
other hand, since ✓(T ) acts faithfully on Y , we get dim(T ) 6 dim(Y ). In summary,
dim(Y ) = dim(T ) and thus Y is ✓(T )-toric. ⇤

8. Relation between the set of homogeneous Ga-weights and
the weight monoid

Throughout the whole section we fix the following

Notation. — We denote by G a connected reductive algebraic group, by B ⇢ G
a Borel subgroup and by T ⇢ B a maximal torus. By convention G is non-trivial.
We denote by U ⇢ B the unipotent radical of B. Moreover, we denote X(B)R =
X(B)⌦Z R, where X(B) is the character group of B. For a G-variety X let us recall
the definition of the set of B-homogeneous Ga-weights:

D(X) =

⇢
� 2 X(B)

���
there exists a non-trivial B-homogeneous
Ga-action on X of weight �

�

(see Section 4.2 for the definition of a B-homogeneous Ga-action).

In this section we provide for a quasi-a�ne G-spherical variety X a description of
the weight monoid ⇤+(X) in terms of D(X), see Theorem 8.2 below.

Proposition 8.1. — Let X be an irreducible quasi-a�ne variety with a faithful
G-action such that O(X) is a finitely generated k-algebra. If G 6= T , then there is a
� 2 D(X) with

�+ ⇤+(X) ⇢ D(X) and ⇤+(X)1 = D(X)1,

where the asymptotic cones are taken inside X(B)R.

J.É.P. — M., 2021, tome 8



Characterizing smooth affine spherical varieties 407

Proof. — We denote D = D(X). By Lemma 4.3 we have

D ⇢
⇢
� 2 X(B)

���
there is a non-zero vector field in VecU (X)
that is normalized by B of weight �

�
=: D0.

By Corollary 4.8 we know that VecU (X) is finitely generated as an O(X)U -module.
Hence, there are finitely many non-zero B-homogeneous ⇠1, . . . , ⇠k 2 VecU (X) such
that the B-module homomorphism

⇡ :
kL

i=1

O(X)U⇠i �! VecU (X), (r1⇠1, . . . , rk⇠k) 7�! r1⇠1 + · · · + rk⇠k

is surjective. Let � 2 D0 and let ⌘ 2 VecU (X) be a non-zero vector field that is
normalized by B of weight �. Thus M = ⇡�1(k⌘) is a rational B-submodule ofLk

i=1
O(X)U⇠i (see Proposition 3.5). As each element in M can be written as a sum

of T -semi-invariants, as U acts trivially on M and as X(U) is trivial, it follows that
each element in M can be written as a sum of B-semi-invariants. Hence, there is a non-
zero B-semi-invariant ⇠ 2 M such that ⇡(⇠) = ⌘. As a consequence, the weight of ⇠
is �. Thus we proved that D0 is contained in the weights of non-zero B-semi-invariants
of
Lk

i=1
O(X)U⇠i, i.e.,

D0 ⇢
kS

i=1

�
�i + ⇤+(X)

�
,

where �i 2 X(B) denotes the weight of ⇠i.
Since G 6= T , we get by Lemma 7.6 that U 6= {e}. Since G (and therefore U) acts

faithfully on X, there is a non-trivial B-homogeneous Ga-action ⇢ : Ga ⇥X ! X of
a certain weight � 2 D associated to a root subgroup with respect to B in the center
of U . Now, we claim that

�+ ⇤+(X) ⇢ D.

Indeed, this follows since for every non-zero B-semi-invariant r 2 O(X)U of weight
�0 2 X(B), the Ga-action

Ga ⇥X �! X, (t, x) 7�! ⇢(r(x)t, x)

is non-trivial and B-homogeneous of weight �+ �0 2 X(B).
In summary, we have proved

�+ ⇤+(X) ⇢ D ⇢ D0 ⇢
kS

i=1

�
�i + ⇤+(X)

�
⇢ X(B)R.

From Lemma 2.1 it now follows that ⇤+(X)1 ⇢ D1 ⇢ D0
1 = ⇤+(X)1. ⇤

Theorem 8.2. — Let X be a quasi-a�ne G-spherical variety which is non-isomorphic
to a torus. If G 6= T or Xa↵ 6' A1⇥ (A1 r{0})dim(X)�1, then D(X) is non-empty and

(�) ⇤+(X) = Conv(D(X)1) \ SpanZ(D(X)),

where the asymptotic cones and linear spans are taken inside X(B)R. Moreover,
dim Conv(D(X)1) = dim SpanR(D(X)).
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In case X is isomorphic to a torus, D(X) is empty and thus SpanZ(D(X)) = {0}.
In particular, (�) is not satisfied (as G is non-trivial). In case G = T and Xa↵ '
A1 ⇥ (A1 r {0})dim(X)�1, Remark 8.5 below implies that (�) is not satisfied.

Proof of Theorem 8.2. — As in the last proof, we set D = D(X). We get D 6= ?.
Indeed: if G 6= T , this follows from Lemma 7.6 and if G = T , this follows from
Corollary 6.10 (as X is not a torus).

Since X is a quasi-a�ne G-spherical variety, it follows from Lemma 3.4 that Xa↵ =
Spec O(X) is an a�ne G-spherical variety. In particular, O(X) is an integrally closed
domain, that is finitely generated as a k-algebra. Hence O(X)U is integrally closed
and it is finitely generated as a k-algebra (by Proposition 4.6). Since B acts with an
open orbit on Xa↵ , the algebraic quotient Xa↵//U = SpecO(X)U is an a�ne T 0-toric
variety, where T 0 is a quotient torus of T . Thus we get a natural inclusion of character
groups

X(T 0) ⇢ X(T ) = X(B),

where we identify X(B) with X(T ) via the restriction homomorphism. Using the above
inclusion, ⇤+(X) is contained inside X(T 0) and it is equal to the set of T 0-weights
of non-zero T 0-semi-invariants of O(X)U . As Xa↵//U is T 0-toric, ⇤+(X) is a finitely
generated semi-group and Conv(⇤+(X)) is a convex rational polyhedral cone inside
X(T 0)R ⇢ X(B)R. Moreover, ⇤+(X) generates X(T 0) as a group inside X(B) and
⇤+(X) is saturated in X(T 0), i.e.,

⇤+(X) = Conv(⇤+(X)) \ X(T 0)

(see [CLS11, Ex. 1.3.4 (a)]). Using the inclusion X(T 0) ⇢ X(T ) = X(B) again, we get
D ⇢ X(T 0), since each B-homogeneous Ga-action on X induces a T 0-homogeneous
Ga-action on Xa↵//U . We distinguish two cases:

• G 6= T . By Proposition 8.1, we get inside X(B)R

⇤+(X)1 = D1

and there is a � 2 D with � + ⇤+(X) ⇢ D ⇢ X(T 0). Since ⇤+(X) generates the
group X(T 0), we get thus SpanZ(D) = X(T 0). As Conv(⇤+(X)) is a rational convex
polyhedral cone, we get Conv(⇤+(X)) = Conv(⇤+(X)1). In summary, we have

⇤+(X) = Conv(⇤+(X)) \ X(T 0) = Conv(⇤+(X)1) \ X(T 0)

= Conv(D1) \ SpanZ(D)

and thus (�) holds. The second statement now follows from

dim SpanR(D) = dim T 0 = rank ⇤+(X) 6 dim Conv(D1) 6 dim T 0.

• G = T . In particular, T acts faithfully with an open orbit on X. Thus T 0 = T
and both varieties X, Xa↵ = Xa↵//U are T -toric.

Denote by � ⇢ HomZ(X(T ), R) the strongly convex rational polyhedral cone that
describes Xa↵ and let �_ ⇢ X(T )R be the dual of �. By Corollary 6.9

(4) D1 = �_ r int(�_),
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where int(�_) denotes the interior of �_ inside X(T )R. By assumption,

Xa↵ 6' A1 ⇥ (A1 r {0})dim(X)�1.

This implies that dim� > 1 and we may write �_ = C ⇥ W , where C ⇢ X(T )R
is a strongly convex polyhedral cone of dimension > 1 and W ⇢ X(T )R is a linear
subspace. Hence, C is the convex hull of its codimension one faces and thus the same
holds for �_. Using (4), we get

Conv(D1) = �_ = Conv(⇤+(X)).

Since ⇤+(X) is saturated in X(T ), the above equality implies that

⇤+(X) = Conv(⇤+(X)) \ X(T ) = Conv(D1) \ X(T ).

It follows from Corollary 6.10 that X(T ) = SpanZ(D) (here we use that X 6' T ) and
thus (�) holds. The second statement now follows from

dim SpanR(D) = dim T = rank ⇤+(X) 6 dim Conv(D1) 6 dim T. ⇤

Remark 8.3. — Assume that G = T and that X is a T -toric quasi-a�ne variety. Then
one could recover the extremal rays of the strongly convex rational polyhedral cone
that describes Xa↵ from D(X) in a similar way as in [LRU19, Lem. 6.11] by using
Corollary 6.8. In particular, one could then recover ⇤+(X) from D(X). However,
we wrote Theorem 8.2 in order to have a nice “closed formula” of ⇤+(X) in terms of
D(X) for almost all quasi-a�ne G-spherical varieties.

Corollary 8.4. — For a quasi-a�ne G-spherical variety X, exactly one of the fol-
lowing cases holds (the linear spans and asymptotic cones are taken inside X(B)R):

(1) dim Conv(D(X)1) = dim SpanR(D(X)), D(X) is non-empty and

⇤+(X) = Conv(D(X)1) \ SpanZ(D(X));

(2) dim Conv(D(X)1) < dim SpanR(D(X)), D(X) is non-empty, D(X)1 is a
hyperplane in SpanR(D(X)) and

⇤+(X) = H+ \ SpanZ(D(X)),

where H+ ⇢ SpanR(D(X)) is the closed half space with boundary D(X)1 that does
not intersect D(X);

(3) D(X) is empty and ⇤+(X) = X(T ).
In particular, the following holds: If Y is another quasi-a�ne G-spherical variety with
D(Y ) = D(X), then ⇤+(Y ) = ⇤+(X).

Proof. — If X is a torus, then D(X) is empty. In particular, G = T by Lemma 7.6
and thus X ' T . Hence, ⇤+(X) = X(T ) and we are in case (3). Thus we may assume
that X is not a torus.

If G 6= T or Xa↵ 6' A1⇥ (A1 r {0})dim(X)�1, then Theorem 8.2 implies that we are
in case (1).

Thus we may assume that G = T and Xa↵ ' A1⇥(A1r{0})dim(X)�1. In particular,
D(X) is non-empty and by Corollary 6.10 we get X(T ) = SpanZ(D(X)). Denote
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by � ⇢ HomZ(X(T ), R) the closed strongly convex rational polyhedral cone that
describes Xa↵ . In this case � is a single ray and thus �_ is a closed half space in X(T )R.
As D(X)1 = �_rint(�_) (see Corollary 6.9), it follows that D(X)1 is a hyperplane in
SpanR(D(X)). By definition ⇤+(X) = �_\SpanZ(D(X)) and �_ is in fact the closed
half space with boundary D(X)1 that does not intersect D(X) (see Corollary 6.8).
In particular, dim Conv(D(X)1) < dim T = dim SpanR(D(X)) and thus we are in
case (2). ⇤

Remark 8.5. — The proof of Corollary 8.4 shows that in case G = T and Xa↵ '
A1 ⇥ (A1 r {0})dim(X)�1 we are in case 2. In particular,

⇤+(X) 6= Conv(D(X)1) \ SpanZ(D(X)).

As a consequence of Corollary 8.4 we prove that for a G-spherical variety X the
weight monoid ⇤+(X) ✓ X(B) is determined by its automorphism group.

Corollary 8.6. — Let X, Y be irreducible quasi-a�ne normal varieties. Assume
that X is G-spherical, X is di�erent from an algebraic torus and that there exists
an isomorphism of groups ✓ : Aut(X) ' Aut(Y ) that preserves algebraic subgroups.
Then Y is G-spherical for the G-action induced by ✓ and ⇤+(X) = ⇤+(Y ).

Proof. — The first claim follows from Proposition 7.7. To show that ⇤+(X) = ⇤+(Y )
let us denote by D(X), D(Y ) ⇢ X(B) the set of B-weights of non-trivial B-homo-
geneous Ga-actions on X and Y , respectively. We get D(X) = D(Y ) from Lemma 5.1.
Now, Corollary 8.4 implies ⇤+(X) = ⇤+(Y ). ⇤

Theorem 8.7. — Let X and Y be irreducible normal a�ne varieties. Assume that X is
G-spherical and that X is not isomorphic to a torus. Moreover, we assume that there
is an isomorphism of groups ✓ : Aut(X) ' Aut(Y ) that preserves algebraic subgroups.
We consider Y as a G-variety by the induced action via ✓. Then X, Y are isomorphic
as G-varieties, provided one of the following statements holds

(a) X and Y are smooth or
(b) G = T is a torus.

Proof. — By Corollary 8.6, Y is G-spherical and the weight monoids ⇤+(X) and
⇤+(Y ) coincide. In case X and Y are smooth, the statement now follows from Losev’s
result, i.e., Theorem 3. In case G is a torus, it is classical, that from the weight monoid
⇤+(X) one can reconstruct the toric variety X up to G-equivariant isomorphisms, see
e.g. [Ful93, §1.3]. ⇤

We end this Section with the following natural question concerning Theorem 8.7:

Question 8.8. — Does the conclusion of Theorem 8.7 also hold without the extra
assumptions (a) and (b)?
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9. A counterexample

For the rest of this article, we give an example which shows that we cannot drop
the normality condition in Main Theorem A. The example is borrowed from [Reg17].

Let µd ⇢ k⇤ be the finite cyclic subgroup of order d and let it act on An via
t · (x1, . . . , xn) = (tx1, . . . txn). The algebraic quotient An/µd has the coordinate ring

O(An/µd) =
L
k>0

k[x1, . . . , xn]kd ⇢ k[x1, . . . , xn],

where k[x1, . . . , xn]i ⇢ k[x1, . . . , xn] denotes the subspace of homogeneous polynomi-
als of degree i. For each s > 2, let

As
d,n = Spec

✓
k �

L
k>s

k[x1, . . . , xn]kd

◆
.

Proposition 9.1. — For n, s > 2, d > 1 and the algebraic quotient ⇡ : An ! An/µd

holds:
(1) The variety An/µd is SLn(k)-spherical for the induced SLn(k)-action on An

and An/µd is smooth outside ⇡(0, . . . , 0);
(2) There is an SLn(k)-action on As

d,n such that the morphism ⌘ : An/µd ! As
d,n

which is induced by the natural inclusion O(As
d.n) ⇢ O(An/µd) is SLn(k)-equivariant.

Moreover, ⌘ is the normalization morphism and it is bijective;
(3) The natural group homomorphism Aut(As

d,n) ! Aut(An/µd) is a group iso-
morphism that preserves algebraic subgroups;

(4) The variety As
d,n is not normal;

(5) The weight monoids ⇤+(As
d,n) and ⇤+(An/µd) inside X(B) are distinct when

we fix a Borel subgroup B ⇢ SLn(k).

Proof
(1) As the natural SLn(k)-action on An commutes with the µd-action, we get an

induced SLn(k)-action on An/µd such that ⇡ is SLn(k)-equivariant and An/µd is
SLn(k)-spherical. As SLn(k) acts transitively on An r {0}, the projection ⇡ induces
a finite étale morphism An r{(0, . . . , 0)}! (An/µd)r{⇡(0, . . . , 0)}. This shows that
(An/µd) r {⇡(0, . . . , 0)} is smooth.

(2) As SLn(k) acts linearly on An, we get an SLn(k)-action on As
d,n such that

⌘ : An/µd ! As
d,n is SLn(k)-equivariant.

As An is normal, the algebraic quotient An/µd is normal. As O(As
d,n) has finite

codimension in O(An/µd), the ring extension O(As
d,n) ⇢ O(An/µd) is integral. More-

over, for each monomial f 2 k[x1, . . . , xn] of degree sd, we get an equality by local-
izing, namely O(As

d,n)f = O(An/µd)f , and thus ⌘ is birational. This shows that ⌘
is the normalization morphism. Moreover, as ⌘ is SLn(k)-equivariant and as SLn(k)
acts transitively on (Ad/µd) r {⇡(0, . . . , 0)}, we get that As

d,n r {⌘(⇡(0, . . . , 0))} is
smooth and as ⌘ is the normalization, it is an isomorphism over the complement of
⌘(⇡(0, . . . , 0)). Moreover, ⌘�1(⌘(⇡(0, . . . , 0))) = {⇡(0, . . . , 0)} and thus ⌘ is bijective.
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(3) Each automorphism " of As
d,n lifts uniquely to an automorphism e" of An/µd

via the normalization morphism An/µd ! As
d,n and therefore

✓ : Aut(As
d,n) �! Aut(An/µd), " 7�! e"

is an injective group homomorphism.
Now we prove that ✓ is surjective. For this, let ' 2 Aut(An/µd). As n > 2, the

algebraic quotient An ! An/µd is in fact the Cox realization of the toric variety
An/µd (see [AG10, Th. 3.1]). By [Ber03, Cor. 2.5, Lem. 4.2], ' lifts via An ! An/µd

to an automorphism  of An and there is an integer c > 1 which is coprime to d such
that for each t 2 µd and each (a1, . . . , an) 2 An we have

 (ta1, . . . , tan) = tc (a1, . . . , an).

This implies that for each i 2 {1, . . . , n},

 ⇤(xi) 2
L
k>0

k[x1, . . . , xn]kd+c.

As  is an automorphism of An, we get c = 1 and thus  is µd-equivariant (see also
[Reg17, Prop. 4]). Hence,  ⇤ : k[x1, . . . , xn] ! k[x1, . . . , xn] maps O(As

d,n) onto itself
and by construction restricts to '⇤ on O(An/µd). Therefore, there is an endomor-
phism e' : As

d,n ! As
d,n that induces ' 2 Aut(An/µd) via the normalization morphism

⌘ : An/µd ! As
d,n. As ⌘ and ' are bijective, e' is bijective as well; hence e' is an

automorphism of As
d,n by [Kal05, Lem. 1] and thus ✓ is surjective.

Since ✓ : Aut(As
d,n) ! Aut(An/µd) is a group isomorphism and as it is induced

by the normalization morphism An/µd ! As
d,n, it follows that ✓ is an isomorphism

of ind-groups, see [FK, Prop. 12.1.1]. In particular, ✓ is a group isomorphism that
preserves algebraic subgroups.

(4) The normalization morphism An/µd ! As
d,n is not an isomorphism, since the

inclusion O(As
d,n) ⇢ O(An/µd) is proper (note that s > 2).

(5) We may assume that B ⇢ SLn(k) is the Borel subgroup of upper triangular
matrices. Denote by U ⇢ B the unipotent radical, i.e., the upper triangular ma-
trices with 1 on the diagonal. Then the subrings of U -invariant functions satisfy
O(An/µd)U =

L
k>0

kxkd
n and O(As

d,n)U = k�
L

k>s kxkd
n . Denote by �n : B ! Gm

the character which is the projection to the entry (n, n). Then we get

⇤+(An/µd) = {�kd
n | k > 0} and ⇤+(As

d,n) = {�kd
n | k = 0 or k > s}

inside X(B) and as s > 2, these monoids are distinct. ⇤
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In this note we study the problem of characterizing the complex affine space An via its

automorphism group. We prove the following. Let X be an irreducible quasi-projective

n-dimensional variety such that Aut(X) and Aut(An) are isomorphic as abstract groups.

If X is either quasi-affine and toric or X is smooth with Euler characteristic χ(X) ̸= 0

and finite Picard group Pic(X), then X is isomorphic to An.

The main ingredient is the following result. Let X be a smooth irreducible quasi-

projective variety of dimension n with finite Pic(X). If X admits a faithful (Z/pZ)n-

action for a prime p and χ(X) is not divisible by p, then the identity component of the

centralizer CentAut(X)((Z/pZ)n) is a torus.

1 Introduction

In 1872, Felix Klein suggested as part of his Erlangen Programm to study geometrical

objects through their symmetries. In the spirit of this program it is natural to ask to

which extent a geometrical object is determined by its automorphism group. This is the

case for compact and locally Euclidean manifolds as shown by Whittaker [30]. It also

holds for differentiable manifolds, for symplectic manifolds, and for contact manifolds;

see [30], [6], [27], and [28].
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We will study this question in the algebraic setting, that is, for complex

algebraic varieties. For such a variety X we denote by Aut(X) the group of regular

automorphisms of X. As this automorphism group is usually quite small, it almost never

determines the variety. However, if Aut(X) is large, like for affine n-space An, n ≥ 2, this

might be true. Our guiding question is the following.

Question. Let X be a variety. Assume that Aut(X) is isomorphic to the group Aut(An).

Does this imply that X is isomorphic to An?

This question cannot have a positive answer for all varieties X. For example,

Aut(An) and Aut(An × Z) are isomorphic for any complete variety Z with a trivial

automorphism group. Similarly, Aut(An) and Aut(An∪̇Y) are isomorphic for any variety

Y with a trivial automorphism group. Thus, we have to impose certain assumptions

on X.

In case X is affine, the group Aut(X) has the structure of a so-called ind-group.

Using this extra structure one has the following result; see [17]. If X is a connected

affine variety, then every isomorphism of ind-groups between Aut(X) and Aut(An) is

induced by an isomorphism X
∼→ An of varieties. For some generalizations of this result

we refer to [25].

In dimension 2, it is shown in [22] that if X is an irreducible normal surface

and Y is an affine toric surface, then X is isomorphic to Y if the automorphism groups

Aut(X) and Aut(Y) are isomorphic.

Our main result in this paper is the following.

Main Theorem. Let X be a complex irreducible quasi-projective variety of dimension

n such that Aut(X) ≃ Aut(An). Then X ≃ An if one of the following conditions holds.

1. X is smooth, the Euler characteristic χ(X) is nonzero and the Picard group

Pic(X) is finite.

2. X is toric and quasi-affine.

As an immediate application we get the following result.

Corollary. If S ⊂ An is a closed subvariety such that χ(S) ̸= 1, then Aut(An \ S) ̸≃
Aut(An).

In fact, X := An \ S is smooth and quasi-projective, χ(X) = χ(An) − χ(S) ̸= 0

(Lemma 2.14(1)), and Pic(X) is trivial.
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Outline of Proof

Let θ : Aut(An)
∼→ Aut(X) be an isomorphism. First we show that if a torus of Aut(An)

of maximal dimension n is mapped onto an algebraic subgroup of Aut(X) and if X is

quasi-affine, then X ≃ An (Proposition 4.1). Our main result in order to achieve

these conditions is the following. (For the definition of the topology on Aut(X) see

Section 2.2.)

Theorem 1.1. Let Y and Z be irreducible quasi-projective varieties, and let

θ : Aut(Y)
∼→ Aut(Z) be an isomorphism. Assume that n := dim Y ≥ dim Z and that

the following conditions are satisfied:

(i) Y is quasi-affine and toric.

(ii) Z is smooth, χ(Z) ̸= 0, and Pic(Z) is finite.

Then dim Z = n, and for each n-dimensional torus T ⊆ Aut(Y), the identity component

of the image θ(T)◦ is a closed torus of dimension n. Furthermore, Z is quasi-affine.

From this and Proposition 4.1 we can deduce our Main Theorem by setting

Y := An and Z := X in case (1) and Y := X and Z := An in case (2); see Section 4.2.

For the proof of Theorem 1.1 we first remark that every torus T ⊆ Aut(X)

of maximal dimension n = dim X is self-centralizing (Lemma 2.10). For any prime

p the torus T contains a unique subgroup µp isomorphic to (Z/pZ)n. In particular,

T ⊆ CentAut(X)(µp), and thus the image of T under θ : Aut(X)
∼→ Aut(Y) is mapped to

a subgroup of the centralizer of θ(µp).

Our strategy is then to show that the identity component of the centralizer

CentAut(Y)(θ(µp)) is an algebraic group. Our main result in this direction is the following

generalization of [19, Proposition 3.4].

Theorem 1.2. Let X be a smooth, irreducible, quasi-projective variety of dimension

n with finite Picard group Pic(X). Assume that X carries a faithful (Z/pZ)n-action for

some prime p that does not divide χ(X). Then the centralizer C := CentAut(X)((Z/pZ)n)

is a closed subgroup of Aut(X) and its identity component C◦ is a closed torus of

dimension ≤ n.

For the proof we first show that the fixed-point set X(Z/pZ)n
contains an isolated

point x0. This follows from the smoothness of X and the assumption that p does not

divide χ(X). Now we study the tangent representation of (Z/pZ)n in x0 and show that

the homomorphism C◦ → GL(Tx0
X) is regular and has a finite kernel.
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2 Preliminary Results

Throughout this note we work over the field C of complex numbers. A variety will be a

reduced separated scheme of finite type over C.

2.1 Quasi-affine varieties

Let us recall some well-known results about quasi-affine varieties.

Lemma 2.1 ([10, Chapter II, Proposition 5.1.2]). A variety X is quasi-affine if and only

if the canonical morphism η : X → Spec O(X) is a dominant open immersion of schemes.

Lemma 2.2 ([5, Chapter I, Section 2, Proposition 2.6]). Let X and Y be varieties. Then

the natural homomorphism

O(X) ⊗C O(Y) → O(X × Y)

is an isomorphism of C-algebras.

Lemma 2.3. Let X and Y be varieties where X is quasi-affine. Then every morphism

Y × X → X extends uniquely to a morphism Y × Spec O(X) → Spec O(X). In particular,

every regular action of an algebraic group on X extends to a regular action on Spec O(X).

Proof. We can assume that Y is affine. By Lemma 2.2 we have O(Y×X) = O(Y)⊗CO(X).

Hence, Y × X → X induces a homomorphism of C-algebras O(X) → O(Y) ⊗C O(X) that

in turn gives the desired extension Y × Spec O(X) → Spec O(X). ⌅

2.2 Algebraic structure on the group of automorphisms

In this subsection, we recall some basic results about the automorphism group Aut(X)

of a variety X. The survey [2] and the article [24] will serve as references. Recall that a

morphism ν : A → Aut(X) is a map from a variety A to Aut(X) such that the associated

map

ν̃ : A × X → X, (a, x) /→ ax := ν(a)(x)

is a morphism of varieties. We get a topology on Aut(X), called Zariski topology, by

declaring a subset F ⊂ Aut(X) to be closed, if for every variety A the preimage ν−1(F)

under every morphism ν : A → Aut(X) is closed in A. In particular, a morphism ν : A →
Aut(X) is continuous with respect to the Zariski topology.
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Similarly, a morphism ν = (ν1, ν2) : A → Aut(X) × Aut(X) is a map from a variety

A into Aut(X) × Aut(X) such that ν1 and ν2 are morphisms. Thus, we get analogously as

before a topology on Aut(X) × Aut(X). Note that for morphisms ν, ν1, ν2 : A → Aut(X) the

following maps are again morphisms

A → Aut(X), a /→ ν1(a) ◦ ν2(a),

A → Aut(X), a /→ ν(a)−1,

and that ν−1(%) is closed in A where % ⊂ Aut(X)×Aut(X) denotes the diagonal. It follows

that Aut(X) behaves like an algebraic group.

Lemma 2.4. For any variety X the maps

Aut(X) × Aut(X) → Aut(X) , (ϕ1, ϕ2) /→ ϕ1 ◦ ϕ2

Aut(X) → Aut(X) , ϕ /→ ϕ−1

are continuous, and the diagonal % is closed in Aut(X) × Aut(X).

Example 2.5. For any set S ⊆ Aut(X) the centralizer Cent(S) is a closed subgroup of

Aut(X). This is a consequence of Lemma 2.4.

Definition 2.6. For a subset S ⊆ Aut(X) its dimension is defined by

dim S := sup

(

d
����

there exists a variety A of dimension d and an

injective morphism ν : A → Aut(X) with image in S

)

.

The following lemma generalizes the classical dimension estimate to morphisms

A → Aut(X).

Lemma 2.7. If ν : A → Aut(X) is a morphism, then dim ν(A) ≤ dim A.

Proof. Let η : B → Aut(X) be an injective morphism such that η(B) ⊆ ν(A). We have to

show that dim B ≤ dim A. For this consider the fiber product
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By definition, we have A ×Aut(X) B := {(a, b) ∈ A × B | ν(a) = η(b)}. Since ν × η : A × B →
Aut(X) × Aut(X) is a morphism, hence continuous, and % ⊂ Aut(X) × Aut(X) is closed, it

follows that A ×Aut(X) B ⊂ A × B is closed. Thus, the fiber product is a variety, and the

two maps ν̄ and η̄ are morphisms. By assumption, ν̄ is surjective and η̄ is injective, and

the claim follows. ⌅

For a subgroup G ⊆ Aut(X), the identity component G◦ ⊆ G is defined by

G◦ =
(

g ∈ G
����

there exists an irreducible variety A and a morphism

ν : A → Aut(X) with image in G such that g, e ∈ ν(A)

)

.

We call a subgroup G ⊆ Aut(X) connected if G = G◦. In the next proposition, we list

several properties of the identity component of a subgroup of Aut(X). If G is an ind-

group, then these properties are known; see [9, Proposition 2.2.1].

Proposition 2.8. Let X be a variety, and let G ⊆ Aut(X) be a subgroup. Then the

following holds.

1. G◦ is a normal subgroup of G.

2. The cosets of G◦ in G are the equivalence classes under the relation

g1 ∼ g2 ⇐⇒

8
>><

>>:

there exists an irreducible variety A

and a morphism ν : A → Aut(X)

with image in G such that g1, g2 ∈ ν(A) .

3. For each morphism ν : A → Aut(X) with image in G the preimage ν−1(G◦) is

closed in A. In particular, if G is closed in Aut(X), then G◦ is also closed in

Aut(X).

4. If X is quasi-projective and G is closed in Aut(X), then the index of G◦ in G is

countable.

Proof. (1) This follows immediately from the definition of G◦.

(2) We have to show that “∼” is an equivalence relation on G. Reflexivity and

symmetry are obvious. For the transitivity, let g ∼ h and h ∼ k. By definition, there exist

irreducible varieties A and B, morphisms ν : A → Aut(X) and η : B → Aut(X) with image
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in G, and a1, a2 ∈ A, b1, b2 ∈ B such that ν(a1) = g, ν(a2) = h, η(b1) = h, η(b2) = k. Then

the map

A × B → Aut(X), (a, b) /→ ν(a) ◦ h−1 ◦ η(b)

is a morphism with image in G that sends (a1, b1) to g and (a2, b2) to k. Thus, g ∼ k,

proving the transitivity.

(3) Let

k[

i=1

Bi = ν−1(G◦) ⊆ A

be the decomposition of the closure of ν−1(G◦) into irreducible components B1, . . . , Bk.

Thus, Bi ∩ ν−1(G◦) is nonempty. Since ν has image in G it follows from the transitivity of

“∼” that ν(Bi) ⊆ G◦. Thus, Bi ⊆ ν−1(G◦) for all i. Hence, ν−1(G◦) is closed in A.

(4) Let ν : A → Aut(X) be a morphism. Since ν−1(G) ⊆ A is closed, it has only

finitely many irreducible components. This implies that its image ν(A) meets only

finitely many cosets of G◦ in G. The claim follows if we show that there exist countably

many morphisms of varieties into Aut(X) whose images cover Aut(X).

Since X is quasi-projective, there exists a projective variety X and an open

embedding X ⊆ X. For each polynomial p ∈ Q[x] we denote by Hilbp the Hilbert scheme

of X × X associated with the Hilbert polynomial p and denote by Up ⊆ Hilbp × X × X the

universal family, which is by definition flat over Hilbp. By [14, Theorem 3.2], Hilbp is a

projective scheme over C. For i = 1, 2 consider the following morphisms:

qi : (Hilbp × X × X) ∩ Up → Hilbp × X , (h, x1, x2) /→ (h, xi),

which are defined over Hilbp. By [12, Proposition 9.6.1], the points h ∈ Hilbp where the

restriction

qi|{h} : ({h} × X × X) ∩ Up → {h} × X

is an isomorphism form a constructible subset Sp of Hilbp. Now choose locally closed

subsets Sp
j , j = 1, . . . , kp of Hilbp that cover Sp. We equip each Sp

j with the underlying

reduced scheme structure of Hilbp. Note that (Hilbp × X ×X)∩Up and Hilbp × X are both

flat over Hilbp. Therefore, we can apply [13, Proposition 5.7] and we get that qi restricts

to an isomorphism over Sp
j . Thus, for each j we get a morphism of varieties
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which defines a morphism Sp
j → Aut(X). For each automorphism ϕ in Aut(X), the closure

in X × X of the graph 'ϕ ⊆ X × X defines a (closed) point in the Hilbert scheme Hilbp for

a certain rational polynomial p, which belongs to Sp. Thus, the images of the morphisms

Sp
j → Aut(X) cover Aut(X). Since there are only countably many rational polynomials,

the claim follows. ⌅

We say that G is an algebraic subgroup of Aut(X) if there exists a morphism

ν : H → Aut(X) of an algebraic group H with image G, which is a homomorphism of

groups.

The next result gives a criterion for a subgroup of Aut(X) to be algebraic. The

main argument is due to Ramanujam [24].

Theorem 2.9. Let X be an irreducible variety, and let G ⊆ Aut(X) be a subgroup. Then

the following statements are equivalent:

(1) G is an algebraic subgroup of Aut(X).

(2) There exists a morphism of a variety into Aut(X) with image G.

(3) dim G is finite and G◦ has finite index in G.

(4) There is a structure of an algebraic group on G such that for each irreducible

variety A we get a bijection

(
morphisms A → Aut(X)

with image in G

)
1 : 1−→

(
morphisms of

varieties A → G

)

.

Proof. The implication (1) ⇒ (2) follows from the definition.

Assume that there is a morphism η : A → Aut(X) with image equal to G. By

Lemma 2.7 we get dim G ≤ dim A; hence, dim G is finite. Since A has only finitely many

irreducible components it follows from Proposition 2.8 2 that G◦ has finite index in G.

This proves (2) ⇒ (3).

The implication (3) ⇒ (4) is proved in [24, Theorem, p. 26] in case G = G◦. This

implies that G◦ carries the structure of an algebraic group with the required property.

Since G◦ has finite index in G we obtain a unique structure of an algebraic group on G

extending the given structure on G◦. It remains to see that the required property holds

for G.

By construction, the canonical inclusion ι : G → Aut(X) is a morphism, and

thus each morphism of varieties A → G yields a morphism A → Aut(X) by composing
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with ι. For the reverse, let ν : A → Aut(X) be a morphism with image in G. Since A is

irreducible there is g ∈ G such that the image of ν lies in gG◦ (Proposition 2.8(2)). Thus,

the composition λg−1 ◦ ν : A → Aut(G) is a morphism with image in G◦ where λg ∈ Aut(X)

is the left multiplication with g. It follows that ν corresponds to a morphism A → G of

varieties, proving (3) ⇒ (4).

The remaining implication (4) ⇒ (1) is obvious. ⌅

2.3 Ingredients from toric geometry

Recall that a toric variety is a normal irreducible variety X together with a regular

faithful action of a torus of dimension dim X. For details concerning toric varieties we

refer to [8].

Lemma 2.10. Let X be a toric variety, and let T be a torus of dimension dim X that acts

faithfully on X. Then the centralizer of T in Aut(X) is equal to T. In particular, the image

of T in Aut(X) is closed.

Proof. Let g ∈ Aut(X) such that gt = tg for all t ∈ T. By definition, there is an open,

dense T-orbit in X, say U. Since gU ∩U is nonempty, there exists x ∈ U such that gx ∈ U.

Using that U = Tx we find t0 ∈ T with gx = t0x. Thus, for each t ∈ T we get

gtx = tgx = tt0x = t0tx .

Using that U = Tx is dense in X, we get g = t0. ⌅

Lemma 2.11. Let X be a toric variety. Then the coordinate ring O(X) is finitely

generated and integrally closed.

Proof. This is a special case of a result of Knop; see [16, Satz, p. 33]. ⌅

The next proposition is based on the study of homogeneous Ga-actions on affine

toric varieties in [21]. Recall that a group action ν : G → Aut(X) on a toric variety is called

homogeneous if the torus normalizes the image ν(G). Note that for any homogeneous

Ga-action ν there is a well-defined character χ : T → Gm, defined by the formula

t ν(s) t−1 = ν(χ(t) · s) for t ∈ T, s ∈ C.
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Proposition 2.12. Let X be an n-dimensional quasi-affine toric variety. If X is not a

torus, then there exist homogeneous Ga-actions

η1, . . . , ηn : Ga × X → X

such that the corresponding characters χ1, . . . , χn are linearly independent in the

character group of T.

The proof needs some preparation. Denote by Y the spectrum of O(X). By

Lemma 2.11, the variety Y is normal, and the faithful torus action on X extends uniquely

to a faithful torus action on Y, by Lemma 2.3.

The following notation is taken from [21]. Let N be a lattice of rank n, M =
Hom(N, Z) be its dual lattice, NQ = N ⊗Z Q and MQ = M ⊗Z Q. Thus, we have a natural

pairing MQ × NQ → Q, (m, n) /→ ⟨m, n⟩. Let σ ⊂ NQ be the strongly convex polyhedral

cone that describes Y and let σ∨
M be the intersection of the dual cone σ∨ in MQ with M.

Thus, Y = Spec R, where

R := C[σ∨
M ] =

M

m∈σ∨
M

Cχm ⊆ C[M] .

For each extremal ray ρ ⊂ σ , denote by ρ⊥ the elements u ∈ MQ with ⟨u, v⟩ = 0 for all

v ∈ ρ. Moreover, let τM = ρ⊥ ∩ σ∨
M and let

Sρ = { e ∈ M | e ̸∈ σ∨
M , e + m ∈ σ∨

M for all m ∈ σ∨
M \ τM } .

By [21, Remark 2.5] we have Sρ ̸= ? and e + m ∈ Sρ for all e ∈ Sρ and all m ∈ τM . Let us

recall the description of the homogeneous locally nilpotent derivations on R.

Proposition 2.13 ([21, Lemma 2.6 and Theorem 2.7]). Let ρ be an extremal ray in σ and

let e ∈ Sρ . Then

∂ρ,e : R → R , χm /→ ⟨m, ρ⟩χe+m

is a homogeneous locally nilpotent derivation of degree e, and every homogeneous

locally nilpotent derivation of R is a constant multiple of some ∂ρ,e.

Proof of Proposition 2.12. Since X is not a torus, Y is also not a torus. Thus, σ contains

extremal rays, say ρ1, . . . , ρk and k ≥ 1. Recall that associated to these extremal rays,

there exist torus-invariant divisors V(ρ1), . . . , V(ρk) in Y. Again, since X is not a torus,
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one of these divisors does intersect X. Let us assume that ρ = ρ1 is an extremal ray such

that V(ρ) ∩ X is nonempty. Then using the orbit-cone correspondence, one can see that

Y \X is contained in the union Z = Sk
i=2 V(ρi); see [8, Section 3.1]. Let e ∈ Sρ be fixed. We

claim that the Ga-action on Y associated with the locally nilpotent derivation ∂ρ,e+m′ of

Proposition 2.13 fixes Z for all m′ ∈ τM \ S
i≥2 ρ⊥

i .

Let us fix m′ ∈ τM with ⟨m′, v⟩ > 0 for all v ∈ S
i≥2 ρi. Note that the fixed-point

set of the Ga-action on Y corresponding to ∂ρ,e+m′ is the zero set of the ideal generated

by the image of ∂ρ,e+m′ . The divisor V(ρi) is the zero set of the kernel of the canonical

C-algebra surjection

pi : C[σ∨
M ] → C[σ∨

M ∩ ρ⊥
i ] , χm /→

(
χm, ifm ∈ ρ⊥

i

0, otherwise
;

see [8, Section 3.1]. Thus, we have to prove that for all i = 2, . . . , k the composition

C[σ∨
M ]

∂ρ,e+m′
−→ C[σ∨

M ]
pi−→ C[σ∨

M ∩ ρ⊥
i ]

is the zero map. Since, by definition, ∂ρ,e+m′ vanishes on τM = ρ⊥ ∩ σ∨
M , we only have to

show that for all m ∈ σ∨
M \ τM the following holds:

⟨e + m′ + m, v⟩ > 0 for all v ∈ ρi, i = 2, . . . , k.

This is satisfied because ⟨m′, v⟩ > 0 and ⟨e + m, v⟩ ≥ 0 (note that e ∈ Sρ implies e + m ∈
σ∨

M ). This proves the claim.

Since τM spans a hyperplane in M and e ̸∈ τM , we can choose m′
1, . . . , m′

n ∈
τM \ S

i≥2 ρ⊥
i such that e + m′

1, . . . , e + m′
n are linearly independent in MQ. Hence, the

homogeneous locally nilpotent derivations

∂ρ,e+m′
i
, i = 1, . . . , n

define Ga-actions on Y that fix Z and thus restrict to Ga-actions on X. Moreover, the

character of ∂ρ,e+m′
i

is χi = χe+m′
i . In particular, χ1, . . . , χn are linearly independent,

finishing the proof of Proposition 2.12. ⌅

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/6/4280/5280928 by U
niversity of Basel user on 12 August 2021



Is the Affine Space Determined by Its Automorphism Group? 4291

2.4 The Euler characteristic

For a variety X, the Euler characteristic is defined by

χ(X) =
X

i≥0

(−1)i dimQ Hi(X, Q),

where Hi(X, Q) denotes the i-th singular cohomology group with rational coefficients.

The following results can be found in [18, Appendix].

Lemma 2.14. The Euler characteristic has the following properties.

(1) If X is a variety and Y ⊆ X is a closed subvariety, then χ(X) = χ(Y)+χ(X\Y).

(2) If X → Y is a fiber bundle, which is locally trivial in the étale topology with

fiber F, then χ(X) = χ(Y)χ(F).

2.5 Results about the fixed-point variety

The next result gives a criterion for the existence of fixed points under the action of a

finite p-group.

Proposition 2.15. Let p be a prime, and let G be finite p-group acting on a variety

X. If p does not divide the Euler characteristic χ(X), then the fixed-point variety XG is

nonempty.

Proof. Assume that XG is empty, that is, every G-orbit has cardinality pk for some

k > 0. We prove by induction on the dimension of X that p divides χ(X). Let X ′ ⊂ X be

a dense smooth open affine subset. By intersecting the G-translates gX ′ for g ∈ G we

can in addition assume that X ′ is G-invariant. Denote by π : X ′ → X ′/G the algebraic

quotient, that is, the morphism corresponding to the inclusion of the invariant ring

O(X ′)G in O(X ′). It follows from Luna’s slice theorem [23, Chapter II, Section 2] that

there is a smooth open dense subset U ⊂ X ′/G such that π restricts to a fiber bundle

π−1(U) → U, which is locally trivial in the étale topology. Now Lemma 2.14(2) implies

that p divides χ(π−1(U)). Using Lemma 2.14(1) and dim X \ π−1(U) < dim X the claim

follows by induction.
⌅

Remark 1. The proposition above is a purely topological result and holds in a much

more general setting; see, for example, [3, Chapter III, Theorem 4.4] or [4, Section III.7].

The next result is essentially due to Fogarty; see [7, Theorem 5.2].
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Proposition 2.16. Let G be a reductive group acting on a variety X. Assume that X

is smooth at a point x ∈ XG. Then XG is smooth at x and the tangent space satisfies

Tx(XG) = (TxX)G.

Remark 2. Assume that (Z/pZ)n acts faithfully on a smooth quasi-projective variety

X. If p does not divide χ(X), then dim X ≥ n.

In fact, by Proposition 2.15 there is a fixed-point x ∈ X, and the action of

(Z/pZ)n on the tangent space TxX is faithful [19, Lemma 2.2]; hence, n ≤ dim TxX =
dim X.

3 Proof of Theorems 1.1 and 1.2

Definition 3.1. Let X be a variety and M ⊆ Aut(X) a subset. A map η : M → Z into a

variety Z is called regular if for every morphism ν : A → Aut(X) with image in M, the

composition η ◦ ν : A → Z is a morphism of varieties.

3.1 Semi-invariant functions

Lemma 3.2. Let X be an irreducible normal variety, and let f ∈ O(X) be a non-constant

function such that the zero set Z := VX(f ) ⊂ X is an irreducible hypersurface. Let

G ⊆ Aut(X) be a connected subgroup that stabilizes Z. Then the function f is a G-semi-

invariant, that is,

f (gx) = χ(g)−1 · f (x) for x ∈ X and g ∈ G ,

where χ : G → C∗ is a character and a regular map.

For the proof we need the following description of the invertible functions on a

product variety, which is due to Rosenlicht [26, Theorem 2]. For a variety X we denote

by O(X)∗ the group of invertible functions on X.

Lemma 3.3. Let X1 and X2 be irreducible varieties. Then O(X1 ×X2)∗ = O(X1)∗ ·O(X2)∗.

Proof of Lemma 3.2. Since X is normal, the local ring R = OX,Z is a discrete valuation

ring. Let m be the maximal ideal of R. By assumption, f R = mk for some k > 0. Since

m is stable under G, the same is true for mk. Hence, for every g ∈ G, there exists a unit

rg ∈ R∗ such that gf = rg · f in R. Since f and g f have no zeroes in X \ Z, it follows that
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rg is regular and nonzero in X \ Z. Moreover, the open set where rg ∈ R is defined and

nonzero meets Z; hence, rg ∈ O(X)∗. Consider the homomorphism

χ : G → O(X)∗ , g /→ rg .

For all x ∈ X \Z, g ∈ G we get f (gx) = χ(g)(x)−1f (x), and f (gx) and f (x) are both nonzero.

Since for each morphism ν : A → Aut(X) with image in G, the map ν̃ : A × X → X,

(a, x) /→ ν(a)(x) is a morphism, we see that

A × (X \ Z) → C∗ , (a, x) /→ χ(ν(a))(x) = f (x) · f (ν̃(a, x))−1

is a morphism. If A is irreducible, then, by Lemma 3.3, there exist invertible functions

q ∈ O(A)∗ and p ∈ O(X \ Z)∗ such that χ(ν(a))(x) = q(a)p(x). If, moreover, ν(a0) = e ∈ G

for some a0 ∈ A, then

1 = re(x) = χ(ν(a0))(x) = q(a0)p(x) for all x ∈ X \ Z ,

that is, p ∈ C∗; hence, the composition χ ◦ ν : A /→ O(X)∗ has image in C∗. Since G is

connected, this implies that χ(G) ⊆ C∗ and that χ : G → C∗ is a character.

It remains to see that χ is regular. Choose x0 ∈ X\Z. As before, for each morphism

ν : A → Aut(X) with image in G, the map

A → C∗, a /→ χ(ν(a)) = f (x0) · f (ν(a)(x0))−1

is also a morphism. ⌅

Lemma 3.4. Let X be an irreducible normal variety, and let G ⊆ Aut(X) be a connected

subgroup. Assume that f1, . . . , fn ∈ O(X) have the following properties.

(1) Zi := VX(fi), i = 1, . . . , n, are irreducible G-invariant hypersurfaces.

(2)
T

i Zi contains an isolated point.

If χi : G → C∗ is the character of fi (Lemma 3.2), then

χ := (χ1, . . . , χn) : G → (C∗)n

is a regular homomorphism with finite kernel.
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Proof. Let G act on An by

g(a1, . . . , an) := (χ1(g)−1 · a1, . . . , χn(g)−1 · an).

Then the map f := (f1, . . . , fn) : X → An is G-equivariant. Let Y ⊆ An be the closure of

f (X). By assumption, f −1(0) = T
i Zi contains an isolated point; hence, f : X → Y has

a finite degree, that is, the field extension C(X) ⊃ C(Y) is finite. This implies that the

kernel K of χ : G → (C∗)n is finite because K embeds into AutC(Y)(C(X)). By Lemma 3.2,

χ is regular. ⌅

3.2 Another centralizer result

For an irreducible normal variety X, we denote by CH1(X) the first Chow group, that

is, the free group of integral Weil divisors modulo linear equivalence [15, Chapter II,

Section 6].

Proposition 3.5. Let X be an irreducible normal variety of dimension n with a faithful

action of (Z/pZ)n. Assume that CH1(X) is finite and that there exists a fixed-point

x which is a smooth point of X. Then the centralizer CentAut(X)((Z/pZ)n) is a closed

subgroup of Aut(X), and its identity component is a closed torus of dimension ≤ n.

Proof. We denote G := CentAut(X)((Z/pZ)n). By [19, Lemma 2.2] we get a faithful

representation of (Z/pZ)n on TxX, and thus we can find generators σ1, . . . , σn such that

(TxX)σi ⊂ TxX is a hyperplane for each i and that (TxX)(Z/pZ)n = 0. By Proposition 2.16,

the hypersurface Xσi ⊂ X is smooth at x, with tangent space Tx(Xσi) = (TxX)σi . Hence,

there is a unique irreducible hypersurface Zi ⊆ X which contains x and is contained

in Xσi . It follows that Zi is G◦-stable, and that x is an isolated point of
T

i Zi, because

(TxX)(Z/pZ)n = 0. Since a multiple of Zi is zero in CH1(X), there exist G◦-semi-invariant

functions fi ∈ O(X) such that VX(fi) = Zi (Lemma 3.2), and the corresponding characters

χi define a regular homomorphism

χ = (χ1, . . . , χn) : G◦ → (C∗)n

with a finite kernel (Lemma 3.4). It follows that dim G◦ ≤ n. Indeed, if ν : A → Aut(X) is

an injective morphism with image in G◦, then χ ◦ν : A → (C∗)n is a morphism with finite

fibers, and so dim A ≤ n. This implies, by Theorem 2.9, that G◦ ⊆ Aut(X) is an algebraic
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subgroup and that χ is a homomorphism of algebraic groups with a finite kernel. Hence,

G◦ is a torus. Since G is closed in Aut(X) the same holds for G◦, see Proposition 2.8. ⌅

3.3 Proof of Theorem 1.2

Now we can prove Theorem 1.2 that has the same conclusion as the proposition

above, but under different assumptions. We have to show that the assumptions of

Proposition 3.5 are satisfied. Since X is smooth, it follows that CH1(X) ≃ Pic(X) is finite,

and Proposition 2.15 implies that the fixed-point variety X(Z/pZ)n ⊆ X is nonempty. Now

the claims follow from Proposition 3.5.

3.4 Images of maximal tori under group isomorphisms

Proposition 3.6. Let X and Y be irreducible quasi-projective varieties such that n :=
dim X ≥ dim Y. Assume that the following conditions are satisfied:

(1) X is quasi-affine and toric.

(2) Y is smooth, χ(Y) ̸= 0, and Pic(Y) is finite.

If θ : Aut(X)
∼→ Aut(Y) is an isomorphism, then dim Y = n, and for each n-dimensional

torus T ⊆ Aut(X) the identity component of the image θ(T)◦ ⊂ Aut(Y) is a closed torus

of dimension n.

Proof. Let θ : Aut(X) → Aut(Y) be an isomorphism. Since χ(Y) ̸= 0 it follows that there

is a prime p that does not divide χ(Y).

Let T ⊂ Aut(X) be a torus of dimension n. We have T = CentAut(X)(T) (Lemma

2.10), and thus θ(T) is a closed subgroup of Aut(Y). Let µp ⊂ T be the subgroup generated

by the elements of order p, and let G := CentAut(Y)(θ(µp)) that is closed in Aut(Y). By

Remark 2, we have θ(T) ⊆ G and dim Y = n. Now Theorem 1.2 implies that G◦ ⊂ Aut(Y)

is a closed torus of dimension ≤ n, and by Proposition 2.8 and Theorem 2.9, we see

that θ(T)◦ is a closed connected algebraic subgroup of G◦.

In order to show that dim θ(T)◦ ≥ n we construct closed subgroups {1} = T0 ⊂
T1 ⊂ T2 ⊂ · · · ⊂ Tn = T with the following properties:

(i) dim Ti = i for all i.

(ii) θ(Ti) is closed in θ(T) for all i.

It then follows that θ(Ti)
◦ is a connected algebraic subgroup of θ(T)◦. Since the index of

θ(Ti)
◦ in θ(Ti) is countable (Proposition 2.8), but the index of Ti in Ti+1 is not countable,

we see that dim θ(Ti+1)◦ > dim θ(Ti)
◦, and so dim θ(T)◦ ≥ n.
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(a) Assume first that X is a torus. Then Aut(X) contains a copy of the symmetric

groups Sn, and we can find cyclic permutations τi ∈ Aut(X) such that Ti := CentT(τi) is

a closed subtorus of dimension i, and Ti ⊂ Ti+1 for all 0 < i < n. It then follows that

θ(Ti) = Centθ(T)(θ(τi)) is closed in θ(T), and we are done.

(b) Now assume that X is not a torus. By Proposition 2.12 there exist one-

dimensional unipotent subgroups U1, . . . , Un of Aut(X) normalized by T such that the

corresponding characters χ1, . . . , χn : T → C∗ are linearly independent. Since

ker(χi) = {t ∈ T | t ◦ ui ◦ t−1 = uifor allui ∈ Ui} = CentT(Ui)

it follows that

Ti :=
n−i\

k=1

ker(χk) = CentT(U1 ∪ · · · ∪ Un−i) ⊆ T

is a closed algebraic subgroup of T of dimension i. It follows that the image θ(Ti) =
Centθ(T)(θ(U1) ∪ · · · ∪ θ(Un)) is closed in θ(T), and the claim follows also in this case. ⌅

3.5 Proof of Theorem 1.1

Using Proposition 3.6, it is enough to show that a smooth toric variety Y with finite (and

hence trivial) Picard group is quasi-affine.

For proving this, let / ⊂ NQ = N ⊗Z Q be the fan that describes Y where N is a

lattice of rank n. Let N′ ⊆ N be the sublattice spanned by / ∩ N, and let Y ′ be the toric

variety corresponding to the fan / in N′
Q = N′ ⊗Z Q. It follows from [8, p. 29] that

Y ≃ Y ′ × (C∗)k,

where k = rank N/N′. Thus, Y ′ is a smooth toric variety with trivial Picard group. Hence,

it is enough to prove that Y ′ is quasi-affine and therefore we can assume k = 0, that is,

/ spans NQ. By [8, Proposition in Section 3.4] we get

0 = rank Pic(Y) = d − n,

where d is the number of edges in /. Let σ ⊂ NQ be the convex cone spanned by the

edges of / and let σ∨ denote the dual cone of σ in MQ = M ⊗Z Q where M = Hom(N, Z).

Since d = n, the edges of / are linearly independent in NQ and thus σ is a simplex.

From the inclusion of the cones of / in σ we get a morphism f : Y → Spec C[σ∨ ∩ M] by

[8, Section 1.4], and since each cone in / is a face of σ it is locally an open immersion
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[8, Lemma in Section 1.3]. This implies that f is quasi-finite and birational and thus by

Zariski’s Main Theorem [11, Corollaire 4.4.9] it is an open immersion.

4 Proof of the Main Theorem

4.1 A first characterization

Proposition 4.1. Let X be an irreducible quasi-affine variety. If Aut(An)
∼→ Aut(X) is

an isomorphism that maps an n-dimensional torus in Aut(An) to an algebraic subgroup,

then X ≃ An as a variety.

Proof. Since all n-dimensional tori in Aut(An) are conjugate [1], all n-dimensional

tori are sent to algebraic subgroups of Aut(X) via θ . The standard maximal torus T in

Aut(An) acts via conjugation on the subgroup of standard translations Tr ⊂ Aut(An)

with a dense orbit O ⊂ T and thus we get Tr = O ◦ O.

This implies that S := θ(T) acts on U := θ(Tr) via conjugation and we get U =
θ(O) ◦ θ(O). Hence, for fixed u0 ∈ θ(O) ⊂ U the morphism

S × S → Aut(X) , (s1, s2) /→ s1 ◦ u0 ◦ s−1
1 ◦ s2 ◦ u0 ◦ s−1

2

has image equal to U. Now it follows from Theorem 2.9 that U is a closed (commutative)

algebraic subgroup of Aut(X) with no nontrivial element of finite order, hence a

unipotent subgroup.

We claim that U has no nonconstant invariants on X. Indeed, let ρ : Ga × X → X

be the Ga-action on X coming from a nontrivial element of U. If f ∈ O(X)U is a U-

invariant, then it is easy to see that

ρf (s, x) := ρ(f (x) · s, x) (∗)

is a Ga-action commuting with U. Since U is self-centralizing, we see that ρf (s) ∈ U

for all s ∈ Ga. Moreover, formula (∗) shows that for every finite dimensional subspace

V ⊂ O(X)U the map V → U, f /→ ρf (1), is a morphism, which is injective. Indeed,

ρf (1) = ρh(1) implies that ρ(f (x), x) = ρ(h(x), x) for all x ∈ X; hence, f (x) = h(x) for all

x ∈ X \ Xρ . It follows that O(X)U is finite-dimensional. Since X is irreducible, O(X)U is

an integral domain and hence equal to C, as claimed.

Since X is irreducible and quasi-affine, the unipotent group U has a dense orbit

that is closed, and so X is isomorphic to an affine space Am. Since m is the maximal
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number such that there exists a faithful action of (Z/2Z)m on Am (Remark 2), we finally

get m = n. ⌅

If X is an affine variety, then Aut(X) has the structure of a so-called affine ind-

group; see, for example, [20], [29], and [9] for more details. The following result is a

special case of [17, Theorem 1.1]. It is an immediate consequence of Proposition 4.1

above because a homomorphism of affine ind-groups sends algebraic groups to alge-

braic groups.

Corollary 4.2. Let X be an irreducible affine variety. If there is an isomorphism

Aut(X) ≃ Aut(An) of affine ind-groups, then X ≃ An as a variety.

Corollary 4.3. Let X be a smooth, irreducible quasi-projective variety such that χ(X) ̸=
0 and Pic(X) is finite. If there is an isomorphism Aut(An) ≃ Aut(X) of abstract groups

and if dim X ≤ n, then X ≃ An as a variety.

Proof. Theorem 1.1 shows that for an isomorphism θ : Aut(An)
∼→ Aut(X) and any

n-dimensional torus T ⊆ Aut(An), the identity component of the image S := θ(T)◦ is a

closed torus of dimension n in Aut(X) and dim X = n, and X is quasi-affine. Thus, we

can apply Theorem 1.1 to θ−1 : Aut(X)
∼→ Aut(An) and get that θ−1(S)◦ is a closed torus

of dimension n in Aut(An). Since

θ−1(S)◦ ⊆ θ−1(S) ⊆ T ,

it follows that θ−1(S) = T, that is, θ(T) = S is a closed n-dimensional torus in Aut(X). The

assumptions of Proposition 4.1 are now satisfied for the isomorphism θ : Aut(An)
∼→

Aut(X), and the claim follows. ⌅

4.2 Proof of the Main Theorem

If the assumptions (1) of the Main Theorem hold, that is, X is a smooth, irreducible,

quasi-projective variety of dimension n such that χ(X) ̸= 0 and Pic(X) is finite, then the

claim follows from Corollary 4.3.

Now assume that the assumptions (2) are satisfied, that is, X is quasi-affine and

toric of dimension n. Let T ⊆ Aut(X) be a torus of maximal dimension. We can apply

Theorem 1.1 to an isomorphism θ : Aut(X)
∼→ Aut(An) and find that S := θ(T)◦ ⊂ Aut(An)

is a closed torus of dimension n. Since the index of the standard n-dimensional torus
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in its normalizer in Aut(An) is finite and since all n-dimensional tori in Aut(An) are

conjugate [1], it follows that S has finite index in θ(T). Hence, θ−1(S) has finite index

in T. Since T is a divisible group, θ−1(S) = T is an algebraic group. Thus, we can apply

Proposition 4.1 to the isomorphism θ−1 : Aut(An)
∼→ Aut(X) and find that X ≃ An as a

variety.
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Abstract

Let Y be the underlying variety of a complex connected a�ne algebraic
group. We prove that two embeddings of the a�ne line C into Y are the
same up to an automorphism of Y provided that Y is not isomorphic
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650 PETER FELLER AND IMMANUEL VAN SANTEN

1. Introduction

In this paper, varieties are understood to be (reduced) algebraic varieties
over the field of complex numbers C, carrying the Zariski topology. We say
that two closed1 embeddings of varieties f, g : X ! Y are equivalent or the
same up to an automorphism of Y if there exists an automorphism ' : Y ! Y
such that '�f = g. We consider embeddings of the a�ne line C into varieties
Y that arise as underlying varieties of a�ne algebraic groups and study these
embeddings up to automorphisms of Y . Recall that an a�ne algebraic group
is a closed subgroup of the complex general linear group GLn for some n.
In this paper, all groups are a�ne and algebraic. Our main result is the
following.

Theorem 1.1. Let Y be the underlying variety of a connected a�ne alge-
braic group. Then two embeddings of the a�ne line C into Y are the same
up to an automorphism of Y provided that Y is not isomorphic to a product
of a torus (C⇤)k and one of the three varieties C3, SL2, and PSL2.

In particular, C embeds uniquely (up to automorphisms) into the under-
lying variety of any a�ne algebraic group without non-trivial characters of
dimension other than three; compare with Remark 8.3. Note also that con-
nectedness is not a restriction since any connected component of an a�ne
algebraic group G is itself isomorphic (as a variety) to the connected compo-
nent of the identity element.

Let us put Theorem 1.1 in context. Embedding problems are most clas-
sically considered for Y = Cn; compare, e.g., the overviews by Kraft and
van den Essen [Kra96, vdE04]. We recall what is known about uniqueness
of embeddings of C into Cn. If n = 2, there is a unique embedding (up to
automorphisms) by the Abhyankar-Moh-Suzuki Theorem [AM75,Suz74]. For
n � 4, again there is a unique embedding (up to automorphisms) by work of
Craighero; see [Cra86]. More generally, Kaliman [Kal88,Kal91], Nori (unpub-
lished), and Srinivas [Sri91] proved that smooth a�ne varieties of dimension
d embed uniquely into Cn whenever n � 2d+2. This result improved a previ-
ously established bound obtained by Jelonek [Jel87] and in case of embeddings
of a�ne spaces a previously established bound obtained by Craighero [Cra86]
and Jelonek [Jel87]. The existence of non-equivalent embeddings C ! C3

is a long-standing open problem; see [Kra96]. There are various potential
examples of non-equivalent embeddings of C into C3; see, e.g., [Sha92].

The above-mentioned results of Craighero, Jelonek, and Kaliman, Nori, and
Srinivas are established by cleverly projecting to di↵erent linear coordinates.

1All embeddings in this paper are closed. In fact, closedness is automatic for embeddings
of the a�ne line C into quasi-a�ne varieties, which is the setting we are considering.
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UNIQUENESS OF EMBEDDINGS OF C INTO ALGEBRAIC GROUPS 651

The second author was able to use projections to coordinates to establish that
there is a unique embedding of C into the underlying variety of SLn (up to
automorphisms) for all integers n � 3; see [Sta17]. For a�ne algebraic groups
in general, projections to coordinates are no longer available. Our approach
to embeddings of C is to study projections onto quotients by (unipotent)
subgroups.

For a di↵erent point of view we consider the notion of flexible varieties as
studied by Arzhantsev, Flenner, Kaliman, Kutzschebauch, and Zaidenberg
in [AFK+13]. Flexible varieties can be seen as a generalization of connected
a�ne algebraic groups without non-trivial characters. Smooth irreducible
a�ne flexible varieties of dimension at least two have the property that all
embeddings of a fixed finite set are equivalent [AFK+13, Theorem 0.1]. The-
orem 1.1 states that in the underlying variety of most a�ne algebraic groups
even all embeddings of C are equivalent. In light of Theorem 1.1, the following
question is natural in this context.

Question 1.2. Let Y be a smooth irreducible a�ne flexible variety of
dimension at least 4. Is there at most one embedding of C into Y up to
automorphisms?

There exist smooth irreducible flexible a�ne surfaces that contain non-
equivalent embeddings of C; see Example 2.1. Since in dimension three there
is the long-standing open problem, whether all embeddings of C into C3 are
equivalent, we ask Question 1.2 only for varieties of dimension � 4. In Ex-
ample 2.2, we provide a contractible smooth a�ne irreducible surface S such
that S ⇥ Cn contains non-equivalent embeddings of C for all integers n � 1.
These examples of varieties that contain non-equivalent embeddings of C are
the content of Section 2.

Note that some sort of “flexibility” is required to prove results such as
Theorem 1.1 in case one has “many” embeddings of C. For example, if every
pair of points in an a�ne variety Y can be connected by a chain of embed-
ded a�ne lines2 and Y admits a non-trivial C+-action, then flexibility of Y
is a necessary condition for the equivalence of all embeddings C ! Y ; see
[AFK+13, Theorem 0.1].

Theorem 1.1 can be seen as covering all cases of embeddings of C into the
underlying variety of any connected a�ne algebraic group without non-trivial
characters except the well-known open problem of embeddings into C3 and
embeddings into the underlying variety of SL2 and PSL2. As argued by the
second author in [Sta17], the underlying variety of SL2 (and in fact similarly
for PSL2) allows for many embeddings of C and perceivably their equivalence

2Compare the notion of A1-chain connectedness in [AM11] and rationally chain connect-
edness in [Kol96].
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652 PETER FELLER AND IMMANUEL VAN SANTEN

or non-equivalence up to automorphism might be as challenging as for the C3

case. In Section 3, we report on these examples of embeddings into C3 and
the underlying variety of SL2 and PSL2.

1.1. Conventions. Let G be an a�ne algebraic group. During this arti-
cle, an automorphism of G is an automorphism of the underlying variety of
G. A group automorphism of G is an automorphism of the underlying variety
of G that in addition also preserves the group structure of G.

1.2. Tools for the proof of Theorem 1.1. In Section 4, notions and
basic facts from the theory of a�ne algebraic groups, their principal bundles
and homogeneous spaces are introduced.

In order to prove equivalence of embeddings we need a good way to con-
struct automorphisms. This is the content of Section 5. Let us expand on
that. While we are only interested in showing uniqueness of embeddings up
to automorphisms of the underlying variety of an a�ne algebraic group, we
will heavily depend on the group structure to construct automorphisms. The
following shearing-tool follows readily by using the group structure; see Propo-
sition 5.1. It is our main tool to construct automorphisms of the underlying
variety of an a�ne algebraic group.

Shearing-tool. Let X and X 0 be a�ne lines embedded in an
a�ne algebraic group G and let H ✓ G be a closed subgroup
such that G/H is quasi-a�ne. If ⇡ : G ! G/H restricts to
an embedding on X and X 0 and if ⇡(X) = ⇡(X 0), then there
exists a ⇡-fiber-preserving automorphism of G that maps X
to X 0.

This could be seen as an analog to a fact used in proving the earlier men-
tioned results of Craighero, Jelonek, and Kaliman, Nori and Srinivas about
embeddings into Cn: given two embeddings �,�0 of an a�ne line (or in fact
any a�ne variety) into Cn such that the last m < n coordinate functions
agree and yield an embedding into Cm, then there exists a shear � of Cn

with respect to the projection to the last m coordinates such that � � � = �0;
see [Kal91] and [Sri91].

In Section 6, we show that all embeddings C ! G with image a one-
parameter unipotent subgroup of G are equivalent. A one-parameter unipo-
tent group is an algebraic group that is isomorphic to the additive group of
the field of complex numbers C+.

Thus in order to prove equivalence of all embeddings C ! G, it su�ces to
show that every a�ne line in G can be moved via an automorphism of G into
a one-parameter unipotent subgroup.

In Section 7, we introduce another tool. In view of the above shearing-tool,
given a curve X in G, we are interested in having many closed subgroups H
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such that X projects isomorphically (or at least birationally) to G/H. We
establish several results in that direction and we call them generic projection
results. In this context our main result is the following; see Proposition 7.4.
It is based on an elegant formula that relates the dimension of the conjugacy
class C of a unipotent element in a semisimple group with the dimension of the
intersection of C with a maximal unipotent subgroup; see [Ste76] and [Hum95,
§6.7].

Main generic projection result. If G is a simple a�ne
algebraic group of rank at least two, and H a closed unipotent
subgroup, then for any curve X ✓ G that is isomorphic to C
there exists an automorphism ' of G such that for generic g 2
G the quotient map G ! G/gHg�1 restricts to an embedding
on '(X).

1.3. Outline of the proof of Theorem 1.1. In Section 8, we reduce
Theorem 1.1 to the case of a semisimple group. In a bit more detail: let G
be an a�ne algebraic group satisfying the assumptions of Theorem 1.1. We
note that G is isomorphic (as a variety) to Gu ⇥ (C⇤)k for some integer k � 0,
where Gu denotes the normal subgroup of G generated by unipotent elements.
Embeddings of C into Gu ⇥ (C⇤)n are necessarily constant on the second
factor; thus we study embeddings into Gu. We have that Gu is isomorphic
as a variety to Ru(Gu) ⇥ Gu/Ru(Gu), where Ru(Gu) denotes the unipotent
radical—the largest normal unipotent subgroup of Gu. If Ru(Gu) is non-
trivial nor equal to Gu, then the non-trivial product structure on Gu allows
us to show equivalence of all embedded a�ne lines; see Proposition 8.6. If
Ru(Gu) = Gu, then Gu ⇠= Cn for some n 6= 3, and the result follows by
Jelonek’s work (for n � 4) and by the Abhyankar-Moh-Suzuki Theorem (for
n = 2). This leaves the case where Ru(Gu) is trivial; i.e., Gu is semisimple.

In Section 9, we prove Theorem 1.1 for the case of a semisimple, but not
simple group G. We use the fact that G is isomorphic to a quotient of the
product of at least two simple groups by a finite central subgroup. Part
of the argument relies on the fact that simple groups have su�ciently many
unipotent elements. To ensure this, the classification of simple groups of small
rank is invoked; see Lemma B.6.

Finally, in Section 10, we prove Theorem 1.1 in the case of a simple group
G. This constitutes the technical heart of the proof. Besides using several
results from previous sections about embeddings into products and generic
projection results, we use the language of a�ne algebraic group theory to
define an interesting subvariety E of G. In fact, E is the preimage of the
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(unique) Schubert curve under the projection to G/P , where P is a maximal
parabolic subgroup of G. We show that any embedding of the a�ne line in
G can be moved into E by an automorphism of G; compare Subsection 10.4.
This is in fact the key step in our proof. Let us expand on this.

Let P� be an opposite parabolic subgroup to P and denote by ⇡ : G !
G/Ru(P�) the quotient map. We establish that the restriction of ⇡ to E
is a locally trivial C-bundle over ⇡(E) and ⇡(E) is a big open subset of
G/Ru(P�), i.e., the complement is a closed subset of codimension at least
two in G/Ru(P�); see Proposition 10.2. Now, one can move X into E via the
following steps:

• Using our main generic projection result, we can achieve that ⇡ re-
stricts to an embedding on X.

• Using that ⇡(E) is a big open subset of G/Ru(P�), we can move
X into ⇡�1(⇡(E)) by left multiplication with a group element. In
particular, ⇡ still restricts to an embedding on X, by G-equivariancy.

• Since E ! ⇡(E) is a locally trivial C-bundle, it has a section X 0 ✓ E
over ⇡(X) ⇠= C. Therefore, we can move X into X 0 with our shearing-
tool.

Next we exploit that E = KP for a certain non-trivial closed subgroup K
of G and the parabolic subgroup P used to define E. Under the assumption
that the rank of G is at least two, i.e., G is di↵erent from SL2 and PSL2, we
show the following. Via an automorphism of G one can move any a�ne line in
E to an a�ne line in E such that the quotient map E ! K\E restricts to an
embedding on this a�ne line; see Proposition 10.7. Using this result and the
fact that the product map K⇥P ! E is a principal K\P -bundle we can move
any a�ne line in E into an a�ne line in P . Since P is a proper subgroup of G,
one can move any a�ne line in P into a one-parameter unipotent subgroup
of G. This implies Theorem 1.1 in this last case.

1.4. Overview of the appendices. We have three appendix sections,
which contain results that are used in the proof of Theorem 1.1, but that
are either classical or the proofs are independent of the general idea of the
proof of Theorem 1.1. Appendix A provides a proof of the fact that prin-
cipal G-bundles over the a�ne line are trivial for all a�ne algebraic groups
G. In Appendix B, we provide generalities on the Weyl group, on parabolic
subgroups of reductive groups, and on Schubert varieties, as needed in Sec-
tion 10. In Appendix C, we provide results about C+-equivariant morphisms
of surfaces as needed in the proof of Proposition 10.7 (which constitutes the
most technical part of Section 10).
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2. Examples of varieties that contain non-equivalent embeddings
of C

In the first example we provide an irreducible smooth a�ne flexible surface
that contains non-equivalent embeddings of C. This example is due to Decaup
and Dubouloz. For a deeper study of this example see [DD18].

Example 2.1. Let S = P2\Q, where Q is a smooth conic in P2. Clearly, S
is irreducible, smooth and a�ne. Let [x : y : z] be a homogeneous coordinate
system of P2. We can assume without loss of generality that Q is given by
the homogeneous equation xz = y2 in P2.

Let L1 be the curve S \{z = 0} and let L2 be the curve S \{xz�y2 = z2}.
One can see that Pic(S \ L1) is trivial, whereas Pic(S \ L2) is isomorphic to
Z/2Z. Hence there are non-equivalent embeddings of C ⇠= L1

⇠= L2 into S.
To establish the flexibility of S, we have to show that SAut(S) acts transi-

tively on S where SAut(S) denotes the subgroup of Aut(S) that is generated
by all automorphisms coming from C+-actions on S; see [AFK+13, Theo-
rem 0.1]. Consider the C+-action t · [x : y : z] = [x : y + tx : z + 2yt + t2x] on
S. A computation shows that every orbit of this C+-action intersects the curve
L2. Since L2 is an orbit of the C+-action t·[x : y : z] = [x+2yt+t2z : y+tz : z]
on S, it follows that SAut(S) acts transitively on S.

Next, we give in any dimension � 3 an example of an irreducible smooth
contractible a�ne variety that contains non-equivalent embeddings of C. Note
that for any irreducible smooth contractible a�ne variety, the ring of regular
functions is a unique factorization domain and all invertible functions on it
are constant; see, e.g., [Kal94, Proposition 3.2].

Example 2.2. Let S be an irreducible smooth contractible a�ne surface
of logarithmic Kodaira dimension one that contains a copy C of the a�ne line.
For example, by [tDP90, Theorem A] the a�ne hypersurface in C3 defined by

z2x3 + 3zx2 + 3x � zy2 � 2y = 1

is smooth, contractible, and of logarithmic Kodaira dimension one, and z = 0
inside this hypersurface defines a copy of C. Since S is smooth, a�ne, and
of logarithmic Kodaira dimension one, there exists no C+-action on S, by
[MS80, Lemma 1.3]. In other words, the Makar-Limanov invariant of S is
equal to the ring of regular functions on S. Now, by [Cra04, Corollary 5.20],
it follows that the Makar-Limanov invariant of

S ⇥ Cn

is equal to the ring of regular functions on S. In particular, every automor-
phism of S ⇥ Cn maps fibers of the canonical projection ⇡ : S ⇥ Cn ! S to
fibers of it. Thus any copy of C inside S ⇥ Cn that lies in some fiber of ⇡ is
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non-equivalent to the section C ⇥ {0} ✓ S ⇥ Cn of ⇡ over C. In summary, we
proved that S ⇥ Cn is irreducible, a�ne, smooth, contractible and contains
non-equivalent copies of C, provided that n � 1.

To compare Examples 2.1 and 2.2, note that there exists no smooth ir-
reducible a�ne surface that is contractible and contains two non-equivalent
copies of C. Indeed, smooth homology planes of logarithmic Kodaira dimen-
sion one or two, contain at most one copy of C and smooth homology planes
of logarithmic Kodaira dimension zero do not exist; see, e.g., [GM92]. If
the logarithmic Kodaira dimension of a smooth, contractible a�ne surface is
�1, then it must be C2 by Miyanishi’s characterization of the a�ne plane;
see [Miy75] and [Miy84]. Thus, the Abhyankar-Moh-Suzuki Theorem implies
our claim.

3. Examples of embeddings of C into C3, SL2, and PSL2

In this section we discuss what is known about embeddings of C into C3

and give embeddings of C into SL2 and PSL2 arising from embeddings of C
into C3.

3.1. Embeddings into C3. After Abyankar and Moh and, independently,
Suzuki established uniqueness of embeddings of C into C3, many examples of
embeddings of C into C3 that are potentially di↵erent (up to automorphisms)
from the standard embedding C ! C3, t 7! (t, 0, 0) where suggested; many of
these have since been proven to be standard; compare, e.g., [vdE04]. However,
examples due to Shastri, which are based on the idea of using embeddings with
real coe�cients such that the restriction map R ! R3 is knotted, seem among
the most promising to be non-standard. Concretely, the embeddings C ! C3

t 7! (t3 � 3t, t4 � 4t2, t5 � 10t) and t 7! (t3 � 3t, t(t2 � 1)(t2 � 4), t7 � 42t) ,

which restrict to embeddings R ! R3 of a trefoil knot and a figure eight knot,
respectively, are not known to be standard; see [Sha92].

3.2. Comparison of embeddings into C3 and SL2. Embeddings of C
into SL2 are less studied. Following an example of the second author (com-
pare [Sta17]), we briefly discuss how embeddings into C3 give rise to embed-
dings into SL2. In fact, for any embedding h of C into C3 there exists an
automorphism ' of C3 such that

(3.1) t 7!
✓

f1(t) (f1(t)f3(t) � 1)/f2(t)
f2(t) f3(t)

◆
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defines an embedding of C into SL2 where f1, f2, and f3 are the components
of f = ' � h. In fact, it su�ces to arrange that f2 divides f1f3 � 1 in C[t],
which is explicitly done in [Sta17].

On the other hand, if we start with an embedding g of C into SL2, then
there exists an automorphism  of SL2 such that p � � g is an embedding of
C into C3 where p : SL2 ! C3 is the projection to three coordinate functions
of SL2; see [Sta17, Lemma 10].

3.3. Comparison of embeddings into SL2 and PSL2. In this subsec-
tion we construct a natural surjective map from the set of all embeddings of C
into PSL2 to the set of all embeddings of C into SL2 where we consider the em-
beddings up to automorphisms. Thus, using Subsection 3.2, every embedding
of C into C3 gives rise to an embedding of C into PSL2.

By Hurwitz’s Theorem, every finite étale morphism E ! C is trivial in the
sense that every connected component of E maps isomorphically onto C; see,
e.g., [Har77, Ch. IV, Corollary 2.4]). In particular, every embedding of C into
PSL2 lifts via the canonical quotient ⌘ : SL2 ! PSL2 to two embeddings into
SL2, which are the same up to the involution X 7! �X of SL2. Since every
automorphism of PSL2 lifts to an automorphism of SL2 via ⌘ (see [Ser58,
Proposition 20]), we constructed a well-defined map

⌅ : { Embeddings of C into PSL2 up to automorphisms of PSL2 }
! { Embeddings of C into SL2 up to automorphisms of SL2 } .

We claim that ⌅ is surjective. For this, let f : C ! SL2 be an embedding.
It is enough to prove that there exists an automorphism ' of SL2 such that
⌘ � ' � f is an embedding into PSL2. Since ⌘ � ' � f is always immersive and
proper, we only have to prove injectivity of ⌘ �' � f . Let ⇡i : SL2 ! C2 \ {0}
be the projection to the ith column. We can assume, after composing f
with an automorphism of SL2, that ⇡1 � f : C ! C2 \ {0} is immersive; see
[Sta17, Lemma 10]. Let C be the image of ⇡1 � f , which is closed in C2 \ {0}.
There is a commutative diagram

SL2

⌘

✏✏

⇡1
// C2 \ {0}

⇢

✏✏

PSL2
// V

where ⇢ : C2 \ {0} ! V denotes the quotient by the Z/2Z-action (x, z) 7!
(�x, �z) on C2 \ {0}. Let Z = ⇢(C). Since the morphism ⇢ is étale, it follows
that ⇢�⇡1�f : C ! Z is immersive and hence birational. Let Z0 ✓ Z be a finite
subset such that ⇢�⇡1 �f restricts to an isomorphism C\ (⇢�⇡1 �f)�1(Z0) ⇠=
Z \Z0. Let T be the finite set (⇢�⇡1 �f)�1(Z0). For a polynomial p 2 C[x, z],
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let 'p : SL2 ! SL2 be the automorphism given by

'p

✓
x y
z w

◆
=

✓
x y + xp(x, z)
z w + zp(x, z)

◆

and let gp = 'p � f . Note that

⇡1 � gp = ⇡1 � f and ⇡2 � gp = ⇡2 � f + (p � ⇡1 � f) · (⇡1 � f) .

Thus for all t 6= s in T , the condition (⌘ � gp)(t) 6= (⌘ � gp)(s) is satisfied if

(⇡2 � f)(t) + p((⇡1 � f)(t)) · (⇡1 � f)(t)(3.2)

6= ± [(⇡2 � f)(s) + p((⇡1 � f)(s)) · (⇡1 � f)(s)] .

There exists a polynomial p 2 C[x, z] such that for all t 6= s in T the condi-
tion (3.2) is satisfied, since for all t 6= s in T the negation of condition (3.2) is
defined by the union of two proper a�ne linear subspaces of the vector space
C[x, z]. Since ⇢ � ⇡1 � f restricts to an isomorphism C \ T ⇠= Z \ Z0, it follows
that ⌘�g restricted to C\T is injective. By (3.2), we have (⌘�g)(t) 6= (⌘�g)(s)
for all t 6= s in T and thus ⌘ � g restricted to T is injective. Since the images
under ⌘ � g of C \ T and T are disjoint, it follows that ⌘ � g is injective, which
implies our claim.

4. Notation and generalities on a�ne algebraic groups and their
principal bundles

4.1. A�ne algebraic groups. For the basic results on a�ne algebraic
groups we refer to [Hum75] and for the basic results about Lie algebras and
root systems we refer to [Hum78]. In order to set up conventions, let us
recall the basic terms. A connected non-trivial a�ne algebraic group G is
called semisimple if it has a trivial radical R(G), where R(G) is the largest
connected normal solvable subgroup of G. An a�ne algebraic group G is
called reductive if it has a trivial unipotent radical Ru(G), where Ru(G) is
the closed normal subgroup of R(G) consisting of all unipotent elements. A
non-commutative connected a�ne algebraic group G is called simple if it
contains no non-trivial closed connected normal subgroup. Note that for a
simple a�ne algebraic group G, the quotient G/ Z(G) by the center Z(G) is
simple as an abstract group (see [Hum75, Corollary 29.5]); i.e., it contains no
proper normal subgroup.

For any connected a�ne algebraic group G, we denote by UG the subset
of unipotent elements in G. It is irreducible and closed in G; see [Hum95,
Theorem 4.2]. We denote by rank(G) the dimension of a maximal torus of G.
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By [Hum95, §4.2] we have for any reductive group G

dim UG = dim G � rank G

and using the Levi decomposition (see [OV90, Theorem 4, Ch. 6]) this formula
holds more generally for every connected a�ne algebraic group G. Moreover,
we denote by Gu the subgroup that is generated by all unipotent elements of G.
It is normal, connected, and closed in G. Normal is immediate since conjugates
of unipotent elements are unipotent. For connected and closed see [Hum75,
Proposition 7.5]. We note that if dim(UG)  1, then UG = Gu since UG is
(by irreducibility) either a one-parameter unipotent subgroup or equal to {e}.
For any semisimple G, we have G = Gu; see [Hum75, Theorem 27.5]. In
particular, dimUG � 2 for semisimple G.

We use g to denote the Lie algebra of an a�ne algebraic group G. Moreover,
we denote by Ng the closed irreducible cone of nilpotent elements inside g.
Note that the exponential exp: g ! G restricts to an isomorphism of a�ne
varieties exp: Ng ! UG.

4.2. Principal bundles. Our general reference for principal bundles is
[Ser58]. Again, in order to set up conventions, let us recall the basic terms.
Let G be any a�ne algebraic group. A principal G-bundle is a variety P
with a right G-action together with a G-invariant morphism ⇡ : P ! X such
that locally on X, ⇡ becomes a trivial principal G-bundle after a finite étale
base change. If one can choose these étale base changes to be open injective
immersions, then we say ⇡ is a locally trivial principal G-bundle.

The most prominent example of a principal bundle in this article is the
following: let G be an a�ne algebraic group and let H be a closed subgroup.
Then G ! G/H is a principal H-bundle; see [Ser58, Proposition 3].

For any a�ne algebraic group G, any principal G-bundle over C is trivial;
see Appendix A.

4.3. Homogeneous varieties. Let G be an a�ne algebraic group and
let H ✓ G be a closed subgroup. If H has no non-trivial character, then the
quotient G/H is quasi-a�ne (see [Tim11, Example 3.10]) and if H is normal
in G or reductive, then G/H is a�ne (see [Tim11, Theorem 3.8]). In this
article we frequently use that G/H is quasi-a�ne in case H is unipotent.

5. Construction of automorphisms of an a�ne algebraic group

In this section we introduce a construction of automorphisms of a�ne al-
gebraic groups that we use throughout this article.
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Let G be an a�ne algebraic group. Let H ✓ G be a closed subgroup
and let ⇡ : G ! G/H be the quotient by left H-cosets. For any morphism
f : G/H ! H, the map

(5.1) 'f : G �! G , g 7! gf(⇡(g))

is an automorphism of G that preserves the quotient ⇡. Let ⇢ : G ! H\G
be the quotient by right H-cosets. Analogously to 'f , we define for any
morphism d : H\G ! H the automorphism

(5.2)  d : G �! G , g 7! d(⇢(g))g .

We frequently use these constructions in the following situation.

Proposition 5.1. Let G be an a�ne algebraic group and let X ✓ G be
a closed curve that has only one place at infinity. Moreover, we assume that
there is a closed subgroup H of G such that ⇡ : G ! G/H restricts to an
embedding on X and that X 0 is another section of ⇡�1(⇡(X)) ! ⇡(X). If

(1) H is unipotent or
(2) X ⇠= C and G/H is quasi-a�ne,

then there is an automorphism of G that preserves ⇡ and maps X onto X 0.

Remark 5.2. A curve X has only one place at infinity if there exists a
projective curve X̄ that contains X as an open subset such that X̄ \X consists
only of one point and this point is a smooth point of X̄.

Remark 5.3. The analog of Proposition 5.1 for right coset spaces also
holds.

Proof of Proposition 5.1. Note that G/H is quasi-a�ne, in case H is unipo-
tent (see Subsection 4.3). Thus G/H is in both cases quasi-a�ne. The curve
⇡(X) is closed in G/H since ⇡(X) has only one place at infinity and therefore
is closed in any a�ne variety that contains G/H as an open subset. Denote
by s : ⇡(X) ! X and s0 : ⇡(X) ! X 0 the inverse maps of ⇡|X : X ! ⇡(X)
and ⇡|X0 : X 0 ! ⇡(X), respectively. Consider the morphism

(5.3) ⇡(X) �! H , v 7! (s(v))�1 · s0(v) .

If one can extend this morphism to a morphism f : G/H ! H, then the
automorphism 'f of (5.1) preserves ⇡ and satisfies 'f (X) = X 0. Thus we
only have to show that such an extension of (5.3) exists.

• If H is unipotent, then it is isomorphic to some Cn as a variety and
the desired extension f : G/H ! H of (5.3) exists.

• If X ⇠= C, then ⇡(X) ⇠= X ⇠= C. Hence there exists a retraction
r : G/H ! ⇡(X) of G/H onto ⇡(X). Composing r with the morphism
(5.3) yields the desired extension f : G/H ! H. ⇤
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6. Embeddings of C with unipotent image

The following result says that two embeddings f1 and f2 of C into an a�ne
algebraic group G are the same up to an automorphism of G, provided that
f1(C) and f2(C) are one-parameter unipotent subgroups of G.

Proposition 6.1. Let G be any a�ne algebraic group and let U , V be one-
parameter unipotent subgroups. For any isomorphism of varieties � : U ! V ,
there exists an automorphism ' of G such that '|U = �.

Proof. If Gu is one-dimensional, then Gu = Ru(G) and G is isomorphic to
Gu ⇥ G/Gu as a variety by the Levi decomposition of G (see [OV90, Ch. 6,
Theorem 4]). In particular, U = V = Gu and every automorphism of U
extends to G. Thus, we can assume that Gu is at least two-dimensional and
hence we can assume that V 6= U . This implies V \ U = {e} and therefore
multiplication V ⇥ U ! V U ✓ G is an embedding. Hence, the quotient map
⇡ : G ! G/U restricts to an embedding on V . Since G/U is quasi-a�ne, the
morphism

⇡(V )
(⇡|V )

�1

// V
��1
// U

extends to a morphism f : G/U ! U . Hence the automorphism 'f of G
(see (5.1) in Section 5) satisfies 'f (v) = v · ��1(v) for all v 2 V . Using the
quotient ⇢ : G ! V \G one can similarly construct an automorphism  d of G
such that  d(u) = �(u) · u for all u 2 U (see (5.2) in Section 5). It follows
that ' = '�1

f �  d restricts to � on U . ⇤

7. Generic projection results

The aim of this section is to prove results, which enable us to quotient by
unipotent subgroups such that the projection restricts to a closed embedding
or to a birational map on a given fixed curve. These projection results will be
applied in Sections 8 and 9 to reduce Theorem 1.1 to the case of semisimple
and simple groups, respectively. In Section 10 we use these results in the heart
of the proof of Theorem 1.1, namely, for the case of embeddings into simple
groups.

Let V be a variety. Throughout this paper we say that a property is
satisfied for generic v 2 V if there exists a dense open subset O in V such
that the property is satisfied for all v in O.

7.1. Quotients that restrict to closed embeddings on a fixed curve.
Our first result in this section deals with arbitrary a�ne algebraic groups and
quotients by one-parameter unipotent subgroups.
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Lemma 7.1 (Communicated by Winkelmann). Let G be an a�ne algebraic
group and let X ✓ G be a closed smooth curve that has only one place at
infinity. If the set of unipotent elements UG has dimension at least four,
then, for a generic one-parameter unipotent subgroup U ✓ G, the quotient
G ! G/U restricts to a closed embedding on X.

Remark 7.2. Using the exponential map exp: Ng ! UG, we consider
the set of one-parameter unipotent subgroups of G as the image of Ng \ {0}
under the quotient g \ {0} ! P(g). Note that this image is closed in P(g) and
therefore we can speak of a “generic one-parameter unipotent subgroup”.

Proof of Lemma 7.1. As already mentioned, the exponential restricts to an
isomorphism of a�ne varieties exp: Ng ! UG. We denote by F the set of all
elements in G of the form y�1x with x, y 2 X and x 6= y. Let

F 0 = exp(cone(exp�1(F \ UG))) ✓ UG,

where cone(M) denotes the union of all lines in Ng that pass through the
origin and intersect M , for any subset M of Ng. Let U ✓ G be a one-
parameter unipotent subgroup. Thus G ! G/U maps X injectively onto its
image if and only if U \ F 0 = {e}. However, F 0 is a constructible subset of
UG of dimension at most three.

Let S ✓ g be the union of all lines Dlx�1(TxX), x 2 X, where lg : G ! G
denotes left multiplication by g 2 G. Let U ✓ G be a one-parameter unipotent
subgroup. Thus G ! G/U maps X immersively onto its image if and only if
u \ S \ Ng = {0} where u denotes the Lie algebra of U . Clearly, S \ Ng is a
constructible subset of Ng of dimension at most two.

Since G/U is quasi-a�ne, the quotient G ! G/U maps X properly onto
its image, as long as the image is not a single point, since X has only one
place at infinity.

In summary, we proved that the restriction of G ! G/U to X is injective,
immersive, and proper for a generic one-parameter unipotent subgroup U in
G. ⇤

Remark 7.3. The proof of Lemma 7.1 shows that we can replace UG by
some closed subset W of UG that is a union of unipotent subgroups and such
that each irreducible component of W has dimension at least four, in order
to prove that for a generic one-parameter unipotent subgroup U in W the
quotient G ! G/U restricts to a closed embedding on X.

Our second result deals with simple groups and quotients by arbitrary
unipotent subgroups.

Proposition 7.4. Let G be a simple a�ne algebraic group of rank at least
two and let U ✓ G be a unipotent subgroup. If X ✓ G is a closed smooth
curve with only one place at infinity, then there exists an automorphism ' of
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G such that for generic g 2 G the projection G ! G/gUg�1 restricts to a
closed embedding on '(X).

In order to prove this result, we have to show that for generic g 2 G the
projection G ! G/gUg�1 restricts to an injective and immersive map on
'(X) for a suitable automorphism '. If this is the case, then this restriction
is automatically proper, since X has only one place at infinity.

Lemma 7.5 (Immersivity). Let G be a connected reductive a�ne algebraic
group and let U ✓ G be a closed unipotent subgroup. If X ✓ G is a closed
irreducible smooth curve such that e 2 X and TeX contains non-nilpotent
elements of the Lie algebra g, then for generic g 2 G the projection ⇡g : G !
G/gUg�1 restricts to an immersion on X.

Proof of Lemma 7.5. Denote by u the Lie algebra of U . The kernel of the
di↵erential of ⇡g in e 2 G is the sub Lie algebra Ad(g)u of g, where Ad(g)
denotes the linear isomorphism of g induced by the di↵erential in e of the
automorphism of G that is given by h 7! ghg�1. Consider the morphism

(7.1) G ⇥ (u \ {0}) ! P(g) , (g, v) 7! [Ad(g)v] ,

where [w] denotes the line through 0 6= w 2 g. Since G is not unipotent,
the set of non-nilpotent elements is a dense open subset of g, which maps
via the projection g \ {0} ! P(g) to a dense open subset O. Since Ad(g)v is
nilpotent for all v 2 u, the open set O lies in the complement of the image of
the morphism in (7.1). Let

S =
[

x2X

P(Te(x
�1X)) ✓ P(g) ,

which is a locally closed irreducible curve in P(g). Hence, ⇡g restricted to X
is immersive for g 2 G if and only if S \ P(Ad(g)u) is empty. By assumption
S \ O is non-empty and thus there exists a finite subset F of S such that
S \ F ✓ O, since S is irreducible. Thus (S \ F ) \ P(Ad(g)u) is empty for all
g 2 G. We claim that

(7.2)
\

g2G

Ad(g)u = {0} .

Using the isomorphism exp: Ng ! UG, (7.2) is equivalent to the intersection

(7.3)
\

g2G

gUg�1

being trivial. Let v be in the intersection in (7.3) and let N be the smallest
closed subgroup of G that contains all conjugates gvg�1 of v. Clearly, N ✓ U .
By [Hum75, Proposition 7.5], N is connected and normal in G. Since the
unipotent radical of G is trivial, N is trivial. Thus, v = e, which proves our
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claim. As a consequence of (7.2), the intersection F \ P(Ad(g)u) is empty for
generic g 2 G. This proves the lemma. ⇤

Lemma 7.6 (Injectivity). Let G be a simple a�ne algebraic group of rank
� 2 and let U ✓ G be a unipotent subgroup. If X ✓ G is a closed irre-
ducible curve such that e 2 X and X contains non-unipotent elements, then
for generic g 2 G, the projection ⇡g : G ! G/gUg�1 restricts to an injection
on X.

Proof of Lemma 7.6. The strategy of the proof resembles the one of the
proof of Lemma 7.5 and Lemma 7.1. Consider the morphism

G ⇥ U ! G , (g, u) 7! gug�1 .

Since G is not unipotent, G \ UG is dense and open in G, and it is contained
in the complement of the image of the above morphism. Let us denote this
open subset by O. Let

F = { x�1y 2 G | x 6= y 2 X } .

Hence, ⇡g is injective if and only if F \gUg�1 is empty. By assumption F \O
is non-empty and thus there exists a curve (or finite set) C ✓ F consisting
of unipotent elements such that F \ C ✓ O since F is irreducible. Hence,
(F \ C) \ gUg�1 is empty for all g 2 G. Therefore it is enough to show that
C \ gUg�1 is empty for generic g 2 G. This can be achieved by showing that
for all v 2 UG \ {e} the set

Av = { g 2 G | v 2 gUg�1 }

has codimension � 2 in G. Indeed, if codimG(Av) � 2 for all v 6= e, then the
dimension of

A = { (v, g) 2 C ⇥ G | g 2 Av }
is less than the dimension of G. Hence, A maps to a subset of codimension
� 1 in G via the natural projection C ⇥ G ! G, which then implies that
C \ gUg�1 is empty for generic g 2 G.

So let us prove that codimG Av � 2. Denote by ClG(v) the conjugacy class
of v in G. By using the orbit map G ! ClG(v), g 7! g�1vg one can see that
codimG Av is the same as the codimension of U \ ClG(v) in ClG(v). Since G
is semisimple, by [Hum95, Proposition 6.7] we have

dim U \ ClG(v)  1

2
dim ClG(v) .

Hence, it remains to show that ClG(v) has dimension � 3, since the dimension
of ClG(v) is even by [Hum95, Proposition 6.7]. This is in fact equivalent to
the statement that the centralizer CG(v) = {g 2 G | gvg�1 = v} of v has
codimension � 3 in G. The latter is true by the following argument. The
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unipotent radical Ru(CG(v)) is not trivial since the one-parameter unipotent
subgroup which contains v 6= e is normal in CG(v) (note that by definition the
subgroup generated by v is normal in CG(v) and therefore also its closure).
Clearly, CG(v) lies inside the normalizer NG(Ru(CG(v)). However, this nor-
malizer is contained in some parabolic subgroup P that itself is the normalizer
of some non-trivial unipotent subgroup of G; see [Hum75, Corollary 30.3A].
Since G is reductive, this implies that P is a proper subgroup of G. Since
G/ CG(v) ! G, g 7! g�1vg is injective, G is an a�ne variety, and G/P is
projective and of positive dimension, it follows that CG(v) must be a proper
subgroup of P . Since P is connected, we have dim CG(v) < dim P . Since G
is simple and since the rank of G is at least two, it follows from Lemma B.6
that dim Ru(P�) � 2. Here P� is the opposite parabolic subgroup to P
with respect to some maximal torus that is contained in some Borel subgroup
which in turn is contained in P ; see Appendix B.2. This implies that the
codimension of P in G is at least 2 by Lemma B.5. This in turn implies that
CG(v) has codimension � 3 in G, which proves the lemma. ⇤

Proof of Proposition 7.4. Since G is simple, it is a so-called flexible variety;
see [AFK+13, §0]. Hence, there exists an automorphism ' of G such that
'(X) contains non-unipotent elements, e 2 '(X) and the tangent space TeX
contains non-nilpotent elements of the Lie algebra g; see [AFK+13, Theorem
4.14, Remark 4.16, and Theorem 0.1]. By Lemmas 7.5 and 7.6, for generic
g 2 G the projection ⇡g : G ! G/gUg�1 restricted to '(X) is immersive and
injective. As already mentioned, if this is the case, then ⇡g|'(X) is proper.
This finishes the proof. ⇤

7.2. Quotients that restrict to birational maps on a fixed curve.
Let us introduce the following notation. If G is an a�ne algebraic group,
then for any u 2 UG \ {e} we denote by C+(u) the one-parameter unipotent
subgroup of G that contains u. Roughly speaking the next lemma says: Under
certain assumptions, a curve C in an a�ne homogeneous G-variety Y projects
birationally onto its image if we quotient Y by C+(u) where u belongs to a
dense subset of UG.

Lemma 7.7. Let Y be an a�ne homogeneous G-variety where G is a
connected a�ne algebraic group acting from the right. We assume that generic
elements in UG act without fixed point on Y . Moreover, we assume that for
all y in Y , every fiber of the morphism

⇢y : UG ! Y , u 7! yu

has codimension at least three in UG. If C ✓ Y is a closed curve, then there
exists a dense subset in UG consisting of elements u such that C+(u) acts
without fixed point on Y and the algebraic quotient Su ! Su//C+(u) restricts
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to a birational morphism on C, where Su denotes the smallest closed a�ne
surface in Y that contains all C+(u)-orbits passing through C.

Remark 7.8. The algebraic quotient Su//C+(u) is the spectrum of the
ring of functions on Su that are invariant under the action of C+(u). In
fact, Su//C+(u) is an irreducible a�ne curve; see [Mat86, Theorem 11.7] and
[OY82, Corollary 1.2, Theorem 3.2].

Proof of Lemma 7.7. Let c0 2 C and let Kc0 be the union of the orbits
c0C+(u), u 2 UG \ {e} where c0C+(u) is either equal to {c0} or it contains
points of C di↵erent from c0. In other words,

Kc0 =
[

e 6=u2UG such that c0u2C

c0C+(u) .

With the aid of the exponential map exp: Ng ! UG we define

Nc0 =
[

e 6=u2⇢�1
c0 (C)

C+(u) = exp(cone(exp�1(⇢�1

c0
(C)))) ✓ UG .

One can see that Nc0 = ⇢�1
c0

(Kc0). In particular, we have for u 2 UG \ Nc0

that c0C+(u) intersects C only in the point c0. Since all the fibers of ⇢c0

have codimension at least three in UG and since dim C = 1, it follows that
dim ⇢�1

c0
(C)  dim UG � 2. By the construction of Nc0 we now get

dim Nc0  dim UG � 1 .

Take a countably infinite subset C0 ✓ C. Since our ground field is uncount-
able, the intersection

T
c02C0

UG\Nc0 is dense in UG. Let u 2 UG be an element
that acts without fixed point on Y and such that u 62

S
c02C0

Nc0 . Since a
fiber of Su ! Su//C+(u) over a generic point of Su//C+(u) is a C+(u)-orbit,
it follows that infinitely many fibers of C ! Su ! Su//C+(u) consist only of
one point. Thus, C is mapped birationally onto the algebraic quotient. ⇤

Remark 7.9. The proof of the Lemma 7.7 shows the following: If there
exist infinitely many c0 in C such that ⇢�1

c0
(C)  dim UG � 2, then the state-

ment of the lemma holds. In particular, the statement of the lemma holds
if there are infinitely many c0 2 C such that all fibers of ⇢c0 : UG ! Y have
codimension at least two in UG and c0UG \ C is finite.

Corollary 7.10. Let G be a connected a�ne algebraic group such that
dim G � 3, dim UG � 2, and G = Gu. If C ✓ G is a closed irreducible curve,
then there exists an automorphism ' of G and a dense subset of UG consisting
of elements u such that G ! G/C+(u) maps '(C) birationally onto its image.

Proof. If G is a unipotent group, the statement is clear, since dim G � 3.
Thus we can assume that UG is a proper subset of G. Since G = Gu, the
variety G is flexible. Fix some point c0 in C. By [AFK+13, Theorem 0.1] there
exists an automorphism ' of G that fixes c0 and the image '(C) intersects

Licensed to University Basel. Prepared on Thu Aug 12 15:57:54 EDT 2021 for download from IP 131.152.36.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



UNIQUENESS OF EMBEDDINGS OF C INTO ALGEBRAIC GROUPS 667

c0UG only in finitely many points. Thus we can assume that c0UG\C is finite.
The fiber over c 2 C of the morphism

(7.4) { (c, u) 2 C ⇥ UG | cu 2 C } ! C , (c, u) 7! c

is isomorphic to cUG \ C. Since C is irreducible, the subset of C given by

C 0 := { c 2 C | C ✓ cUG }

consists of exactly those points for which the fiber of (7.4) is not finite. Note
that C 0 is closed in C. Since c0UG \ C is finite, C 0 is a proper subset of C.
Since C is irreducible, it follows now that a general fiber of (7.4) is finite,
i.e., cUG \ C is finite for generic c in C. Since dimUG � 2, it follows that for
all c 2 C the fibers of the map ⇢c : UG ! G, ⇢c(u) = cu have codimension
at least two in UG. The corollary follows from Remark 7.9 applied to the
homogeneous G-variety Y = G. ⇤

8. Reduction to semisimple groups

In this section we reduce the proof of Theorem 1.1 to semisimple groups.

Lemma 8.1. Let G be a connected a�ne algebraic group with G = Gu and
let X be an a�ne variety that admits no non-constant invertible function X !
C⇤. Moreover, let n be a non-negative integer. Then, all closed embeddings
of X into G ⇥ (C⇤)n are equivalent if and only if all closed embeddings of X
into G are equivalent.

Proof. Let fi : X ! G ⇥ (C⇤)n, i = 1, 2 be two closed embeddings. By
assumption, fi(X) lies in some fiber of ⇡ : G ⇥ (C⇤)n ! (C⇤)n for i = 1, 2.
After multiplying with a suitable element of G ⇥ (C⇤)n we can assume that
f1(X) and f2(X) lie in the same fiber of ⇡. Since any automorphism of one
fiber can be extended to G ⇥ (C⇤)n, this proves the if-part of the lemma.

The other direction works pretty much in the same way by using the fact
that every automorphism of G⇥(C⇤)n permutes the fibers of ⇡, since G = Gu,
and thus there are no non-constant invertible functions G ! C⇤. ⇤

Lemma 8.2. Let G be a connected a�ne algebraic group. Then G is
isomorphic to Gu o (C⇤)n as an algebraic group for a certain non-negative
integer n.

Proof. Note that G/Gu is a torus, since it is connected and contains only
semisimple elements; see [Hum78, Proposition 21.4B and Theorem 19.3]. Let
T be a maximal torus of G. Since Gu is normal in G, and since Gu and T
generate G (see [Hum75, Theorem 27.3]) we have TGu = G. In particular,

Licensed to University Basel. Prepared on Thu Aug 12 15:57:54 EDT 2021 for download from IP 131.152.36.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



668 PETER FELLER AND IMMANUEL VAN SANTEN

T is mapped surjectively onto the torus G/Gu via the canonical projection
⇡ : G ! G/Gu. Thus we get a short exact sequence

1 �! Gu \ T �! T
⇡|T�! G/Gu �! 1 .

By Lemma 8.4, Gu \T is a torus. Thus the above short exact sequence splits;
see [Hum75, §16.2]. In particular, the associated section yields a section of
the homomorphism ⇡ : G ! G/Gu, which proves the lemma. ⇤

Remark 8.3. Lemma 8.2 implies that for a connected a�ne algebraic
group G, the following statements are equivalent:

(i) G = Gu;
(ii) G has no non-trivial character;
(iii) each invertible function on the underlying variety of G is constant;
(iv) there is no variety V and no integer k > 0 such that G ⇠= V ⇥ (C⇤)k

as a variety.

Lemma 8.4. Let G be any connected a�ne algebraic group and let H be
a closed connected normal subgroup of G. If T is a maximal torus of G, then
T \ H is a maximal torus of H.

Proof. Let T 0 ✓ H be a maximal torus that contains the connected compo-
nent of the identity element (T \H)� which is also a torus. Since all maximal
tori in G are conjugate, there exists g 2 G such that g�1T 0g ✓ T . By the
normality of H we get g�1T 0g ✓ (T \ H)�. Hence

g�1(T \ H)�g ✓ g�1T 0g ✓ (T \ H)� .

Thus (T \ H)� = g�1T 0g is a maximal torus of H (note that all maximal
tori of H are conjugate, since H is connected). Now, if there exists x 2
T \ H \ (T \ H)�, then clearly x is semisimple and centralizes the torus
(T \ H)�. However, this implies that {x} [ (T \ H)� lies in a torus of H,
since H is connceted (see [Hum75, Corollary B, §22.3]). This contradicts the
maximality of (T \ H)� and thus T \ H = (T \ H)� is a maximal torus of
H. ⇤

We are now in position to formulate our main result of this section.
Theorem 8.5. Let G be a connected a�ne algebraic group with G = Gu. If

G is not semisimple and not isomorphic to C3 as a variety, then all embeddings
of C into G are equivalent.

Using Lemma 8.1 and Lemma 8.2, Theorem 8.5 reduces the proof of The-
orem 1.1 to the case that the group under consideration is semisimple and
not isomorphic to SL2 or PSL2; compare with the proof of Theorem 1.1 in
Section 10.

The rest of this section is devoted to the proof of Theorem 8.5. First we
have to do some preliminary work.
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Proposition 8.6. Let K be a connected a�ne algebraic group that contains
non-trivial unipotent elements and let H be a semisimple group (which is non-
trivial by convention). Then all embeddings of C into K ⇥ H are equivalent.

Proof of Proposition 8.6. Let C ⇠= X ✓ K ⇥ H be an embedding. We can
assume that the canonical projection ⇡H : K ⇥ H ! H maps X birationally
onto its image; compare Lemma 8.7 below. We can apply Corollary 7.10 to the
group H and the curve ⇡H(X), since H is a (non-trivial) semisimple group.
Hence we can assume that there exists a one-parameter unipotent subgroup
U ✓ H such that the composition

⇢ : K ⇥ H
⇡H�! H �! H/U

restricts to a birational morphism X ! ⇢(X). Let E be the finite subset of
elements z in H/U such that the fiber over z of ⇢|X contains more than one
element. Moreover, let X 0 be the finite subset of X of critical points of ⇢|X .
For a morphism f : K ! U consider the two properties:

(i) For every z 2 E and for every pair (k, h), (k0, h0) in ⇢�1(z) \ X with
(k, h) 6= (k0, h0) we have

hf(k) 6= h0f(k0) .

(ii) For every x0 2 X 0 the di↵erential of

⌘f : X �! H , x 7! ⇡H(x)f(⇡K(x))

in x0 is non-vanishing.

If we consider U as a one-dimensional vector space, then for every pair of
points (k, h) 6= (k0, h0) in ⇢�1(z) \ X, the expression hf(k) = h0f(k0) defines
a non-trivial a�ne linear equation for f in the vector space of maps K ! U
(note that by assumption (h0)�1h lies in U). Moreover, we claim that for
every x0 2 X 0 the vanishing of the di↵erential Dx0⌘f defines a non-trivial
a�ne linear equation for f in the vector space of maps K ! U . Indeed, let
x0 2 X 0 and let W be an open neighborhood of ⇢(x0) in H/U in the Euclidean
topology such that H ! H/U gets trivial over W . Then the map ⌘f can be
written in a Euclidean neighborhood Ux0 in X around x0 as

Ux0 �! W ⇥ U , x 7! (⇢(x), q(x)f(⇡K(x))) ,

where q : Ux0 ! U defines a holomorphic map (that does not depend on
f) with the following property: If the di↵erential Dx0q vanishes, then the
di↵erential Dx0(⇡K |X) is non-vanishing. Now the vanishing of the di↵erential
of ⌘f in x0 is equivalent to the vanishing of the linear map

Dx0q + D⇡K(x0)f � Dx0(⇡K |X) : Tx0X ! U ,
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where we consider again U as a one-dimensional vector space. However, this
last condition defines a non-trivial a�ne linear equation for f . This proves
the claim.

In summary, we showed that there exists f0 : K ! U such that (i) and (ii)
are satisfied. Define

 0 : K ⇥ H ! K ⇥ H , (k, h) 7! (k, hf0(k)) .

Then, the restriction of ⇡H onto  0(X) is injective and immersive, since f0

satisfies (i) and (ii). Since X ⇠= C, the map ⇡H restricts to an embedding
on  0(X). Hence, after composing  0 with an automorphism of K ⇥ H we
can assume that X lies in {e} ⇥ H; see Proposition 5.1. Let V ✓ K be any
one-parameter unipotent subgroup and let f1 : H ! V be a morphism that
restricts to an isomorphism on X. Let  1 be defined as

 1 : K ⇥ H ! K ⇥ H , (k, h) 7! (kf1(h), h) .

It follows that ⇡K maps  1(X) isomorphically onto V . Hence, there exists an
automorphism of K ⇥ H that sends  1(X) into V ⇥ {e}; see Proposition 5.1.
Thus the proposition follows from Proposition 6.1. ⇤

Lemma 8.7. Let H be an a�ne algebraic group with dim Hu � 2 and let
K be any a�ne variety. For any closed curve X ⇢ K⇥H that is isomorphic to
C, there exists an automorphism  of K⇥H such that the canonical projection
⇡H : K ⇥ H ! H restricts to a birational map X !  (X).

Proof of Lemma 8.7. We only consider the case that K has dimension at
least one (otherwise ⇡H restricts to an embedding on X). By the same ar-
gument, we can assume that the canonical projection ⇡K : K ⇥ H ! K is
non-constant on X. We will use automorphisms of the form

(8.1)  f : K ⇥ H ! K ⇥ H , (k, h) 7! (k, f(k)h) ,

where f : K ! U is a morphism to a one-parameter unipotent subgroup U of
H.

Let us first consider the case where ⇡H(X) is zero-dimensional; i.e., ⇡H(X)
is a point, and show that we can change that by applying an automorphism
of the form (8.1). Without loss of generality, we may assume that the point
⇡H(X) is the identity element e of H; i.e., X lies in K ⇥ {e}. Choose any
non-trivial one-parameter unipotent subgroup U ✓ H and let f : K ! U be
a morphism that is non-constant on X. Thus ⇡H( f (X)) is one-dimensional.

By the above we may assume that ⇡H(X) is one-dimensional. We consider
a regular value h 2 ⇡H(X) of the map ⇡H |X : X ! ⇡H(X) in the smooth locus
of ⇡H(X). Since ⇡K |X is non-constant, we can assume that the di↵erential of
⇡K |X is non-vanishing in every point of the fiber (⇡H |X)�1(h). As before we
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may assume that h is the identity element e of H. Denote by

x1 = (k1, e) , . . . , xn = (kn, e)

the elements of the fiber (⇡H |X)�1(e). Note that for i = 1, . . . , n the lines
Dxi

⇡H(Txi
X) are all the same in TeH (otherwise e does not lie in the smooth

part of ⇡H(X)). Let us denote this line in TeH by l.
For an automorphism  f of the form (8.1), we denote Y =  f (X). We

next establish that we may choose  f such that

•  f (xi) = xi for i = 1, . . . , n,
• Y \ ⇡�1

H (e) = {x1, . . . , xn}, and
• Dxi

⇡H(Txi
Y ) and Dxj

⇡H(Txj
Y ) are di↵erent lines for i 6= j.

Since dim Hu � 2, we can find a one-parameter unipotent subgroup U ✓ H
such that TeU di↵ers from l and such that ⇡H(X) \ U is finite. The first two
conditions are arranged by choosing an f : K ! U with

(8.2) f(k) = e for all k 2 ⇡K

�
{x1, . . . , xn} [ ⇡�1

H (⇡H(X) \ U)
�
.

Let ti = vi � wi 2 Txi
X ⇢ Tki

K � TeH be non-zero tangent vectors to X at
xi for all 1  i  n. We calculate Dxi

(⇡H �  f )(ti) for any f satisfying (8.2).
In fact, by writing T(ki,e)(K ⇥ H) = Tki

K � TeH, we get that

D(ki,e) f =

✓
id 0

Dki
f id

◆
,

and thus

Dxi
(⇡H �  f )(ti) = Dki

f(vi) + wi .

Since Dki
f(vi) 2 TeU , vi 6= 0, 0 6= wi 2 l, and l 6= TeU , we see that we may

choose f (by prescribing its derivative at ki for all 1  i  n) such that

Dxi
(⇡H �  f )(ti) and Dxj

(⇡H �  f )(tj)

are linearly independent for all 1  i < j  n. This choice of f ensures the
third condition.

We conclude the proof by observing that " : Y ! ⇡H(Y ) is birational.
Indeed, let Z = ⇡H(Y ) and let ⌘ : Z̃ ! Z be the normalization, which is
birational. Note that Z is closed in H as Z has only one place at infinity.
As Y is smooth, " factorizes as Y ! Z̃ ! Z. Since ⌘ factorizes through the
blow-up of Z in e and the tangent directions of the branches of Z in e are
all di↵erent, it follows that ⌘�1(e) consists of n points, say v1, . . . , vn. Note
that Y ! Z̃ is surjective since Y has only one place at infinity. Hence, after
reordering the v1, . . . , vn, we can assume that Y ! Z̃ maps xi to vi for all i.
Since Y ! Z is immersive in xi, it follows that Y ! Z̃ is étale in xi for all i.
Thus the fiber of Y ! Z̃ over vi consists only of xi and it is reduced for all i.
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Since Y ⇠= C, it follows that Z̃ ⇠= C and therefore Y ! Z̃ is an isomorphism.
This proves that " is birational. ⇤

Proof of Theorem 8.5. Note that if F is a connected reductive group, then
Fu is semisimple or trivial. Indeed, by [Bor91, Proposition 14.2] the derived
group [F, F ] is semisimple (or trivial) and in fact, Fu = [F, F ], since [F, F ]
contains all root subgroups with respect to any maximal torus of F .

Let G = Ru(G) o L be a Levi decomposition where L is a Levi factor
(see [OV90, Theorem 4, Ch. 6]). By definition, L is connected and reductive
and since G = Gu, we get L = Lu. Thus L is semisimple or trivial by the
preceding paragraph. Now, we distinguish two cases:

(i) G 6= Ru(G). Since G is not semisimple by assumption, the radical
Ru(G) is not trivial. Thus we can apply Proposition 8.6 to the non-
trivial groups K = Ru(G) and H = L ⇠= G/Ru(G) and get the result.

(ii) G = Ru(G). Thus G is isomorphic as a variety to Cn where n is
a non-negative integer 6= 3. Clearly, we can assume that n > 1.
If n = 2, then the result follows from the Abhyankar-Moh-Suzuki
theorem [AM75, Theorem 1.2], [Suz74] and if n � 4, then the result
follows from Jelonek’s theorem [Jel87, Theorem 1.1]. ⇤

9. Reduction to simple groups

The aim of this section is to reduce our problem to the case of a simple
group.

Proposition 9.1. Let G be a semisimple a�ne algebraic group that is not
simple. Then, two embeddings of the a�ne line into G are the same up to an
automorphism of G.

For the proof we need three lemmata, which we also use later on.
Lemma 9.2. Let G be a connected a�ne algebraic group and let K, H be

closed connected subgroups such that KH is closed in G and K\G is quasi-
a�ne. If X ✓ KH is a closed curve that is isomorphic to C and if the
canonical projection G ! K\G restricts to an embedding on X, then there
exists an automorphism  of G with  (X) ✓ H.

Proof of Lemma 9.2. Let K⇥K\H H ! K/K\H be the bundle associated
to the principal K \H-bundle K ! K/K \H with fiber H; compare Appen-
dix A. The natural morphism K ⇥K\H H ! KH is bijective and since KH
is a smooth irreducible variety (note that KH is closed in G), it follows from
Zariski’s Main Theorem [Gro61, Corollaire 4.4.9] that K ⇥K\H H ! KH
is an isomorphism. Thus, multiplication m : K ⇥ H ! KH is a principal
K \ H-bundle; see [Ser58, Proposition 4].
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Since C ⇠= X ✓ KH, there exists a section Y ✓ K ⇥ H over X by Theo-
rem A.1. Denote by prK : K ⇥ H ! K the canonical projection to K and by
⇢ : G ! K\G the quotient morphism. By assumption, ⇢ � m|Y : Y ! ⇢(X) is
an isomorphism. Since ⇢(X) ⇠= C and since K\G is quasi-a�ne, we have a
retraction K\G ! ⇢(X). Thus the morphism

⇢(X) ! K , v 7!
�
prK �(⇢ � m|Y )�1(v)

��1

extends to a morphism d : K\G ! K. Let  d be the automorphism of G
constructed in (5.2), Section 5. One can easily see that  d(X) ✓ H. ⇤

Lemma 9.3. Let G be an a�ne algebraic group with G = Gu and let K
be a closed proper subgroup of G. Assume that UG has dimension at least
four. If X ✓ K is a closed curve that is isomorphic to C, then there exists an
automorphism ' of G such that '(X) is a one-parameter unipotent subgroup
of G.

Proof of Lemma 9.3. Note that the connected components of K/Ku are
tori. Since X is the a�ne line, it lies in some fiber of K ! K/Ku. Hence, after
multiplying from the left with a suitable element of K, we can assume that
X ✓ Ku. Since Ku does not contain all unipotent elements of G (otherwise
K = G, since G = Gu), by Lemma 7.1 there exists a one-parameter unipotent
subgroup U ✓ G such that U \ Ku = {e} and ⇡ : G ! G/U induces an
embedding on X.

Choose an isomorphism ⇡(X) ⇠= U and let f : G/U ! U be an extension of
it. The automorphism 'f of G (see (5.1) in Section 5) leaves KuU invariant.
Since U\Ku = {e}, there is a canonical projection KuU ! U . Since X ✓ Ku,
the composition

X
'f�! 'f (X) ✓ KuU �! U

is an isomorphism. In particular, we can assume that X ✓ KuU and that
⇢ : G ! Ku\G induces an embedding on X. Note that Ku\G is quasi-a�ne
since Ku has no non-trivial character; see Subsection 4.3. Now, we can apply
Lemma 9.2 to the group G and the closed connected subgroups Ku and U to
get an automorphism ' of G such that '(X) = U . ⇤

Lemma 9.4. Let K, H be non-trivial connected a�ne algebraic groups
with K = Ku, H = Hu and let Z ✓ K ⇥ H be a finite central subgroup.
Assume that dim UH � 4. If X ✓ (K ⇥ H)/Z is a closed curve that is
isomorphic to C, then there exists an automorphism ' of (K ⇥ H)/Z such
that '(X) is a one-parameter unipotent subgroup of (K ⇥ H)/Z.
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Proof of Lemma 9.4. Denote G0 = (K ⇥ H)/Z and consider the following
subgroups:

K 0 = (K ⇥ {e})/((K ⇥ {e}) \ Z) ,

H 0 = ({e} ⇥ H)/(({e} ⇥ H) \ Z) .

We claim that the projection

p : G0 ! K 0\G0

restricts to an embedding on X after applying a suitable automorphism of G0.
This can be seen as follows.

Let U ✓ H be a one-parameter unipotent subgroup such that ⇡ : G0 !
G0/U restricts to an embedding on X; see Lemma 7.1 and Remark 7.3. Here
we consider U as a subgroup of G0 via the isomorphism ⇢|U : U ! ⇢(U) where
⇢ : H ! G0 denotes the composition of the natural inclusion H ! K ⇥H with
the natural projection K⇥H ! G0. Let ZH ⇢ H be the image of Z under the
natural projection K ⇥H ! H and denote by pr: G0 ! H/ZH the morphism
which is induced by K ⇥ H ! H. Since Z is finite and central in K ⇥ H, the
same holds for ZH in H. In particular, H/ZH is an a�ne algebraic group.
Since U \ZH = {e}, the algebraic group U is mapped isomorphically onto its
image via pr : G0 ! H/ZH and thus we can and will identify this image with
U . We have a commutative diagram

G0

⇡

✏✏

pr
// H/ZH

✏✏

G0/U
pr
// (H/ZH)/U

where pr : G0/U ! (H/ZH)/U is defined by the commutativity. Note that
both vertical arrows are principal U -bundles and that pr : G0 ! H/ZH is
U -equivariant. Note that G0/U and (H/ZH)/U are quasi-a�ne; see Subsec-
tion 4.3. Since C ⇠= ⇡(X), it follows that pr(⇡(X)) is either a point or a curve
with one place at infinity. In particular, ⇡(X) is closed in G0/U and pr(⇡(X))
is closed in (H/ZH)/U . Hence, the diagram above restricts to the following
commutative diagram of a�ne varieties:

⇡�1(⇡(X))

✏✏

// pr(⇡�1(⇡(X)))

✏✏

⇡(X) // pr(⇡(X))

where the vertical arrows are principal U -bundles. Since C+ is a special
group in the sense of Serre [Ser58, §4], both principal bundles are locally
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trivial. Since the base varieties ⇡(X) and pr(⇡(X)) are a�ne, both principal
bundles are trivial; see Remark A.4. Therefore, we can choose U -equivariant
morphisms f : ⇡�1(⇡(X)) ! U and g : pr(⇡�1(⇡(X))) ! U such that the
diagram

U

⇡�1(⇡(X))

f

OO

// pr(⇡�1(⇡(X)))

g
hhQQQQQQQQQQQQQQ

(9.1)

commutes, where U acts on itself by right multiplication. We find then a
section Y ✓ ⇡�1(⇡(X)) of ⇡ over ⇡(X) that is mapped isomorphically onto
U via f (embed Y ⇠= C “diagonally” into ⇡�1(⇡(X))). By the commutativity
of (9.1) it follows that pr : G0 ! H/ZH maps Y isomorphically onto its image.
By Proposition 5.1 there exists an automorphism of G which moves X into Y
along the fibers of ⇡ and thus we can assume that pr : G0 ! H/ZH restricts
to an embedding on X. Since pr : G0 ! H/ZH factors through the projection
p : G0 ! K 0\G0, this proves the claim.

Note that K 0 is normal in G0 and therefore K 0\G0 is a�ne; see Subsec-
tion 4.3. Since p : G0 ! K 0\G0 restricts to an embedding on X, we can apply
Lemma 9.2 to the a�ne algebraic group G0 and the closed connected sub-
groups K 0, H 0 and hence assume that X ✓ H 0. Since K = Ku and H = Hu

it follows that G0 = (G0)u. Hence we can apply Lemma 9.3 to G0 and the
proper subgroup H 0 to get an automorphism ' of G0 such that '(X) is a
one-parameter unipotent subgroup of G0. ⇤

Proof of Proposition 9.1. Since G is a semisimple a�ne algebraic group,
there exist simple a�ne algebraic groups G1, . . . , Gn and an epimorphism

G1 ⇥ · · · ⇥ Gn ! G

with finite kernel; see [Hum75, Theorem 27.5]. As G1 ⇥ · · ·⇥Gn is connected,
this kernel is central. By assumption, n � 2. If the Lie type of G is equal to
sl2 ⇥ sl2, then G is isomorphic as a variety to one of the groups

SL2 ⇥ SL2, SL2 ⇥ PSL2, or PSL2 ⇥ PSL2 .

Indeed, if we consider the quotients of SL2 ⇥ SL2 by subgroups of the center

Z(SL2 ⇥ SL2) = {(E, E), (E, �E), (�E, E), (�E, �E)} ,

we get

SL2 ⇥ SL2

h(E, E)i
⇠= SL2 ⇥ SL2,

SL2 ⇥ SL2

Z(SL2 ⇥ SL2)
⇠= PSL2 ⇥ PSL2 ,
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and
SL2 ⇥ SL2

h(�E, �E)i
⇠=

SL2 ⇥ SL2

h(E, �E)i
⇠=

SL2 ⇥ SL2

h(�E, E)i
⇠= SL2 ⇥ PSL2,

where the first isomorphism of the last line is induced by the automorphism

SL2 ⇥ SL2 ! SL2 ⇥ SL2, (A, B) 7! (AB, B) .

By Proposition 8.6 all embeddings of C into one of these groups are equivalent.
Hence, we can assume that the Lie type of G is not equal to sl2⇥sl2. Therefore
one can find J ✓ I = {1, . . . , n} such that ? 6= J 6= I and such that the
Lie-type of H :=

Q
j2J Gj is not sl2. If |J | = 1, then H is simple and we

have dim UH � 4 by Lemma B.6. If |J | > 1, then dim UH � 4, since for
any simple group the variety of unipotent elements has dimension � 2. For
K =

Q
i2I\J Gi we have G ⇠= (K ⇥ H)/Z where Z is a central finite subgroup

of K ⇥ H. If X ✓ (K ⇥ H)/Z is a closed curve that is isomorphic to C, then
we can apply Lemma 9.4 to K, H, and Z ✓ K ⇥ H to find an automorphism
that maps X into a one-parameter unipotent subgroup. Thus Proposition 6.1
implies the result. ⇤

Remark 9.5. Note that SL2 ⇥ SL2 /h(�E, �E)i and SL2 ⇥ PSL2 are not
isomorphic as algebraic groups, since (A, B) 7! (B, A) is a group automor-
phism of SL2 ⇥ SL2 /h(�E, �E)i that is not inner; however, all group auto-
morphisms of SL2 ⇥ PSL2 are inner, since (by a calculation)

Autgrp.(SL2 ⇥ PSL2) ⇠= Autgrp.(SL2) ⇥ Autgrp.(PSL2)

and since all group automorphisms of SL2 and PSL2 are inner; see [Hum75,
Theorem 27.4].

10. Embeddings into simple groups

In this section, we prove the hardest part of Theorem 1.1:
Theorem 10.1. Let G be a simple a�ne algebraic group of rank at least

two. Then two embeddings of the a�ne line into G are the same up to an
automorphism of G.

We remark that Theorems 10.1 and 8.5 and Proposition 9.1 imply Theo-
rem 1.1. We do this in detail:

Proof of Theorem 1.1. By Lemma 8.2, G is isomorphic to Gu ⇥ (C⇤)n as a
variety, where n is some non-negative integer. By Lemma 8.1, all embeddings
of C into G are equivalent if and only if all embeddings of C into Gu are
equivalent. Hence, it su�ces to consider embeddings of C into Gu. If Gu is
not semisimple and not isomorphic as a variety to C3, then all embeddings of
C into Gu are equivalent by Theorem 8.5. If Gu is semisimple but not simple,
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then all embeddings of C into Gu are equivalent by Proposition 9.1. Finally,
if Gu is simple and di↵erent from SL2 and PSL2, then Gu has rank at least
two; thus all embeddings of C into Gu are equivalent by Theorem 10.1. ⇤

10.1. Outline of the proof of Theorem 10.1. In light of Proposi-
tion 6.1, it is enough to prove that any closed curve X ✓ G which is isomor-
phic to C can be moved into a one-parameter unipotent subgroup of G via an
automorphism of G. In a first step we move our X into a naturally defined
subvariety E (see Section 10.4) and in a second step we move it into a proper
subgroup (see Section 10.5). By Lemma 9.3 we are then able to move X into
a one-parameter unipotent subgroup of G, which then finishes the proof of
Theorem 10.1.

The subvariety E is defined using classical theory of a�ne algebraic groups.
The necessary notion is set up in the next subsection.

10.2. Notation and basic facts. Let us fix the following notation for
the whole section. By G we denote a simple a�ne algebraic group, by B ✓ G
a fixed Borel subgroup, and by T ✓ B a fixed maximal torus. Let � be the
irreducible root system of G with respect to T . Moreover, we denote by W the
Weyl group with respect to T and we denote by � the base of � with respect
to B. Note that W is generated by the reflections associated to elements of
�. We denote by w0 the unique longest word in W with respect to � and by
B� the opposite Borel subgroup of B that contains T , i.e., B� = w0Bw0; see
Examples B.1 and B.3.

We fix a maximal parabolic subgroup P that contains B; i.e., we fix a
simple root ↵ 2 � such that P = BWIB where I = � \ {↵} and WI denotes
the subgroup in W generated by the reflections corresponding to the roots
in I. We denote the reflection corresponding to ↵ by s↵. Furthermore, we
denote by P� the unique opposite parabolic subgroup to P with respect to T;
see Appendix B.2. Again by Appendix B.2, P� = B�WIB�, PP� is open
in G and PP� = Ru(P )P� = PRu(P�).

The quotient of G by the unipotent radical of P� will play a crucial role
in the proof. We denote this quotient throughout this section by

⇡ : G ! G/Ru(P�) .

Since Ru(P�) is a special group in the sense of Serre [Ser58, §4], ⇡ is a locally
trivial principal Ru(P�)-bundle.

For the main step of the proof of Theorem 10.1 we use Schubert varieties in
G/P . For their basic properties we refer the reader to [Spr09], [BK05, Ch. 2],
and [BL03]. In Appendix B.4, we summarize the basic facts needed for this
article. Since P is a maximal parabolic subgroup of G, there exists a unique
Schubert curve C in G/P ; i.e., C is the closure of the one-dimensional B-orbit
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through s↵ in G/P . In fact, C is the disjoint union of the B-orbit through s↵

and the class of the identity element e in G/P ; see Corollary B.10. We denote
by E ✓ G the inverse image of C under the natural projection G ! G/P .
Thus E is the union of the two disjoint subsets Bs↵P and P in G.

10.3. The restriction of ⇡ to E. Recall that E denotes the inverse image
of the unique Schubert curve C in G/P and ⇡ : G ! G/Ru(P�) denotes the
canonical projection. The following result describes the restriction of ⇡ to E.
It is the key ingredient that enables us to move our curve into E.

Proposition 10.2. The complement of ⇡(E) in G/Ru(P�) is closed and
has codimension at least two in G/Ru(P�). Moreover, the restriction of ⇡ to
E turns E into a locally trivial C-bundle over ⇡(E).

Proof of Proposition 10.2. For the first statement it is enough to show that
⇡�1(⇡(E)) = EP� is open in G and that G \ EP� has codimension at least
two in G. We have the following inclusion inside G:

BP� [ Bs↵P� ✓ PP� [ Bs↵PP� = EP� .

Since BP� = PP� is open in G, it follows that EP� is open in G. More
precisely, G \ BP� is an irreducible closed hypersurface in G. This follows
from the fact that (G/P�) \ Be is the translate by w0 of the unique Schubert
divisor in G/P� with respect to B�; see Corollary B.10. Since BP� and
Bs↵P� are disjoint we have a proper inclusion G \ EP� ( G \ BP�. Thus
G \ EP� has codimension at least two in G.

For proving the second statement, we first show that all fibers of ⇡|E : E !
⇡(E) are reduced and isomorphic to C. In fact, the schematic fiber over ⇡(g) is
the schematic intersection E\gRu(P�) for all g 2 E. Since Schubert varieties
are normal (see [RR85, Theorem 3]) and rational, it follows that C ⇠= P1. For
each g 2 G, consider the following commutative diagram:

E \ gRu(P�)

✏✏

// E

✏✏

// C

✏✏

gRu(P�) // G // G/P

Note that all squares are pullback diagrams. Since gRu(P�) ! G ! G/P
is an open injective immersion, the same holds for E \ gRu(P�) ! E ! C.
Note that the image of gRu(P�) inside G/P is equal to gB�e ✓ G/P . Since
E is the inverse image of C under G ! G/P we get an isomorphism

E \ gRu(P�) ⇠= C \ gB�e .

Let Cop ✓ G/P be the opposite Schubert variety to C; i.e., Cop is the closure
of the B�-orbit through s↵ inside G/P . By Corollary B.10 we have a disjoint
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union
Cop [ B�e = G/P .

It follows from Lemma 10.3 below that for all g 2 G the subset C \ gCop

consists of a single point or C ✓ gCop. Hence

C \ (C \ gCop) = C \ gB�e

is either isomorphic to C or it is empty. This proves that all fibers of ⇡|E : E !
⇡(E) are reduced and isomorphic to C.

Since C is smooth and since G ! G/P is a smooth morphism, it follows
that E is smooth; see [GR04, Ch. II, Proposition 3.1]. Moreover, ⇡(E) is
smooth as an open subset of the smooth variety G/Ru(P�). Since all fibers
of ⇡|E have the same dimension, the morphism ⇡|E is faithfully flat. Since
⇡ is a�ne as a locally trivial principal Ru(P�)-bundle, the restriction ⇡|E
is also a�ne. It follows from [KW85] or [KR14, Theorem 5.2] that ⇡|E is a
locally trivial C-bundle. ⇤

Lemma 10.3. Let Cop ⇢ G/P be the opposite Schubert variety to C,
i.e., Cop is the closure of the B�-orbit through s↵. Then for all g 2 G either
gC \ Cop is a reduced point of G/P or gC ✓ Cop.

Remark 10.4. Compare the proof of this lemma with [Har77, Ch. III,
Proof of Theorem 10.8].

Proof of Lemma 10.3. Consider the following pullback diagram:

(G ⇥ C) ⇥G/P Cop

✏✏

// Cop

✏✏

G ⇥ C // G/P

where G ⇥ C ! G/P denotes the map (g, c) 7! gc. Note that the vertical
arrows are closed embeddings. Since G⇥C is smooth, by generic smoothness
[Har77, Ch. III, Corollary 10.7] and G-equivariance, the morphism G ⇥ C !
G/P is smooth. Since Cop is reduced, it follows that the fiber product (G ⇥
C)⇥G/P Cop is reduced [GR04, Ch. II, Proposition 3.1]. Let q be the following
composition:

q : (G ⇥ C) ⇥G/P Cop ! G ⇥ C ! G,

where the last map is the projection onto G. Note that the fiber of q over
g 2 G is isomorphic to the scheme theoretic intersection gC \ Cop. Since C
is projective, the morphism q is projective and thus by [Eis95, Theorem 14.8]
the subset

V = { g 2 G | gC \ Cop is finite }
is open in G. Let q0 = q|q�1(V ) : q�1(V ) ! V . By definition, q0 is quasi-
finite. Since q is projective (and thus q0 also), it follows that q0 is finite; see
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[Gro66, Théorème 8.11.1]. We claim that q is birational. Indeed, this can
be seen as follows. The fiber of q over e 2 G is isomorphic to C \ Cop.
By [Ram85, Theorem 3 and Remark 3] this last scheme is reduced and by
[Ric92, Theorem 3.7] it is irreducible and of dimension zero; cf. also [BL03].
Thus the fiber of q over e is a reduced point. Hence, the tangent space of the
fiber satisfies

0 = Tx0q
�1(e) = ker dx0q,

where {x0} = q�1(e). Therefore q is immersive at x0. Hence q�1(V ) is smooth
at x0 by dimension reasons and q0 is étale in x0. Let S be the set of points in
q�1(V ), where q0 is not étale. By [GR04, Ch. I, Proposition 4.5] the set S is
closed in q�1(V ). As q0 is finite, q(S) is closed in V . Clearly, q0 restricts to a
finite étale morphism

(10.1) q�1(V \ q(S)) �! V \ q(S) .

Since {x0} is a fiber of q and since q0 is étale at x0, it follows that q(x0) 62 q(S),
i.e., x0 2 q�1(V \ q(S)). This implies that the morphism (10.1) is of degree
one and therefore it is an isomorphism. Since V is irreducible and since q0

is finite, it follows that q�1(V \ q(S)) is dense in q�1(V ). Since (10.1) is an
isomorphism, q�1(V ) is irreducible. This implies that q0 is birational. Since V
is smooth and irreducible and since q0 is finite and birational, it follows that
q0 is an isomorphism by Zariski’s Main Theorem [Gro61, Corollaire 4.4.9]).
This implies the lemma. ⇤

10.4. Moving a curve into E.

Proposition 10.5. If X ✓ G is a closed curve that is isomorphic to C,
then there exists an automorphism ' of G such that '(X) ✓ E.

Proof of Proposition 10.5. If rank(G) = 1, then E = G and there is noth-
ing to prove. Thus we assume that rank(G) � 2. Therefore, we can apply
Proposition 7.4 to G and the unipotent subgroup Ru(P�) to get an auto-
morphism ' of G such that ⇡ : G ! G/Ru(P�) restricts to an embedding
on '(X). Let us replace X by '(X). Since the complement of ⇡(E) in
G/Ru(P�) is closed and has codimension at least two in G/Ru(P�) by Propo-
sition 10.2, there exists by Kleiman’s Theorem g 2 G such that g⇡(X) lies
inside ⇡(E); see [Kle74, Theorem 2]. Since ⇡ is G-equivariant, it restricts to
an isomorphism gX ! ⇡(gX). Hence, we can replace X by gX and assume
in addition that ⇡(X) ✓ ⇡(E). Since ⇡ restricts to a locally trivial C-bundle
⇡|E : E ! ⇡(E) by Proposition 10.2 and since ⇡(X) ⇠= C, there exists a section
� of ⇡|E over ⇡(X); see, e.g., [BCW77].

Recall that G/Ru(P�) is quasi-a�ne since Ru(P�) is a closed unipotent
subgroup; compare Subsection 4.3. Therefore, by Proposition 5.1 there exists
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an automorphism of G that moves X to the section �(⇡(X)) ⇢ E and fixes
⇡ : G ! G/Ru(P�). This implies the result. ⇤

10.5. Moving a curve in E into a proper subgroup. The aim of this
section is to prove the following result.

Proposition 10.6. Assume that rank G � 2. If X ✓ E is a closed curve
that is isomorphic to C, then there exists an automorphism ' of G such that
'(X) lies in a proper subgroup of G.

Proposition 10.6 is based on the following rather technical result.

Proposition 10.7. Assume that rank(G) � 2. Let K be a closed connected
reductive subgroup of G such that KP is closed in G. Assume that K \ P
is connected and solvable and, moreover, that Ru(K \ P ) has dimension one
and lies in Ru(P ). If X ✓ KP is a closed curve that is isomorphic to C,
then there exists an automorphism ' of G such that G ! K\G restricts to
an embedding on '(X) and '(KP ) = KP .

Before proving Proposition 10.7, we show how it implies Proposition 10.6.

Proof of Proposition 10.6. Let K = CG((ker↵)�) be the centralizer in G
of the connected component of the identity element of the kernel of the root
↵ : T ! C⇤. By definition, T and the root subgroups U±↵ lie inside K. By
[Hum75, Theorem 22.3, Corollary 26.2B], the group K is connected, reductive,
the semisimple rank is one, and the Lie algebra of K decomposes as t � u↵ �
u�↵, where t is the Lie algebra of T and u±↵ is the Lie algebra of U±↵. Since
K is connected and not solvable, TU↵ is connected and solvable, and TU↵ is
of codimension one in K, it follows that TU↵ is a Borel subgroup of K. Since
TU↵ ✓ K \ P ✓ K, the subgroup K \ P is parabolic in K and in particular
it is connected; see [Hum75, Corollary 23.1B]. We have K \ P 6= K, since
otherwise P would contain the root subgroup U�↵ and thus we would have
P = G; see [Hum75, Theorem 27.3]. Hence

K \ P = TU↵ .

Moreover, we have by [Hum75, §30.2]

Ru(K \ P ) = U↵ ✓ Ru(P ) .

We claim that U↵s↵P = Bs↵P inside G. Indeed, otherwise U↵s↵P = s↵P ,
since dimBs↵P = dim E = 1 + dim P . Therefore U�↵ = s↵U↵s↵ ✓ P , a
contradiction. It follows that

E = U↵s↵P [ P .

Since T and U±↵ generate K, it follows that K lies inside the minimal para-
bolic subgroup P{↵} = Bs↵B [ B. By [Bor91, Theorem 13.18] the reflection
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s↵ generates the Weyl group of K and, in particular, every representative of
s↵ lies in K. In summary, we get

E ✓ KP ✓ P{↵}P = Bs↵P [ P = E ,

which proves E = KP .
Now, we can apply Proposition 10.7 and thus we can assume that G !

K\G restricts to an embedding on X. Since E = KP , applying Lemma 9.2
to G and the closed connected subgroups K and P yield the desired result
(note that K\G is a�ne since K is reductive). ⇤

The rest of this subsection is devoted to the proof of Proposition 10.7.
First we provide an estimation of the dimension of the intersection of every
translate of the torus T with the variety UG of unipotent elements in case G
is of rank two. Note that by the classification of simple groups of rank two,
G is either of type A2, B2, or G2.

Lemma 10.8. Assume that rank(G) = 2. Then the following hold:

(i) If G is of type A2, then Tp \ UG is finite for all p 2 P .
(ii) If G is of type B2, then dim(Tg \ UG)  1 for all g 2 G.

Remark 10.9. To complement (i), note that for some g 2 G the intersec-
tion Tg \ UG is not finite. For example, if G = SL3, T is the diagonal torus
in G and

g =

0

@
3 0 �4
2 0 �3
0 1 0

1

A ,

then a calculation shows that Tg \ UG is one-dimensional.

Proof of Lemma 10.8. To every simple group H there exists a simply con-
nected simple group H̃ and an isogeny H̃ ! H, i.e., an epimorphism with
finite kernel; see [Che05, §23.1, Proposition 1]. Two simply connected simple
groups with the same root system are always isomorphic by [Hum75, The-
orem 32.1]. Therefore it is enough to prove (i) for the simply connected
group G = SL3 and to prove (ii) for the simply connected group G = Sp

4
;

see [Che05, §20.1, §22.1] and [Hum75, Corollary 21.3C].
Assume G is SL3. We can assume that T is the subgroup of G of diago-

nal matrices and B is the subgroup of upper triangular matrices. Moreover,
we can assume without loss of generality that P is the maximal parabolic
subgroup

P =

8
<

:

0

@
⇤ ⇤ ⇤
0 ⇤ ⇤
0 ⇤ ⇤

1

A

9
=

; ✓ SL3 .
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An element a 2 SL3 is unipotent if and only if its characteristic polynomial
�a is (t � 1)3. We have

�a(t) = t3 � tr(a)t2 + s(a)t � 1,

where

s(a) = (a11a22 � a12a21) + (a11a33 � a13a31) + (a22a33 � a23a32)

and aij denotes the ijth entry of a. Let p 2 P . The variety Tp \ UG is
isomorphic to

S = { t 2 T | tp 2 UG } .

Let x, y, z denote the entries on the diagonal of a 3 ⇥ 3-diagonal matrix. The
set S can be realized as the closed subvariety of C3 given by the equations

3 = xp11 + yp22 + zp33,(10.2)

3 = xyp11p22 + xzp11p33 + yz(p22p33 � p23p32),(10.3)

1 = xyz .(10.4)

Clearly, p11 is non-zero. Inserting (10.2) into (10.4) yields the irreducible
equation

(10.5) p11 = (3 � yp22 � zp33)yz .

Inserting (10.2) into (10.3) yields a non-trivial equation of degree  2 in y
and z. If p22 or p33 is non-zero, then (10.5) is an equation of degree three,
and thus S is finite. If p22 = p33 = 0, then S is realized as the closed subset
of C2 given by the equations

3 = �yzp23p32 and p11 = 3yz .

However, since p has determinant equal to 1, we get �p11p23p32 = 1. Hence,
S is empty in case p22 = p33 = 0. This proves (i).

Assume that G is Sp4. Since all non-degenerate alternating bilinear forms
on an even dimensional vector space are equivalent, we can choose ⌦ as the
matrix with entries 1, 1, �1, �1 on the antidiagonal and all other entries equal
to zero, and then define Sp

4
as those 4 ⇥ 4-matrices g that satisfy gt⌦g = ⌦.

Thus we can choose for the maximal torus T the subgroup of Sp
4

consisting
of diagonal matrices with entries t1, t2, t�1

2
, t�1

1
on the diagonal for arbitrary

non-zero t1 and t2. If an element in GL4 is unipotent, then its trace is equal
to 4. Let g 2 Sp4. One can see that

{ t 2 T | tr(tg) = 4 }

is a proper closed subset of the torus T and thus Tg\USp4
is properly contained

in Tg, which proves (ii). ⇤
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Lemma 10.10. Assume that rank(G) � 2. Let H ✓ P be a connected
closed solvable subgroup such that the unipotent radical Ru(H) is one-dimen-
sional. Denote by Y = H\P the quotient space which is homogeneous under
P via right-multiplication. Then, for every y 2 Y the fibers of the morphism

UP ! Y , u 7! yu

have codimension at least three in UP .

Proof of Lemma 10.10. We have to prove that UP \ qHp has codimension
at least three in UP for all p, q 2 P . Since UP is invariant under conjugation,
this amounts to proving that the codimension of UP \ Hp is at least three in
UP for all p 2 P . By the same argument we can replace H with a conjugate
p0Hp�1

0
for some p0 2 P , and thus we can assume that H ✓ TRu(H).

In case the rank of G is at least three or G is of type G2, it follows that

dim UP � dim H � dim UP � dim T � 1 � 3

by Lemma B.6, and thus the lemma is proved in these cases.
Assume that G is of type A2. For every p 2 P the quotient ⌘ : P ! T\P

restricts to a morphism Hp \ UP ! ⌘(Ru(H)p). By Lemma 10.8 the fibers
of this restriction are finite. Since Ru(H) is one-dimensional, it follows that
Hp \ UP is at most one-dimensional. By Lemma B.6, we have dim UP = 4,
which implies the lemma in this case.

Assume that G is of type B2. Analogously, it follows from Lemma 10.8 and
Lemma B.6 that Hp \ UP is at most two-dimensional and that dim UP = 5,
which proves the lemma in this case. ⇤

Proof of Proposition 10.7. We start by observing that K \ P\P is a�ne,
since K \ P\P ⇠= K\KP is closed in K\G and since K\G is a�ne (K is
reductive). In particular, every C+-orbit of a C+-action on K \P\P is closed.

We claim that for a generic u 2 UP the one-parameter unipotent subgroup
C+(u) of P acts without fixed point on K \ P\P . Every C+(u)-orbit in
K \ P\P is either a fixed point or isomorphic to C. If p 2 P would map
to a fixed point in K \ P\P of the C+(u)-action, then (K \ P )pC+(u) =
(K\P )p. This would imply that pC+(u)p�1 ✓ K\P . Since K\P is solvable,
pC+(u)p�1 lies inside Ru(K \ P ) and hence inside Ru(P ), by assumption.
In particular, C+(u) lies inside Ru(P ). However, generic u 2 UP are not
contained in Ru(P ), since P is not a Borel subgroup of G. This proves our
claim.

Denote by ⌘ : KP ! K\KP ⇠= K \ P\P the restriction of the canonical
projection G ! K\G. By Lemma B.6 we have dim UP � 4 and hence there
exists a one-parameter unipotent subgroup U of P such that G ! G/U re-
stricts to an embedding on X, by Remark 7.3. Moreover, we can assume by
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the previous paragraph that U acts without fixed point on K \ P\P . Thus
we can apply Lemma C.1 to the U -equivariant morphism XU ! ⌘(XU) to
get a section X 0 of XU ! XU/U that is mapped birationally via ⌘ onto its
image. Hence, after applying an appropriate automorphism of G (that leaves
KP invariant), we can assume that ⌘ maps X birationally onto its image;
see Proposition 5.1. Let us denote this image inside ⌘(XU) by Z. Note that
Z is closed in ⌘(XU), since X is isomorphic to C. We apply Lemma 7.7
to the group P , the a�ne homogeneous P -space K \ P\P and the curve Z
in K \ P\P (the codimension assumptions of Lemma 7.7 are guaranteed by
Lemma 10.10). Thus we get a u0 2 UP \ {e} such that G ! G/C+(u0) re-
stricts to an embedding on X (by Remark 7.3), C+(u0) acts without fixed
point on K \ P\P , and Su0 ! Su0//C+(u0) restricts to a birational morphism
on Z. Here Su0 denotes the closure of all the C+(u0)-orbits in K \ P\P
that pass through Z. Since X is mapped birationally onto Z ✓ Su0 and
since Z is mapped birationally onto Su0//C+(u0) it follows that ⌘ restricts
to a birational map XC+(u0) ! Su0 . Hence we can apply Lemma C.2 to
the C+(u0)-equivariant morphism XC+(u0) ! Su0 and get a section X 00 of
XC+(u0) ! XC+(u0)/C+(u0) that is mapped isomorphically via ⌘ onto its
image inside Su0 ✓ K \ P\P . By Proposition 5.1 there exists an automor-
phism of G (that leaves KP invariant) and maps X to X 00, and thus we can
assume that ⌘ maps X isomorphically onto K\P\P . Since ⌘ is the restriction
of G ! K\G to KP , this finishes the proof. ⇤

Appendix A. Principal bundles over the a�ne line

In [RR84] it is stated by referring to [Ste65] and [Ram83] that over an alge-
braically closed field every principal G-bundle over the a�ne line is trivial if G
is a connected a�ne algebraic group. However, the connectedness assumption
is in fact superfluous over an algebraically closed field of characteristic zero.
For the sake of completeness we give a proof of this result.

Theorem A.1. Let G be any a�ne algebraic group. Then every principal
G-bundle over the a�ne line C is trivial.

Before starting with the proof, let us recall a very important construction
that associates a fiber bundle P ⇥GF ! X to a principal G-bundle ⇡ : P ! X
and a variety F with a left G-action (see [Ser58, Proposition 4]): the variety
P ⇥G F is defined as the quotient of P ⇥ F by the right G-action

(p, f) · g = (pg, g�1f),
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and the canonical map P ⇥G F ! X is a bundle with fiber F which becomes
locally trivial after a finite étale base change; see [Ser58, §3.2, Example (c)].

Proof of Theorem A.1. Let P ! C be a principal G-bundle. Let G0 be the
connected component of the identity element in G. The principal G-bundle
factorizes as

P �! P ⇥G G/G0 �! C .

The first morphism is a principal G0-bundle by [Ser58, Proposition 8]. The
second morphism is a principal G/G0-bundle and since G/G0 is finite, it is a
finite morphism; see [Ser58, Proposition 5 and §3.2, Example (a)]. Since the
base is C, this second principal bundle admits a section s : C ! P ⇥G G/G0

(which follows from Hurwitz’s Theorem [Har77, Ch. IV, Corollary 2.4]). Due
to Theorem A.2, the principal G0-bundle P ! P ⇥GG/G0 is trivial over s(C),
and thus P ! C admits a section, which proves the theorem. ⇤

The main step in the following Theorem is due to Steinberg [Ste65].

Theorem A.2. Let G be a connected a�ne algebraic group. Then, every
principal G-bundle over a smooth a�ne rational curve is trivial.

Proof. Let X be a smooth a�ne rational curve and let E ! X be a prin-
cipal G-bundle.

First we prove that E ! X admits a section that is defined over some open
subset of X. By definition there exists a finite étale map from an a�ne curve
U 0 onto an open subset U of the curve X such that the pullback EU 0 ! U 0

is a trivial principal G-bundle. Let K be the function field of U and let K 0

be the function field of U 0. We can assume that the field extension K 0/K is
finite and Galois, by [Ser58, §1.5]. Let Gal(K 0/K) denote the Galois group
of this extension. We denote by G(K 0) the K 0-rational points of G, i.e., the
group of rational maps U 0 99K G. By [Ser58, §2.3b)] it follows that the first
Galois cohomology set

H1(Gal(K 0/K), G(K 0))

describes the isomorphism classes of principal G-bundles that are defined over
some non-specified open subset of U such that their pullback via U 0 ! U
admit a section over some open Gal(K 0/K)-invariant subset of U 0. Hence
it is enough to prove that H1(Gal(K 0/K), G(K 0)) is trivial. Let K̄ be an
algebraic closure of K that contains K 0. By [Ser94, §5.8, Ch. I], the natural
map

H1(Gal(K 0/K), G(K 0)) ! H1(Gal(K̄/K), G(K̄))

is injective. Note that G(K̄) is an a�ne algebraic group over K̄. Since K 0 has
transcendence degree one over the ground field, the so-called (cohomological)
dimension of K 0 is at most one by [Ser94, Ch. II, §3.3, Example (b)]. Now,
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by a result of Steinberg, H1(Gal(K̄/K), G(K̄)) is trivial; see [Ste65, Theo-
rem 1.9]. Hence, E ! X admits a section over some open subset of X.

Let B ✓ G be a Borel subgroup. The principal G-bundle E ! X decom-
poses as

E ! E ⇥G G/B ! X,

where the first morphism is a principal B-bundle and the second morphism is
a G/B-bundle, locally trivial in the étale topology. Since E becomes trivial
over some open subset V of X, it follows that E ⇥G G/B becomes also trivial
over V , hence there exists a rational section s : X 99K E ⇥G G/B that is
defined over V . Since G/B is projective, to every point x in X there is a
finite étale map fx onto an open neighborhood of x such that the pullback of
E ⇥G G/B ! X via fx is projective. This implies that E ⇥G G/B ! X is
universally closed and hence proper. Since X is a smooth curve, it follows by
the Valuative Criterion of Properness that the section s is defined on the whole
X; see [Har77, Ch. II, Theorem 4.7]. Thus the restriction of the principal B-
bundle E ! E ⇥G G/B to s(X) is trivial by Proposition A.3, since X has a
trivial Picard group. Hence, we proved that E ! X admits a section, which
implies the statement of the theorem. ⇤

Proposition A.3. Let G be a connected, solvable a�ne algebraic group.
Then, every principal G-bundle over any a�ne variety with vanishing Picard
group is trivial.

Proof. Let X be an a�ne variety. By [Ser58, Proposition 14] every principal
G-bundle is locally trivial, since G is connected and solvable. Note that the
first Čech cohomology

Ȟ1(X, G)

is a pointed set that corresponds to the isomorphism classes of locally trivial
principal G-bundles over X, where G denotes the sheaf of groups on X with
sections over an open subset U ✓ X being the morphisms U ! G; see [Fre57,
§3] and [Ser58, §3]. Since G is solvable and connected, there exists a semidirect
product decomposition G = U o T for a torus T and a unipotent group U .
The short exact sequence corresponding to this decomposition yields an exact
sequence in cohomology

Ȟ1(X, U) ! Ȟ1(X, G) ! Ȟ1(X, T) ;

see [Fre57, Théorème I.2]. However, by using a decreasing chain of closed
normal subgroups of U such that each factor is isomorphic to C+ and by
using that Ȟ1(X, C+) = H1(X, OX) is trivial (since X is a�ne) it follows
that Ȟ1(X, U) is trivial. Since the Picard group Ȟ1(X, C⇤) = H1(X, O⇤

X)
vanishes it follows analogously that Ȟ1(X, T) is trivial, whence Ȟ1(X, G) is
trivial. This implies the proposition. ⇤
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Remark A.4. The proof of Proposition A.3 shows the following. If G is
unipotent, then every principal G-bundle over any a�ne variety is trivial.

Appendix B. Generalities on the Weyl group, parabolic
subgroups, and Schubert varieties

Throughout this section we fix the following notation. Let G be a connected
reductive group, let B be a Borel subgroup, let T be a maximal torus in B,
and let W be the Weyl group with respect to T . Moreover, with respect to
(B, T ), we denote by  the set of all roots, by  + the set of all positive roots,
by  � the set of all negative roots, and by � the set of all simple roots.

B.1. The Weyl group. For any root ↵ 2  there is an associated reflec-
tion in W which we will denote by s↵. In case ↵ is a simple root, we call s↵

a simple reflection. Recall that W is generated by the simple reflections; see
[Spr09, Theorem 8.2.8(i)]. Associated to W and the simple reflections there
is a length function

` : W ! N0 , w 7! `(w) = min

⇢
k 2 N0

�� 9↵1, . . . ,↵k 2 � with
s↵1 · · · s↵k

= w

�

where N0 denotes the set of non-negative integers. A decomposition w =
s↵1 · · · s↵k

into simple reflections is called reduced if `(w) = k.

Example B.1. In W there is a unique longest element w0 with respect
to `; it satisfies w0( +) =  �; see [Spr09, §8.3.4]. In particular, we have
(w0w0)( +) =  + and thus we get w0w0 = e in W ; see [Spr09, Proposi-
tion 8.2.4].

Remark B.2. Note that the action of W on  satisfies the following rela-
tion: If ↵ 2  , w 2 W , and U↵ denotes the root subgroup in G corresponding
to ↵, we have

wU↵w�1 = Uw(↵);

see [Hum75, Theorem 26.3(b)].

Associated to W and the simple reflections, there is a natural order ,
called the Bruhat order on W . It is defined as follows. Let w 2 W and
let w = s1 · · · sn be a reduced decomposition into simple reflections and let
v 2 W . Then

v  w if and only if v = si1 · · · sik
where k � 0 and

1  i1 < i2 < · · · < ik  n.
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In other words, v  w if and only if v is obtained from w by deleting some of
the simple reflections si. This order relation is independent of the decomposi-
tion of w into simple reflections; see [Spr09, Corollary 8.5.6]. In Section B.4,
we recall a more geometric interpretation of the Bruhat order in terms of
Schubert varieties associated to elements in W ; see Remark B.9.

B.2. The opposite parabolic subgroup. Let P be a parabolic sub-
group that contains B; i.e., P = BWIB where I is a subset of � and WI is
the subgroup of W generated by the reflections corresponding to roots in I.
There exists a unique parabolic subgroup P� that contains T such that P \P�

is a Levi factor of P and P�; i.e., there are semidirect product decompositions

P = Ru(P ) o (P \ P�) and P� = Ru(P�) o (P \ P�) .

See [Spr09, Corollary 8.4.4.] and [Bor91, Proposition 14.21]. We call P� the
opposite parabolic subgroup of P with respect to T .

Example B.3. The opposite Borel subgroup B� of B with respect to T is
the subgroup of G generated by all root subgroups corresponding to negative
roots together with T . We have B� = w0Bw0, since the unique longest
element w0 2 W exchanges the positive and negative roots; see Example B.1
and Remark B.2.

In fact we can describe P� as follows.

Lemma B.4. We have P� = B�WIB�.

For the lack of reference, we provide a proof.

Proof. Let Z be the connected component of the identity element in the
group

T
�2I ker �. By [Hum75, §30.2], the centralizer CG(Z) is a Levi factor

of P , i.e., P = CG(Z)nRu(P ). Let Q be B�WIB�. In fact, Q = B�W�IB�

since WI = W�I . Moreover, Z is the connected component of the identity
element in

T
�2�I ker � and thus it follows that Q = CG(Z)nRu(Q). Clearly,

Ru(Q) \ P is a unipotent subgroup of Ru(Q) that is invariant under conju-
gation by T . If Ru(Q) \ P is non-trivial, it contains a root subgroup U� , by
[Hum75, Proposition 28.1]) for a certain root �. Note that � is a negative
root with respect to � which is not a Z-linear combination of roots in I, by
[Hum75, §30.2] applied to (B�, Q). Since � is also a root of P with respect
to T , we get a contradiction to [Hum75, Proposition 30.1] applied to (B, P ).
Hence Ru(Q) \ P is trivial. This implies that P \ Q = CG(Z) and thus P
and Q are opposite parabolic subgroups. Since P and Q contain T , we get
Q = P�. ⇤

By [Bor91, Proposition 14.21] we have that PP� is open in G and the
product map induces an isomorphism of varieties

(B.1) Ru(P ) ⇥ (P \ P�) ⇥ Ru(P�)
⇠=�! PP� .
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In particular, we get the following.

Lemma B.5. We have dim G = dim Ru(P�) + dim P .

B.3. Dimension of UP and Ru(P ) of a parabolic subgroup P . We
give here a result which estimates the dimension of UP and Ru(P ) from below
for a parabolic subgroup P . The proof is based on the following fact. Let ↵
be a simple root and let � be a positive root which is a linear combination of
simple roots di↵erent from ↵. If ↵ and � are not perpendicular, then ↵+� is
a positive root, by [Hum78, Lemma 9.4 and Lemma 10.1].

Lemma B.6. Assume that G is a simple group and let P be a parabolic
subgroup that contains B. Then the following hold:

(i) If rank(G) � 3 and P 6= B, then dim UP � 2 rank(G) + 1.
(ii) If rank(G) = 2 and B 6= P 6= G, then

dim UP =

8
<

:

4 if G is of type A2,
5 if G is of type B2,
7 if G is of type G2.

(iii) If rank(G) � 2 and P 6= G, then dim Ru(P ) � 2.

In particular, for a simple group with rank(G) � 2, we have dim UG � 4.

Proof. Assume that P 6= B. Since dim UP = dim P � rank(G) we get

dim UP = dim Ru(B) + (dim Ru(B) � dim Ru(P )) .

Note that dim Ru(B) is equal to the number of positive roots. In a Dynkin
diagram the vertices correspond to the simple roots and there is one (or more)
edges between two simple roots if and only if they are not perpendicular. For
each pair of non-perpendicular simple roots ↵, �, the sum ↵ + � is again a
(positive) root. Since any Dynkin diagram is a tree, the simple roots together
with the above sums of pairs give 2 rank(G) � 1 positive roots.

Assume that rank(G) � 3 and P 6= B. Again, since any Dynkin diagram
is a tree, one sees that there is a subgraph of the Dynkin diagram of G of the
form

↵1 ↵2 ↵3

and ↵1, ↵3 are not connected in the Dynkin diagram. Hence ↵1 + ↵2 and ↵3

are not perpendicular and thus the sum ↵1 +↵2 +↵3 is again a positive root.
Thus we proved dim Ru(B) � 2 rank(G). Since P is not a Borel subgroup, we
get dim Ru(B) � dim Ru(P ) � 1. These two inequalities yield (i).

Assume that rank(G) = 2 and B 6= P 6= G. Hence, we get dimRu(B) �
dim Ru(P ) = 1, by [Hum75, §30.2]. Considering the classification of irre-
ducible root systems of rank two and counting the number of positive roots
in these root systems yield (ii).
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Assume that rank(G) � 2 and P 6= G. Hence, there exists a simple root
↵ such that �↵ is not a root of P . Since rank(G) � 2 and since the root
system is irreducible, there exists a simple root � 6= ↵ such that ↵ + � is a
positive root. By [Hum75, §30.2] it follows that ↵ and ↵+� are distinct roots
of Ru(P ), which proves (iii).

The “in particular”‘ follows from (i) and (ii) by choosing a parabolic sub-
group P di↵erent from G and B and noting that UG ◆ UP . ⇤

B.4. Basics from the theory of Schubert varieties. In this subsec-
tion, we recall the basics from the theory of Schubert varieties needed for this
article. Our references are [BGG82,BL03,BK05,Spr09]. We use the notation
of Subsection B.1.

Let P be a parabolic subgroup of G that contains B and let I ✓ � such
that P = BWIB where WI is the subgroup of W generated by the simple
reflections corresponding to elements from I.

Fix a w 2 W . The Schubert cell XP (w) associated to w is defined as
the B-orbit through the class of w in G/P ; i.e., it is the image in G/P of
BwP under the canonical projection G ! G/P . The Schubert variety SP (w)
associated to w is defined as the closure of XP (w) in G/P . The opposite
Schubert cell Xop

P (w) associated to w is w0XP (w0w) and the opposite Schubert
variety Sop

P (w) associated to w is the subvariety w0SP (w0w) in G/P . Thus
Xop

P (w) is the B�-orbit through the class of w in G/P and Sop

P (w) is its
closure in G/P ; see Example B.3.

Proposition B.7 (See [BGG82] and [BL03]). Let w0,I be the longest ele-
ment in WI . Then the following statements hold:

(i) For every w 2 W , the coset wWI contains a unique element of min-
imal length. We denote by W I ✓ W the subset of all such minimal
representatives of cosets with respect to WI .

(ii) We have a disjoint union

G/P = SP (w0) =
[

w2W I

XP (w) .

Moreover, for w, w0 2 W we have XP (w) = XP (w0) if and only if
w�1w0 2 WI .

(iii) For every w 2 W I , the Schubert cell XP (w) is isomorphic to an a�ne
space of dimension `(w) and thus SP (w) is irreducible, rational, and
of dimension `(w). More precisely,

SP (w) =
[

v2W I , vw

XP (v),

where the union is disjoint.
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(iv) For every w 2 W I we get w0ww0,I 2 W I . In particular,

W I ! W I , w 7! w0ww0,I

defines an involution on W I . This involution reverses the Bruhat or-
der  on W I . Moreover, for w2W I , the Schubert variety SP (w0ww0,I)
has codimension `(w) in G/P .

Remark B.8. It follows from Proposition B.7(ii) that for all w 2 W we
have SP (ww0,I) = SP (w).

Remark B.9. Proposition B.7(iii) implies the following geometric inter-
pretation of the Bruhat order on W I . For v, w 2 W I , one has v  w if and
only if SP (v) ✓ SP (w). In particular, if P = B (i.e., W I = W ), one has for
all v, w 2 W the relation v  w if and only if SB(v) ✓ SB(w).

In the next corollary we show that there is a unique Schubert curve and
a unique Schubert divisor in G/P provided that P is a maximal parabolic
subgroup of G.

Corollary B.10. Assume that I = � \ {↵} where ↵ is a fixed simple root.
Then the following hold:

(a) The variety SP (s↵) is the unique Schubert variety of dimension one
in G/P . Moreover, SP (s↵) is the disjoint union of the two Schubert
cells XP (s↵) and XP (e).

(b) The variety SP (w0s↵) is the unique Schubert variety of codimension
one in G/P . Moreover, G/P is the disjoint union of SP (w0s↵) and
XP (w0).

Proof. We denote by W I ✓ W the set of minimal representatives of W I -
cosets; see Proposition B.7(i).

(a) It follows from Proposition B.7(iii) that SP (s↵) has dimension one and
if SP (w) has dimension one for some w 2 W I , then w is a simple reflec-
tion. Since WI contains all simple reflections except s↵, we get w = s↵.
This proves the first statement from (a). The second statement follows from
Proposition B.7(iii).

(b) Analogously as in (a), it follows from Proposition B.7(iv) that SP (w0s↵)
is the unique Schubert variety of codimension one in G/P . For the second
statement of (b) it is enough to show that for all w 2 W I we have

codimG/P SP (w) � 1 =) SP (w) ✓ SP (w0s↵) .

Let w0,I be the unique longest element in WI . By Proposition B.7(iv) it
follows that dim SP (w0ww0,I) � 1. Note that s↵ occurs in any decomposition
of w0ww0,I into simple reflections, since otherwise w0ww0,I 2 WI and thus
dim SP (w0ww0,I) = 0 by Proposition B.7(ii). In particular, s↵  w0ww0,I in
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W I and thus w  w0s↵w0,I by Proposition B.7(iv). Hence we get SP (w) ✓
SP (w0s↵) by Proposition B.7(iii). ⇤

Appendix C. Two results on C+-equivariant morphisms of surfaces

In this section we prove two results on C+-equivariant morphisms of sur-
faces that we use in the proof of Proposition 10.7. If S is an a�ne variety
with a C+-action, then we denote by S//C+ the spectrum of the ring of C+-
invariant functions on S. In general S//C+ is an a�ne scheme which is not
a variety. If the quotient morphism S ! S//C+ happens to be a principal
C+-bundle, then we denote the algebraic quotient by S/C+. By Rentschler’s
Theorem, for a fixed point free action of C+ on the a�ne plane C2, the al-
gebraic quotient of C+ is a trivial principal C+-bundle over the a�ne line
C ⇠= C2/C+; see [Ren68].

Lemma C.1. Let S be an irreducible, quasi-a�ne surface and assume that
C+ acts without fixed point on C2 and on S. If f : C2 ! S is a dominant and
C+-equivariant morphism, then there exists a section X ✓ C2 of the algebraic
quotient C2 ! C2/C+ such that f induces a birational morphism X ! f(X).

Proof. By [FM78, Lemma 1], there exists a C+-invariant open subset V ✓
S and a smooth a�ne curve C such that V and C ⇥ C+ are C+-equivariantly
isomorphic. Hence, f restricts on f�1(V ) to a morphism of the form

(f�1(V )/C+) ⇥ C+ �! C ⇥ C+ , (x, t) 7�! (f̄(x), t + q(x))

where q is a function defined on the curve f�1(V )/C+ and f̄ is the morphism
f�1(V )/C+ ! C induced by f . Therefore, it su�ces to find a function p on
C2/C+ ⇠= C (which corresponds to a section of C2 ! C2/C+) such that the
morphism

(C.1) f�1(V )/C+ �! C ⇥ C+ , x 7�! (f̄(x), p(x) + q(x))

is birational onto its image. After shrinking V , we can assume that f̄ is finite
and étale. Fix c0 2 C. One can choose p such that the points

(c0, p(x1) + q(x1)) , . . . , (c0, p(xk) + q(xk))

are all distinct, where x1, . . . , xk denote the elements of the fiber of f̄ over
c0. The same is still true for elements in a neighborhood of c0 in C, as one
can see by choosing an étale neighborhood of c0 in C which trivializes f̄ at c0

with respect to the étale topology; see [Mil80, Ch. I, Corollary 3.12]. Hence
(C.1) is injective on an open subset of f�1(V )/C+; i.e., it is birational onto
its image. ⇤
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Lemma C.2. Let S be an irreducible, quasi-a�ne surface and assume that
C+ acts without fixed point on C2 and on S. If f : C2 ! S is a C+-equivariant
birational morphism, then there exists a section X ✓ C2 of C2 ! C2/C+ such
that f restricts to an embedding on X.

Proof. We identify C2 with C ⇥ C+ and consider it as a trivial principal
C+-bundle over C. For ↵ 2 C⇤ let

Z↵ = { (x,↵x) | x 2 C } ✓ C ⇥ C+ .

We claim that for generic ↵ 2 C⇤ the map f restricts to an embedding on Z↵.
In other words, we claim that f restricted to Z↵ is injective and immersive
for generic ↵ (the properness is then automatically satisfied, since Z↵

⇠= C).
The claim then implies the statement of the lemma.

Let us first prove injectivity. Since f is C+-equivariant and birational, there
exists a C+-invariant open subset of C ⇥ C+ that is mapped isomorphically
onto a C+-invariant open subset of S. Since C+ acts without fixed point, it
follows that there are only finitely many C+-orbits F in S such that the inverse
image f�1(F ) consists of more than one C+-orbit. Thus, it is enough to show
that f is injective on f�1(F ) \ Z↵ for fixed F and generic ↵ in C⇤. So let
F ✓ S be a C+-orbit such that there exist k > 1 and distinct x1, . . . , xk 2 C
such that f�1(F ) is the union of the lines Li = {xi} ⇥ C+, i = 1, . . . , k.
Moreover, there exist �i 2 C+ such that f |Li

: Li ! F is given by t 7! t + �i,
where we have identified the orbit F with C+. Injectivity of f on f�1(F )\Z↵

for generic ↵ follows, since for generic ↵ we have

↵xi + �i 6= ↵xj + �j for all i 6= j .

Let us prove immersivity. As already mentioned, there exists an open
C+-invariant subset U ✓ C ⇥ C+ such that f restricts to an open injective
immersion on U . Let x0 2 C such that {x0} ⇥ C+ lies in the complement of
U in C ⇥ C+. Since there are only finitely many such x0 2 C, it is enough
to show that for generic ↵ 2 C⇤ the restriction f |Z↵

is immersive in the
point (x0,↵x0). Since C+ acts without fixed point on S and since f is C+-
equivariant, the kernel of the di↵erential of f is at most one-dimensional in
every point of C⇥C+. Since the tangent direction of Z↵ in the point (x0,↵x0)
is given by (1,↵), we get that f |Z↵

is immersive in (x0,↵x0) for generic ↵.
This proves the immersivity. ⇤
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Abstract. This article provides, over any field, infinitely many algebraic em-
beddings of the a�ne spaces A1 and A2 into smooth quadrics of dimension
two and three, respectively, which are pairwise non-equivalent under automor-
phisms of the smooth quadric. Our main tools are the study of the birational
morphism SL2 ! A3 and the fibration SL2 ! A3

! A1 obtained by projec-
tions, as well as degenerations of variables of polynomial rings, and families of
A1-fibrations.
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1. Introduction

In what follows we denote by k the ground field of our algebraic varieties. Given
two a�ne algebraic varieties X, Y , we say that two closed embeddings ⇢, ⇢0 : X ,! Y
are equivalent if there exists an automorphism ' 2 Aut(Y ) such that ⇢0 = ' � ⇢.
Similarly, we say that two closed subvarieties X, X 0 ⇢ Y are equivalent if there exists
an automorphism ' 2 Aut(Y ) such that X 0 = '(X). If two closed embeddings are
equivalent, then their images are equivalent, but the converse is not always true
and is related to the extension of automorphisms.

In the 1970s, Abhyankar and Sathaye conjectured that every closed embedding
An�1

k ,! An
k is equivalent to a linear embedding (see for instance [vdE00, §3,

p. 103]). This was the starting point for studying embedding problems in a�ne
algebraic geometry. In the Bourbaki Seminar Challenging problems on a�ne n-
space [Kra96], Kraft gives a list of eight fundamental problems related to the a�ne
n-spaces. The third one is the following generalisation of the Abhyankar-Sathaye
conjecture.

Embedding Problem. Is every closed embedding Am
k ,! An

k equivalent to the
standard embedding (x1, . . . , xm) 7! (x1, . . . , xm, 0, . . . , 0)?
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This question, asked over the ground field k = C in [Kra96], has until now no
negative answer. For k = R, it is easy to find counterexamples for m = 1 and n = 3,
by taking embeddings which are not topologically trivial (non-trivial knots); see for
instance the example of [Sha92], reproduced below in Example 6.1. In positive
characteristic, there are counterexamples when m = n � 1 (see Proposition 3.17).
The embedding problem has however a positive answer in the following cases:

(1) m = 1, n = 2, char(k) = 0 (Abhyankar-Moh-Suzuki Theorem) [AM75,
Suz74], [vdE00, Theorem 2.3.5];

(2) n � 2m + 2, k infinite (Theorem of Kaliman, Nori and Srinivas [Kal91,
Sri91]).

The case of hypersurfaces (m = n�1), corresponding to the Abyhankar-Sathaye
conjecture, is of particular interest. In this case, the image is given by the zero
set of an irreducible polynomial equation f 2 k[An]. One necessary condition for
an embedding to be equivalent to the standard embedding consists of asking that
the other fibres of f : An

k ! A1

k are a�ne spaces. In fact, for any field k and
any n � 1, there is no known example of a hypersurface X ⇢ An

k isomorphic to
An�1

k and given by f = 0, f 2 k[An] irreducible such that another fibre f = �
is not isomorphic to An�1

k . The non-existence of such examples (at least when
char(k) = 0), is the Sathaye conjecture [vdE00, §3, p. 103], which is implied by the
Abhyankar-Sathaye conjecture. Even this weaker conjecture is quite strong and
seems “unlikely” (as Arno van den Essen says in [vdE00, §3, p. 103]). Moreover,
for n = 3 and char(k) = 0, the fact that infinitely many fibres f = � are isomorphic
to A2

k implies that the fibration is equivalent to the standard one, and in particular
that all fibres are isomorphic to A2

k [KZ01,Kal02,DK09]. The positive characteristic
version of the Sathaye conjecture has until now no counterexample, and is open even
in dimension n = 2 (this latter case corresponds to a question of Abhyankar; see
[Gan11, Question 1.1]).

In this paper, we replace the a�ne space at the target by some analogue varieties,
namely a�ne smooth quadrics. This simplifies the question in such a way that one
can actually give an answer. Moreover, it also gives some idea on what kind of
behaviour one could expect in a general situation.

In dimension n = 2, the most natural quadric is

Q2 = Spec(k[x, y, z]/(xy � z(z + 1))) ⇢ A3

k.

In fact, if k is an algebraically closed field, then every smooth quadric hypersurface
Q ⇢ A3

k is isomorphic to A2

k, (A1

k \ {0}) ⇥ A1

k or Q2, as one can see using the
classification of quadratic forms. As all embeddings of A1

k into (A1

k \ {0}) ⇥ A1

k are
constant on the first factor, they are all equivalent. Over any field, the group of
automorphisms of Q2 is similar to the one of A2

k, as it is an amalgamated product
of two factors, corresponding to a�ne maps and triangular maps (see [DG77] or
[BD11, Theorem 5.4.5(7)(a)]). This is also the case for the a�ne surface P2

k \
�, where � ⇢ P2

k is any smooth conic having a k-point (see for instance [DD16,
Theorem 2]). If char(k) = 0, there is exactly one (respectively, two) closed curve
C ⇢ A2

k (respectively, C ⇢ P2

k \ �) isomorphic to A1

k, up to automorphism of the
surface. This follows from the Abhyankar-Moh-Suzuki Theorem for A2

k and from
[DD16] for P2

k \ �. In particular, all automorphisms of the corresponding curves
extend to automorphisms of A2

k or P2

k \ �. Similarly, a complex toric a�ne surface
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admits only finitely many embeddings of A1

C, up to equivalence [AZ13]. By contrast,
we prove the following result.

Theorem 1. For each field k, there is an infinite set of closed curves

Ci ⇢ Q2 = Spec(k[x, y, z]/(xy � z(z + 1))), i 2 I,

which are pairwise non-equivalent up to automorphism of Q2, such that each Ci is
isomorphic to A1

k and such that the identity is the only automorphism of Ci that
extends to an automorphism of Q2. Moreover, if k is uncountable, then I can be
chosen uncountable as well.

In dimension n = 3, the most natural quadric is

SL2 = Spec(k[t, u, x, y]/(xy � tu � 1)) ⇢ A4

k .

Similarly as in dimension two, over an algebraically closed field k, every quadric
hypersurface in A4

k is isomorphic to A3

k, (A1

k \{0})⇥A2

k, Q2 ⇥A1

k or SL2. Moreover,
the quotient of SL2 by its maximal torus yields a morphism SL2 ! SL2 /T ' Q2,
which is the “universal torsor” (also called the Cox quotient presentation or the
characteristic space); see [ADHL15, Examples 4.5.13–4.5.14].

We consider the quadric hypersurface SL2 more closely. Its automorphism group
shares similar properties with the one of Aut(A3

k) (see [LV13,BFL14,Mar15]). Both
are known to be complicated, as they contain “wild” automorphisms [LV13], and do
not preserve any fibration, as is the case for other varieties being topologically closer
to A3

k, like the Koras-Russell threefold. However, in contrast to the quadric Q2,
the quadric SL2 is closer to a contractible a�ne variety in the sense that the ring of
regular functions on SL2 is a unique factorisation domain (see [Pop74, Proposition 1]
or Lemma 4.4). The first di↵erence concerning embeddings of a�ne spaces with the
surfaces Q2, A2

k, P2

k \ � and with A3

k is that the “simplest embedding” A2

k ,! SL2 is
more rigid in the following sense.

Theorem 2. Let k be any field and let

⇢1 : A2

k ,! SL2

(s, t) 7!
✓

1 t
s 1 + st

◆

be the “standard” embedding. Then, an automorphism (s, t) 7! (f(s, t), g(s, t))
of A2

k extends to an automorphism of SL2, via ⇢1, if and only if it has Jacobian
determinant @f

@s
@g
@t � @f

@t
@g
@s 2 k⇤ equal to ±1. In particular, the following holds:

(1) every embedding A2

k ,! SL2 with image ⇢1(A2

k) is equivalent to an embedding

⇢� : A2

k ,! SL2

(s, t) 7!
✓

1 t
�s 1 + �st

◆

for a certain � 2 k⇤. Moreover, ⇢� and ⇢�0 are equivalent if and only if
�0 = ±�;

(2) if k has at least four elements, then not all automorphisms of A2

k extend to
SL2 via ⇢1.

Remark 1.1. Let us make some comments on Theorem 2:

(1) Over the field of complex numbers k = C, we show that all algebraic
automorphisms of A2

k extend via the standard embedding ⇢1 to holomorphic
automorphisms of SL2; see Remark 4.7.
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(2) Let f : A2

k ,! SL2 be a closed embedding and denote by ◆ : SL2 ,! A4

k the
standard embedding. If all coordinate functions of ◆ � f : A2

k ,! SL2 ⇢ A4

k
are polynomials of degree  2, then f is equivalent to ⇢� for a certain
� 2 k⇤ (Proposition 5.19).

Next, we focus on the closed embeddings A2

k ,! SL2 that are compatible with
the simplest A2-fibration of SL2. More precisely we have the following.

Definition 1.2. A closed embedding ⇢ : A2

k ,! SL2 is said to be a fibred embedding
if it is of the form

(})
⇢ : A2

k ,! SL2

(s, t) 7!
✓

p(s, t) t
r(s, t) q(s, t)

◆

for some p, q, r 2 k[s, t]. This corresponds to the commutativity of the diagram

A2

k

⇡1
))

SSS
SSS

SSS
SSS

S
� � ⇢

// SL2

⇡2
uukkk

kkk
kkk

kkk
k

A1

k,

where ⇡1 : A2

k ! A1

k, ⇡2 : SL2 ! A1

k are, respectively, given by (s, t) 7! t and�
x t
u y

�
7! t.

As we will show, there are a lot of fibred embeddings (i.e., embeddings of the
form (})).

Theorem 3. Let k be any field, let P 2 k[t, x, y] be a polynomial that is a vari-
able of the k(t)-algebra k(t)[x, y] (which means that P is the image of x by some
automorphism of the k(t)-algebra k(t)[x, y]), and let

HP ⇢ SL2 = Spec(k[t, u, x, y]/(xy � tu � 1))

and ZP ⇢ A3

k = Spec(k[t, x, y]) be the hypersurfaces given by P = 0.

(1) The following conditions are equivalent:
(a) The hypersurface HP ⇢ SL2 is isomorphic to A2

k.
(b) The hypersurface HP ⇢ SL2 is the image of a fibred embedding A2

k ,!
SL2.

(c) The fibre of ZP ! A1

k, (t, x, y) 7! t over every closed point of A1

k \ {0}
is isomorphic to A1 and the polynomial P (0, x, y) 2 k[x, y] is of the
form µxm(x � �) or µym(y � �) for some µ,� 2 k⇤ and some m � 0.

(2) If P, Q 2 k[t, x, y] are two polynomials of the above form satisfying the con-
ditions (a) � (b) � (c), such that HP , HQ ⇢ SL2 are equivalent under an
automorphism of SL2, then ZP , ZQ ⇢ A3

k are equivalent under an automor-
phism of A3

k.
(3) There are infinitely many fibred embeddings A2

k ,! SL2 having pairwise
non-equivalent images in SL2. If k is uncountable, we can moreover choose
uncountably many such embeddings.

Remark 1.3. Let us make some comments on Theorem 3:

(1) It is possible that HP , HQ are non-equivalent, even if ZP , ZQ are equivalent
(Lemma 5.11).

(2) If char(k) = 0, then every image of a fibred embedding A2

k ,! SL2 is of the
form HP as above (Lemma 5.2(2)). This is false if char(k) > 0 (Lemma 5.3).
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Let us make the following comment concerning embeddings of A1

k into the smooth
quadric SL2 over the field k = C. Although there are infinitely many non-equivalent
embeddings of A2

C into SL2, it is not known whether all embeddings of A1

C into SL2

are equivalent under an algebraic automorphism. It seems that this question is
as di�cult as the question of non-equivalent embeddings A1

C ,! A3

C. However, up
to holomorphic automorphisms, all embeddings of A1

C into A3

C and into SL2 are
equivalent; see [Kal92,Sta15].

In the last section (Lemma 6.2), we give an example of an embedding A1

R ,! SL2

which is non-equivalent to the standard embedding.

2. The smooth quadric of dimension two and the proof of Theorem 1

2.1. The isomorphism with the complement of the diagonal in P1

k ⇥ P1

k.
In this section, we study the smooth quadric Q2 ⇢ A3

k given by

Q2 = Spec(k[x, y, z]/(xy � z(z + 1))),

and more particularly closed embeddings A1

k ,! Q2. Since the closure of Q2 in P3

k is
a smooth quadric, isomorphic to P1

k⇥P1

k, we get the following classical isomorphism.

Lemma 2.1. The morphism

⇢ : Q2 ! P1

k ⇥ P1

k

(x, y, z) 7!
⇢

( [y : z] , [z : x] ) if z 6= 0,
( [z + 1 : x] , [y : z + 1] ) if z 6= �1,

yields an isomorphism Q2

'�! (P1

k ⇥ P1

k) \ �, where � ⇢ P1

k ⇥ P1

k is the diagonal,
with an inverse given by

 : (P1

k ⇥ P1

k) \ � ! Q2

([u0 : u1], [v0 : v1]) 7!
⇣

u1v1
u0v1�u1v0

, u0v0
u0v1�u1v0

, u1v0
u0v1�u1v0

⌘
.

Proof. We first check that ⇢((x, y, z)) 2 (P1

k ⇥ P1

k) \ � for each (x, y, z) 2 Q2. If
z 6= 0, then [y : z] 6= [z : x], since xy � z2 = z 6= 0. If z = 0, then xy = 0, whence
[z + 1 : x] = [1 : x] 6= [y : 1] = [y : z + 1].

It remains then to check that ⇢� = id(P1
k⇥P1

k)\� and  �⇢ = idQ2 , which follows
from a straightforward calculation. ⇤

2.2. Families of embeddings. The following result is the key step in the proof
of Theorem 1.

Lemma 2.2.
(1) For each polynomial p 2 k[t], the morphism ⌫p : A1

k ,! Q2 given by

⌫p : A1

k ! Q2

t 7! (t(1 + tp(t)), p(t), tp(t))

is a closed embedding.
(2) If p, q 2 k[t] are polynomials of degree � 3 such that ↵⌫p = ⌫q� for some

� 2 Aut(A1

k) and ↵ 2 Aut(Q2), then there exist µ 2 k and � 2 k⇤ such that

p(t) = �q(�t+µ) , �(t) = �t+µ , ↵(x, y, z) =

✓
�x +

µ2

�
y + 2µz + µ,

y

�
, z +

µ

�
y

◆
.
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Proof. Using the isomorphism ⇢ : Q2

'�! (P1

k ⇥ P1

k) \ � of Lemma 2.1, we obtain
that ⇢ � ⌫p : A1

k ! P1

k ⇥ P1

k is given by t 7! ([1 : t], [p(t) : 1 + tp(t)]), which is the
restriction of the closed embedding

⌫̂p : P1

k ,! P1

k ⇥ P1

k, [u : v] 7! ([u : v], [uP (u, v) : ud+1 + vP (u, v)]),

where d = deg(p) and P (u, v) = p( v
u )ud is the homogenisation of p. This implies

that �p = ⌫̂p(P1

k) ⇢ P1

k ⇥P1

k is a smooth closed curve (isomorphic to P1

k), and since
�p \ � is given by u(ud+1 + vP (u, v)) � vuP (u, v) = 0, i.e., ud+2 = 0, this shows
that ⌫p is a closed embedding, and thus yields (1).

It remains to prove Assertion (2). We fix two polynomials p, q 2 k[t] of degree
� 3 such that ↵⌫p = ⌫q� for some � 2 Aut(A1

k) and ↵ 2 Aut(Q2). This implies in
particular that the automorphism ↵0 = ⇢�1↵⇢ 2 Aut((P1

k ⇥ P1

k) \ �) sends �p \ �
onto �q \ �.

We first prove that ↵0 2 Aut((P1

k ⇥ P1

k) \ �) extends to an automorphism ↵̂ 2
Aut(P1

k ⇥ P1

k). Assume for contradiction that this is not the case. The map ↵0

would then extend to a birational map ↵̂ : P1

k ⇥ P1

k 99K P1

k ⇥ P1

k, which is not an
automorphism. We consider the minimal resolution of ↵̂, which is

Z
�1

sshhhh
hhhh

hhhh
hhh �2

++

VVVV
VVVV

VVVV
VVV

P1

k ⇥ P1

k
↵̂

//________________ P1

k ⇥ P1

k

(P1

k ⇥ P1

k) \ �
?�

OO

'
// (P1

k ⇥ P1

k) \ �
?�

OO

where �1, �2 are birational morphisms. The resolution being minimal, every (�1)-
curve E ⇢ Z contracted by �2 is not contracted by �1, so �1(E) ⇢ P1

k ⇥ P1

k is
contracted by ↵̂. There is thus a unique (�1)-curve contracted by �2, which is the
strict transform �̃ of �, and satisfies �1(�̃) = �. As �2 = 2 and (�̃)2 = �1,
there are exactly three base-points of ��1

1
that lie on the curve � (as proper point

or infinitely near points). Since �p is smooth of bidegree (1, 1 + deg p), we get
�p · � = 2 + deg p � 5, which implies that the strict transforms of �p and � on Z
satisfy �̃p · �̃ � 2 (as only three points belonging to � have been blown-up). As
the curve �̃ is contracted by �2, the curve �2(�̃p) is singular. This contradicts the
equality �2(�̃p) = �q, which follows from the fact that ↵̂(�p \ �) = �q \ �.

We have shown that the extension of ↵0 = ⇢�1↵⇢ 2 Aut((P1

k ⇥ P1

k) \ �) is
an automorphism ↵̂ 2 Aut(P1

k ⇥ P1

k), which satisfies therefore ↵̂(�) = � and
↵̂(�p) = �q. The curves �p and �q being of bidegree (1, 1+deg p) and (1, 1+deg q),
we get deg p = deg q and we obtain that ↵̂ does not exchange the two factors of
P1

k ⇥ P1

k. Moreover, as the point ([0 : 1], [0 : 1]) = � \ �p = � \ �q is fixed, and as
the diagonal � is invariant, we can write ↵̂ as

↵̂([u0 : u1], [v0 : v1]) = ([u0 : �u1 + µu0], [v0 : �v1 + µv0])

for some � 2 k⇤, µ 2 k.
The equality ↵⌫p = ⌫q� implies that ↵̂⌫̂p = ⌫̂q�̂, for some automorphism �̂ 2

Aut(P1

k), which is the extension of � and therefore it is of the form [u : v] 7! [u :
�v + µu]. We then compute

↵̂⌫̂p([u : v]) = ([u : �v + µu], [uP (u, v) : �ud+1 + �vP (u, v) + µuP (u, v)]),
⌫̂q�̂([u : v]) = ([u : �v + µu], [uQ(u,�v + µu) : ud+1 + (�v + µu)Q(u,�v + µu)]),
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and obtain that P (u, v) = �Q(u,�v + µu). Remembering that P (u, v) = p( v
u )ud

and Q(u, v) = q( v
u )ud we obtain that p(t) = �q(�t + µ). We then compute the

explicit form of ↵ by conjugating ↵̂ with ⇢�1. ⇤

Example 2.3. For each n � 1, let pn(t) = tn(t + 1)n+1. The closed curve Cn =
⌫pn

(A1

k) ⇢ Q2 is isomorphic to A1

k, via

⌫pn
: A1

k ,! Q2

t 7! (t(1 + tpn(t)), pn(t), tpn(t)).

Then Lemma 2.2(2) shows that all curves Cn are non-equivalent for di↵erent n � 1,
and that the identity is the only automorphism of Cn that extends to Q2.

The proof of Theorem 1 is now a consequence of Lemma 2.2.

Proof of Theorem 1. If k is the field with two elements, then we conclude by Ex-
ample 2.3. Hence we can assume that k contains more than two elements. For each
n � 1 and each � 2 k, " 2 k \ {0, 1}, one defines pn,"(t) = tn(t + 1)n+1(t + ")n+2 2
k[t], and let Cn," ⇢ Q2 be the closed curve given by ⌫pn,"

(A1

k), which is isomorphic
to A1

k (Lemma 2.2(1)).
Lemma 2.2(2) implies that the identity is the only automorphism of Cn," that

extends to an automorphism of Q2, since �pn,"(�t + µ) 6= pn,"(t) for (�, µ) 2
(k⇤ ⇥ k) \ {(1, 0)}.

Similarly, Lemma 2.2(2) shows that Cn," is equivalent to Cn0,"0 if and only if
n = n0 and " = "0. ⇤

3. Variables of polynomial rings

In this section, we give some results on variables of polynomial rings. Most of
them are classical or belong to the folklore. We include them for self-containedness
and for lack of precise references.

Definition 3.1. Let S be a ring and let R ⇢ S be a subring. We denote by
AutR(S) the group of automorphisms of the R-algebra S. More precisely,

AutR(S) = { automorphism of rings f : S ! S such that f |R = idR} .

Definition 3.2. Let R be a domain and let S be a polynomial ring in n � 1
variables over R, i.e., R ⇢ S and there exist x1, . . . , xn 2 S such that each element
of S can be written in a unique way as f(x1, . . . , xn), where f is a polynomial in
the xi with coe�cients in R. An element v 2 S is called variable of the R-algebra
S if there exists f 2 AutR(S) such that f(v) = x1.

In what follows, we often denote by R[t] or R[x] the polynomial ring in one
variable over R, by R[x, y] the polynomial ring in two variables over R, and by
R[x1, . . . , xn] the polynomial ring in n variables over R.

Lemma 3.3. Let R be a domain, let S = R[x1, . . . , xn] be the polynomial ring in
n variables over R, and let v 2 S. The following conditions are equivalent:

(1) v is a variable of the R-algebra S;
(2) the R[t]-algebra S[t]/(v � t) is isomorphic to a polynomial ring in n � 1

variables over R[t].
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Proof. If v is a variable, then there exists f 2 AutR(S) such that f(v) = x1.
Using the natural inclusion AutR(S) ,! AutR[t](S[t]), we get isomorphisms of R[t]-
algebras

S[t]/(v � t)
'�! S[t]/(x1 � t)

'�! R[x2, . . . , xn, t]
'�! R[t][x2, . . . , xn].

Conversely, suppose that the R[t]-algebra S[t]/(v � t) is isomorphic to a polyno-
mial ring in n � 1 variables over R[t]. This yields an R[t]-isomorphism  : S[t]/(t �
v)

'�! R[t][x2, . . . , xn]. We then compose the isomorphisms of R-algebras

S = R[x1, . . . , xn]
'�! S[t]/(t � v)

 �! R[t][x2, . . . , xn]
f 7! f + (t � v) · S[t]

and
R[t][x2, . . . , xn]

'�! R[x1, . . . , xn]
f(t, x2, . . . , xn) 7! f(x1, x2, . . . , xn)

and obtain an element of AutR(S) that sends v onto x1. ⇤

Lemma 3.4. Let k be a field, let k[x1, . . . , xn] be the polynomial ring in n � 1
variables over k, and let w 2 k[x1, . . . , xn] be a variable of this k-algebra.

Then k[w] is factorially closed in k[x1, . . . , xn], i.e., for all f, g 2 k[x1, . . . , xn] \
{0}, and we have fg 2 k[w] , f 2 k[w] and g 2 k[w].

Proof. If f 2 k[w] and g 2 k[w], then fg 2 k[w], since k[w] is a subring of
k[x1, . . . , xn].

Conversely, suppose that fg 2 k[w]. Choose  2 Autk(k[x1, . . . , xn]) such
that  (w) = x1. Then,  (f), (g) 2 k[x1, . . . , xn] are two polynomials such that
 (f) ·  (g) 2 k[x1]. For each i � 2, the degree in xi satisfies degxi

( (f)) +
degxi

( (f)) = degxi
( (f) · (g)) = 0, so degxi

( (f)) = degxi
( (f)) = 0 since both

elements are non-zero. Hence,  (f), (g) 2 k[x1]. Applying  �1, we get f 2 k[w]
and g 2 k[w]. ⇤

3.1. Variables of polynomial rings in two variables. We will need the follow-
ing two technical lemmas.

Lemma 3.5. Let k be a field, let w be a variable of the k-algebra k[x, y], and let
v 2 k[x, y] be a polynomial. The following conditions are equivalent:

(1) v 2 k[w];
(2) for each u 2 k[w], the elements u and v are algebraically dependent over k;
(3) there exists u 2 k[w] \ k such that u and v are algebraically dependent over

k.

Proof. The implications (1) ) (2) ) (3) being clear, we only need to prove (3) )
(1). Replacing v and w with f(v) and f(w), for some f 2 Autk(k[x, y]), we can
assume that w = x. Denoting by k the algebraic closure of k, we have k[x]\k[x, y] =
k[x], so we can assume that k = k.

We then consider the morphism ⌧ : A2

k ! A2

k given by (x, y) 7! (u(x), v(x, y)),
which is dominant if and only if u, v are algebraically independent over k. It
remains then to see that ⌧ is dominant if u 2 k[x] \ k and v 62 k[x]. Let v(x, y) =Pd

i=0
vi(x)yi, where vd 6= 0 and d > 0. For a general a 2 k, u(x) = a has a solution

x0 such that vd(x0) 6= 0, since k is algebraically closed. Hence v(x0, y) = b has a
solution for all b 2 k. This proves that ⌧ is dominant. ⇤
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Lemma 3.6. Let k be a field, let p 2 k[t] be an irreducible element, and let kp =
k[t]/(p) be the corresponding residue field. Let u, v 2 k[t][x, y] be elements such that
k(t)[u, v] = k(t)[x, y]. Then, the classes u0, v0 2 kp[x, y] of u, v satisfy one of the
following properties, depending on the Jacobian determinant ⌫ = @u

@x · @v
@y � @u

@y · @v
@x 2

k[t] \ {0}:
(1) If p divides ⌫, then u0, v0 are algebraically dependent over kp.
(2) If p does not divide ⌫, then kp[u0, v0] = kp[x, y]. In particular, both u0 and

v0 are variables of the kp-algebra kp[x, y].

Proof. Since k(t)[u, v] = k(t)[x, y], there are polynomials P, Q 2 k(t)[X, Y ] such
that P (u, v) = x, Q(u, v) = y. Moreover, the polynomial ⌫ = @u

@x · @v
@y � @u

@y · @v
@x 2

k[t, x, y] belongs to k(t)⇤ and thus to k[t]\{0}. The element ⌫0 = @u0
@x · @v0

@y � @u0
@y · @v0

@x

is then the class of ⌫ in kp.

We write P = P̃
↵ , Q = Q̃

� , where P̃ , Q̃ 2 k[t][X, Y ], ↵,� 2 k[t] \ {0} and such

that p does not divide both ↵ and P̃ (and the same for � and Q̃). We then get

P̃0(u0, v0) = ↵0x , Q̃0(u0, v0) = �0y,

where P̃0, Q̃0 2 kp[X, Y ] are the classes of P̃ , Q̃ and ↵0,�0 2 kp are the classes of
↵,�.

If ↵0 and �0 are not equal to zero, then kp[u0, v0] = kp[x, y]. In particular, u0

and v0 are variables of the kp-algebra kp[x, y] and ⌫0 2 k⇤
p, so p does not divide ⌫.

If ↵0 = 0, then P̃0 6= 0 and P̃0(u0, v0) = 0 implies that u0 and v0 are algebraically
dependent over kp. The same conclusion holds when �0 = 0. In both cases, the
Jacobian determinant ⌫0 is equal to zero, so p divides ⌫.

This yields (1) and (2). ⇤
We recall the following classical result, essentially equivalent to the Jung-van der

Kulk Theorem.

Lemma 3.7. Let k be a field, let k[x, y] be the polynomial ring in two variables over
k, let f 2 Autk(k[x, y]) and u = f(x), v = f(y) 2 k[x, y]. If deg(u) � deg(v) > 1,
then there exists a polynomial P with coe�cients in k such that deg(u � P (v)) <
deg(u).

Proof. By van der Kulk’s Theorem all automorphisms of k[x, y] are tame [Jun42,
vdK53]. The statement is then a direct consequence of [vdE00, Corollary 5.1.6]. ⇤

The following result is needed in what follows. When the characteristic of k is
zero, and p = t, it follows from [Fur02, Theorem 4]. We adapt here the proof of
[Fur02] for our purpose.

Lemma 3.8. Let k be a field, let p 2 k[t] be an irreducible element, and let kp =
k[t]/(p) be the corresponding residue field. If v 2 k[t, x, y] is a variable of the k(t)-
algebra k(t)[x, y], then its class in kp[x, y] is an element which belongs to kp[w] ⇢
kp[x, y] for some variable w of the kp-algebra kp[x, y].

Proof. Let f 2 Autk(t)(k(t)[x, y]) such that f(x) = v, and let us define u = f(y).
We denote by v0 2 kp[x, y] the class of v and will use the degree of polynomials in
x, y with coe�cients in k(t) or kp.

If deg(v) = 1, then deg(v0)  1. If v0 2 kp the result follows by taking any
variable for w, for instance w = x. Otherwise, v0 = ↵x+�y+� for some ↵,�, � 2 kp
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with (↵,�) 6= (0, 0). This implies that w = ↵x + �y is a variable, as it is the
component of an element of GL2(kp), and the result follows.

We can thus assume that deg(v) > 1 and prove the result by induction on the
pair (deg(v), deg(u)), ordered lexicographically.

(i) If deg(u) � deg(v), then there exists a polynomial P 2 k(t)[X] such that
deg(u � P (v)) < deg(u) (Lemma 3.7). We can thus apply an induction hypothesis
to (u � P (v), v), since k(t)[u, v] = k(t)[u � P (v), v], and obtain the result.

(ii) If deg(u) < deg(v), we first replace u with u�� for some � 2 k(t) and assume
that u 2 k(t)[x, y] is a polynomial in x, y with no constant term. We then replace u
with qu for some q 2 k(t)⇤ and assume that u 2 k[t][x, y] and the greatest common
divisor in k[t] of the coe�cients of u (as a polynomial in x, y) is equal to 1. One
can then define the class u0 2 kp[x, y] of u, which is not equal to zero. Moreover,
u0 does not belong to kp, since u0 has no constant term.

If v0 is a variable of the kp-algebra kp[x, y], then we are done. Otherwise, u0, v0

are algebraically dependent over kp (Lemma 3.6).
Since the pair (deg(v), deg(u)) is smaller than (deg(u), deg(v)), we can apply an

induction hypothesis and get a variable w 2 kp[x, y] such that u0 2 kp[w]. The fact
that u0 and v0 are algebraically dependent over kp and that u0 62 kp imply that
v0 2 kp[w] (Lemma 3.5). ⇤

We finish this section with several results relating variables and A1-bundles.

Lemma 3.9. Let k be a field and let P 2 k[x, y]. Then, the following conditions
are equivalent:

(1) The polynomial P is a variable of the k-algebra k[x, y].
(2) The k[t]-algebra k[t, x, y]/(P � t) is a polynomial ring in one variable over

k[t].
(3) The k(t)-algebra k(t)[x, y]/(P � t) is a polynomial ring in one variable over

k(t).
(4) The morphism A2

k ! A1

k given by (x, y) 7! P (x, y) is a trivial A1-bundle.
(5) The morphism A2

k ! A1

k given by (x, y) 7! P (x, y) is a trivial A1-bundle
over some dense open subset U ⇢ A1

k.

Proof. (1) , (2) follows from Lemma 3.3.
(1) , (4): By definition, (1) is equivalent to the existence of f 2 Autk(k[x, y])

such that f(x) = P . As f = '⇤ for some ' 2 Aut(A2

k), this is equivalent to asking
for ' 2 Aut(A2

k) that prx �' is the map (x, y) 7! P (x, y), where prx : A2

k ! A1

k is
given by (x, y) 7! x. This yields the equivalence (1) , (4).

(2) ) (3) is trivially true.
(3) ) (5): Assertion (3) corresponds to say that the generic fibre of (x, y) 7!

P (x, y) is isomorphic to A1

k(t). This yields (5).

(5) ) (1) : Assume that the subset U given in (5) contains a k-rational point.
Replacing P with P + �, � 2 k, one can assume that 0 belongs to the open subset
U . One then observes that the curve � ⇢ A2

k given by P = 0 is isomorphic to A1

k
and equivalent to a line by a birational map of A2

k, hence can be contracted by a
birational map of A2

k. By [BFH16, Proposition 2.29], there exists an automorphism
' 2 Aut(A2

k) which sends � onto the line given by x = 0. This implies that P is a
variable of the k-algebra k[x, y].

If U contains no k-rational point, then k is a finite field and thus it is perfect.
For a finite Galois extension k0 � k the subset U contains a k0-rational point. By
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the argument above, P is a variable of the k0-algebra k0[x, y] and hence k0[x, y] =
k0[P, Q] for some Q 2 k0[x, y]. Since P is a polynomial with coe�cients in k, it is
fixed under the action of the Galois group G = Gal(k0/k) on k[x, y] = k0[P, Q]. For
each � 2 G, there exists (a�, b�) 2 (k0)⇤ n k0[T ] with

�(Q) = a�Q + b�(P ).

We can then find d � 0 such that {b� | � 2 G} is contained in the finite dimensional
k0-vector subspace Vd = {f 2 k0[T ] | deg(P )  d} ⇢ k0[T ]. Thus � 7! (a�, b�)
defines an element of H1(G, (k0)⇤ n Vd). As H1(G, (k0)⇤) = {1} and H1(G, Vd) =
{1} [Ser68, Proposition 1, 2, Chp. X], we have H1(G, (k0)⇤ n Vd) = {1}. The
fact that (a�, b�) is a trivial cocycle corresponds to the existence of a polynomial
Q0 2 k[x, y] such that k[P, Q0] = k[x, y]. This implies that P is a variable of the
k-algebra k[x, y]. ⇤

We recall the following classical result.

Lemma 3.10. Let k be a field, let Z be an a�ne variety over k, all of its irreducible
components being surfaces, let U ✓ A1

k be a dense open subset and let ⇡ : Z ! U be
a dominant morphism. Then, the following conditions are equivalent:

(1) The morphism ⇡ : Z ! U is a trivial A1-bundle.
(2) The morphism ⇡ : Z ! U is a locally trivial A1-bundle.
(3) For each maximal ideal m ⇢ k[U ], the fibre ⇡�1(m) ⇢ Z is isomorphic to

A1

(m)
and the generic fibre of ⇡ is isomorphic to A1

k(t).

Proof. The implications (1) ) (2) ) (3) are obvious. Assume (3) holds. Since
each irreducible component of Z has dimension two, it follows that each of these
irreducible components is mapped dominantly onto U via ⇡. Thus ⇡ is flat. By
[Asa87, Corollary 3.2] it follows now from (3) that k[Z]m is a polynomial ring in
one variable over k[U ]m for all maximal ideals m ⇢ k[U ]. Hence, by [BCW77], the
morphism ⇡ is a vector bundle with respect to the Zariski topology and since k[U ]
is a principal ideal domain, ⇡ is a trivial A1-bundle. ⇤
Lemma 3.11. Let k be a field, let P 2 k[t, x, y] be a polynomial which is a variable
of the k(t)-algebra k(t)[x, y], let U ⇢ A1

k = Spec(k[t]) be a dense open subset, let
Z ⇢ U ⇥ A2

k = Spec(k[U ][x, y]) be the hypersurface given by P = 0, and let ⇡ : Z !
U be the morphism (t, x, y) 7! t. Then, the following conditions are equivalent:

(i) P is a variable of the k[U ]-algebra k[U ][x, y];

(ii) there is an isomorphism ' : U ⇥ A1

k
'�! Z such that ⇡' is the projection

(t, x) 7! t;
(iii) the morphism ⇡ : Z ! U is a trivial A1-bundle;
(iv) the morphism ⇡ : Z ! U is a locally trivial A1-bundle;
(v) for each maximal ideal m ⇢ k[U ], the fibre ⇡�1(m) ⇢ Z is isomorphic to

A1

(m)
.

Proof. (i) ) (ii): If P is a variable of the k[U ]-algebra k[U ][x, y], there exists
f 2 Autk[U ](k[U ][x, y]) such that f(x) = P . The element f is then equal to  ⇤

for some  2 Aut(U ⇥ A2

k) such that ⇡ = ⇡. Hence,  (Z) is the closed subset
of U ⇥ A2

k given by x = 0. Let ✓ : U ⇥ A2

k ! U ⇥ A1

k be the projection given by

(t, x, y) 7! (t, y). The composition ✓ �  restricts to an isomorphism Z
'�! U ⇥ A1

k
that we denote by '�1. Thus pr1 � '�1 = ⇡, where pr1 : U ⇥ A1

k ! U is the
projection on the first factor. This yields (ii).
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(ii) , (iii): is the definition of a trivial A1-bundle.
(iii) ) (iv) ) (v) are obvious.
(v) ) (i): This follows from the implication (3) ) (1) of Lemma 3.10 (we use

here the fact that the generic fibre of ⇡ is isomorphic to A1

k(t), which is provided

by the assumption that P is a variable of the k(t)-algebra k(t)[x, y]). ⇤
Remark 3.12. Lemma 3.11 is false if we do not assume P to be a variable of the
k(t)-algebra k(t)[x, y]. Let us choose for example k to be algebraically closed of

characteristic p > 0, P = x + xpq + yp2 � t, and U = A1. Corollary 3.16 shows
that (v) is satisfied but not (i). Moreover, the fact that P is not a variable of the
k(t)-algebra k(t)[x, y] follows from Lemma 3.15.

Corollary 3.13. Let k be a field, let P 2 k[t, x, y] be a polynomial which is a vari-
able of the k(t)-algebra k(t)[x, y], let Z ⇢ A3

k = Spec(k[t, x, y]) be the hypersurface
given by P = 0, and let ⇡ : Z ! A1

k be the morphism (t, x, y) 7! t. Then, the
following conditions are equivalent:

(i) P is a variable of the k[t]-algebra k[t][x, y];

(ii) there is an isomorphism ' : A2

k
'�! Z such that ⇡' is the projection (t, x) 7!

t;
(iii) there is an isomorphism ' : A2

k
'�! Z;

(iv) the morphism ⇡ : Z ! A1

k is a trivial A1-bundle;
(v) the morphism ⇡ : Z ! A1

k is a locally trivial A1-bundle;
(vi) for each maximal ideal m ⇢ k[t], the fibre ⇡�1(m) ⇢ Z is isomorphic to

A1

(m)
.

Proof. Applying Lemma 3.11 with U = A1

k, we obtain the equivalence between
(i)-(ii)-(iv)-(v)-(vi).

We then observe that (ii) implies (iii). It remains then to prove (iii) ) (iv).
As P is a variable of the k(t)-algebra k(t)[x, y], the generic fibre of ⇡ : Z ! A1

k
is isomorphic to A1

k(t), so ⇡ is a trivial A1-bundle over some dense open subset

U ⇢ A1

k. The fact that Z is isomorphic to A2

k implies then that ⇡ is a trivial
A1

k-bundle (Implication (5) ) (4) of Lemma 3.9). ⇤
3.2. Non-trivial embeddings in positive characteristic. In this paragraph,
we recall the existence of non-trivial embeddings in positive characteristic. The fam-
ily of examples that we give below seems classical (the case A1

k ,! A2

k with param-
eters equal to 1 corresponds in particular to [vdE00, Exercise 5(iii) in §5]). We give
the (simple) proof here for a lack of a precise reference and for self-containedness.

Lemma 3.14. For each field k of characteristic p > 0, each a 2 k, b 2 k⇤ and each
integer q � 0, the morphism

⇢ : A1

k ,! A2

k

u 7! (up2
, 1

b (aupq + u))

is a closed embedding, with image being the closed curve of A2

k = Spec(k[x, y]) given
by

x + ap2

xpq � bp2

yp2

= 0.

Proof. We first compute the equality

bp

✓
1

b
(aupq + u)

◆p

� ap(up2

)q = (apup2q + up) � apup2q = up,
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which shows that ⇢(A1

k) is contained in the closed curve � ⇢ A2

k given by P = 0,

where P = x � (bpyp � apxq)p = x � bp2

yp2

+ ap2

xqp 2 k[x, y]. The equality

also yields up 2 k[up2

, 1

b (aupq + u)] and thus yields k[up2

, 1

b (aupq + u)] = k[u],
which implies that ⇢ is a closed embedding. It remains to see that the degree of ⇢
(maximum of the degree of both components) is equal to the degree of P , to obtain
that P is irreducible and that it defines the irreducible curve ⇢(A1

k). For a = 0, this
follows, since deg(⇢) = p2 = deg(P ). For a 6= 0, we have deg(⇢) = max(p2, pq) =
deg(P ). ⇤

To show that the above embeddings are not equivalent to the standard one,
when q � 2 is not a multiple of p and a, b 6= 0, one could make the argument on the
degree of the components (no one divides the other) or can use the characterisation

of variables given in Lemma 3.3 to show that P = x+ap2
xpq �bp2

yp2 2 k[x, y] is not
a variable, by proving that k[x, y, t]/(P � t) is not a polynomial ring in one variable
over k[t], as we do in Lemma 3.15 below. The second way has the advantage of
giving examples in any dimension (see Proposition 3.17). This is related to the
forms of the a�ne line over non-perfect fields (for more details on this subject, see
[Rus70]).

Lemma 3.15. For each field k of characteristic p > 0, each a, b 2 k⇤ and each
integer q � 2, not a multiple of p, the curve

� = Spec
⇣
k(t)[x, y]/(x + ap2

xpq � bp2

yp2

� t)
⌘

is not isomorphic to A1

k(t), but after the extension of scalars to k(t1/p) we have an
isomorphism

�k(t1/p)

'�! A1

k(t1/p)
.

Proof. After extending the scalars to k(t1/p2

), the curve � becomes

�k(t1/p2
)

= Spec
⇣
k(t1/p2

)[x, y]/(x + ap2
xpq � bp2

yp2 � t)
⌘

= Spec

 
k(t1/p2

)[x, y]/

 
x + ap2

xpq � bp2
⇣
y + t1/p

2

b

⌘p2
!!

.

Replacing y with y + t1/p
2

b and applying Lemma 3.14 we obtain an isomorphism

A1

k(t1/p2
)

'�! �k(t1/p2
)

u 7!
⇣
up2

, 1

b

⇣
aupq + u � t1/p2

⌘⌘
.

Replacing then u with u + t1/p2

we get an isomorphism defined over k(t1/p):

⌫ : A1

k(t1/p)

'�! �k(t1/p)

u 7!
⇣
up2

+ t, 1

b

⇣
a
�
up + t1/p

�q
+ u
⌘⌘

.

It remains that no isomorphism ⌫̂ : A1

k(t)
'�! �k(t) exists. If ⌫̂ exists, then ⌫�1⌫̂ 2

Aut(A1

k(t1/p)
) would be given by u 7! ↵u + �, with ↵,� 2 k(t1/p), ↵ 6= 0. The

second coordinate of ⌫̂(u) would then be

1

b

⇣
a
⇣
(↵u + �)p + t1/p

⌘q
+ (↵u + �)

⌘
2 k(t)[u] .
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The coe�cient of u being ↵
b , we get ↵ 2 k(t). Remembering that q � 2, the

coe�cient of up(q�1) is equal to a
b q↵p(q�1)(�p + t1/p). As �p 2 k(t) we have �p +

t1/p /2 k(t). Impossible, since q is not a multiple of p and ↵, a 6= 0. ⇤

Corollary 3.16. For each field k of characteristic p > 0, each integer q � 2 which
is not a multiple of p, each �, µ 2 k⇤, and each integer n � 2, the polynomial

f = x1 + �xpq
1

+ µxp2

2
2 k[x1, x2] ⇢ k[x1, . . . , xn]

is not a variable of the k-algebra k[x1, . . . , xn].
However, when k is algebraically closed, the k-algebra k[x1, . . . , xn]/(f � t) is

isomorphic to k[x1, . . . , xn�1] for each t 2 k.

Proof. Showing that f is not a variable of k[x1, . . . , xn] is equivalent to asking that
the k[t]-algebra k[x1, x2, . . . , xn, t]/(f�t) not be a polynomial ring in n�1 variables
over k[t] (Lemma 3.3). It su�ces then to show that An = k(t)[x1, . . . , xn]/(f � t)
is not a polynomial ring in n � 1 variables over k(t).

We first prove the result for n = 2. By extending the scalars, we can assume
that � = ap2

and µ = �bp2

for some a, b 2 k⇤. Lemma 3.15 then shows that
A2 = k(t)[x1, x2]/(f � t) is not a polynomial ring in one variable.

As An = A2[x3, . . . , xn], the positive answer to the cancellation problem for
curves [AHE72] implies that An is not a polynomial ring in n � 1 variables over
k(t) for each n � 2.

It remains to assume that k is algebraically closed and to show that the k-algebra
k[x1, . . . , xn]/(f � t) is isomorphic to k[x1, . . . , xn�1] for each t 2 k. Replacing x2

with x2 + ⌫ for some ⌫ 2 k, we only need to consider the case t = 0, which follows
from Lemma 3.14. ⇤

Proposition 3.17. For each field k of characteristic p > 0, each integer q � 2
which is not a multiple of p, each a 2 k⇤ and each n � 1, the morphism

⇢ : An ,! An+1

(x1, . . . , xn) 7! (xp2

1
, axpq

1
+ x1, x2, . . . , xn)

is a closed embedding, which is not equivalent to the standard one.

Proof. It follows from Lemma 3.14 that ⇢ is a closed embedding and that its image
is given by the hypersurface with equation f = 0, where

f = x1 + ap2

xpq
1

� xp2

2
2 k[x1, x2] ⇢ k[x1, . . . , xn].

It remains to show that f is not a variable of k[x1, . . . , xn], which follows from
Corollary 3.16. ⇤

4. Liftings of automorphisms and the proof of Theorem 2

4.1. Lifting of automorphisms of A3

k to a�ne modifications.

Proposition 4.1. Let k be a field and let

R = k[t, u, x, y]/(tnu � h(t, x, y)),

where n � 1 and h 2 k[t, x, y] is a polynomial such that h0 = h(0, x, y) 2 k[x, y]
does not belong to k[w] for each variable w 2 k[x, y].
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(1) Every element of R \ k[t, x, y] can be written as

s +
mX

i=1

fiu
i

where s 2 k[t, x, y], m � 1, f1, . . . , fm 2 k[t, x, y] are polynomials of degree
< n in t, and fm 6= 0.

(2) If f 2 R \ k[t, x, y] is written as in (1) and d = ⌫(fm) is the valuation
of fm in t, then 0  d < n and tmn�df = g(t, x, y) 2 k[t, x, y] satisfies
g(0, x, y) 2 h0 · k[x, y] \ {0}.

(3) Writing I ⇢ k[t, x, y] for the ideal (tn, h), we have tnR \ k[t, x, y] = I.
(4) Every element of Autk[t](R) preserves the sets k[t, x, y] and I.

Proof. (1): We first prove that every element of R \ k[t, x, y] has the desired form.
Every element of R can be written as

Pm
i=0

fiui for some polynomials fi 2 k[t, x, y].
We denote by r the largest integer such that degt(fr) � n. If r = 0 or if no
such integer exists, we are done. Otherwise, we write fr = tnA + B for some
A, B 2 k[t, x, y] with degt(B) < n. Then, replacing fr�1ur�1 + frur = fr�1ur�1 +
(tnA+B)ur in

Pm
i=0

fiui with (fr�1 +h(t, x, y)A)ur�1 +Bur decreases the integer
r. After finitely many such steps, we obtain the desired form.

(2): We write f = s +
Pm

i=1
fiui = s +

Pm
i=1

fi
hi

tni as in (1), we write d =
⌫(fm), which satisfies 0  d < n (since fm 6= 0 and degt(fm) < n), and obtain
g = tmn�df = stmn�d +

Pm
i=1

fihitmn�d�ni. In particular, g 2 k[t, x, y] and it
satisfies g(0, x, y) = (h0)m · r, where r 2 k[x, y] is obtained by replacing t = 0 in
fm

td 2 k[t, x, y]. From {r, h0} ⇢ k[x, y] \ {0}, we deduce g(0, x, y) 6= 0.
(3): The inclusion I ⇢ tnR follows from {tn, h} = {tn · 1, tn · u} ⇢ tnR. To

show that tnR \ k[t, x, y] ⇢ I, we take f 2 R such that tnf 2 k[t, x, y] and show
that tnf 2 I. If f 2 k[t, x, y], then tnf 2 tnk[t, x, y] ⇢ I. Otherwise, we write
f = s +

Pm
i=1

fiui as in (1) and use (2) to obtain that g = tmn�df 2 k[t, x, y]
with 0  d = ⌫(fm) < n, and we get g(0, x, y) 6= 0. The fact that tnf 2 k[t, x, y]
implies then that n > mn � d, whence n > d > (m � 1)n, so m = 1. Hence
tnf = tn(s + f1u) = tns + hf1 2 I.

(4): Using (3) it su�ces to show that every  2 Autk[t](R) preserves k[t, x, y].

The algebra R is canonically isomorphic to k[t, x, y][ h
tn ] ⇢ k(t)[x, y]. Since k(t)[x, y]

is the localisation of k[t, x, y][ h
tn ] in the multiplicative system k[t] \ {0}, we get a

natural inclusion Autk[t](R) ⇢ AutK K[x, y], with K = k(t).
Suppose for contradiction that some  2 Autk[t](R) satisfies  (k[t, x, y]) 6⇢

k[t, x, y]. This implies that  (x) /2 k[t, x, y] or  (y) /2 k[t, x, y]. We assume that
 (x) /2 k[t, x, y] (the case  (y) /2 k[t, x, y] being similar) and use (2) to obtain an
integer l > 0 such that g = tl (x) 2 k[t, x, y] satisfies g(0, x, y) 2 h0 · k[x, y] \ {0}.
Since  2 Autk[t](R) ⇢ AutK K[x, y], the element  (x) is a variable of K[x, y] and
the same holds for g(t, x, y) = tl (x). By Lemma 3.8, g(0, x, y) belongs to k[w] for
some variable w 2 k[x, y]. The fact that g(0, x, y) 2 h0 · k[x, y] \ {0} implies then
that h0 2 k[w] (Lemma 3.4), contradicting the hypothesis. ⇤

Corollary 4.2. Let k be a field and

R = k[t, u, x, y]/(tnu � h(t, x, y)),

where n � 1 and h 2 k[t, x, y] is a polynomial such that h0 = h(0, x, y) 2 k[x, y]
does not belong to k[w] for each variable w 2 k[x, y]. Writing I the ideal (tn, h) ⇢
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k[t, x, y], we obtain a group isomorphism

Autk[t](R)
'�! { 2 Autk[t](k[t, x, y]) |  (I) = I}

' 7! '|k[t,x,y].

Proof. According to Proposition 4.1(4), every element ' 2 Autk[t](R) preserves
k[t, x, y] and I, and thus restricts to an element  2 Autk[t](k[t, x, y]) that pre-
serves I.

Conversely, each automorphism  2 Autk[t](k[t, x, y]) that preserves I induces

an automorphism of R = k[t, x, y][ I
tn ] = k[t, x, y][ h

tn ]. This latter is uniquely deter-
mined by  , since the morphism Spec(R) ! Spec(k[t, x, y]) given by the inclusion
k[t, x, y] ,! R is birational. ⇤
Remark 4.3. According to [KZ99, Definition 1.1 and Proposition 1.1], Spec(R) is
the a�ne modification of A3

k = Spec(k[t, x, y]) with locus (I, tn). It is thus natural
that every automorphism of A3

k fixing the ideal and the fibration (t, x, y) 7! t lifts
to an automorphism of Spec(R). In fact, this holds more generally for any a�ne
modification; see [KZ99, Corollary 2.2 (a)]. The interesting part of Corollary 4.2
consists then in saying that all automorphisms of the k[t]-algebra R are obtained
by a lift of an automorphism of this form.

4.2. Application of liftings to the case of SL2. We will apply Corollary 4.2 to
the variety SL2 ⇢ A4 given by

SL2 =

⇢✓
x t
u y

◆
2 A4

����xy � tu = 1

�
,

and obtain Proposition 4.5 below. Before we give a proof, let us recall the following
basic facts on the coordinate ring of the variety SL2.

Lemma 4.4. Let R be the coordinate ring of SL2, i.e., R = k[t, u, x, y]/(xy�tu�1).
Then R is a unique factorisation domain and the units of R satisfy R⇤ = k⇤.

Proof. Since the localisation Rt = k[t, 1

t ][x, y] is a unique factorisation domain, we
only have to see that tR is a prime ideal of R, by [Mat89, Theorem 20.2]. This is
the case, since R/tR ' k[u, x, y]/(xy �1) is an integral domain. Moreover, we have
R⇤ ✓ (Rt)⇤ = {µtn | µ 2 k⇤, n 2 Z}. Since tn is invertible in R if and only if n = 0,
it follows that R⇤ = k⇤. ⇤

In fact, by [Pop74, Proposition 1], the ring of regular functions of any simply
connected algebraic group is a unique factorisation domain.

Proposition 4.5. We consider the morphisms

SL2 = Spec(k[t, u, x, y]/(xy � tu � 1))
⌘! A3

k
⇡! A1

k
(t, u, x, y) 7! (t, x, y) 7! t

and denote by X ⇢ SL2 the hypersurface given by t = 1 and by � ⇢ A3

k the closed
curve given by t = xy � 1 = 0.

Then, the birational morphism ⌘ : SL2 ! A3

k yields a group isomorphism

{g 2 Aut(SL2) | g(X) = X} '�! {g 2 Aut(A3

k) | ⇡g = ⇡, g(�) = �}
g 7! ⌘g⌘�1.

We moreover have

{g 2 Aut(SL2) | g(X) = X} = {g 2 Aut(SL2) | ⇡⌘g = ⇡⌘}
= {g 2 Aut(SL2) | g⇤(t) = t}.
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Proof. Every automorphism g of A3

k = Spec(k[t, x, y]) yields an automorphism
g⇤ 2 Autk(k[t, x, y]). Moreover, the condition ⇡g = g corresponds to g⇤(t) = t,
and the condition g(�) = � to g⇤(I) = I, where I ⇢ k[t, x, y] is the ideal of �,
generated by t and xy � 1. The isomorphism Aut(A3

k) ! Autk(k[t, x, y]) then
yields a bijection

{g 2 Aut(A3

k) | ⇡g = ⇡, g(�) = �} '�! { 2 Autk[t](k[t, x, y]) |  (I) = I}
g 7! g⇤ .

We then want to apply Corollary 4.2 with n = 1 and h = xy�1. To check that it is
possible, we need to see that h does not belong to k[w] for each variable w 2 k[x, y].
Indeed, xy � 1 2 k[w] would imply that xy 2 k[w], and thus that x, y 2 k[w],
since k[w] is factorially closed (Lemma 3.4). This would yield k[w] = k[x, y], a
contradiction.

We then apply Corollary 4.2 and obtain a group isomorphism

Autk[t](R)
'�! { 2 Autk[t](k[t, x, y]) |  (I) = I}

' 7! '|k[t,x,y],

where R = k[t, u, x, y]/(tu � xy � 1). This yields then a group isomorphism

{g 2 Aut(SL2) | ⇡⌘g = ⇡⌘} '�! {g 2 Aut(A3

k) | ⇡g = ⇡, g(�) = �}
g 7! ⌘g⌘�1.

It remains then to show that

{g 2 Aut(SL2) | ⇡⌘g = ⇡⌘} = {g 2 Aut(SL2) | g(X) = X}.

The inclusion “⇢” follows from the equality X = (⇡⌘)�1(1). It remains then to
show the inclusion “�”.

To do this, we take g 2 Aut(SL2) such that g(X) = X and prove that ⇡⌘g = ⇡⌘.
The element g corresponds to an element g⇤ 2 Autk(R). The fact that g(X) = X
is then equivalent to asking if g⇤ sends the ideal generated by t � 1 onto itself.
Since R⇤ = k⇤ by Lemma 4.4, so t � 1 is sent onto µ(t � 1) for some µ 2 k⇤. This
implies that the restriction of g⇤ yields an automorphism of k[t], corresponding to
an automorphism ĝ 2 Aut(A1

k) such that ĝ⇡⌘ = ⇡⌘g. As (⇡⌘)�1(0) is the only fibre
of ⇡⌘ that is not isomorphic to A2

k, it has to be preserved under g. As the fibre
⇡�1(1) = X is also preserved under g, we find that ĝ is the identity, so ⇡⌘g = ⇡⌘,
as desired. ⇤

Corollary 4.6. The closed embedding

⌫ : A2

k ,! SL2

(x, y) 7!
✓

x 1
xy � 1 y

◆

has the following property: an automorphism of A2

k extends to an automorphism of
SL2, via ⌫, if and only if it has Jacobian determinant equal to ±1.

Proof. We denote by X = ⌫(A2

k) ⇢ SL2 the closed hypersurface given by

X = ⌫(A2

k) =

⇢✓
x 1

xy � 1 y

◆���� (x, y) 2 A2

k

�
=

⇢✓
x t
u y

◆
2 SL2

���� t = 1

�
,

write G = {g 2 Aut(SL2) | g(X) = X}, and denote by ⌧ : G ! Aut(A2

k) the group
homomorphism such that g � ⌫ = ⌫ � ⌧ (g) for each g 2 G.
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We first prove that the subgroup H = {h 2 Aut(A2

k) | Jac(h) ± 1} is contained
in ⌧ (G). The group H is generated by (x, y) 7! (y, x), which is induced by

✓
x t
u y

◆
7!
✓

y t
u x

◆
,

and by automorphisms of the form (x, y) 7! (x, y + p(x)), p 2 k[x], induced by
✓

x t
u y

◆
7!
✓

1 0
p(x) 1

◆
·
✓

x t
u y

◆
.

It remains to take g 2 G and to prove that ⌧ (g) 2 H. Proposition 4.5 implies
that g can be written as

g

✓
x t
u y

◆
=

✓
a(t, x, y) t

s(t, u, x, y) b(t, x, y)

◆
,

where a, b 2 k[t, x, y], s 2 k[t, u, x, y] and such that g̃ : A2

k ! A2

k given by g̃(t, x, y) =
(t, a(t, x, y), b(t, x, y)) is an automorphism of A3

k that preserves the curve � given
by t = xy � 1 = 0. The Jacobian determinant of g̃ is µ = @a

@x · @b
@y � @a

@y · @b
@x 2

k⇤. Replacing with t = 0, we obtain the automorphism of A2

k given by (x, y) 7!
(a(0, x, y), b(0, x, y)), which preserves the curve with equation xy = 1 and is thus
of Jacobian ±1. Indeed, it is of the form (x, y) 7! (⇠x, ⇠�1y) or (x, y) 7! (⇠y, ⇠�1x)
for some ⇠ 2 k⇤ (see [BS15, Theorem 2 (iii)]). This shows that µ = ±1. Replacing
then t = 1 we get that the automorphism ⌧ (g) which is given by ⌧ (g)(x, y) =
(a(1, x, y), b(1, x, y)) has Jacobian ±1. ⇤
Proof of Theorem 2. We first observe that the embeddings ⇢1, ⌫̄ : A2

k ! SL2 given
by

⇢1 : A2

k ,! SL2 ⌫̄ : A2

k ,! SL2

(a, b) 7!
✓

1 b
a ab + 1

◆
, (a, b) 7!

✓
a 1

�ab � 1 �b

◆
,

are equivalent, under the map
�

x t
u y

�
7! ( u x

�y �t ). The embedding

⌫ : A2

k ,! SL2

(x, y) 7!
✓

x 1
xy � 1 y

◆

satisfies ⌫̄ = ⌫⌧ , where ⌧ 2 Aut(A2

k) is the automorphism of Jacobian �1 given by
⌧ : (x, y) 7! (x, �y). Corollary 4.6 then implies that there exists ⌧̂ 2 Aut(SL2) such
that ⌧̂ ⌫ = ⌫⌧ = ⌫, i.e., that the embeddings ⌫ and ⌫ are equivalent, so ⌫ and ⇢1

are equivalent. Corollary 4.6 implies then that an automorphism of A2

k extends to
an automorphism of SL2, via ⇢1, if and only if it has Jacobian determinant equal
to ±1. It remains to prove Assertions (1) and (2) of Theorem 2.

Assertion (2) follows from the fact that the group homomorphism

Jac: Aut(A2

k) ! k⇤

is surjective (taking for instance diagonal automorphisms), so there are automor-
phisms of Jacobian determinant in k⇤ \ {±1} if and only if k contains at least four
elements.

To obtain Assertion (1), we observe that every closed embedding A2

k ! SL2

having image in ⇢1(A2) is of the form ⇢1⌫ for some ⌫ 2 Aut(A2

k). Writing d� 2
Aut(A2

k) for the automorphism given by (s, t) 7! (�s, t), � 2 k⇤, we can write
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⌫ = d�⌫1 for some � 2 k⇤ and some ⌫1 2 Aut(A2

k) of Jacobian determinant equal
to 1. The result above implies that ⇢1⌫ is equivalent to ⇢1d� = ⇢�.

It remains to observe that ⇢�0 = ⇢�d�0��1 , so ⇢� and ⇢�0 are equivalent if and
only if �0��1 2 {±1}, which corresponds to �0 = ±�. ⇤

Remark 4.7. Over the field k = C of complex numbers, all algebraic embeddings
of C2 into SL2(C) with image equal to ⇢1(C2) are equivalent under holomorphic
automorphisms of SL2(C). Indeed, according to Theorem 2(1) it is enough to show
that the embeddings

⇢1 : C2 ,! SL2 ⇢� : C2 ,! SL2

(s, t) 7!
✓

1 t
s st + 1

◆
, (s, t) 7!

✓
1 t
�s �st + 1

◆
,

are equivalent under a holomorphic automorphism for all � 2 C⇤. Such a holomor-
phic automorphism of SL2(C) is given by

✓
x t
u y

◆
7!
✓

x t

µ(x)u y + µ(x)�1

x tu

◆
,

where µ : C ! C⇤ is a holomorphic function with µ(1) = � and µ(0) = 1.

5. Fibred embeddings of A2

k into SL2 and the proof of Theorem 3

In this section, we study fibred embeddings as in (}) from Definition 1.2.
We will need the following simple description of the morphism ⌘ : SL2 ! A3

k
already studied in Proposition 4.5.

Lemma 5.1. Let � ⇢ A3

k = Spec(k[t, x, y]) be the curve given by t = xy�1 = 0 and
let ⌘ : B`�(A3

k) ! A3

k be the blow-up of �. We then have a natural open embedding
SL2 ,! B`�(A3

k) such that the restriction of ⌘ corresponds to (t, u, x, y) 7! (t, x, y).

For completeness we insert a proof of this easy fact, which can in fact also be
deduced from the more general statement [KZ99, Lemma 1.2], describing a�ne
modifications as open subsets of blow-ups.

Proof. The blow-up of � can be seen as

⌘ : B`�(A3

k) = {((t, x, y), [u : v]) 2 A3

k ⇥ P1

k | tu = (xy � 1)v} ! A3

k
((t, x, y), [u : v]) 7! (t, x, y).

The open subset of B`�(A3

k) given by v 6= 0 is then naturally isomorphic to SL2,
by identifying ((t, x, y), [u : 1]) with (t, u, x, y) 2 SL2, and the birational morphism
⌘ : SL2 ! A3

k sends ((t, x, y), [u : 1]) onto (t, x, y). ⇤

5.1. Polynomials associated to fibred embeddings. The following result as-
sociates to every fibred embedding A2

k ,! SL2 a polynomial in k[t, x, y], and gives
some basic properties of this polynomial (which will be studied in more detail after).

Lemma 5.2. Let ⇢ : A2

k ,! SL2 be a fibred embedding, and let Z ⇢ A3

k be the closure
of ⌘(⇢(A2

k)), where

⌘ : SL2 ! A3

k ,

✓
x t
u y

◆
7! (t, x, y) .
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Then, Z is given by P (t, x, y) = 0, where P 2 k[t, x, y] is a polynomial having the
following properties:

(1) The ring k[t, 1

t ][x, y]/(P ) is a polynomial ring in one variable over k[t, 1

t ]
(equivalently the morphism ⇡ : Z ! A1

k given by (t, x, y) 7! t is a trivial
A1-bundle over A1

k \ {0}).
(2) If P is a variable of the k(t)-algebra k(t)[x, y] (which is always true if

char(k) = 0 by (1) and the Abhyankar-Moh-Suzuki Theorem), then the
polynomial P (0, x, y) 2 k[x, y] is given by µxm(x � �) or µym(y � �) for
some µ,� 2 k⇤ and some m � 0, and ⇢(A2

k) ⇢ SL2 is the hypersurface given
by P = 0.

Proof. We consider the morphisms

SL2 = Spec(k[t, u, x, y]/(xy � tu � 1))
⌘! A3

k
⇡! A1

k
(t, u, x, y) 7! (t, x, y) 7! t

and observe that ⌘ yields an isomorphism between the two open subsets (SL2)t ⇢
SL2 and (A3

k)t ⇢ A3

k given by t 6= 0. The morphism ⌘⇢ : A2

k ! A3

k restricts thus
to a closed embedding (A2

k)t ,! (A3

k)t, where (A2

k)t ⇢ A2

k is the open subset where
t 6= 0. This yields (1).

We now assume that P 2 k[t, x, y] is a variable of the k(t)-algebra k(t)[x, y].
Applying Lemma 3.8 we obtain that P0 = P (0, x, y) 2 k[w] for some variable
w 2 k[x, y]. In particular, xy � 1 does not divide P0 (otherwise, by Lemma 3.4
we would have xy � 1 2 k[w] and then x, y 2 k[w], impossible). This implies that
Z \ � is a 0-dimensional scheme (which is a priori not reduced), where � ⇢ A3

k is
the closed curve given by t = xy � 1 = 0. Recall that SL2 is an open subset of
B`�(A3

k) (Lemma 5.1) and that the exceptional divisor E ⇢ SL2 is simply given by
t = xy � 1 = 0 and is a trivial A1-bundle over �. Since the pull-back H ⇢ SL2

of Z on SL2, given by the equation P = 0 has all its irreducible components of
pure codimension one we get H = ⇢(A2

k) ' A2

k. As ⇢ is a fibred embedding, the
morphism H ! A1

k given by the projection on t is a trivial A1-bundle. This implies
that Z \ � consists of a single reduced point, which is defined over k and thus of
the form q = (0,�, 1

� ) 2 � for some � 2 k⇤.
We can thus write P0 2 k[w] as P0 = ab where a, b 2 k[w] are such that b(q) 6= 0,

a is irreducible, and a(q) = 0. This implies that a is a polynomial of degree 1 in w,
so we can assume that a = w (by replacing w with a).

We now show that w = x �� or w = y � 1

� (after replacing w with µw, µ 2 k⇤),
and can for this assume that k is algebraically closed. As w is a variable in k[x, y],
the curve C ⇢ A2

k defined by w = 0 is isomorphic to A1

k, and its closure in P2

k is a
curve C passing through exactly one point q0 of the line at infinity L1 = P2

k \ A2

k.
Moreover, the tangent cone of C in q0 is supported on only one line L. The closure
of � is then the curve � ⇢ P2

k given by xy�z2 = 0, and �\� = {[1 : 0 : 0], [0 : 1 : 0]}.
We apply Bézout’s Theorem and find

2 deg(C) = C · � = (C · �)q + (C · �)q0 = 1 + (C · �)q0 .

In particular, we get q0 2 �, so q0 2 � \ L1 = {[1 : 0 : 0], [0 : 1 : 0]}. If C is a line,
it has to be given by x � �z = 0 or y � 1

�z = 0, as we already know that C passes
through [� : 1

� : 1]. This gives w = x � � or w = y � 1

� , as desired. It remains
to derive a contradiction from deg(C) > 1. We denote by m the multiplicity of
C at q0 and have m < deg(C), since C is irreducible and deg(C) > 1. We apply
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again Bézout’s Theorem to obtain deg(C) = C · L1 = (C · L1)q0 . The inequality
(C ·L1)q0 > m implies that L1 = L, so the tangent cone of C is supported on L1.
In particular, the tangent cones of C and � at q0 have distinct supports, because
the conic � and the line L1 intersect transversally. This yields m = (C ·�)q0 , hence
2 deg(C) = 1 + (C · �)q0 = 1 + m < 1 + deg(C), and contradicts the assumption
deg(C) > 1.

Now that w = x � � is proven (respectively, w = y � 1

�), we obtain P0 = wb
for some b 2 k[x] (respectively, b 2 k[y]) which does not vanish on any point of �.
Hence, P0 is equal to xm(x � �) or ym(y � 1

�) for some m � 0, after replacing P
with µP , µ 2 k⇤. ⇤

We now give an example which shows that the polynomial P given in Lemma 5.2
is not always a variable of the k(t)-algebra k(t)[x, y] (even if P is always such a
variable when char(k) = 0).

Lemma 5.3. Let k be a field of characteristic p > 0 and let q � 2 be an integer
that does not divide p. Then, the polynomial

P = (x � 1) � tp(yp � (x � 1)q)p 2 k[t, x, y]

has the following properties:

(1) P is not a variable of the k(t)-algebra k(t)[x, y].
(2) The hypersurface ZP ⇢ A3

k = Spec(k[t, x, y]) given by P = 0 satisfies that
ZP ! A1

k, (t, x, y) 7! t is a trivial A1-bundle (in particular, ZP is isomor-
phic to A2

k).
(3) The hypersurface HP ⇢ SL2 = Spec(k[t, u, x, y]/(xy � tu � 1)) given by

P = 0 is the image of a fibred embedding A2

k ,! SL2 (in particular, HP is
isomorphic to A2

k).

Proof. (1): Replacing x with x + 1, it su�ces to show that x � tp(yp � xq)p is not
a variable of the k(t)-algebra k(t)[x, y]. This follows from Corollary 3.16.

(2) We consider the morphisms

⌧ : A2

k ! ZP

(s, t) 7! (t, tpsp2

+ 1, tqspq + s)
� : ZP ! A2

k

(t, x, y) 7! (y � tq(yp � (x � 1)q)q, t)

and check that ⌧ � � = idZP
, � � ⌧ = idA2

k
.

(3): The morphism ⌘ : HP ! ZP , (t, u, x, y) 7! (t, x, y) being an isomorphism
on the subsets given by t 6= 0, the morphism ⇡ � ⌘ : HP ! A1

k, (t, u, x, y) 7! t is a
trivial A1-bundle over A1

k \ {0}. The zero fibre is moreover isomorphic to A1

k since
P (0, x, y) = x�1 and the line {x = 1} intersects the conic {xy = 1} transversally in
one point (follows from Lemma 5.1). By Lemma 3.10 it follows that ⇡�⌘ : HP ! A1

k
is a trivial A1-bundle. Hence HP is isomorphic to A2

k and is the image of a fibred
embedding A2

k ,! SL2. ⇤

We now start from a polynomial P 2 k[t, x, y] that is a variable of the k(t)-
algebra k(t)[x, y] and determine when this one comes from a fibred embedding
A2

k ,! SL2, by the process determined in Lemma 5.2. This yields the following
result, which corresponds to Part (1) of Theorem 3.
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Proposition 5.4. Let k be any field, let P 2 k[t, x, y] be a polynomial that is a
variable of the k(t)-algebra k(t)[x, y], and let

HP ⇢ SL2 = Spec(k[t, u, x, y]/(xy � tu � 1))

and ZP ⇢ A3

k = Spec(k[t, x, y]) be the hypersurfaces given by P = 0.
The following conditions are equivalent:

(a) The hypersurface HP ⇢ SL2 is isomorphic to A2

k.
(b) The hypersurface HP ⇢ SL2 is the image of a fibred embedding A2

k ,! SL2.
(c) The fibre of ZP ! A1

k, (t, x, y) 7! t over every closed point of A1

k \ {0}
is isomorphic to A1 and the polynomial P (0, x, y) 2 k[x, y] is of the form
µxm(x � �) or µym(y � �) for some µ,� 2 k⇤ and some m � 0.

Proof. We will use the morphisms

⌘ : SL2 ! A3

k ,

✓
x t
u y

◆
7! (t, x, y), ⇡ : A3

k ! A1

k , (t, x, y) 7! t .

(a) ) (b): Proving that HP is the image of a fibred embedding A2

k ,! SL2

is equivalent to asking that ⇡ � ⌘ : HP ! A1

k be a trivial A1-bundle. Since P is a
variable of the k(t)-algebra k(t)[x, y], it follows that the generic fibre of ⇡ : ZP ! A1

k
is isomorphic to A1

k(t). Moreover, ⌘ : SL2 ! A3

k is an isomorphism over {t 6= 0}, so

the generic fibre of ⇡ �⌘ is also isomorphic to A1

k(t). The fact that HP is isomorphic

to A2

k (which is the hypothesis (a)) implies that ⇡ � ⌘ : HP ! A1

k is a trivial A1-
bundle, by Lemma 3.9 ((3) ) (4)).

(b) ) (c): Follows from Lemma 5.2(1) and (2).
(c) ) (a): Since ⌘ : SL2 ! A3

k is an isomorphism over the open subset {t 6= 0},
it follows that all fibres of ⇡ � ⌘ : HP ! A1

k over closed points of A1

k \ {0} are
isomorphic to A1. Moreover, the fibre of ⇡ � ⌘ over 0 is isomorphic to A1

k, since the
restriction ⌘|{t=0} : {t = 0} ! {t = xy � 1 = 0} ⇢ {0} ⇥ A2

k is a trivial A1-bundle
over the curve {t = xy � 1 = 0} and since {P (0, x, y) = 0} intersects {xy = 1}
in exactly one point, transversally. The generic fibre of ⇡ � ⌘ : HP ! A1

k being
isomorphic to A1

k(t), it follows from Lemma 3.10 that ⇡ � ⌘ : HP ! A1

k is a trivial

A1-bundle and thus HP is isomorphic to the a�ne plane A2

k, which proves (a). ⇤

Example 5.5. For each n � 1, m � 0, µ 2 k⇤, and q 2 k[t, x], the polynomial

P (t, x, y) = tny + µxm(x � 1) + tq(t, x) 2 k[t, x, y]

defines a hypersurface HP ⇢ SL2 which is the image of a fibred embedding. Indeed,
since P has degree 1 in y with coe�cent tn, it is a variable of k[t, t�1][x, y]. We can
thus apply Proposition 5.4 and only need to check that P (0, x, y) = µxm(x � 1) is
of the desired form (as in Assertion (c)).

5.2. Determining when two fibred embeddings are equivalent. In this sec-
tion, we consider embeddings satisfying the conditions of Proposition 5.4 (or equiva-
lently of Theorem 3(1)) and determine when two of these are equivalent, by proving
Theorem 3(2). We first characterise the case where the integer m of Proposition 5.4
(or equivalently of Lemma 5.2 or Theorem 3(1)) is equal to zero.

Lemma 5.6. Let k be any field and let P 2 k[t, x, y] be a polynomial that is a
variable of the k(t)-algebra k(t)[x, y], and let HP ⇢ SL2 = Spec(k[t, u, x, y]/(xy �
tu � 1)) and ZP ⇢ A3

k = Spec(k[t, x, y]) be the hypersurfaces given by P = 0.
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Assume that HP is isomorphic to A2

k, which implies that P (0, x, y) 2 k[x, y] is
of the form µxm(x � �) or µym(y � �) for some µ,� 2 k⇤ and some m � 0. Then,
the following conditions are equivalent:

(a) m = 0;
(b) P is a variable of the k[t]-algebra k[t][x, y];

(c) there is an isomorphism ' : A2

k
'�! ZP such that ⇡' is the projection

(t, x) 7! t;

(d) there is an isomorphism ' : A2

k
'�! ZP ;

(e) there exist ' 2 Aut(SL2) such that '(HP ) = ⇢1(A2

k), where ⇢1 is the stan-
dard embedding;

(f) there exist ' 2 Aut(SL2) such that '(HP ) = ⇢1(A2

k) and '⇤(t) = t.

Proof. As before, we use the morphisms

⌘ : SL2 ! A3

k ,

✓
x t
u y

◆
7! (t, x, y), ⇡ : A3

k ! A1

k , (t, x, y) 7! t .

Proposition 5.4 says that HP ⇢ SL2 is the image of a fibred embedding A2

k ,! SL2,
which corresponds to saying that ⇡⌘ : HP ! A1

k is a trivial A1-bundle. Since
⌘ : SL2 ! A3

k is an isomorphism over the open subset {t 6= 0}, we obtain that
⇡ : ZP ! A1

k is a trivial A1-bundle over A1

k \ {0}.
We first prove (a) , (b) , (c) , (d), using Corollary 3.13. We observe that

(b), (c), and (d) correspond, respectively, to the equivalent assertions (i), (ii), and
(iii) of Corollary 3.13. Moreover, the condition m = 0 (which is (a)) corresponds
to saying that the 0-fibre of ⇡ : ZP ! A1

k is isomorphic to A1

k. Since ⇡ : ZP ! A1

k
is a trivial A1-bundle over A1

k \ {0}, Assertion (a) corresponds to Assertion (vi) of
Corollary 3.13. Thus Corollary 3.13 yields

(a) , (b) , (c) , (d).

It remains to show that these are also equivalent to (e) and (f).
(b) ) (f): Applying an automorphism of the form

✓
x t
u y

◆
7!
✓

µ�1x t
u µy

◆
or

✓
x t
u y

◆
7!
✓

µ�1y t
u µx

◆

for some µ 2 k⇤, we can assume that P (0, x, y) = x � 1. Since P is a variable of
the k[t]-algebra k[t][x, y], there exists f 2 Autk[t](k[t, x, y]) such that f(x�1) = P .
The element  2 Aut(A3

k) satisfying  ⇤ = f is then such that ⇡ = ⇡ and sends ZP

onto the hypersurface of A3

k given by x = 1. The restriction of  to the hypersurface
given by t = 0 is an automorphism of the form (0, x, y) 7! (0, ⌫(x, y), ⇢(x, y)) which
preserves the curve given by x � 1 = 0. Replacing  with its composition with the
inverse of (t, x, y) 7! (t, ⌫(x, y), ⇢(x, y)), we can assume that the restriction of  to
the hypersurface t = 0 is the identity, so  (�) = �, where � is the curve given by
t = xy � 1 = 0. Proposition 4.5 implies then that  lifts to an automorphism ' of
SL2 sending HP onto ⇢1(A2

k). We moreover have '⇤(t) = t, since  ⇤(t) = t.
(f) ) (e) being clear, it remains to show (e) ) (a). For this implication, one

can assume that k is algebraically closed. Assertion (e) yields an automorphism
' 2 Aut(SL2) such that '(HP ) = ⇢1(A2

k). Hence the automorphism '⇤ 2 Autk(R),
where R = Spec(k[t, u, x, y]/(xy�tu�1)), sends the ideal (x�1) ⇢ R onto the ideal
(P ) ⇢ R. It follows from Lemma 4.4 that x � 1 is sent onto µP , for some µ 2 k⇤.
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In particular, for a general a 2 k, the variety HP�a ⇢ SL2 given by P � a = 0 is
isomorphic to A2

k. It remains to show that this implies that m = 0.
Since P is a variable of the k(t)-algebra k(t)[x, y], so is P�a. There exists then an

open dense subset U ⇢ A1

k such that U ⇥A2

k ! U ⇥A1

k, (t, x, y) 7! (t, P (t, x, y)�a)
is a trivial A1-bundle. This implies that qa : HP�a ! A1

k (t, u, x, y) 7! t is a trivial
A1-bundle over U . By Lemma 3.9, qa is a trivial A1-bundle (since HP�a ' A2

k),
so the fibre (qa)�1({0}) needs to be isomorphic to an a�ne line. Since (qa)�1({0})
is given by the equations xy � 1 = P (0, x, y) � a = t = 0 in the a�ne 4-space
A4

k = Spec(k[t, u, x, y]) and since P (0, x, y) � a is equal to µxm(x � �) � a or
µym(y � �) � a and a 2 k is general (k is algebraically closed), this implies that
m = 0 and yields (a) as desired. ⇤
Remark 5.7. Lemma 5.6 shows in particular that if HP , HQ ⇢ SL2 are two hyper-
surfaces given by two polynomials P, Q 2 k[t, x, y] as in Theorem 3 (or as in the
previous results), and if one of the two integers m, m0 2 N associated to P, Q is
equal to zero, then HP , HQ are equivalent if and only if m = m0 = 0.

Proposition 5.8. Let k be any field, let P, Q 2 k[t, x, y] be polynomials that are
variables of the k(t)-algebra k(t)[x, y], and let

HP , HQ ⇢ SL2 = Spec(k[t, u, x, y]/(xy � tu � 1))

and ZP , ZQ ⇢ A3

k = Spec(k[t, x, y]) be the hypersurfaces given by P = 0 and Q = 0,
respectively.

Suppose that HP is isomorphic to A2

k but that ZP is not isomorphic to A2

k, and
that there exists ' 2 Aut(SL2) that sends HP onto HQ. Then, the following hold:

(1) There exists µ 2 k⇤ such that '⇤(t) = µt.
(2) The birational map  = ⌘'⌘�1 is an automorphism of A3

k which sends ZP

onto ZQ, where ⌘ : SL2 ! A3

k is as before given by (t, u, x, y) 7! (t, x, y).
(3) There exists m � 1 such that P (0, x, y) and Q(0, x, y) are of the form

µxm(x � �) or µym(y � �) for some µ,� 2 k⇤ (the integer m is the same
for P, Q but µ,� and the choice between x and y depend on P, Q).

Proof. Since HP is isomorphic to A2

k, the same holds for HQ. The hypersurfaces
HP , HQ ⇢ SL2 are thus images of fibred embeddings A2

k ,! SL2 and there are thus
integers m, m0 � 0 and �,�0, µ0, µ 2 k⇤ such that P (0, x, y) 2 {µxm(x��), µym(y�
�)} and Q(0, x, y) 2 {µ0xm0

(x � �0), µ0ym0
(y � �0)} (Proposition 5.4). Moreover,

the fact that ZP is not isomorphic to A2

k is equivalent to m > 0 and to the fact that
HP is not equivalent to the image ⇢1(A2) of the standard embedding (Lemma 5.6).
As HP and HQ are equivalent, the same holds for HQ, so m0 > 0.

The main part of the proof consists in proving (1). To do this, one can extend
the scalars and assume k to be algebraically closed. We moreover have '⇤(Q) = ⇠P
for some ⇠ 2 k⇤ (follows from Lemma 4.4). Replacing P with ⇠P , we can assume
that '⇤(Q) = P . For each a 2 k⇤, the element ' then sends HP�a onto HQ�a,
where HP�a, HQ�a ⇢ SL2 are given by the polynomials P � a, Q � a 2 k[t, x, y].
Since P, Q are variables of the k(t)-algebra k(t)[x, y] and because the t-projections
ZP ! A1 and ZQ ! A1 are trivial A1-bundles over A1

k \ {0} (Lemma 5.2(1)),
the polynomials P, Q are also variables of the k[t, 1

t ]-algebra k[t, 1

t ][x, y] (follows
from Lemma 3.11 with U = A1 \ {0}). Hence, the same holds for P � a and
Q � a. The morphisms HP�a, HQ�a, ZP�a, ZQ�a ! A1

k given by the projection
on t are therefore trivial A1-bundles over A1

k \ {0}. We show now that the surfaces
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HP�a, HQ�a, ZP�a, ZQ�a are smooth for general a 2 k⇤. The hypersurfaces ZP�a,
ZQ�a are in fact isomorphic to A2

k for general a 2 k⇤, as P, Q are variables of
the k(t)-algebra k(t)[x, y]. Since HP�a is an open subset of the strict transform
of ZP�a under the blow-up B`�(A3

k) ! A3

k of � (follows from Lemma 5.1), it is
enough to show that � \ ZP�a and � \ ZQ�a are reduced for general a 2 k⇤.
The corresponding ideal is given by f(s) = "1sm(s � "2) � a in O(�) = k[s, 1

s ] for
"1, "2 2 k⇤, m � 0. This ideal is reduced for general a 2 k⇤, since the derivative of
f is a non-zero polynomial, not depending on a. We can thus see these varieties as
open subsets of smooth projective surfaces HP�a, HQ�a, ZP�a, ZQ�a obtained by
blowing-up some Hirzebruch surfaces, so that the projection on t is the restriction of
the morphism to P1

k given by a P1-bundle of the Hirzebruch surface and having only
one singular fibre. We can moreover assume that the boundary is a union of smooth
rational curves of self-intersection 0 or  �2 (in particular the projectivisation is
minimal). Indeed, if a component of the singular fibre has self-intersection �1 and
is in the boundary, we can contract it, and if the section has self-intersection �1,
then we blow-up a general point of the smooth fibre contained in the boundary
and then contract the strict transform of this fibre to obtain a section of self-
intersection 0. The 0-fibre of ZP�a ! A1

k is given by t = µxm(x � �) � a = 0

or t = µym(y � �) � a = 0 and is thus a disjoint union C '
`m+1

i=1
A1

k of m + 1
a�ne curves isomorphic to A1

k. Similarly the 0-fibre of ZQ�a ! A1

k is a disjoint

union C 0 '
`m0

+1

i=1
A1

k of m0 + 1 a�ne curves isomorphic to A1

k. The closure of
C is contained in the singular fibre F0 of ZP�a ! P1

k, which is a tree of smooth
rational curves of self-intersection  �1, being an SNC divisor. Hence, the closure
of each component of C is a smooth rational curve of self-intersection  �1, which
intersects the boundary into a component lying in F0. A similar description holds
for C 0.

The curves C, C 0 meet transversally the conic � given by xy = 1 (because
of the form of P (0, x, y) � a and Q(0, x, y) � a). The surfaces HP�a, HQ�a are
then obtained by blowing-up some points in each of the components of C, C 0 and
removing these components, so we can choose the a minimal projectivisations of
HP�a, HQ�a to be blowing-ups of the above points in ZP�a, ZQ�a and get a dual
graph of the boundary of these surfaces which is not a chain (or which is not “linear”
or not a “zigzag”). This implies that the A1-fibration given by the t-projection is
unique up to automorphisms of the target (see [Giz71] or [Ber83, Théorème 1.8]).
As the zero fibre of HP�a, HQ�a ! A1

k is the unique degenerate fibre, there exist
µa 2 k⇤ and qa 2 k[t, u, x, y] such that '⇤(t) = µat + qa · (P � a). Since this holds
for a general a, we get '⇤(t) = µt for some µ 2 k⇤. Indeed, replacing t with 0 in
'⇤(t) yields an element of k[u, x, y]/(xy�1) which is divisible by P �a for infinitely
many a. This element is thus equal to zero.

We now show how Assertion (1) implies the two others. We write ' = '1'2

where ('1)⇤(t) = t and '2 is given by
✓

x t
u y

◆
7!
✓

x µt
µ�1u y

◆
.

The fact that ('1)⇤(t) = t implies that  1 = ⌘'1⌘�1 is an automorphism of A3

k
(Proposition 4.5). Since  2 = ⌘'2⌘�1 is a diagonal automorphism of A3

k, the
element  =  1 2 = ⌘'⌘�1 is an automorphism of A3

k. As ' sends HP onto HQ,
the automorphism  sends ZP onto ZQ, which yields (2). As  ⇤(t) = µt, the
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hyperplane W ⇢ A3

k given by t = 0 is invariant, this implies that m = m0 and thus
yields (3). ⇤

Lemma 5.6 and Proposition 5.8 yield then the following result, which yields in
particular Assertion (2) of Theorem 3.

Corollary 5.9. If P, Q 2 k[t, x, y] are polynomials which are variables of the
k(t)-algebra k(t)[x, y] and if the corresponding hypersurfaces HP , HQ ⇢ SL2 =
Spec(k[t, u, x, y]/(xy � tu � 1)) are equivalent and isomorphic to A2

k, the follow-
ing hold:

(1) HP , HQ are the image of fibred embeddings A2

k ,! SL2.
(2) There exists ' 2 Aut(SL2) such that '(HP ) = HQ and '⇤(t) = µt for

some µ 2 k⇤. In particular, the element  = ⌘'⌘�1 2 Aut(A3

k) satisfies
 ⇤(t) = µt,  (ZP ) = ZQ and  (�) = �, where ⌘ : SL2 ! A3

k is the
morphism (t, u, x, y) 7! (t, x, y), ZP , ZQ ⇢ A3

k are the two hypersurfaces
given by P = 0, Q = 0, and � ⇢ A3

k is the conic given by t = xy � 1 = 0.

Proof. Assertion (1) follows from Proposition 5.4. It remains then to show (2). We
denote by '0 2 Aut(SL2) an element such that '0(HP ) = HQ.

(i) If '⇤
0
(t) = µt for some µ 2 k⇤, we choose ' = '0 and denote by ✓ 2 Aut(SL2)

the element ✓
x t
u y

◆
7!
✓

x µ�1t
µu y

◆

to obtain ('0✓)⇤(t) = t. Proposition 4.5 shows that  ̂ = ⌘('0✓)⌘�1 2 Aut(A3

k)

and  ̂(�) = �. Since ✓̃ = ⌘✓⌘�1 is the automorphism of A3

k given by (t, x, y) 7!
(µ�1t, x, y), we have  = ⌘'0⌘�1 2 Aut(A3

k) and  (�) = �. The fact that '⇤
0
(t) =

µt and '0(HP ) = HQ yields then  ⇤(t) = µt and  (ZP ) = ZQ.
(ii) If '⇤

0
(t) 62 {µt | µ 2 k⇤}, then Proposition 5.8(1) does not hold, so ZP is

isomorphic to A2

k. Applying the same argument to '�1

0
shows that ZQ is isomorphic

to A2

k. Lemma 5.6((d) ) (f)) then shows that there exist '1,'2 2 Aut(SL2) such
that '1(HP ) = '2(HQ) = ⇢1(A2

k) and ('1)⇤(t) = ('2)⇤(t) = t. We then choose
' = ('2)�1'1 and apply case (i). ⇤

5.3. Examples of non-equivalent embeddings.

Lemma 5.10. To each polynomial r 2 k[t], we associate the polynomial

Pr = ty � (x � t)(x � 1 � t2r(t)) 2 k[t, x, y]

and denote by HPr
⇢ SL2 = Spec(k[t, u, x, y]/(xy � tu � 1)) and ZPr

⇢ A3

k =
Spec(k[t, x, y]) the hypersurfaces given by Pr = 0. Then,

(1) For each r 2 k[t], the surface HPr
is the image of a fibred embedding A2

k ,!
SL2.

(2) For each r, s 2 k[t], the following are equivalent:
(i) There exists ' 2 Aut(SL2) such that '(HPr

) = HPs
.

(ii) There exists ' 2 Aut(A3

k) such that '(ZPr
) = ZPs

.
(iii) The surfaces ZPr

and ZPs
are isomorphic.

(iv) r = s.

Proof. For each r 2 k[t], we write Sr(t, x) = (x � t)(x � 1 � t2r(t)) 2 k[t, x] and
observe that Pr(t, x, y) = ty � Sr(t, x).
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(1): Since Pr is of degree 1 in y, it is a variable of the k(t)-algebra k(t)[x, y].
Moreover, Pr(0, x, y) = Sr(0, x) = x(x�1) is of the form µxm(x��) (with µ,� 2 k⇤

and m � 0). The coe�cient of y in Pr being t, the morphism ZPr
! A1

k, (t, x, y) 7! t
is a trivial A1-bundle over A1

k \ {0}. Proposition 5.4 ((c) ) (b)) then implies that
HPr

⇢ SL2 is the image of a fibred embedding A2

k ,! SL2.
It remains to show that the assertions (i)� (ii)� (iii)� (iv) of (2) are equivalent.
The implications (iv) ) (i) and (ii) ) (iii) are trivial.
Lemma 5.6 implies that ZPr

and ZPs
are not isomorphic to A2

k (the integer
m being here equal to 1). We can thus apply Proposition 5.8(2), which yields
(i) ) (ii).

It remains then to show (iii) ) (iv). According to [DP09, Proposition 3.6], the
surface ZPr

and ZPs
are isomorphic if and only if there exist a, µ 2 k⇤, ⌧ 2 k[t],

such that
Sr(at, x) = µ2Ss(t, µ

�1x + ⌧ (t)) inside k[t, x].

This corresponds to

(x � at)(x � 1 � a2t2r(at)) = (x + µ(⌧ (t) � t))(x + µ(⌧ (t) � 1 � t2s(t)))

and thus gives two possibilities:
(I): at = µ(t � ⌧ (t)) and 1 + a2t2r(at) = µ(1 + t2s(t) � ⌧ (t)). The first equation

yields ⌧ (t) = (1 � a
µ )t and the second yields µ⌧ (t) ⌘ µ � 1 (mod t2), which gives

⌧ = 0 and then µ = 1 and a = 1. The second equation thus yields r(t) = s(t).
(II): at = µ(1 + t2s(t) � ⌧ (t)) and µ(t � ⌧ (t)) = 1 + a2t2r(at). This yields

1 + a2t2r(at) � µt = �µ⌧ (t) = at � µ(1 + t2s(t))

and thus 1 � µt ⌘ �µ + at (mod t2), whence µ = �1 and a = 1. Replacing in the
equation above, we find r(t) = s(t). ⇤

The proof of Theorem 3 is now clear.

Proof of Theorem 3. Assertion (1) corresponds to Proposition 5.4.
Assertion (2) follows from Corollary 5.9.
Assertion (3) follows from Lemma 5.10, which yields hypersurfaces HPr

⇢ SL2

that are parametrised by r 2 k[t], which are all images of fibred embeddings and
are pairwise non-equivalent. ⇤

We finish this subsection with two explicit examples.

Lemma 5.11. Let us denote by P, Q 2 k[t, x, y] the polynomials

P = t2y � x(x + 1) and Q = t2y � x(x + 1 � t2) .

Then, the following hold:

(1) The hypersurfaces ZP , ZQ ⇢ A3

k given by P = 0 and Q = 0 are equivalent.
(2) The hypersurfaces HP , HQ ⇢ SL2 given by P = 0 and Q = 0 are both

images of fibred embeddings but are not equivalent.

Proof. To get (1), it su�ces to observe that the linear automorphism ✓ 2 Aut(A3

k)
given by (t, x, y) 7! (t, x, y � x) satisfies ✓⇤(Q) = P , so ✓(ZP ) = ZQ.

Since P, Q are of degree 1 in y, both are variables of the k(t)-algebra k(t)[x, y].
Moreover, P (0, x, y) = Q(0, x, y) = �x(x + 1) is of the form µxm(x � �) (with
µ,� 2 k⇤ and m = 1 � 0). Since the coe�cient of y in P and Q is t2, the morphisms
ZP , ZQ ! A1

k, (t, x, y) 7! t are trivial A1-bundles over A1

k \ {0}. Proposition 5.4

Licensed to University Basel. Prepared on Thu Aug 12 15:57:25 EDT 2021 for download from IP 131.152.36.5.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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((c) ) (b)) then implies that HP , HQ ⇢ SL2 are images of fibred embeddings
A2

k ,! SL2.
To get (2), we suppose that there is ' 2 Aut(SL2) such that '(HP ) = HQ and

derive a contradiction. Corollary 5.9 yields an automorphism  2 Aut(A3

k) such
that  ⇤(t) = µt for some µ 2 k⇤ and such that  (ZP ) = ZQ and  (�) = �, where
� ⇢ A3

k is the conic given by t = xy �1 = 0. The restriction of  to the hyperplane
H ⇢ A3

k given by t = 0 then preserves � and also the curve C = H \ZP = H \ZQ,
given by t = x(x + 1) = 0 (which is isomorphic to two copies of A1). The fact
that C is preserved implies that  |H is of the form (x, y) 7! (x, ay + p(x)) or
(x, y) 7! (�1 � x, ay + p(x)) for some a 2 k⇤ and p 2 k[x]. The fact that � is
preserved implies that  |H = id.

The element ⇠ = ✓�1 2 Aut(A3

k) then satisfies ⇠(ZP ) = ZP , ⇠⇤(t) = µt and ⇠|H
is the automorphism (x, y) 7! (x, x + y). To show that this is impossible, we use
[DP09, Theorem 3.11] to see that every automorphism of ZP preserves C and its
action on C corresponds to an element of the subgroup G = G0[G1 ' G0 o(Z/2Z)
of Aut(C) given by

G0 = {(x, y) 7! (x,↵y + (2x + 1)�) | ↵ 2 k⇤,� 2 k}
G1 = {(x, y) 7! (�1 � x,↵y + (2x + 1)�) | ↵ 2 k⇤,� 2 k}. ⇤

We then study an explicit example of a fibred embedding A2

k ,! SL2 whose
image is not equivalent to the standard embedding.

Example 5.12. According to the above study, the “simplest” example of a hyper-
surface E ⇢ SL2 being the image of a fibred embedding but not being equivalent
to the image of the standard embedding is given by

E = {(t, u, x, y) 2 A4

k | xy � tu = 1, ty = x(x � 1)}.

Indeed, using the polynomial P = ty�x(x�1), which yields P (0, x, y) = �x(x�1),
the surface E is the image of a fibred embedding ⇢ : A2

k ,! SL2 (Example 5.5) but
is not equivalent to ⇢1(A2

k) (Lemma 5.6).
One can construct an explicit embedding ⇢ : A2

k ,! SL2 having image E in the
following way. First, denoting by Et ⇢ E and (A2

k)t ⇢ A2

k = Spec(k[x, t]) the open
subsets given by t 6= 0, we get isomorphisms

(A2

k)t
'�! Et and Et

'�! (A2

k)t

(x, t) 7!
 

x t
x2

(x�1)�t
t2

x(x�1)

t

! ✓
x t
u y

◆
7! (x, t).

To obtain a fibred embedding ⇢ : A2

k ,! SL2 having image equal to E, we need to

remove the denominators of the isomorphism (A2

k)t
'�! Et. We then compose with

the automorphism of (A2

k)t given by (x, t) 7! (t2x + t + 1, t) and get isomorphisms

A2

k
⇢�! E

(x, t) 7!
 

1 + t + t2x t
(1+t+t2x)

2
(t+t2x)�t

t2
(1+t+t2x)(t+t2x)

t

!

and

E
⇢�1

�! A2

k✓
x t
u y

◆
7!

�
x�t�1

t2 , t
�

.
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We can observe that all components of ⇢ are indeed polynomials, and that x�t�1

t2 2
k[E]. To show the latter, we compute y = x(x�1)

t 2 k[E], u = xy�1

t = x2
(x�1)�t

t2 2
k[E], y2 � ux + u = x�1

t 2 k[E], which yields x�t�1

t2 = u � (x + 1)
�

x�1

t

�2 2 k[E].
Writing

⇢̃(x, t) = A⇢(x, t)A with A =

✓
1 0

�1 1

◆
2 SL2 ,

we get an equivalent closed embedding ⇢̃ : A2

k ! SL2, which is an isomorphism

⇢̃ : A2

k
'�! Ẽ

(x, t) 7!
✓

1 + t2x t
x + 3tx + 2t2x2 + 2t3x2 + t4x3 1 + tx + 2t2x + t3x2

◆
,

where Ẽ = {(t, u, x, y) 2 A4

k | xy � tu = 1, t(y + t) = (x + t)(x + t � 1)}. The
morphism ⇢̃ corresponds to the closed embedding A2

k ,! A4

k

A2

k ,! A4

k
(x, t) 7! (t, 1 + t2x, 1 + tx + 2t2x + t3x2, x + 3tx + 2t2x2 + 2t3x2 + t4x3)

that we can simplify using elementary automorphisms of A4

k to the embedding

A2

k ,! A4

k
(x, t) 7! (t, t2x, tx + t3x2, x + 2t2x2 � t3x2 + t4x3)

= (t, t2x, tx(1 + t2x), x + t2x2(2 � t + t2x)).

Question 5.13. Is the closed embedding

A2

k ,! A4

k
(x, t) 7! (t, t2x, tx(1 + t2x), x + t2x2(2 � t + t2x))

equivalent to the standard one?

5.4. Embeddings of A2

k into SL2 of small degree. Let ◆ : SL2 ,! A4

k be the
standard embedding and let f : A2

k ,! SL2 be a closed embedding. This last sub-
section consists in showing the second part of Remark 1.1, which claims that if all
coordinate functions ◆ � f : A2

k ,! SL2 ⇢ A4

k are polynomials of degree  2, then
f is equivalent to ⇢� for a certain � 2 k⇤. This will be done in Proposition 5.19
below, after a few lemmas.

We first make the following easy observation.

Lemma 5.14. For each fibred embedding

⇢ : A2

k ,! SL2

(s, t) 7!
✓

a(s, t) t
c(s, t) b(s, t)

◆

(with a, b, c 2 k[s, t]) there is an automorphism g 2 Aut(SL2) such that g⇢ is a
fibred embedding given by

g⇢ : A2

k ,! SL2

(s, t) 7!
✓

1 + stp(s, t) t
s(p(s, t) + q(s, t) + stp(s, t)q(s, t)) 1 + stq(s, t)

◆

for some p, q 2 k[s, t] such that p(s, 0)+q(s, 0) 2 k⇤ and such that deg(1+stp(s, t)) 
deg(a), deg(1+stq(s, t))  deg(b) (where the degree is here the degree of polynomials
in s, t).
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Remark 5.15. The standard embedding ⇢1 is of the above form with p = 0 and
q = 1. More generally, the embeddings {⇢�}�2k⇤ of Theorem 2 are given by p = 0
and q = �.

Proof. Replacing t with 0 yields two elements a(s, 0), b(s, 0) 2 k[s] such that a(s, 0)·
b(s, 0) = 1. This implies that a(s, 0), b(s, 0) 2 k⇤. Applying the automorphism

✓
x t
u y

◆
7!
✓

µx t
u µ�1y

◆

for some µ 2 k⇤, we can assume that a(s, 0) = b(s, 0) = 1. We then apply
✓

x t
u y

◆
7!
✓

x t
u y

◆
·
✓

1 0
d(t) 1

◆

for some d 2 k[t] and replace a(s, t) with a(s, t)+td(t), so can assume that a(0, t) =
1. Applying similarly an automorphism of the form

✓
x t
u y

◆
7!
✓

1 0
e(t) 1

◆
·
✓

x t
u y

◆
,

we can assume that b(0, t) = 1. This yields p, q 2 k[s, t] such that a = 1 + stp and
b = 1 + stq, which yields c = s(p + q + stpq). Replacing t with 0 yields a closed
embedding

A1

k ,! SL2

s 7!
✓

1 0
s(p(s, 0) + q(s, 0)) 1

◆
,

whence p(s, 0) + q(s, 0) 2 k⇤. ⇤

Corollary 5.16. Each fibred embedding

⇢ : A2

k ,! SL2

(s, t) 7!
✓

a(s, t) t
c(s, t) b(s, t)

◆

where a, b, c 2 k[s, t] are such that deg a + deg b  4 is equivalent to the embedding

⇢� : A2

k ,! SL2

(s, t) 7!
✓

1 t
�s 1 + �st

◆

for some � 2 k⇤.

Proof. Applying Lemma 5.14, one can assume that a = 1 + stp, b = 1 + stq,
c = s(p + q + stpq) for some p, q 2 k[s, t] with p(s, 0) + q(s, 0) 2 k⇤. If p = 0, then
⇢(A2) is equal to ⇢1(A2), so the result follows from Theorem 2(1). The same holds
if q = 0 by applying the automorphism

✓
x t
u y

◆
7!
✓

y t
u x

◆
.

To finish the proof, we assume that pq 6= 0 and derive a contradiction. The fact
that deg a + deg b  4 implies that p, q 2 k⇤. Hence we have k[s, t] = k[a, b, c, t] =
k[t, st, s(p+q+stpq)] = k[t, st, s(st+⇠)] with ⇠ = p+q

pq 6= 0, and thus the morphism

A2

k 7! A3

k
(s, t) 7! (t, st, s(st + ⇠))
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would be a closed embedding. This is false, since the image is properly contained
in the irreducible hypersurface given by {(x, y, z) 2 A3

k | xz = y(y + ⇠)} (the line
given by x = y + ⇠ = 0 is missing). ⇤

It remains to generalise Corollary 5.16 to the case of embeddings A2

k ,! SL2 of
small degree (which are fibred or not).

In the sequel we will use the following subgroups of Aut(A2

k).

Definition 5.17.

A↵2(k) =

⇢
(s, t) 7! (as + bt + e, cs + dt + f)

����

✓
a b
c d

◆
2 GL2(k), e, f 2 k

�
,

GL2(k) = {(s, t) 7! (as + bt, cs + dt) |a, b, c, d 2 k, ad � bc 6= 0} .

Lemma 5.18. Let k be an algebraically closed field and let ⇢ : A2

k ! A2

k \ {0} be a
morphism of the form

(s, t) 7! (f(s, t), g(s, t))

such that f, g have degree 2 and that the homogeneous parts f2 and g2 of f, g of
degree 2 are linearly independent. Then, there exist ↵ 2 A↵2 and � 2 GL2 such
that

�⇢↵ = (s, t) 7! (s2, st + 1).

Proof. We first observe that replacing ⇢ with �⇢↵, where ↵ 2 A↵2 and � 2 GL2,
does not change the degree of f, g or the fact that f2 and g2 are linearly independent.
We then observe that we can assume that f2 = s2. If f2 is a square, it su�ces to
replace f with ⇢↵ for some ↵ 2 GL2. If f2 is not a square, we choose ⇠ 2 k such
that g2 + ⇠f2 is a square (this is possible since the discriminant of g2 + ⇠f2 is a
polynomial of degree 2 in ⇠ and k is algebraically closed). We then apply an element
of GL2 at the target to replace f2, g2 with g2 + ⇠f2, f2,and then apply as before an
element of GL2 at the source, to obtain f2 = s2.

For each irreducible factor P of f , we denote by CP ⇢ A2

k = Spec(k[s, t]) the
irreducible curve given by P = 0, and observe that g yields an invertible function
on CP .

(a) If f is a product of factors of degree 1, all belong to k[s], since f2 = s2. We
can then write f =

Q
2

i=1
(s � �i), for some �i 2 k. If �1 = �2, we replace s with

s��1 and get f = s2, which yields g = s(as+bt+c)+d for some a, b, c 2 k, d 2 k⇤.
The parts of degree 2 of f and g being linearly independent, we get b 6= 0. Replacing
t with t�as�c

b , we replace g with st+d. We then apply diagonal elements of the form
(s, t) 7! (s, µt), µ 2 k⇤ at the source and target and replace d with 1, which yields
the desired form. To finish case (a), it remains to see that �1 6= �2 is impossible.
To derive this contradiction, we apply an element of A↵2 at the source and get
f = s(s� 1) This yields g = sp(s, t)+µ, where µ 2 k⇤ and p 2 k[s, t] is of degree 1.
We moreover obtain p(1, t) 2 k \ {�µ}, so p(s, t) = (s � 1)⇠ + ⌫ for some ⇠, ⌫ 2 k.
This yields g 2 k[s], which is impossible since g2 is not a multiple of f2 = s2.

(b) We can now assume that f is not a product of factors of degree 1, i.e., f is
irreducible, and derive a contradiction. We observe that the curve Cf ⇢ A2 given
by f = 0 is isomorphic to A1. Indeed, the closure of Cf in P2

k is an irreducible
and thus a smooth conic with one point at infinity since f2 = s2 (recall that k
is assumed to be algebraically closed). This implies that the restriction g|Cf

is a
non-zero constant and so g = µ + ⇠f for some µ 2 k⇤, ⇠ 2 k. This contradicts the
fact that f2 and g2 are linearly independent. ⇤
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Proposition 5.19. Each closed embedding

⇢ : A2

k ,! SL2

(s, t) 7!
✓

f11(s, t) f12(s, t)
f21(s, t) f22(s, t)

◆

where f11, f12, f21, f22 2 k[s, t] have at most degree 2 is equivalent to the embedding

⇢� : A2

k ,! SL2

(s, t) 7!
✓

1 t
�s 1 + �st

◆

for some � 2 k⇤.

Proof. Applying Theorem 2, one only needs to show the existence of an automor-
phism of SL2 that sends ⇢(A2

k) onto ⇢1(A2

k). We distinguish the following cases:
(a) Suppose first that one of the polynomials fij is constant. One can assume

that it is f11 by using permutation of coordinates (with signs). The case f11 = 0 is
impossible, since the image would then be contained in

⇢✓
x t
u y

◆
2 SL2

����x = 0

�
' (A1

k \ {0}) ⇥ A1

k.

We then have f11 6= 0 and apply a diagonal automorphism of SL2 to get f11 = 1,
which corresponds to ⇢(A2

k) = ⇢1(A2

k).
(b) Suppose then that one of the fij has degree 1. Applying permutations one

can assume that f12 has degree 1. Applying an element of A↵2 at the source
(see Definition 5.17), we do not change the degree of the fij

0s and can assume that
f12 = t. Since deg(f11f22) = deg(f12f21)  4, the result follows from Corollary 5.16.

(c) It remains to study the case where deg(fij) = 2 for each i, j 2 {1, 2}. If the
homogeneous parts of f11 and f12 of degree 2 are collinear, we apply

✓
x t
u y

◆
7!
✓

x t
u y

◆✓
1 µ
0 1

◆
=

✓
x t + µx
u y + µu

◆

for some µ 2 k and obtain deg(f12)  1, which reduces to the cases (a), (b).
To achieve the proof of (c), we now assume that the homogeneous parts of f11

and f12 of degree 2 are linearly independant and prove that this implies that
k[f11, f12, f21, f22] ( k[s, t] (which contradicts the fact that ⇢ is a closed em-
bedding). To show this, one can extend the scalars and assume that k is alge-
braically closed. We then apply Lemma 5.18 to the morphism ⌫ : A2

k ! A2

k \ {0}
given by (s, t) 7! (f11(s, t), f12(s, t)), and find ↵ 2 A↵2(k), � 2 GL2(k) such that
�⌫↵ = (s, t) 7! (s2, st + 1). We write µ = det(�) 2 k⇤ and replace ⇢ with �̂⇢↵,
where �̂ 2 Aut(SL2) is of the form

�̂ :

✓
x t
u y

◆
7!
✓

1 0
0 µ�1

◆
· � ·

✓
x t
u y

◆
.

This change being made, we obtain f11 = s2, f12 = st + 1. Since 1 = f11f22 �
f12f21 = s2f22 � (st + 1)f21, we obtain f21 = st � 1 + g(s, t)s2 for some g 2 k[s, t].
This implies that f11, f12 �1, f21 +1 all belong to the maximal ideal (s, t)2 ⇢ k[s, t],
which yields the desired contradiction

k[f11, f12, f21, f22] = k[f11, f12 � 1, f21 + 1, f22] ( k[s, t].

⇤
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6. A non-trivial embedding of A1
into SL2, over the reals

In this section, we provide over the field k = R an explicit example of an algebraic
embedding A1

R ,! SL2 which is not equivalent to the standard embedding

⌧1 : A1

R ,! SL2

t 7!
✓

1 0
t 1

◆
.

Example 6.1. In [Sha92] the closed embedding

� : A1 ,! A3

t 7! (t3 � 3t, t4 � 4t2 � 1, t5 � 10t)

is given. This one is not equivalent to the standard embedding A1 ,! A3, t 7!
(t, 0, 0), over the field R of real numbers. The reason is that it corresponds, as an
embedding R ,! R3, to the (open) trefoil knot.

The fact that � is a closed embedding, over any field k, can be shown as follows.
Writing �1 = t3 � 3t, �2 = t4 � 4t2 � 1, �3 = t5 � 10t 2 k[t], we get

t = 3�3 � 12�1 � 5�1�2 + �2�3 � �3

1
.

The fact that � : R ! R3 corresponds to the open trefoil knot can be seen by
looking at the three projections:

�3 �2 �1 1 2 3

�5

�4

�3

�2

�1

1

t 7! (t3 � 3t, t4 � 4t2 � 1)

�3 �2 �1 1 2 3

�15

�10

�5

5

10

15

t 7! (t3 � 3t, t5 � 10t)

�5 �4 �3 �2 �1 1

�15

�10

�5

5

10

15

t 7! (t4 � 4t2 � 1, t5 � 10t)

We now use Example 6.1 to provide a similar example in SL2.

Lemma 6.2.
(1) For each field k of characteristic 6= 2, the morphism

⌧ : A1 ,! SL2

t 7!
 

t3 � 3t t4 � 4t2 � 1

1 + t2(17t6�56t4�137t2+452)

16

t(17t8�73t6�149t4+609t2+172)

16

!

is a closed embedding.
(2) If k = R, then ⌧ is not equivalent to the standard embedding, because the

fundamental group ⇡1(SL2(R) \ ⌧ (R)) is not isomorphic to the free group
⇡1(SL2(R) \ ⌧1(R)).

Proof. (1): The fact that ⌧ is a closed embedding can be done explicitly by giving
a formula for t, but can also be shown by using the A1-bundle

p : SL2 ! A2 \ {(0, 0)}✓
x t
u y

◆
7! (x, t).
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Writing �1 = t3 � 3t, �2 = t4 � 4t2 � 1, �3 = t5 � 10t 2 k[t] as in Example 6.1,
we get �2

1
(�2

1
� 4) � �2(�2

2
+ 9�2 + 24) = 16 and thus get a birational morphism

A1 ! � = {(x, t) 2 A2 | x2(x2 � 4) � t(t2 + 9t + 24) = 16}
t 7! (�1(t), �2(t))

from A1 to the singular a�ne quartic curve � ⇢ A2. We then get a morphism

f : � ! SL2

(x, t) !
 

x t
t2+9t+24

16

x(x2�4)

16

!

which satisfies p � f = id� and is thus a section of p over �. This implies that

� ⇥ A1 ,! SL2

((x, t), a) 7!
✓

1 0
a 1

◆
f(x, t)

is a closed embedding. Since �= (�1, �2, �3) : A1 ! � ⇥ A1 ⇢ A3 is a closed embed-
ding, the morphism

⌧ : A1 ,! SL2

t 7!
✓

1 0
t5 � 10t 1

◆
f(�1(t), �2(t))

is a closed embedding. Replacing �1 and �2 in the above formula yields the explicit
form of the morphism given in the statement of the lemma.

(2): In the remaining part of the proof, we work over k = R and use the Euclidean
topology. The R-bundle p : SL2(R) ! R2\{(0, 0)} is trivial, as it admits a (rational)
continuous section given by

⇠ : R2 \ {(0, 0)} ! SL2(R)

(x, t) 7!
✓

x t
� t

x2+t2
x

x2+t2

◆
.

This yields a birational di↵eomorphism

' : R2 \ {(0, 0)} ⇥ R ! SL2(R)

((x, t), a) 7!
✓

1 0
a 1

◆
⇠(x, t) .

In particular, SL2(R) \ ⌧1(R) is di↵eomorphic to R2 \ {(0, 0), (0, 1)} ⇥ R, which
implies that the fundamental group ⇡1(SL2(R) \ ⌧1(R)) is a free group (over two
generators). It remains to show that ⇡1(SL2(R)\⌧ (R)) is not a free group. This will
imply that no di↵eomorphism of SL2(R) sends ⌧ (R) onto ⌧1(R), and in particular
no algebraic automorphism defined over R.

We extend f : �(R) ! SL2(R) to a global continuous section f̂ : R2 \ {(0, 0)} !
SL2(R) of p (which exists, since p is a trivial R-bundle). This yields a rational
di↵eomorphism

g : R2 \ {(0, 0)} ⇥ R '�! SL2(R)

((x, t), a) 7!
✓

1 0
a 1

◆
f̂(x, t)

which maps �(R) onto ⌧ (R).
We take an open subset U ⇢ R2 \ {(0, 0)} (for the Euclidean topology) that

contains the singular curve �(R) and a homeomorphism h : U
'�! R2 which fixes
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�(R) pointwise, and which is homotopic to the inclusion U ,! R2, via a homotopy
that fixes �(R) pointwise. We can for instance take U = {(x, t) 2 R2 | t  x2 � 1

2
}

and construct a homeomorphism and a homotopy which preserve the fibres of the
projection (x, t) 7! x as follows:

U

�3 �2 �1 1 2 3

�5

�4

�3

�2

�1

1

2

3

The homeomorphisms

(?) p�1(U) \ ⌧ (R)
g�1

�! (U ⇥ R) \ �(R)
h⇥id�! R3 \ �(R)

yield isomorphisms of the fundamental groups

⇡1(p
�1(U) \ ⌧ (R))

'�! ⇡1((U ⇥ R) \ �(R))
'�! ⇡1(R3 \ �(R)) .

Since � : R ,! R3 is the (open) trefoil knot, it follows that ⇡1(R3 \ �(R)) is the
braid group with three strands and thus ⇡1(p�1(U) \ ⌧ (R)) is not a free group. It
remains then to see that the group homomorphism

◆ : ⇡1(p
�1(U) \ ⌧ (R)) ! ⇡1(SL2(R) \ ⌧ (R))

induced by the inclusion p�1(U)\ ⌧ (R) ,! SL2(R)\ ⌧ (R) is injective (as a subgroup
of a free group is free). Every element ↵ 2 Ker(◆) lies in the kernel of the map
◆0 : ⇡1(p�1(U) \ ⌧ (R)) ! ⇡1(R3 \ �(R)) induced by the composition

p�1(U) \ ⌧ (R) ,! SL2(R) \ ⌧ (R)
g�1

�! ((R2 \ {(0, 0)}) ⇥ R) \ �(R) ,! R3 \ �(R),

which corresponds simply to the composition

(??) p�1(U) \ ⌧ (R)
g�1

�! (U ⇥ R) \ �(R) ,! R3 \ �(R).

Since h : U ! R2 is homotopic to the inclusion U ,! R2 via a homotopy that
fixes �(R) pointwise, the two compositions p�1(U) \ ⌧ (R) ! R3 \ �(R) of (?) and
(??) are homotopic, so ◆0 is an isomorphism. This implies that ◆ is injective and
achieves the proof. ⇤

Question 6.3. Working over the field of complex numbers C, is the algebraic
embedding ⌧ : A1 ! SL2 of Lemma 6.2(1) equivalent to the standard embedding
⌧1 : A1 ,! SL2?
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Let k be an algebraically closed field. We classify all maxi-
mal k-subalgebras of k[t, t≠1, y]. To the authors’ knowledge, 
this is the first such classification result for a commutative 
algebra of dimension > 1. Moreover, we classify all maximal 
k-subalgebras of k[t, y] that contain a coordinate of k[t, y]. Fur-
thermore, we give plenty examples of maximal k-subalgebras 
of k[t, y] that do not contain a coordinate.
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1. Introduction

All rings in this article are commutative an have a unity. A minimal ring extension
is a non-trivial ring extension that does not allow a proper intermediate ring. A good 
overview of minimal ring extensions can be found in [10]. A first general treatment of 
minimal ring extensions was done by Ferrand and Olivier in [4]. They came up with the 
following important property of minimal ring extensions.
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Theorem 1.0.1 (see [4, Théorème 2.2]). Let A ( R be a minimal ring extension and let 
Ï : Spec(R) æ Spec(A) be the induced morphism on spectra. Then there exists a unique 
maximal ideal m of A such that Ï induces an isomorphism

Spec(R) \ Ï≠1(m) ƒ
≠æ Spec(A) \ {m} .

Moreover, the following statements are equivalent:

i) The morphism Ï : Spec(R) æ Spec(A) is surjective;
ii) The ring R is a finite A-module;
iii) We have m = mR.

Let A ( R be a minimal ring extension. Then A is called a maximal subring of R. In 
the case where Spec(R) æ Spec(A) is non-surjective, we call A an extending1 maximal 
subring of R and otherwise, we call it a non-extending2 maximal subring. Moreover, the 
unique maximal ideal m of A (from the theorem above) is called the crucial maximal 
ideal.

In the non-extending case, Dobbs, Mullins, Picavet and Picavet-L’Hermitte gave in 
[3] a classification of all finite minimal ring extensions A ( R based on the classification 
of all minimal ring extensions A ( R where A is a field, due to Ferrand and Olivier [4]. 
Therefore, to some extent, the non-extending case is solved.

Our guiding problem is the following.

Problem. Classify all maximal subalgebras of a given a�ne k-domain where k is an 
algebraically closed field.

Let k be an algebraically closed field and let R be an a�ne k-domain. If R is one-
dimensional and if Spec(R) contains more than one “smooth point at infinity”, then the 
extending maximal subalgebras of R correspond bijectively to the “smooth points at 
infinity” of Spec(R). In fact, to every such point p at infinity, the subalgebra of functions 
in R that are defined in p is an extending maximal subalgebra of R and every extend-
ing maximal subalgebra of R is of this form. This is proven in Section 3 by using the 
Krull–Akizuki-Theorem.

In dimension two, the most natural algebra to study is the polynomial algebra in 
two variables k[t, y]. Using the classification of extending maximal subalgebras of a one-
dimensional a�ne k-domain, we give in Section 4 plenty examples of extending maximal 
subalgebras of k[t, y] that do not contain a coordinate of k[t, y], i.e. they do not contain 
a polynomial in k[t, y] which is the component of an automorphism of A2

k. These exam-
ples indicate that it is di�cult to classify all extending maximal subalgebras of k[t, y]. 

1
Since [4] proves that in this case f is a flat epimorphism, the literature calls this sometimes the “flat 

epimorphism case”.
2

The literature calls this sometimes the “finite case”.
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Therefore, we impose more structure in the problem. Namely, we search for all extending 
maximal subalgebras of k[t, y] that contain a coordinate of k[t, y].

Another natural 2-dimensional a�ne k-domain beside the polynomial algebra k[t, y]
is the localization of it in t, i.e. the 2-dimensional domain k[t, t≠1, y]. This algebra is 
directly related to our former problem, as it is isomorphic to the localization of k[t, y]
in any coordinate of k[t, y]. In fact, in this article we classify all extending maximal 
subalgebras of k[t, t≠1, y] and get in the course of this classification all extending maximal 
subalgebras of k[t, y] that contain a coordinate. This is the bulk of this article. To the 
authors’ knowledge, this is the first such classification result for an algebra of dimension 
> 1.

Let us give an instructive example, before we give more details on our results.

Example 1.0.1 (see Lemma 2.0.7). Let k be an algebraically closed field and let R =
k[t, t≠1, y]. The ring

A = k[t] + y k[t, t≠1, y] = k[t, y, y/t, y/t2, y/t3, . . .]

is an extending maximal subalgebra of k[t, t≠1, y]. The crucial maximal ideal of A is 
given by

m = (t, y, y/t, y/t2, . . .) .

Thus A ™ k[t, t≠1, y] induces an open immersion Aúk◊A1

k æ Spec(A) and the complement 
of the image is just {m}. Moreover, the morphism Spec(A) æ A2

k induced by k[t, y] ™ A, 
sends the crucial maximal ideal m to the origin (0, 0). So in some sense we “added” to 
Aúk ◊ A1

k the point (0, 0) œ {0} ◊ A1

k.
Another description of the a�ne scheme Spec(A) is the following: It is the inverse limit 

of . . .≠æA2

k
Ï
≠æ A2

k
Ï
≠æ A2

k inside the category of a�ne schemes, where Ï(t, x) = (t, tx).
A little more general, for any – œ k[t], the ring k[t] + (y ≠ –) k[t, t≠1, y] is also an 

extending maximal subalgebra of k[t, t≠1, y].

Towards the classification of all extending maximal subalgebras of k[t, t≠1, y], we de-
scribe in Section 5 all extending maximal k-subalgebras of k[t, t≠1, y] that contain k[t, y]. 
To formulate our results we introduce some notation. Let k[[tQ]] be the Hahn field over 
k with rational exponents, i.e. the field of formal power series

– =
ÿ

sœQ
ast

s such that supp(–) = { s œ Q | as ”= 0 } is well ordered.

Moreover, we denote by k[[tQ]]+ the subring of elements – œ k[[tQ]] that satisfy 
supp(–) ™ [0, Œ). By extending the scalars k[t, t≠1] to the Hahn field k[[tQ]] one has a 
simple classification:
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Theorem 1.0.2 (see Corollary 5.3.8 and Remark 5.3.6). We have a bijection

k[[tQ]]+ ≠æ

Y
_]

_[

extending maximal
k-subalgebras of k[[tQ]][y]
that contain k[[tQ]]+[y]

Z
_̂

_\
, – ‘≠æ k[[tQ]]+ + (y ≠ –) k[[tQ]][y]

With the aid of this theorem, we are able to classify all extending maximal 
k-subalgebras of k[t, t≠1, y] that contain k[t, y].

Theorem 1.0.3 (see Theorem 5.5.1). Let S be the set of – œ k[[tQ]]+ such that supp(–)
is contained in a strictly increasing sequence of Q. Then we have a surjection

S ≠æ

Y
_]

_[

extending maximal
k-subalgebras of k[t, t≠1, y]

that contain k[t, y]

Z
_̂

_\
, – ‘≠æ A– fl k[t, t≠1, y]

where

A– = k[[tQ]]+ + (y ≠ –) k[[tQ]][y] .

Moreover, two elements of S are sent to the same k-subalgebra, if and only if they lie 
in the same orbit under the natural action of Hom(Q/Z, kú) on S .

In Section 6 we start with the description of all maximal k-subalgebras of k[t, t≠1, y]. 
Our main result of that section is the following.

Theorem 1.0.4 (see Proposition 6.0.4). Let A ™ k[t, t≠1, y] be an extending maximal 
k-subalgebra. Then, exactly one of the following cases occurs:

i) There exists an automorphism ‡ of k[t, t≠1, y] such that ‡(A) contains k[t, y];
ii) A contains k[t, t≠1].

The maximal k-subalgebras of case i) are described by Theorem 1.0.3. Thus, we are left 
with the description of the extending maximal k-subalgebras of k[t, t≠1, y] that contain 
k[t, t≠1]. This will be done in Section 7. In order to state our result let us introduce some 
notation. Let M be the set of extending maximal k-subalgebras of k[t, y] that contain 
k[t]. Moreover, let N be the set of extending maximal k-subalgebras A of k[t, y, y≠1]
that contain k[t, y≠1] and such that

A ≠æ k[t, y, y≠1]/(t≠ ⁄)

is surjective, where ⁄ is the unique element in k such that the crucial maximal ideal of A
contains t ≠⁄ (this ⁄ exists by Remark 7.0.1). The set N is described by Theorem 1.0.3. 
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Then, the maximal k-subalgebras of case ii) in Theorem 1.0.4 are described by the 
following result.

Theorem 1.0.5 (see Theorem 7.0.6 and Proposition 6.0.5). With the definitions of M
and of N from above, we have bijections � and �

N
�
≠æM ´

Y
_]

_[

B in M s.t. the crucial
maximal ideal of B
does not contain t

Z
_̂

_\
�
Ω≠

Y
_]

_[

extending maximal k-
subalgebras of k[t, t≠1, y]

that contain k[t, t≠1]

Z
_̂

_\

given by �(A) = A fl k[t, y] and �(AÕ) = AÕ fl k[t, y].

In particular, with the aid of the bijection � : N æ M in Theorem 1.0.5 we get a 
description of the extending maximal k-subalgebras of k[t, y] that contain a coordinate 
of k[t, y].

2. Some general considerations about maximal subrings

In this section we gather some general properties of maximal subrings, that we will 
constantly use in the course of this article.

The first lemma says that maximal subrings behave well under localization.

Lemma 2.0.6 (see [4, Lemme 1.3]). Let A ™ R be a maximal subring and let S be a 
multiplicatively closed subset of A. Then the localization AS is either a maximal subring 
of the localization RS or AS = RS.

The second lemma gives us the possibility for certain cases to reduce to quotient rings, 
while searching for maximal subrings. It is a direct consequence of [4, Lemme 1.4].

Lemma 2.0.7. Let A ™ R be a ring extension and let I ™ A be an ideal such that I = IR. 
Then A is a maximal subring of R if and only if A/I is a maximal subring of R/I.

In particular, for every ring extension A ™ R, the conductor ideal

I = { a œ A | aR ™ A }

satisfied I = IR. Note that every ideal J of A with J = JR is contained in the conductor 
ideal I.

Lemma 2.0.8 (see [4, Lemme 3.2]). Let A ( R be an extending maximal subring. Then 
the conductor ideal of A in R is a prime ideal of R.

Samuel introduced in [11] the P2-property for ring extensions. This property will be 
crucial for our classification result.
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Definition 2.0.2. Let A ™ R be a subring. We say that A satisfies the property P2 in R, 
if for all r, q œ R with rq œ A we have either r œ A or q œ A.

Lemma 2.0.9 (see [4, Proposition 3.1]). Let A ( R be an extending maximal subring. 
Then A satisfies the property P2 in R.

The next lemma shows, that the extending maximal subrings of a field have a well 
known characterization. It is a direct consequence of [4, Proposition 3.3].

Lemma 2.0.10. Let K be a field and let R ( K be a subring. Then, R is an extending 
maximal subring of K if and only if R is a one-dimensional valuation ring of K.

Let us state and prove the following rather technical lemma for future use.

Lemma 2.0.11. Let C be a Noetherian domain such that the quotient field Q(C) is not a 
finitely generated C-algebra. Let A ( C[y] be an extending maximal subring that contains 
C and denote by m the crucial maximal ideal of A. Then m fl C ”= 0.

Proof. Assume that m fl C = 0. Then we have the following commutative diagram

C A

fi

C[y]

Q(C) A/m .

As A is a maximal subring of C[y], we have A * C and thus there exists f œ A with 
degy(f) > 0. Let f = fnyn + . . .+ f1y + f0 where fi œ C, fn ”= 0. We have

y(fnyn≠1 + . . .+ f1) = f ≠ f0 œ A .

Since A satisfies the property P2 in C[y] and since y /œ A we get fnyn≠1 + . . .+ f1 œ A. 
Proceeding in this way it follows that there exists 0 ”= c œ C such that cy œ A. Let us 
define the C-algebra homomorphism ‡ by

‡ : C[y] ≠æ A/m , y ‘æ
fi(cy)
fi(c) .

We claim that ‡ and fi coincide on A. We proceed by induction on the y-degree of the 
elements in A. By definition, ‡ and fi coincide on C, i.e. they coincide on the elements 
of y-degree equal to zero. Let g = gnyn + . . . + g1y + g0 œ A and assume that gn ”= 0, 
n > 0. As before, we get y(gnyn≠1 + . . .+ g1) œ A and gnyn≠1 + . . .+ g1 œ A. Thus we 
have
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fi(g) = fi(y(gnyn≠1 + . . .+ g1)) + fi(g0)

= fi(cy(gnyn≠1 + . . .+ g1))
fi(c) + fi(g0)

= fi(cy)
fi(c) fi(gnyn≠1 + . . .+ g1) + fi(g0)

= ‡(y)‡(gnyn≠1 + . . .+ g1) + ‡(g0)

= ‡(g) ,

where we used in the second last equality the induction hypothesis. This proves the 
claim. Since fi is surjective, ‡ is surjective too. Hence there exists a œ A/m which is 
algebraic over Q(C) such that A/m is generated by a as a C-algebra. Let h0 + h1x +
. . .+ hmxm + xm+1 be the minimal polynomial of a over Q(C) and let

C0 = C[h0, . . . , hm] ™ Q(C) .

As C is Noetherian, C0 is Noetherian. Moreover, A/m is generated by 1, a, . . . , am as 
a C0-module. Hence, Q(C) is a finitely generated C0-module. Thus Q(C) is a finitely 
generated C-algebra, a contradiction. ✷

3. The one-dimensional case

Let k be an algebraically closed field. The purpose of this section is to classify all 
extending maximal k-subalgebras of a given one-dimensional a�ne k-domain R. The key 
ingredient is the following lemma.

Lemma 3.0.12. Let A be a k-subalgebra of the one-dimensional a�ne k-domain R. Then 
either A = k or A is a one-dimensional a�ne k-domain.

Proof. We can assume that A ”= k. Then there exists a œ A \ k, which is transcenden-
tal over k. By the Krull–Akizuki-Theorem applied to k[a] ™ A, it follows that A is 
Noetherian, see for example [8, Theorem 33.2]. By [9, Corollary 1.2], we have

dimA = tr.degkA = 1 .

Let AÕ be the integral closure of A in its quotient field. By [6, Theorem 9.3] it follows 
that dimAÕ = 1. In particular, AÕ is equidimensional. [9, Theorem 3.2] implies now, that 
A is an a�ne k-domain. ✷

Theorem 3.0.13. Let R be a one-dimensional a�ne k-domain. Take a projective closure 
X of the a�ne curve X = Spec(R) such that X is non-singular at every point of X \X. 
If X \ X contains just a single point, then R has no extending maximal k-subalgebra. 
Otherwise, for any point p œ X \X,
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{ f œ R | f is defined at p }

is an extending maximal k-subalgebra of R and every extending maximal k-subalgebra of 
R is of this form.

Proof. The first statement follows from Lemma 3.0.12. Thus we can assume that X \X

consists of more than one point. Let p œ X \X and set U = Xfi{p} ( X. Note that U is 
an a�ne curve, see [5, Chp. IV, Ex. 1.4]. Let A ™ R be the image of �(U, OU ) æ R and 
consider an intermediate ring A ™ B ( R. By Lemma 3.0.12, B is a one-dimensional 
a�ne k-domain. Consider the induced maps

X
f
≠æ Spec(B) ≠æ U .

As this composition is an open immersion, the first map is an open immersion. As f is 
not an isomorphism, the complement Spec(B) \ f(X) is non-empty. As U \X is a single 
point, this implies that Spec(B) æ U is surjective. In fact, since U is non-singular in 
U \ X, this map is an isomorphism and thus we get A = B. This proves that A is an 
extending maximal k-subalgebra of R.

Conversely, let A ( R be an extending maximal k-subalgebra. By Lemma 3.0.12, A is 
an a�ne k-domain. Let g : X æ Spec(A) be the induced map on a�ne varieties. It is 
an open immersion and Spec(A) \X consists only of the crucial maximal ideal m of A. 
Consider the birational map

Spec(A)
g≠1

99K X ≠æ X , (1)

which is an open immersion on g(X). We have to show, that this map is an open im-
mersion on Spec(A). By [4, Proposition 3.3], the localization Am is a one-dimensional 
valuation ring. Since Am is Noetherian, it is a discrete valuation ring. Thus Spec(A) is 
non-singular at m and therefore the birational map (1) is an injective morphism, which 
is an open immersion locally at m (note that X is smooth at every point of X \X). Thus 
the morphism (1) is an open immersion. ✷

4. Examples of extending maximal k-subalgebras of k[t, y] that do not contain a 
coordinate

It is thus natural to ask, whether all extending maximal k-subalgebras of k[t, y] contain 
a coordinate. In this section we construct plenty of examples, which give a non-a�rmative 
answer to this question. These examples indicate that it is di�cult to classify all maximal 
subalgebras of k[t, y].

For the construction of these examples we use techniques of birational geometry of 
surfaces and the classification of extending maximal subalgebras of one-dimensional a�ne 
k-domains. As we fix the algebraically closed field k, we write Pn for Pnk and An for An

k .
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Definition 4.0.3. Let L ™ P2 be a line, let p œ L be a point and let � ™ P2 be an 
irreducible curve with � ”= L which passes through p. We say that � is tangent to L at 
p of order at least m, if there exists a sequence of blow-ups

Sm
fim
≠æ Sm≠1

fim≠1
≠æ . . .

fi2
≠æ S1

fi1
≠æ P2

such that fi1 is centered at p, fii is centered at a point on the exceptional divisor of fii≠1

for i = 2, . . . , m and the strict transforms of L and of � under fi1 ¶ · · · ¶ fim have an 
intersection point on the exceptional divisor of fim.

The following Lemma is crucial for our construction.

Lemma 4.0.14. Let � ™ P2 be an irreducible curve and let L ”= � be a line in P2. Fix 
some p œ � flL. If � is tangent to L at p of order at least 2 and if � is smooth at p, then 
there exists no coordinate f : A2 = P2

\L æ A1 such that the rational map f |� : � 99K A1

is defined at p.

Proof. Let Ï : P2 99K P2 be a birational map that restricts to an automorphism on 
P2

\ L = A2. Let pr: A2
æ A1 be the projection given by pr(x, y) = x. We have to 

prove that the rational map pr ¶Ï|� : � 99K A1 is not defined at p. Let a œ P2 be the 
image of p under the rational map Ï|� : � 99K P2, which is defined at p since � is smooth 
at p. We have a œ L, since either Ï contracts the line L to some point on L or Ï maps 
L isomorphically onto itself. If a ”= (0 : 1 : 0), then the map pr ¶Ï|� : � 99K A1 is not 
defined at p. Thus we can assume that a = (0 : 1 : 0).

Let ‡ : Bla(P2) æ P2 be the blow-up of P2 centered at a. Then, pr ¶Ï|� : � 99K A1 is 
not defined at p if and only if

� ™ P2
Ï99K P2

‡≠1

99K Bla(P2)

maps p to the intersection point of the exceptional divisor of ‡ and the strict transform 
of L under ‡. In other words, we have to prove that Ï(�) is tangent to L at a of order 
at least 1.

If Ï is an automorphism, then the result is obvious, so we can assume that there exist 
base-points of Ï. By [1, Lemma 2.2] there exist birational morphisms Á : Y æ P2 and 
÷ : Y æ P2 such that the following is satisfied:

• we have ÷ = Ï ¶ Á;
• no curve of self-intersection ≠1 of Y is contracted by both, Á and ÷;
• there are decompositions

Á = Á1 ¶ · · · ¶ Án : Y ≠æ P2 and ÷ = ÷1 ¶ · · · ¶ ÷n : Y ≠æ P2
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where Á1 (respectively ÷1) is a blow-up centered at a point on L and Ái (respec-
tively ÷i) is a blow-up centered at a point on the exceptional divisor of Ái≠1 (respec-
tively ÷i≠1) for i > 1;

• the integer n is greater than or equal to 3;
• the strict transform of L under Á (respectively ÷) has self-intersection ≠1.

Let qi≠1 be the center of Ái and let Ei be the exceptional divisor of Ái for i = 1, . . . , n. 
Moreover, we denote by Li the strict transform of L under Ái ¶ · · · ¶ Á1 for i = 1, . . . , n. 
Since (Ln)2 = ≠1, we see that L passes through q0, that L1 passes through q1, but Li
passes not through qi for i > 1.

By assumption, � is tangent to L at p of order at least 2, so there exists a sequence 
of blow-ups

S2

fi2
≠æ S1

fi1
≠æ P2

such that fi1 is centered at p, fi2 is centered at some point on the exceptional divisor of 
fi1 and the strict transforms of L and of � under fi1 ¶ fi2 intersect at one point of the 
exceptional divisor. Denote this intersection point on S2 by p2. Consider the birational 
map

Â = Á≠1

2
¶ Á≠1

1
¶ fi1 ¶ fi2 .

This map is defined at p2 and we denote by pÕ
2

its image under Â. Since pÕ
2
œ L2 and 

since q2 /œ L2 there exists exactly one point r œ Ln that is mapped onto pÕ
2

via Án¶ · · ·¶Á3
(note that n Ø 3). Remark that the strict transform of � under Á passes through r.

Let ri≠1 be the center of ÷i and let Fi be the exceptional divisor of ÷i for i = 1, . . . , n. 
Since En and Ln are the only curves of self-intersection ≠1 lying in Y \ Á≠1(P2

\ L), 
it follows that En is the strict transform of L under ÷ and that ÷n contracts Ln i.e. 
Fn = Ln. Hence we have for i = 2, . . . , n

÷i ¶ · · · ¶ ÷n(r) = ri≠1 œ Fi≠1 .

As r œ Ln, the curve Ln is contracted by ÷ onto ÷(r); this point being also the point 
where Ï contracts L, we get ÷(r) = a œ L. Since the strict transform of L under ÷
has self-intersection ≠1, it follows that r1 is the intersection point of F1 and the strict 
transform of L under ÷1. As the strict transform of � under Á passes through r, its image 
passes through all the points ri and thus also through r1. So the curve Ï(�) is tangent 
to L at a œ P2 of order at least 1. ✷

With this lemma we can construct plenty of examples of extending maximal 
k-subalgebras of k[t, y] that do not contain a coordinate of k[t, y].
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Let X be an irreducible curve of A2, which is defined by some polynomial f in k[t, y]. 
Let � be the closure of X in P2. Assume that there exists a smooth point p on � that 
lies not in X and assume that � \X contains more than one point. Then the ring

A = {h œ �(X,OX) | h is defined at p }

is an extending maximal k-subalgebra of �(X, OX), which is finitely generated over k, 
see Theorem 3.0.13 and Lemma 3.0.12. Let a1, . . . , ak œ A be a set of generators and let 
r1, . . . , rk œ k[t, y] be elements such that ri|X = ai. If � is tangent to L = P2

\ A2 at p
of order at least 2, then

k[r1, . . . , rk] + f k[t, y]

is an extending maximal k-subalgebra of k[t, y] that does not contain a coordinate of 
k[t, y], see Lemma 2.0.7 and Lemma 4.0.14.

5. Classification of maximal subrings of k[t, t≠1, y] that contain k[t, y]

The goal of this section is the classification of all maximal subrings of k[t, t≠1, y] that 
contain k[t, y]. Let us start with a simple example.

Example 5.0.4. By using Lemma 2.0.7 one can see that

A = k[t, y] + (y2
≠ t) k[t, t≠1, y]

is a maximal subring of k[t, t≠1, y], which contains k[t, y]. Another description of this 
ring is the following

A = B fl k[t, t≠1, y] , where B = k[t1/2, y] + (y ≠ t1/2) k[t1/2, t≠1/2, y] .

By using Lemma 2.0.7, one can see that B is a maximal subring of k[t1/2, t≠1/2, y], which 
contains k[t1/2, y]. However, the ring B is of a simpler form than A (we replaced y2

≠ t

by a linear polynomial in y).

The general strategy works in a similar way. First we “enlarge” the coe�cients k[t] to 
some ring F in such a way, that all maximal subrings of Ft[y] that contain F [y] have a 
simple form (in the example, we replaced k[t] by F = k[t1/2]). Then we prove that the 
intersection of such a simple maximal subring with k[t, t≠1, y] yields a maximal subring 
of k[t, t≠1, y] that contains k[t, y] and that we receive by this intersection-process every 
maximal subring that contains k[t, y].

For the “enlargement” of the coe�cients we have to introduce some notation and 
terminology.
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5.1. Notation and terminology

Let k be an algebraically closed field (of any characteristic). We denote by k[[tQ]] the 
Hahn field over k with exponents in Q, i.e. the field of all formal power series

– =
ÿ

sœQ
ast

s

with coe�cients as œ k and with the property that the support

supp(–) = { s œ Q | as ”= 0 }

is a well ordered subset of Q. There exists a natural valuation on k[[tQ]], namely

‹ : k[[tQ]] ≠æ Q , – ‘≠æ min supp(–) .

The valuation ring of ‹ we denote by k[[tQ]]+. More generally, for any subring B ™ k[[tQ]]
we denote by B+ the subring of elements with ‹-valuation Ø 0, i.e.

B+ = { b œ B | ‹(b) Ø 0 } .

Finally, for any subring A ™ k[[tQ]][y] we denote by A1 the subset of degree one elements, 
i.e.

A1 = { a œ A | degy(a) = 1 } .

5.2. Organization of the section

In Subsection 5.3, we classify all maximal subrings of K[y] that contain K+[y] for 
any algebraically closed field K ™ k[[tQ]] that contains the field of rational functions 
k(t) and satisfies the so called cuto�-property (see Definition 5.3.2). For example, the 
Hahn field k[[tQ]], the Puiseux field 

t
n k((t1/n)) or the algebraic closure of k(t) enjoy 

the cuto�-property (see Example 5.3.3).
In Subsection 5.4, we prove that for any maximal subring A ( K[y] containing K+[y], 

the intersection A fl k[t, t≠1, y] is again a maximal subring of k[t, t≠1, y]. Moreover, we 
prove that any maximal subring of k[t, t≠1, y] that contains k[t, y] can be constructed as 
an intersection like above.

Thus we are left with the question, which of the maximal subrings of K[y] that contain 
K+[y] give the same ring, after intersection with k[t, t≠1, y]. We give an answer to this 
question in Subsection 5.5.

5.3. Classification of maximal subrings of K[y] that contain K+[y]

Throughout this subsection, we fix an algebraically closed subfield K ™ k[[tQ]] that 
contains the field of rational functions k(t).
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Proposition 5.3.1. Let K+[y] ™ A ( K[y] be an intermediate ring and assume that 
A ( K[y] satisfies the property P2 in K[y]. Then A = K+[A1].

Proof. Let a œ A. After multiplying a with a unit of K+, we can assume that

a = yn

ts
+ lower degree terms in y ,

where s œ Q and n Ø 0 is an integer. We have to show that a œ K+[A1]. We proceed 
by induction on n. If n = 0, then a œ A fl K = K+. So let us assume n > 0. As K is 
algebraically closed and contains t, there exist –1, . . . , –n œ K with

a =
3
y ≠ –1

ts/n

43
y ≠ –2

ts/n

4
· · ·

3
y ≠ –n
ts/n

4
.

Since A ™ K[y] satisfies the property P2, we have (y ≠ –i)/(ts/n) œ A for some i. This 
implies that

(y ≠ –i)n
ts

œ K+[A1] .

Thus q = a ≠ (y ≠ –i)n/ts œ A. By induction hypothesis we have q œ K+[A1] and thus 
a œ K+[A1]. Hence A ™ K+[A1], which implies the result. ✷

Lemma 5.3.2. Let K+[y] ™ E ( K[y] be a proper subring. Then there exists a proper 
subring EÕ ( K[y] that satisfies the property P2 and contains E.

Proof. Denote by Ẽ ™ K[y] the integral closure of E in K[y]. As E ”= K[y], it follows 
that tE is a proper ideal of E. In particular, Ï : Spec(K[y]) æ Spec(E) is nonsurjective. 
Since Spec(Ẽ) æ Spec(E) is surjective (see [6, Theorem 9.3]), it follows that Ẽ ”= K[y]. 
Hence there exists an intermediate ring Ẽ ™ EÕ ( K[y] that satisfies the property P2 in 
K[y], by [11, Théorème 8]. ✷

Now, we give an application of these two results to maximal subrings. Roughly speak-
ing, the proposition says, that for rings which are generated by degree one elements, one 
can see the maximality already on the level of degree one elements.

Proposition 5.3.3. Let K+[y] ™ A ( K[y] be a proper subring that satisfies A = K+[A1]. 
Then A is maximal in K[y] if and only if

for all f œ K[y] \A of degree 1 we have A[f ] = K[y] . (2)

Proof. Assume that A satisfies (2). Let A ™ E ( K[y] be an intermediate ring. We want 
to prove A = E. By Lemma 5.3.2, there exists a proper subring EÕ ( K[y] that satisfies 
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the property P2 and contains E. Now, if there would exist f œ (EÕ)1 \A1, then we would 
have by (2)

K[y] = A[f ] ™ EÕ ™ K[y] .

This would imply that EÕ = K[y], a contradiction. Thus we have A1 = (EÕ)1. According 
to Proposition 5.3.1 we have A = EÕ and therefore A = E.

The other implication is clear. ✷

Definition 5.3.1. Let S = { s1 < s2 < . . . } be a strictly monotone sequence in QØ0 and let 
� = { –1, –2, . . . } be a sequence in K such that supp(–i) ™ [0, si) and supp(–i+1≠–i) ™
[si, si+1) for all i > 0. We call then (S, �) an admissible pair of K. If – is an element of 
K such that supp(–≠–i) ™ [si, Œ) for all i > 0, then we call – a limit of the admissible 
pair (S, �).

Lemma 5.3.4. Let (S, �) be an admissible pair of k[[tQ]]. Then there exists a limit in 
k[[tQ]]. Moreover, if lim si =Œ, then – is unique.

Proof. Let –i =
q

aists. Now, we define – =
q

asts, where as = ais for some i with 
si > s. One can easily check, that as is well defined. Moreover,

supp(–) =
Œ€

i=1

supp(–i) and supp(–) fl [0, si) = supp(–i) for i = 1, 2, . . .

and thus supp(–) is well ordered. It follows that – œ k[[tQ]]+ and that supp(– ≠ –i) ™
[si, Œ) for all i > 0. The uniqueness statement is clear. ✷

Definition 5.3.2. The subfield K ™ k[[tQ]] satisfies the cuto� property, if for all – =q
s ast

s
œ K and for all u œ Q we have 

q
sØu ast

s
œ K.

Example 5.3.3. An important example of an algebraically closed field inside k[[tQ]] that 
contains k(t) and satisfies the cuto� property is the Puiseux field

Œ€

n=1

k((t1/n)) .

Clearly, the Hahn field k[[tQ]] itself is an example. Another example is the algebraic 
closure of k(t) (inside the Puiseux field). This follows from the fact that 

qm
i=≠m aiti/n

is algebraic over k(t) where ai œ k and n, m œ N (it is the sum of algebraic elements).

In the next proposition we classify all P2-subrings of K[y] under the additional as-
sumption, that K satisfies the cuto� property.
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Proposition 5.3.5. Assume that K satisfies the cuto� property. Let K+[y] ™ E ( K[y]. 
Then E satisfies the property P2 in K[y] if and only if

E = K+

5;
y ≠ –i
tsi

-- i = 1, 2, . . .
<6

for an admissible pair (S, �) of K or E = K+[e] for some element e œ K[y] of degree 1.

Proof. Assume that K+[y] ™ E ( K[y] is a subring that satisfies the property P2 in 
K[y]. We consider the following subset of E1:

N =
;
y ≠ –

ts
œ E | s œ Q>0, – œ K and supp(–) ™ [0, s)

<
.

Using the fact, that E flK = K+ and that K satisfies the cuto� property, one can see 
that N has the following two properties:

i) If (y ≠ –)/ts, (y ≠ –Õ)/tsÕ œ N and s Æ sÕ, then supp(–Õ ≠ –) ™ [s, sÕ).
ii) If (y ≠ –)/ts œ E, s œ Q>0 and – œ K, then – œ K+ and there exists n œ N , such 

that ((y ≠ –)/ts) ≠ n œ K+.

Property ii) of N implies

K+[N, y] = K+[E1] . (3)

Let U ™ Q>0 be the set of all s œ Q>0 such that there exists – œ K+ with 
(y ≠ –)/ts œ N . Property i) of N implies that for every s œ U there exists a unique 
–s œ K+ such that (y ≠ –s)/ts œ N . Now, we make the following distinction.

sup(U) œ U : Let u = sup(U). It follows from property i) of N , that (y≠–s)/ts œ K+[(y≠
–u)/tu] for all s œ U . This implies K+[N, y] ™ K+[(y ≠ –u)/tu]. Clearly, 
we have K+[(y ≠ –u)/tu] ™ K+[N, y]. With (3) and Proposition 5.3.1, we 
get the equality E = K+[(y ≠ –u)/tu].

sup(U) /œ U : Let S = { s1 < s2 < . . . } be a sequence in U such that lim si = sup(U). If 
we set –i = –si and � = { –1, –2, . . . }, then (S, �) is an admissible pair. 
Let s œ U . As sup(U) /œ U , there exists i with si > s. With property i) of 
N , we get now (y≠–s)/ts œ K+[(y≠–i)/tsi ]. Thus K+[N, y] is generated 
over K+ by (y ≠ –i)/tsi , i = 1, 2, . . . . By (3) and Proposition 5.3.1 we get 
K+[N, y] = K+[E1] = E.

Thus E has the claimed form.
Now, we prove that K+[e] satisfies the property P2 in K[y], provided that e œ K[y]

has degree 1. By applying a K-algebra automorphism of K[y], we can assume that e = y. 
Consider the following extension of the valuation ‹|K on K to K[y]
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µ : K[y] ≠æ Q , f0 + . . .+ fny
n
‘≠æ min{‹(f0), . . . , ‹(fn)} ,

which extends (uniquely) to K(y). Then K+[y] is exactly the set of elements in K[y]
with µ-valuation Ø 0. From this it follows readily that K+[y] satisfies the property P2

in K[y].
Now, let (S, �) be an admissible pair of K. Then

K+

5;
y ≠ –i
tsi

-- i = 1, 2, . . .
<6

satisfies the property P2 in K[y] as it is the union of the increasing P2-subrings

K+

5
y ≠ –1

ts1

6
™ K+

5
y ≠ –2

ts2

6
™ · · · . ✷

With this classification result at hand, we can now achieve a classification of all 
maximal subrings of K[y] that contain K+[y].

Proposition 5.3.6. Assume that K satisfies the cuto� property. Let (S, �) be an admissible 
pair of K. Assume that either lim si =Œ or (S, �) has no limit in K. Then

K+

5;
y ≠ –i
tsi

-- i = 1, 2, . . .
<6

(4)

is a maximal subring of K[y] that contains K+[y]. On the other hand, every maximal 
subring of K[y] that contains K+[y] is of this form.

Proof. Let B ™ K[y] be the ring of (4). We claim that B ”= K[y]. Otherwise, there exists 
i such that 1/t œ K+[(y ≠ –i)/tsi ], as (S, �) is an admissible pair. This would imply 
1/t œ K+, a contradiction.

Note, that we have B = K+[B1]. Thus, according to Proposition 5.3.3 it is enough to 
show, that B[f ] = K[y] for all f œ K[y] \B of degree 1. Up to multiplying f with a unit 
of K+, we can assume that f = (y ≠ –)/ts for some – œ K and s œ Q. First, assume 
that s < lim si. Hence there exists i with s < si. Thus we have

–i ≠ –

ts
= y ≠ –

ts
≠
y ≠ –i
ts

œ K[y] \B .

So this last element lies in K \K+. Hence we have B[f ] = K[y]. Now, assume s Ø lim si
(and thus lim si is finite). As (S, �) has no limit in K, there exists i such that supp(–≠–i)
is not contained in [si, Œ). Thus,

y ≠ –

tsi
≠
y ≠ –i
tsi

= –i ≠ –

tsi
œ K \K+ ,

and hence we get B[f ] = K[y] again.
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Now, let A ( K[y] be a maximal subring that contains K+[y], which must be an 
extending maximal subring. By Lemma 2.0.9, A ™ K[y] satisfies the property P2. Since 
K+[e] ™ K[y] is not a maximal subring for all e œ K[y] of degree 1, it follows from 
Proposition 5.3.5 that there exists an admissible pair (S, �), such that

A = K+

5;
y ≠ –i
tsi

-- i = 1, 2, . . .
<6

.

It remains to prove that lim si = Œ or (S, �) has no limit in K. Assume towards a 
contradiction that s = lim si < Œ and – œ K is a limit of (S, �). Then, it follows that 
A ™ K+[(y ≠ –)/ts]. As K+[(y ≠ –)/ts] is certainly not a maximal subring of K[y], we 
get a contradiction. This finishes the proof. ✷

Remark 5.3.4. Let A be the maximal subring (4) in the Proposition 5.3.6. We describe 
the crucial maximal ideal of A. Let n ™ K+ be the unique maximal ideal. In fact, 
n =

q
qœQ>0

tqK+. For i œ N, let –Õi = –i+tsiai+1 where ai+1 œ k denotes the coe�cient 
of tsi in –i+1. Thus A is generated over K+ by the elements (y ≠ –Õi)/tsi . We have the 
following inclusion of ideals in A

n +
Œÿ

i=0

y ≠ –Õi
tsi

A ™
ÿ

qœQ>0

tqA .

As every element of A is an element of k ·1 modulo the left hand ideal and the right hand 
ideal is proper in A, these ideals are the same. It follows, that this ideal is maximal, has 
residue field k and it is the crucial maximal ideal.

Proposition 5.3.7. For – œ K+, the ring K+ +(y≠–)K[y] is a maximal subring of K[y]
that contains K+[y], with non-zero conductor ideal (y ≠ –)K[y]. Moreover, all maximal 
subrings K+[y] ™ A ( K[y] with non-zero conductor are of this form.

Proof. The first statement follows from Lemma 2.0.7. For the second statement, let 
K+[y] ™ A ( K[y] be a maximal subring and assume there exists 0 ”= f œ A such that 
fK[y] ™ A. We can assume that f is monic in y. Let f = f1 · · · fk be the decomposition 
of f into monic linear factors inside K[y]. As A ™ K[y] satisfies the property P2, for all 
n œ N there exists i = i(n) such that fi/(tn/k) œ A. This implies that there exists i such 
that fi/tn œ A for all n œ N. Let fi = y ≠ –i. Hence, K+[y] + (y ≠ –i)K[y] ™ A. Since 
A ( K[y] is a proper subring, we get –i œ K+ and thus A = K+ + (y ≠ –i)K[y]. ✷

Remark 5.3.5. Assume that K satisfies the cuto� property. Let A ™ K[y] be a maximal 
subring that contains K+[y], I ™ K[y] the conductor ideal of A in K[y] (which could be 
zero), and let m ™ A be the crucial maximal ideal. By [4, Proposition 3.3], the localization 
(A/I)m is a one-dimensional valuation ring. Let (S, �) be an admissible pair in K such 
that A is generated over K+ by (y ≠ –i)/tsi for i = 1, 2, . . . , see Proposition 5.3.6. Let 
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– œ k[[tQ]]+ be a limit of (S, �), which is not unique (however, it exists by Lemma 5.3.4). 
Using Proposition 5.3.6 and Proposition 5.3.7 one can check that the K-homomorphism

K[y]/I ≠æ k[[tQ]] , f ‘≠æ f(–)

is injective. Hence,

Ê : Q(K[y]/I) ≠æ Q , f ‘≠æ ‹(f(–))

is a valuation on the quotient field of K[y]/I. With the aid of Remark 5.3.4 one can see, 
that the valuation on (A/I)m is given by Ê. In particular we have for f œ K[y]

f œ A ≈∆ Ê(f̄) Ø 0 ,

where f̄ denotes the residue class modulo I. Moreover, we get for the crucial maximal 
ideal

f œ m ≈∆ Ê(f̄) > 0 .

This characterization of A and m will be very important for us.

As a consequence of Proposition 5.3.6 and Lemma 5.3.4 we can now classify all the 
maximal subrings of k[[tQ]][y] which contain k[[tQ]]+[y].

Corollary 5.3.8. If K = k[[tQ]], then for all – œ K+ the ring

K+

5;
y ≠ –

ts
-- s = 1, 2, . . .

<6

is maximal in K[y] and contains K+[y]. On the other hand, every maximal subring of 
K[y] that contains K+[y] is of this form.

Remark 5.3.6. The maximal subring of K[y] in Corollary 5.3.8 is the ring K+ + (y ≠
–)K[y]. Its crucial maximal ideal is n + (y ≠ –)K[y], where n ™ K+ denotes the unique 
maximal ideal.

With Proposition 5.3.6 and Proposition 5.3.7 at hand, we can now give another de-
scription of the maximal subrings of K[y] that contain K+[y] in the case where K is the 
algebraic closure of k(t). We just want to stress the following definition in advance.

Definition 5.3.7. A subset S of Q is called a strictly increasing sequence if there exists 
an isomorphism of the natural numbers to S that preserves the given orders.
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Proposition 5.3.9. Let K be the algebraic closure of k(t) inside k[[tQ]] and let S be the 
set of – œ k[[tQ]]+ such that supp(–) is contained in a strictly increasing sequence. Then 
we have bijections

�1 : K+
≠æ

I
maximal subrings of K[y] with

non-zero conductor that contain K+[y]

J

�2 : S \K+
≠æ

I
maximal subrings of K[y] with

zero conductor that contain K+[y]

J

given by

�1(–) = K+ + (y ≠ –)K[y] and �2(—) = K+

5;
y ≠ —i
tsi

-- i œ N
<6

where { s1 < s2 < . . . } = supp(—) and —i is the sum of the first i ≠ 1 non-zero terms 
of —.

Proof. Proposition 5.3.7 implies that �1 is bijective.
Let — œ S \ K+ and let S = { s1 < s2 < . . . }, � = { —1, —2, . . . }. Then (S, �) is 

an admissible pair and — is a limit of it. Since — /œ K+ and since K satisfies the cuto� 
property, there exists no limit of (S, �) in K+. Hence, by Proposition 5.3.6 the subring 
�2(—) is maximal in K[y]. Thus �2 is well-defined.

Let A ™ K[y] be a maximal subring with zero conductor that contains K+[y]. By 
Proposition 5.3.6 there exists an admissible pair (SÕ, �Õ) in K such that

A = K+

5;
y ≠ —Õi
ts
Õ
i

-- i œ N
<6

where SÕ = { sÕ
1
< sÕ

2
< . . . } and �Õ = { —Õ

1
, —Õ

2
, . . . }, and either lim sÕi =Œ or (SÕ, �Õ) has 

no limit in K. If (SÕ, �Õ) has a limit in K, then the conductor of A ™ K[y] is non-zero. 
Thus (SÕ, �Õ) has no limit in K. Since K is the algebraic closure of k(t), the support 
supp(—Õi) is finite for all i. Hence the pair (SÕ, �Õ) has a limit —Õ inside S \K+. Moreover, 
this limit satisfies �2(—Õ) = A, which proves the surjectivity of �2.

Let “1, “2 œ S \ K+ such that �2(“1) = �2(“2) and denote this ring by D. For 
k = 1, 2, let { sk1 < sk2 < . . . } = supp(“k) and let “ki œ K be the sum of the first i ≠ 1
non-zero terms of “k. Let i > 0 be an integer. Without loss of generality we can assume 
that s1i Æ s2i. Since (y ≠ “ki)/tski œ D for k = 1, 2, it follows that

“2i ≠ “1i

ts1i
= y ≠ “1i

ts1i
≠
y ≠ “2i

ts1i
œ D flK = K+ .

Hence “2i = “1i + ts1i÷ where ÷ œ K+. However, since supp(“1i) and supp(“2i) have the 
same number of elements, it follows that ÷ = 0. Thus “1i = “2i for all i. This implies 
that “1 = “2 and hence �2 is injective. ✷
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5.4. Description of all maximal subrings of k[t, t≠1, y] that contain k[t, y] by 
“intersection”

In this subsection we still fix an algebraically closed subfield K ™ k[[tQ]] that contains 
the field of rational functions k(t). Moreover, we fix a subring L ™ K that contains 
k[t, t≠1]. Recall that L+ (respectively K+) denotes the elements in L (respectively K) 
of ‹-valuation Ø 0.

Lemma 5.4.1. The ring extension L+
™ K+ is flat.

Proof. Let n be the unique maximal ideal of the valuation ring K+. This ideal consists 
of all elements in K with ‹-valuation > 0. Denote by LÕ the localization (L+)nflL+ . 
We show that K+ is a flat LÕ-module, which implies then the result. Clearly, K+ is a 
torsion-free LÕ-module. By [2, Chp. I, §2, no. 4, Proposition 3], it is thus enough to prove 
that LÕ is a valuation ring.

Let g, h œ L+ and assume that g ”= 0, ‹(h/g) Ø 0. As the value group of ‹ is Q, there 
exist integers a Ø 0, b > 0 such that ‹(g) = a/b. Thus we get

‹

3
hgb≠1

ta

4
Ø 0 and ‹

3
gb

ta

4
= 0

and therefore hgb≠1/ta œ L+, gb/ta œ L+
\ n. This implies h/g œ LÕ. Hence, LÕ is a 

valuation ring (with valuation ‹|Q(L+)). ✷

Our first result says that one can construct every maximal subring of L[y] that contains 
L+[y] by intersecting L[y] with some maximal subring of K[y] that contains K+[y] under 
a certain assumption.

Proposition 5.4.2. Assume that L+ is a maximal subring of L. If L+[y] ™ B ( L[y] is 
a maximal subring, then there exists a maximal subring K+[y] ™ A ( K[y] such that 
B = A fl L[y].

Remark 5.4.1. The assumption, that L+ is a maximal subring of L is satisfied for example 
if L = k[t, t≠1] or L = k(t).

Proof. Let M be the L+-module L[y]/B. By assumption, M is non-zero. In fact, since 
L+ is a maximal subring of L, we have an injection

L+/tL+
≠æM , ⁄ ‘≠æ ⁄t≠1 .

Since K+ is a flat L+-module (see Lemma 5.4.1), we get an injection

K+/tK+
ƒ K+

¢L+ (L+/tL+) ≠æ K+
¢L+ M .
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Thus K+
¢L+ M is non-zero. Again, since K+ is a flat L+-module, this implies that

K+
¢L+ B ( K+

¢L+ L[y] .

Therefore, K+[B] is a proper subring of K[y], which contains K+[y]. Applying Zorn’s 
Lemma to

{A ™ K[y] | A ´ K+[B] and t≠1 /œ A }

yields a maximal subring A in K[y] that lies over K+[B]. Thus B = A fl L[y]. ✷

In the next proposition we prove that any maximal subring of K[y] that lies over 
K+[y] gives a maximal subring of L[y] after intersection with L[y].

Proposition 5.4.3. Assume that K satisfies the cuto� property. Let K+[y] ™ A ( K[y] be 
a maximal subring and let B = A fl L[y]. Then

i) If I denotes the conductor ideal of A in K[y], then I flB is the conductor ideal of B
in L[y].

ii) The subring B ( L[y] is maximal. Moreover, if m denotes the crucial maximal ideal 
of A, then m fl L[y] is the crucial maximal ideal of B.

Proof.

i) Let b œ I fl B. Then bL[y] ™ A fl L[y] = B. Thus b lies in the conductor of B in 
L[y]. Now, let f œ B be an element of the conductor of B in L[y]. Then we have 
fL[y] ™ B and in particular, f/tn œ B ™ A for all n œ N. As K[y] = At, this implies 
that fK[y] ™ A. Thus f œ I flB.

ii) Let I ™ K[y] be the conductor ideal of A in K[y]. By i) the intersection J = I fl B

is the conductor ideal of B in K[y]. Let m ™ A be the crucial maximal ideal and let 
n = m flB. We divide the proof in several steps
a) We claim that (B/J)n is a one-dimensional valuation ring. Since (A/I)m is a 

one-dimensional valuation ring (see [4, Proposition 3.3]), it is enough to prove 
that

(B/J)n = (A/I)m flQ(L[y]/J)

inside Q(K[y]/I) (see also [6, Theorem 10.7]). Let g, h œ L[y]/J be non-zero 
elements and assume that h/g œ (A/I)m. Thus it follows for the valuation Ê
defined in Remark 5.3.5 that Ê(h/g) Ø 0. There exist integers a, b such that 
Ê(g) = a/b and we can assume that b > 0. Thus we have Ê(gb/ta) = 0. Since 
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Ê(h) Ø Ê(g) we get Ê(hgb≠1/ta) Ø 0. Thus gb/ta and hgb≠1/ta both lie inside 
A/I. Using the fact that

B/J = A/I fl L[y]/J ™ K[y]/I

we get

h

g
= h · (gb≠1/ta)

gb/ta
œ (B/J)n .

Thus we have (A/I)m flQ(L[y]/J) = (B/J)n. Note that the reasoning is similar 
to the proof of Lemma 5.4.1.

b) We claim that the complement of the image of SpecL[y] æ SpecB is just the 
point n. By Remark 5.3.4, the residue field of the crucial maximal ideal m ™ A

is k and thus n is a maximal ideal of B. Let b œ n. By Remark 5.3.4 we have 
m = rad(tA) and thus there exists an integer q Ø 1 such that bq œ tA. Therefore 
bq/t œ A. Since bq/t œ L[y], we get bq œ tB. Thus we proved n ™ rad(tB). If p ™ B

is a prime ideal such that pL[y] = L[y], then we get t œ p (since Bt = L[y]). Thus 
we have n ™ rad(tB) ™ p and by the maximality of n we get n = p.

c) Now, we prove that B/J is a maximal subring of L[y]/J . Let C ( L[y]/J be a 
subring that lies over B/J . Using b), the fact that J ™ n and that (B/J)t =
L[y]/J , we get the following commutative diagram

SpecC
Ï

SpecL[y]/J ƒ

”ƒ

(SpecB/J) \ {n}
open

SpecB/J .

From this, one can easily deduce that Ï is surjective. Let p œ SpecC with 
Ï(p) = n. By a) and Lemma 2.0.10, (B/J)n is a maximal subring of Q(L[y]/J). 
Since t œ p, this implies (B/J)n = Cp. Hence we have B/J = C by [6, Theo-
rem 4.7].

From c) and from Lemma 2.0.7 it follows that B is a maximal subring of L[y]. From b) 
it follows that n = m fl L[y] is the crucial maximal ideal of B. ✷

Remark 5.4.2. If the conductor ideal of A in K[y] is non-zero, then there exists – œ K+

such that this ideal is (y ≠ –)K[y]. Now, if L is a field and L ™ K an algebraic field 
extension, then the conductor of B = A fl L[y] is the ideal m–L[y] where m– œ L[y] is 
the minimal polynomial of – over L.

In the future we will need the following consequence of the last two propositions.
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Corollary 5.4.4. We have a bijective correspondence

Ï :

Y
_]

_[

maximal subrings of
k[t, t≠1, y] that contain

k[t, y]

Z
_̂

_\
1:1
≠æ

Y
_]

_[

maximal subrings of
k(t)[y] that contain

k(t)+[y]

Z
_̂

_\

given by Ï(B) = BS and Ï≠1(A) = A fl k[t, t≠1, y], where S denotes the multiplicative 
subset k[t] \ (t) of k[t].

Proof. Let B ( k[t, t≠1, y] be a maximal subring that contains k[t, y]. By Lemma 2.0.6, 
the localization BS is a maximal subring of k[t, t≠1, y]S , since S = k[t] \ (t). Moreover, 
we have

B ™ BS fl k[t, t≠1, y] ( k[t, t≠1, y]

and thus by the maximality of B we get the equality B = BS fl k[t, t≠1, y]. This proves 
the injectivity of Ï.

Let A ( k(t)[y] be a maximal subring that contains k(t)+[y]. By Proposition 5.4.2
there exists a maximal subring K+[y] ™ AÕ ™ K[y] such that AÕ fl k(t)[y] = A. By 
Proposition 5.4.3, it follows that A fl k[t, t≠1, y] is a maximal subring of k[t, t≠1, y]. 
Clearly, A fl k[t, t≠1, y] contains k[t, y]. Moreover,

(A fl k[t, t≠1, y])S ™ A

and by the maximality of (A fl k[t, t≠1, y])S we get equality. This proves the surjectivity 
of Ï. ✷

5.5. Classification of the maximal subrings of k[t, t≠1, y] that contain k[t, y]

Throughout this subsection K denotes the algebraic closure of k(t) inside the Hahn 
field k[[tQ]]. In this subsection we give a classification of all maximal subrings of k[t, t≠1, y]
that contain k[t, y].

Let – be in k[[tQ]]+. In this subsection we denote

A– = k[[tQ]]+ + (y ≠ –) k[[tQ]][y] .

Thus – ‘æ A– is a bijective correspondence between k[[tQ]]+ and the maximal subrings 
of k[[tQ]][y] that contain k[[tQ]]+[y] by Corollary 5.3.8 and Remark 5.3.6.

Let (Q/Z)ú be the group of group homomorphisms Q/Z æ kú. There exists a natural 
action of this group on the Hahn field, given by the homomorphism

(Q/Z)ú ≠æ Aut(k[[tQ]]/ k((t))) , ‡ ‘≠æ

Q

a
ÿ

sœQ
ast

s
‘æ

ÿ

sœQ
as‡(s)ts

R

b , (5)
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where Aut(k[[tQ]]/ k((t))) denotes the group of field automorphisms of k[[tQ]] that fix the 
subfield k((t)) pointwise (note that k((t)) ™ k[[tQ]] is a Galois extension if and only if 
the characteristic of k is zero). The action (5) commutes with the valuation ‹ on k[[tQ]]. 
In particular we have for all ‡ œ (Q/Z)ú and for all – œ k[[tQ]]+

A– fl k[t, t≠1, y] = A‡(–) fl k[t, t≠1, y] .

The following result is the main theorem of this section.

Theorem 5.5.1. Let S be the set of – œ k[[tQ]]+ such that supp(–) is contained in a 
strictly increasing sequence (see Definition 5.3.7). Then we have a bijection

� : S /(Q/Z)ú ≠æ
I

maximal subrings of
k[t, t≠1, y] that contain k[t, y]

J
, – ‘≠æ A– fl k[t, t≠1, y] .

Moreover, �(–) has non-zero conductor in k[t, t≠1, y] if and only if – œ K+ where K
denotes the algebraic closure of k(t) inside the Hahn field k[[tQ]].

For the proof we need some preparation. First, we reformulate the action of (Q/Z)ú on 
the Hahn field. Let k(tQ) be the subfield of the Hahn field generated by the ground field 
k and the elements ts, s œ Q. Then, (Q/Z)ú is isomorphic to the group Aut(k(tQ)/ k(t))
of field automorphisms of k(tQ) that fix k(t) pointwise. An isomorphism is given by

(Q/Z)ú ≠æ Aut(k(tQ)/ k(t)) , ‡ ‘≠æ (ts ‘æ ‡(s)ts) ,

and the homomorphism (5) identifies then under this isomorphism with

Aut(k(tQ)/ k(t)) ≠æ Aut(k[[tQ]]/ k((t))) , Ï ‘≠æ

Q

a
ÿ

sœQ
ast

s
‘æ

ÿ

sœQ
asÏ(ts)

R

b

(note that Ï(ts) is a multiple of ts with some element of kú). For proving the injectivity 
of the map � in Theorem 5.5.1 we need two lemmas.

Lemma 5.5.2. Let q œ QØ0 and let –, –Õ œ k[[tQ]]+. Assume that we have decompositions

– = –0 + –1 , –Õ = –0 + ctq + –Õ
1

with –0, –1, –Õ1 œ k[[tQ]] , c œ k

such that

supp(–0) ™ [0, q] , supp(–1) , supp(–Õ
1
) ™ (q,Œ) , supp(–0) is finite .

If ‹(f(–)) = ‹(f(–Õ)) for all f œ k(t)[y], then –0 + ctq = ‡(–0) for some ‡ œ

Aut(k(tQ)/ k(t)).
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Proof. Let m0 œ k(t)[y] be the minimal polynomial of –0 over k(t). Note that –0 is 
algebraic over k(t) since the support of –0 is a finite set. Denote by –0 = —0, . . . , —r the 
di�erent elements of the set

{‡(–0) | ‡ œ Aut(k(tQ)/ k(t)) } .

As the field extension k(t) ™ k(tQ) is normal, there exist integers k0 > 0 and k1, . . . , kr Ø
0 such that

m0 = (y ≠ —0)k0(y ≠ —1)k1 · · · (y ≠ —r)kr ,

see [7, Theorem 3.20]. Assume towards a contradiction that –0+ctq ”= —j for all 0 Æ j Æ r. 
Let i be an integer with 1 Æ i Æ r. Since ‹(–0 ≠ —i) Æ q, we get

‹(–1 + –0 ≠ —i) = ‹(–0 ≠ —i)

= ‹(ctq + –0 ≠ —i)

= ‹(–Õ
1

+ ctq + –0 ≠ —i)

where we used in the second and third equality the fact that ctq + –0 ”= —i. Since 
–0 = —0 ”= –0 + ctq, the constant c is non-zero. Thus we have ‹(–1) > ‹(–Õ

1
+ ctq). In 

summary we get

‹(m0(–)) = k0‹(–1) +
ÿ

i”=0

ki‹(–1 + –0 ≠ —i)

> k0‹(–Õ1 + ctq) +
ÿ

i”=0

ki‹(–Õ1 + ctq + –0 ≠ —i) = ‹(m0(–Õ))

and thus we arrive at a contradiction. ✷

Lemma 5.5.3. Let –, –Õ œ k[[tQ]]+ and assume that supp(–), supp(–Õ) are contained 
in strictly increasing sequences (see Definition 5.3.7). Then ‹(f(–)) = ‹(f(–Õ)) for all 
f œ k(t)[y] if and only if there exists ‡ œ Aut(k(tQ)/ k(t)) such that –Õ = ‡(–).

Proof. Assume that ‹(f(–)) = ‹(f(–Õ)) for all f œ k(t)[y]. By assumption, there exists 
a strictly increasing sequence 0 < s1 < s2 < . . . in Q such that

– = a0 +
Œÿ

j=1

asj t
sj and –Õ = aÕ

0
+

Œÿ

j=1

aÕsj t
sj .

For i Ø 1 let
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–i = a0 +
i≠1ÿ

j=1

asj t
sj and –Õi = aÕ

0
+

i≠1ÿ

j=1

aÕsj t
sj .

We define inductively ‡1, ‡2, . . . œ Aut(k(tQ)/ k(t)) such that ‡i(–i) = –Õi.
Since ‹(– ≠ a0) = ‹(–Õ ≠ a0) by assumption, it follows that aÕ

0
= a0. Hence ‡1 = id

satisfies ‡1(–1) = –Õ
1
. Assume that ‡i œ Aut(k(tQ)/ k(t)) with ‡i(–i) = –Õi is already 

constructed. For all f œ k(t)[y] we have

‹(f(‡i(–))) = ‹(‡i(f(–))) = ‹(f(–)) = ‹(f(–Õ)) .

Since –Õi = ‡i(–i), Lemma 5.5.2 implies that there exists Ï œ Aut(k(tQ)/ k(t)) such that 
–Õi+1

= Ï(‡i(–i+1)). Thus we can define ‡i+1 = Ï ¶ ‡i.
By construction, ‡i+1 and ‡i coincide on the field

Ki = k ({ ts | s œ supp(–i) }) .

Thus we get a well defined automorphism of the field 
tŒ
i=0

Ki that restricts to ‡i on Ki. 
By the normality of the extension k(t) ™ k(tQ) we can extend this automorphism to an 
automorphism ‡ of k(tQ) and we have ‡(–) = –Õ (see [7, Theorem 3.20]).

The converse of the statement is clear. ✷

Proof of Theorem 5.5.1. Consider the bijections

�1 : K+
≠æ

I
maximal subrings of K[y] with

non-zero conductor that contain K+[y]

J

�2 : S \ K+
≠æ

I
maximal subrings of K[y] with

zero conductor that contain K+[y]

J
,

of Proposition 5.3.9. For – œ K+ and — œ S \ K+ we have

�1(–) fl k[t, t≠1, y] = �(–) and �2(—) fl k[t, t≠1, y] = �(—) .

Using Proposition 5.4.3 and Remark 5.4.2 we see that �1(–) fl k[t, t≠1, y] is a maximal 
subring of k[t, t≠1, y] with non-zero conductor and �2(—) flk[t, t≠1, y] is a maximal subring 
of k[t, t≠1, y] with zero conductor. Thus � is a well-defined map. Using Proposition 5.4.2, 
we see that � is surjective.

For proving the injectivity, let –1, –2 œ S such that the rings A–1 fl k[t, t≠1, y], 
A–2flk[t, t≠1, y] are the same subsets of k[t, t≠1, y]. For i = 1, 2, A–iflk(t)[y] is a maximal 
subring of k(t)[y], see Proposition 5.4.3. By Corollary 5.4.4, we get the equality

A–1 fl k(t)[y] = A–2 fl k(t)[y] .
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Let B = A–1 fl k(t)[y] = A–2 fl k(t)[y]. Let n be the crucial maximal ideal of B and let 
J be the conductor ideal of B in k(t)[y]. With Remark 5.3.5 we get for i = 1, 2

B = { f œ k(t)[y] | Êi(f̄) Ø 0 } and n = { f œ k(t)[y] | Êi(f̄) > 0 } ,

where f̄ denotes the residue class modulo J and Êi denotes the valuation

Êi : Q(k(t)[y]/J) ≠æ Q , g ‘≠æ ‹(g(–i)) .

By [4, Proposition 3.3], (B/J)n is a one-dimensional valuation ring of the field 
Q(k(t)[y]/J) and therefore it is a maximal subring of Q(k(t)[y]/J), see Lemma 2.0.10. 
The description above of B and n implies that (B/J)n is the valuation ring with respect 
to Ê1 and with respect to Ê2. Therefore, the valuations Ê1, Ê2 are the same up to an 
order preserving isomorphism of (Q, +, <). However, since Ê1(t) = 1 = Ê2(t), these val-
uations must then be the same. Thus by Lemma 5.5.3 there exists ‡ œ Aut(k(tQ)/ k(t))
such that –1 = ‡(–2). This proves the injectivity of �. ✷

6. Classification of the maximal k-subalgebras of k[t, t≠1, y]

The goal of this section is to classify all maximal k-subalgebras of k[t, t≠1, y]. In fact, 
we reduce this problem in this section to another classification result, which we will solve 
then in the next section.

Proposition 6.0.4. Let A ™ k[t, t≠1, y] be an extending maximal k-subalgebra. Then, ex-
actly one of the following cases occurs:

i) There exists and automorphism ‡ of k[t, t≠1, y] such that ‡(A) contains k[t, y];
ii) A contains k[t, t≠1].

Proof of Proposition 6.0.4. Note that A satisfies the property P2 in k[t, t≠1, y], see 
Lemma 2.0.9. Since t · t≠1 = 1 œ A, it follows that either t œ A or t≠1

œ A. Assume that 
we are not in case ii), i.e. assume that k[t, t≠1] is not contained in A. By applying an 
appropriate automorphism of k[t, t≠1, y], we can assume that t œ A and hence t≠1 /œ A. 
Therefore we get At = A[t≠1] = k[t, t≠1, y], since A is maximal. This implies that there 
exists an integer k Ø 0 such that tky œ A. Thus the k[t, t≠1]-automorphism

‡ : k[t, t≠1, y] ≠æ k[t, t≠1, y] , y ‘≠æ t≠ky

satisfies y œ ‡(A). Hence we get ‡(A) ´ k[t, y] and therefore we are in case i). ✷

The extending maximal k-subalgebras in case i) of Proposition 6.0.4 are then de-
scribed by Theorem 5.5.1. Thus we are left with the description of the extending maximal 
k-subalgebras in case ii). In fact, they can be characterized in the following way:
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Proposition 6.0.5. There is a bijection

� :

Y
_]

_[

extending maximal
k-subalgebras of k[t, t≠1, y]

that contain k[t, t≠1]

Z
_̂

_\
≠æ

Y
___]

___[

extending maximal
k-subalgebras of k[t, y] that

contain k[t] and t lies not in
the crucial maximal ideal

Z
___̂

___\

given by �(A) = A fl k[t, y].

Proof. Let A be an extending maximal k-subalgebra of k[t, t≠1, y] that contains k[t, t≠1]. 
By Lemma 2.0.11, there exists ⁄ œ kú such that t ≠⁄ lies in the crucial maximal ideal m
of A. Thus At≠⁄ = k[t, t≠1, y]t≠⁄. Hence there exists k Ø 1 such that (t ≠ ⁄)ky œ A and 
thus we get

k[t, t≠1, (t≠ ⁄)ky] ™ A ( k[t, t≠1, y] .

This implies

k[t, (t≠ ⁄)ky] ™ A fl k[t, y] ( k[t, y] .

We claim, that A fl k[t, y] is a maximal subring of k[t, y]. Let therefore A fl k[t, y] ™ B ™

k[t, y] be an intermediate ring. Thus we get

B = Bt≠⁄ flBt ´ k[t, y] flBt ´ B .

One can check that A = (A fl k[t, y])t. Since A is maximal in k[t, t≠1, y], we get either 
Bt = A or Bt = k[t, t≠1, y] and the claim follows. This proves that � is well-defined and 
injective.

Let AÕ be an extending maximal k-subalgebra of k[t, y] that contains k[t] and the 
crucial maximal ideal does not contain t. By Lemma 2.0.6 it follows that AÕt is an ex-
tending maximal k-subalgebra of k[t, t≠1, y] that contains k[t, t≠1]. Moreover, we have 
AÕt fl k[t, y] = A by the maximality of A in k[t, y]. This proves the surjectivity of �. ✷

After this proposition, one is now reduced to the problem of the description of all 
maximal k-subalgebras of k[t, y] that contain k[t].

7. Classification of the maximal k-subalgebras of k[t, y] that contain k[t]

Let M be the set of extending maximal k-subalgebras of k[t, y] that contain k[t]. 
The goal of this section is to describe the set M with the aid of the classification 
result Theorem 5.5.1. For this we introduce a subset N of the maximal k-subalgebras 
of k[t, y, y≠1] that contain k[t, y≠1].
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Remark 7.0.1. If A is an extending maximal k-subalgebra of k[t, y, y≠1] that contains 
k[t, y≠1], then the residue field of the crucial maximal ideal is isomorphic to k, by Re-
mark 5.3.4 and Theorem 5.5.1. Hence there exists a unique ⁄ œ k such that t ≠ ⁄ lies in 
the crucial maximal ideal of A.

Define N to be the set of extending maximal k-subalgebras A of k[t, y, y≠1] that 
contain k[t, y≠1] and such that

A ≠æ k[t, y, y≠1]/(t≠ ⁄) (6)

is surjective where ⁄ denotes the unique element in k such that the crucial maximal ideal 
contains t ≠⁄ (see Remark 7.0.1). Now, we can formulate the main result of this section.

Theorem 7.0.6. The map � : N æM , A ‘æ A fl k[t, y] is bijective.

Remark 7.0.2. As we classified already all maximal subrings of k[t, y, y≠1] that contain 
k[t, y≠1] (see Theorem 5.5.1), Theorem 7.0.6 gives us a description of all extending max-
imal k-subalgebras of k[t, y] that contain a coordinate of k[t, y] (up to automorphisms of 
k[t, y]).

Remark 7.0.3. Lemma 2.0.11 implies the following: If A is an extending maximal 
k-subalgebra of k[t, y] which contains k[t], then there exists a unique ⁄ œ k such that 
t ≠ ⁄ lies in the crucial maximal ideal of A. Thus M is the disjoint union of the sets

M ⁄ = {A œM | t≠ ⁄ lies in the crucial maximal ideal of A } , ⁄ œ k .

By Remark 7.0.1, N is the disjoint union of the sets

N ⁄ = {A œ N | t≠ ⁄ lies in the crucial maximal ideal of A } , ⁄ œ k .

Note that we have canonical bijections

M 0 ‘≠æM ⁄ , A ‘≠æ ‡⁄(A) and N 0 ≠æ N ⁄ , A ‘≠æ ‡⁄(A)

where ‡⁄ is the automorphism of k[t, y, y≠1] given by ‡⁄(t) = t ≠⁄ and ‡⁄(y) = y. Using 
the fact that for all A œM 0 we have

‡⁄(A) fl k[t, y] = ‡⁄(A fl k[t, y]) ,

one is reduced for the proof of Theorem 7.0.6 to proving the following proposition.

Proposition 7.0.7. The map N 0 æM 0, A ‘æ A fl k[t, y] is bijective.

For the proof of Proposition 7.0.7 we need several (technical) lemmas.
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Lemma 7.0.8. Let k[t] ™ Q ( k[t, y] be an intermediate ring that satisfies the P2 property 
in k[t, y] and assume that

Q ≠æ k[t, y]/t k[t, y]

is surjective. If p ™ Q is an ideal that contains t and that does not contain t k[t, y] flQ, 
then there exists h œ Q \ p such that y≠1

œ Qh.

Proof. By assumption, there exists g œ k[t, y] \ y k[t, y] and n Ø 0 such that

tyng œ Q \ p . (7)

Let g0 œ k[t], gÕ œ k[t, y] \ y k[t, y] and r Ø 1 such that g ≠ g0 = yrgÕ. If n = 0, we get

tyrgÕ = tg ≠ tg0 œ Q \ p .

Thus we can and will assume that n Ø 1. Now, choose g œ k[t, y] \ y k[t, y] of minimal 
y-degree such that (7) is satisfied for some n Ø 1. We claim that g œ Q. Otherwise, 
degy(g) > 0 and tyn œ Q, since Q satisfies the P2 property in k[t, y]. In fact, since g is 
of minimal y-degree, we get tyn œ p. Thus we get a contradiction to the fact that

tyn+rgÕ = tyng ≠ tyng0 œ Q \ p and degy(gÕ) < degy(g) .

Let h = tyng œ Q \ p. Since t, g œ Q, it follows that y≠n = tg/h œ Qh. Since 
Q satisfies the property P2 in k[t, y], the localization Qh satisfies the property P2 in 
k[t, y]h = k[t, t≠1, y, y≠1]g. Hence, we get y≠1

œ Qh. ✷

Lemma 7.0.9. Let A œ N 0 and let m be the crucial maximal ideal of A. Then the inclusion 
A fl k[t, y] ™ k[t, y] defines an open immersion

Ï : A2

k ≠æ SpecA fl k[t, y]

on spectra and the complement of the image of Ï consists only of the maximal ideal 
m fl k[t, y] of A fl k[t, y].

Remark 7.0.4. The proof will show the following:

a) the maximal ideal m fl k[t, y] of A fl k[t, y] contains t and does not contain t k[t, y] fl
A fl k[t, y] (see iii) in the proof);

b) the homomorphism A fl k[t, y] æ k[t, y]/t k[t, y] is surjective (see i) in the proof).

Proof of Lemma 7.0.9. Let AÕ = A flk[t, y] and let mÕ = m flk[t, y]. Due to Remark 7.0.1, 
the residue field A/m is isomorphic to k. Hence, mÕ is a maximal ideal of AÕ. We divide 
the proof in several steps.
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i) We claim that Ï induces a closed immersion {0} ◊ A1

k æ VSpec(AÕ)(t). Due to the 
surjection (6), there exists f œ k[t, y, y≠1], a œ A such that y = a + tf . Let f =
f++f≠ where f+

œ k[t, y] and degy(f≠) < 0. We have a +tf≠ œ A and tf+
œ t k[t, y]. 

Thus we get

a+ tf≠ = y ≠ tf+
œ A fl k[t, y] = AÕ .

This implies that

AÕ/tAÕ ≠æ k[t, y]/t k[t, y] = k[y]

is surjective, which implies the claim.
ii) We claim that Ï induces an isomorphism Aúk ◊ A1

k ƒ Spec(AÕ) \ VSpec(AÕ)(t). Since 
t œ m, we have At = k[t, t≠1, y, y≠1] and thus tky œ A for some integer k. This 
implies tky œ AÕ and thus AÕt = k[t, t≠1, y].

iii) We claim that Spec(AÕ) \ Ï(A2

k) = {mÕ}. Using i) and ii) this is equivalent to show 
that mÕ is the only prime ideal of AÕ that contains t and does not contain t k[t, y] flAÕ.
Since m contains t it follows that mÕ contains t. Since there exists no prime ideal 
of k[t, y, y≠1] that lies over m, the surjection (6) implies that m does not contain 
t k[t, y, y≠1] fl A. Hence there exists f œ k[t, y, y≠1] such that tf œ A \ m. Since 
t k[t, y≠1] ™ m, we can even assume that f œ k[t, y]. Hence tf œ AÕ \mÕ and therefore 
mÕ does not contain t k[t, y] flAÕ.
As A ™ k[t, y, y≠1] induces an isomorphism A1

k◊Aúk ƒ Spec(A) \{m} and since t œ m, 
we have

rad(tA) = t k[t, y, y≠1] flA flm .

Intersecting with k[t, y] yields

rad(tAÕ) = t k[t, y] flAÕ flmÕ.

Thus every prime ideal of AÕ that contains t and does not contain t k[t, y] flAÕ must 
be equal to mÕ (note that mÕ is a maximal ideal of AÕ).

iv) We claim that Ï is an open immersion. According to Theorem 5.5.1 and Remark 5.3.5, 
there exists – œ k[[(y≠1)Q]]+ such that

A = { f œ k[y≠1, y, t] | ‹(f(–)) Ø 0 } .

Note that y≠1 corresponds to the t in Theorem 5.5.1 and t corresponds to the y
in Theorem 5.5.1. In particular we have ‹(y≠1) = 1. If – = 0, then A = k[y≠1] +
t k[y≠1, y, t] and thus (6) is not surjective. Hence – ”= 0. Let ‹(–) = a/b for integers 
a Ø 0, b > 0 and let ⁄ œ kú be the coe�cient of y≠a/b of –. There exists k Ø 1 such 
that
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y(⁄b ≠ tbya)k œ AÕ . (8)

Indeed, ‹(⁄b ≠ –bya) > 0, since – is equal to ⁄(y≠1)a/b plus higher oder terms in 
y≠1. Hence, there exists k Ø 1 such that

‹(y(⁄b ≠ –bya)k) = ≠1 + k‹(⁄b ≠ –bya) Ø 0 ,

which yields (8).
As A satisfies the property P2 in k[y≠1, y, t] (see Lemma 2.0.9), it follows that AÕ
satisfies the property P2 in k[y, t]. Since y /œ AÕ we get thus ⁄b ≠ tbya œ AÕ by (8). 
Again by (8) we have y œ AÕ⁄b≠tbya , which implies

AÕ⁄b≠tbya = k[t, y]⁄b≠tbya .

As the zero set of ⁄b ≠ tbya and of t in A2

k = Spec k[t, y] are disjoint, it follows with 
ii) that Ï : A2

k æ Spec(AÕ) is locally an open immersion. However, i) and ii) imply 
that Ï is injective and thus Ï is an open immersion. ✷

Lemma 7.0.10. Let A œ N 0 and let m be the crucial maximal ideal of A. Moreover, we 
denote AÕ = A fl k[t, y] and mÕ = m fl k[t, y]. Then the following holds:

a) AÕ is a maximal subring of k[t, y];
b) mÕ is the crucial maximal ideal of AÕ;
c) For all h œ AÕ \ mÕ such that y≠1

œ AÕh we have

A = AÕh fl k[t, y, y≠1] and AÕh = Ah .

Moreover, there exist h œ AÕ \ mÕ with y≠1
œ AÕh.

Proof of Lemma 7.0.10. As A satisfies the P2 property in k[t, y, y≠1], AÕ satisfies the P2

property in k[t, y]. By Remark 7.0.4, mÕ contains t and does not contain t k[t, y] flAÕ. More-
over, the homomorphism AÕ æ k[t, y]/t k[t, y] is surjective according to Remark 7.0.4. 
Let h œ AÕ \ mÕ such that y≠1

œ AÕh (by Lemma 7.0.8 there exists such an h). We claim 
that

AÕh = Ah . (9)

Indeed, if a = a+ + a≠ œ A and a+
œ k[t, y], degy(a≠) < 0, then we get

a+ = a≠ a≠ œ A fl k[t, y] = AÕ .

However, a≠ œ k[t, y≠1] ™ AÕh and thus a = a+ + a≠ œ AÕh, which implies the claim. 
Using Lemma 2.0.6 and the fact that h œ AÕ \ mÕ, the claim implies that
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AÕh ( k[t, y, y≠1]h = k[t, y]h

is an extending maximal subring. Now, let AÕ ™ B ( k[t, y] be an intermediate ring. Since 
Ï : A2

k æ Spec(AÕ) is an open immersion and Spec(AÕ) \Ï(A2

k) = {mÕ} (see Lemma 7.0.9), 
it follows that mÕ lies in the image of the morphism Spec(B) æ Spec(AÕ). Hence, there 
exists a prime ideal in B that lies over mÕ. Since h œ AÕ \ mÕ, it follows that there exists 
a prime ideal of Bh that lies over mÕAÕh. In particular, Bh ”= k[t, y]h. By the maximality 
of AÕh in k[t, y]h we get AÕh = Bh. Thus

B ™ Bh fl k[t, y] = AÕh fl k[t, y] = Ah fl k[t, y] = AÕ

where the last equality follows from the fact that

Ah fl k[t, y, y≠1] = A (10)

(note that y /œ Ah, since otherwise yhk œ A flk[t, y] = AÕ for a certain integer k and thus 
y œ AÕh, contradicting the maximality of AÕh in k[t, y]h). This proves the maximality of 
AÕ in k[t, y], which is a). Equations (9) and (10) say, that c) is satisfied. Statement b) is 
a consequence of statement a) and Lemma 7.0.9. ✷

Proof of Proposition 7.0.7. From Lemma 7.0.10 a), b) it follows that N 0 æ M 0 is 
well-defined. From Lemma 7.0.10 c) it follows that N 0 æM 0 is injective.

Now, we prove the surjectivity. Let Q œM 0. We have the following inclusion

Q/t k[t, y] flQ ™ k[t, y]/t k[t, y] = k[y] . (11)

On spectra, this map yields an open immersion, since Spec k[t, y] æ SpecQ is an open 
immersion. Hence, (11) is a finite ring extension, and thus (11) must be an equality. This 
implies that the crucial maximal ideal p of Q does not contain t k[t, y] fl Q (note that 
SpecQ \ Spec k[t, y] = {p}). By assumption, t œ p. Moreover, Q satisfies the P2 property 
in k[t, y] by Lemma 2.0.9. By Lemma 7.0.8 there exists h œ Q \ p such that y≠1

œ Qh. 
Thus, Lemma 2.0.6 implies that

Qh ( k[t, y]h = k[t, y, y≠1]h

is an extending maximal subring. Since y≠1
œ Qh, the ring

QÕ = Qh fl k[t, y, y≠1] ( k[t, y, y≠1]

contains k[t, y≠1]. Now, we divide the proof in several steps.

i) We claim that QÕ is a maximal subring of k[t, y, y≠1]. Therefore, take an intermediate 
ring QÕ ™ B ( k[t, y, y≠1]. By the maximality of Q in k[t, y] we get Q = B fl k[t, y]
and hence
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Qh = (B fl k[t, y])h .

If y would be in Bh, then y would be in (B fl k[t, y])h = Qh, a contradiction to the 
fact that Qh ”= k[t, y, y≠1]h. Hence we have Bh ”= k[t, y, y≠1]h. The maximality of 
Qh in k[t, y, y≠1]h implies that Bh = Qh. Hence, we have

B ™ Bh fl k[t, y, y≠1] = QÕ ™ B ,

which proves the maximality of QÕ in k[t, y, y≠1].
ii) We claim that pQhflk[t, y, y≠1] is the crucial maximal ideal of QÕ. Clearly, pQh is the 

crucial maximal ideal of Qh. If pQh fl k[t, y, y≠1] would not be the crucial maximal 
ideal of QÕ, then SpecQh æ SpecQÕ would send pQh to a point of the open subset 
Spec k[t, y, y≠1] of SpecQÕ. This would imply that k[t, y, y≠1] ™ Qh, a contradiction.

iii) We claim that QÕ œ N 0. By ii), pQh fl k[t, y, y≠1] is the crucial maximal ideal of QÕ
and it contains t. By the equality (11) we get y = q + tf for some q œ Q, f œ k[t, y]. 
Since Q ™ QÕ and k[t, y≠1] ™ QÕ, the homomorphism

QÕ ≠æ k[t, y, y≠1]/t k[t, y, y≠1]

is surjective. With i) we get QÕ œ N 0.
iv) We claim that QÕflk[t, y] = Q. This follows from the fact that Q ™ QÕflk[t, y] ( k[t, y]

and from the maximality of Q in k[t, y].

This proves the surjectivity. ✷

Let us interpret the map N 0 æM 0, A ‘æ A fl k[t, y] in geometric terms. For this we 
introduce the following terminology.

Definition 7.0.5. We call a dominant morphism Y æ X of a�ne schemes an (extending) 
minimal morphism, if �(X, OX) is an (extending) maximal subring of �(Y, OY ). More-
over, the point in X which corresponds to the crucial maximal ideal of �(X, OX) we call 
the crucial point of X.

Let us denote by pr: A2

k æ A1

k the projection (t, y) ‘æ t. The set M 0 corresponds to 
the extending minimal morphisms Â : A2

k æ X such that pr: A2

k æ A1

k factorizes as

A2

k
Â
≠æ X ≠æ A1

k ,

and such that the crucial point of X is sent onto 0 œ A1

k via X æ A1

k. The set N 0

corresponds to the extending minimal morphisms Ï : A1

k ◊ Aúk æ Y such that the open 
immersion A1

k ◊ Aúk æ A2

k, (t, y) ‘æ (t, y≠1) factorizes as
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A1

k ◊ Aúk
Ï
≠æ Y ≠æ A2

k

and such that the image of {0} ◊Aúk under Ï is closed in Y .

Proposition 7.0.11. Let Ï : A1

k◊Aúk æ Y be an extending minimal morphism correspond-
ing to an element A œ N 0. Then

SpecA fl k[t, y] = Y fiÏ A2

k

where Y fiÏ A2

k denotes the glueing via A2

k
‡
Ω≠ A1

k ◊ Aúk
Ï
≠æ Y where ‡ is the open 

immersion defined by ‡(t, y) = (t, y).

Proof. By Theorem 7.0.6 we have the following commutative diagram

A1

k ◊ Aúk

‡

Ï

extend. minimal mor.

Y

A1

k ◊ A1

k
extend. minimal mor.

SpecA fl k[t, y] .

By Lemma 7.0.10, there exists a regular function h on SpecA fl k[t, y] that does not 
vanish at the crucial point of SpecA fl k[t, y] and we have

Ah = (A fl k[t, y])h .

Thus Y æ SpecA fl k[t, y] restricts to an open immersion on Yh. By the commutativity 
of the diagram, it follows that Y æ SpecA fl k[t, y] restricts to an open immersion on 
Ï(A1

k◊Aúk). By Lemma 7.0.10, the morphism Y æ SpecA flk[t, y] maps the crucial point 
of Y to that one of SpecA flk[t, y]. Hence, Yh contains the crucial point of Y . In summary, 
we get that Y æ SpecA flk[t, y] is an open immersion. Thus all morphisms in the diagram 
above are open immersions. Moreover, Ï induces an isomorphism A1

k◊Aúk æ Y flA1

k◊A1

k
where we consider Y flA1

k◊A1

k as an open subset of SpecA flk[t, y]. Hence SpecA flk[t, y]
is the claimed glueing. ✷
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Abstract. We prove that any two algebraic embeddings C → SLn(C) are the same up
to an algebraic automorphism of SLn(C), provided that n is at least 3. Moreover, we
prove that two algebraic embeddings C → SL2(C) are the same up to a holomorphic
automorphism of SL2(C).

1. Introduction

There are many results concerning algebraic embeddings of some variety into
the affine space Cn. Let me recall two of them. Any two algebraic embeddings of a
smooth affine variety X into Cn are the same up to an algebraic automorphism of
Cn, provided that n > 2 dimX+1. This result is due to Nori, Srinivas [Sri91], and
Kaliman [Kal91]. If one relaxes the condition that the automorphism of Cn must
be algebraic, Kaliman [Kal13] and independently, Feller and the author [FS14]
proved the following improvement: Any two algebraic embeddings of a smooth
affine variety X into Cn are the same up to a holomorphic automorphism of Cn,
provided that n > 2 dimX .

As a further development of these results, we study algebraic embeddings of
C into SLn. This article can be seen as a first example to understand algebraic
embeddings of a curve into an arbitrary affine algebraic variety with a large auto-
morphism group.

In dimension zero, Arzhantsev, Flenner, Kaliman, Kutzschebauch, and Zaiden-
berg proved that two embeddings of a finite set into any irreducible smooth affine
flexible variety Z are the same up to an algebraic automorphism of Z, provided
that dimZ > 1 [AFK+13]. Our main result is based on this work.

Main Theorem (cf. Theorems 4 and 7). Let f, g : C → SLn be algebraic embed-
dings. If n ≥ 3, then f and g are the same up to an algebraic automorphism of
SLn and if n = 2, then f and g are the same up to a holomorphic automorphism
of SLn.
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To the author’s knowledge it is not known whether all algebraic embeddings
C → SL2 are the same up to an algebraic automorphism of SL2. Also for algebraic
embeddings C → C3, it is an open problem whether all these embeddings are the
same up to an algebraic automorphism of C3; see [Sha92] for potential examples
that are not equivalent to linear embeddings.

In fact, in a certain sense the class of algebraic embeddings C → SL2 is as big as
the class of algebraic embeddings C → C3. More precisely, the following holds. If
g : C → C3, t #→ (g1(t), g2(t), g3(t)) is an algebraic embedding, then one can apply
a (tame) algebraic automorphism of C3 such that afterwards the polynomial g2
divides g1g3 − 1 and thus the following map is an algebraic embedding

C → SL2, t #→
(
g1(t) (g1(t)g3(t)− 1)/g2(t)
g2(t) g3(t)

)
.

The construction of the claimed (tame) algebraic automorphism of C3 can be
seen as follows. First, one can apply a map of the form (x, y, z) #→ (x, y + λ, z)
such that afterwards the polynomial g2 has only finitely many simple roots, say
t1, . . . , tn. Now, it is enough to apply some (tame) algebraic automorphism of the
form (x, y, z) #→ (ϕ1(x, z), y,ϕ3(x, z)), which sends the points g(t1), . . . , g(tn) to
the curve {xz = 1, y = 0} ⊆ C3; see [KZ99, Lemma 5.5].

The proof of the main theorem gives a method to construct the claimed auto-
morphism. However, the proof does not produce a computer algorithm that would
give such an automorphism. This is because the construction in the proof depends
on certain zero sets of polynomials.

Acknowledgements. The author would like to thank Peter Feller for many fruit-
ful and stimulating discussions. Many thanks go also to the referees for their
helpful comments.

2. Algebraic automorphisms of SLn

Let us introduce first some notation. For i, j in {1, . . . , n}, we denote the ijth
entry of a matrix X ∈ SLn by Xij . The projection SLn → C, X → Xij we denote
by xij .

In the first lemma, we list algebraic automorphisms of SLn that we use con-
stantly. The proof is straight forward.

Lemma 1. Let n ≥ 2 and let i ̸= j be integers in {1, . . . , n}. Then, for every
polynomial p in the functions xkl, k ̸= i, the map

SLn → SLn, X #→ Eij(p(X)) ·X

is an automorphism, where Eij(a) denotes the elementary matrix with ijth entry
equal to a. Similarly, for every polynomial q in the functions xkl, l ̸= j, the map

SLn → SLn, X #→ X ·Eij(q(X))

is an automorphism.
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Recall that the group of tame automorphisms of Cn is the subgroup of the
automorphisms of Cn generated by the affine linear maps and the elementary
automorphisms, i.e., the automorphisms of the form

(x1, . . . , xn) #→ (x1, . . . , xi + hi(x1, . . . , x̂i, . . . , xn), . . . , xn),

where hi is a polynomial not depending on xi. In the next result we list automor-
phisms of Cn that can be lifted to automorphisms of SLn via the projection to the
first column π1 : SLn → Cn, i.e., automorphisms ψ of Cn such that there exists
an automorphism Ψ of SLn (depending on ψ) that makes the following diagram
commutative:

SLn

π1

!!

Ψ "" SLn

π1

!!
Cn ψ "" Cn .

Lemma 2. Let n ≥ 2. Every tame automorphism of Cn that preserves the origin
can be lifted to some automorphism of SLn via π1 : SLn → Cn.

Proof. First, remark that the group of tame automorphisms of Cn that preserve the
origin is generated by the linear group GLn and by the elementary automorphisms
that preserve the origin. For every A ∈ GLn, the linear map x #→ A · x of Cn can
be lifted to the automorphism

SLn → SLn, X #→ A ·X · diag
(
1, . . . , 1, (detA)−1

)

via π1, where diag(λ1, . . . ,λn) denotes the n × n-diagonal matrix with entries
λ1, . . . ,λn. Let ψ be an elementary automorphism of Cn that preserves the origin,
i.e., there exist i ∈ {1, . . . , n} and polynomials p1, . . . , p̂i, . . . , pn in the variables
x1, . . . , x̂i, . . . , xn such that

ψ(x1, . . . , xn) =

(
x1, . . . , xi +

∑

j ̸=i

xjpj(x1, . . . , x̂i, . . . , xn), . . . , xn

)
.

The automorphism ψ can be lifted to some automorphism of SLn, e.g., to the
automorphism

SLn → SLn, X #→
(∏

j ̸=i

Eij(pj(X11, . . . , X̂i1, . . . , Xn1))

)
·X ;

cf. also Lemma 1. This finishes the proof. !

3. A generic projection result

Let V be an algebraic variety. We say that a statement is true for generic v ∈ V
if there exists a Zariski dense open subset U ⊆ V such that the statement is true
for all v ∈ U .
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Lemma 3. Let n ≥ 3. If f : C → SLn is an algebraic embedding such that the
matrices f(0)− f(1) and f ′(0) have maximal rank, then, for generic A ∈ Mn,n−1

the map

C f−→ SLn
πA−−→ Mn,n−1

is an algebraic embedding, where Mn,n−1 denotes the space of n× (n− 1)-matrices
and πA is given by X #→ X · A.
Proof. Let ∆ ⊆ C2 be the diagonal. Consider the following (Zariski) locally closed
subsets of C2 \∆:

Ci = { (t, r) ∈ C2 \∆ | rank(f(t)− f(r)) = i }.

Consider for every A ∈ Mn,n−1 the composition

Ci → C2 \∆ (t,r) %→f(t)−f(r)−−−−−−−−−−→ Mn,n
πA−−→ Mn,n−1 . (∗)

This map is never zero for generic A ∈ Mn,n−1; indeed:

• If 1 < i ≤ n, then (∗) is never zero provided that A ∈ Mn,n−1 has maximal
rank.

• If i = 1, then dimC1 ≤ 1, since dimCn = 2 (note that f(0)−f(1) has maximal
rank). For (t, r) ∈ C1, let Z(t,r) = ker(f(t)−f(r)). Since dimC1 ≤ 1 < n−1,
a generic (n − 1)-dimensional subspace of Cn is different from Z(t,r) for all
(t, r) ∈ C1. Thus, for generic A the composition (∗) is never zero.

Clearly, C0 = ∅. Hence, we proved that the composition πA ◦ f is injective for
generic A ∈ Mn,n−1. Clearly, πA ◦ f is proper for generic A ∈ Mn,n−1.

For the immersivity, we have to show for generic A ∈ Mn,n−1 that

f ′(t) ·A ̸= 0 (")

for all t ∈ C. Since rank f ′(0) = n, the set U = { t ∈ C | rank f ′(t) = n } is Zariski
dense and open in C. Thus (") is satisfied for all A ̸= 0 and for all t ∈ U . Since
f is immersive, we have f ′(t) ̸= 0 for all t ∈ C. This implies that for generic A we
have f ′(t) · A ̸= 0 for all t ∈ C. !

4. Algebraic embeddings of C into SLn for n ≥ 3

Theorem 4. For n ≥ 3, any two algebraic embeddings of C into SLn are the same
up to an algebraic automorphism of SLn.

Lemma 5. Let n ≥ 2. Assume that f : C → SLn is an algebraic embedding such
that

C f−→ SLn
πn−1−−−→ Mn,n−1

is an algebraic embedding, where πn−1 denotes the projection to the first n − 1
columns. Then there exists an algebraic automorphism ϕ of SLn such that

C f−→ SLn
ϕ−→ SLn

π1−→ Cn

is given by t #→ (1, 0, . . . , 0, t)T .
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Proof of Lemma 5. Assume that n = 2. Since two algebraic embeddings of C
into C2 are the same up to an algebraic automorphism of C2 (Abhyankar–Moh–
Suzuki Theorem; see [AM75], [Suz74]), one can see that there exists an algebraic
automorphism of C2 that preserves the origin and changes the embedding π1 ◦
f : C → C2 to the embedding C → C2, t #→ (1, t). Using the fact that every
algebraic automorphism of C2 is tame (Jung’s Theorem, see [Jun42]), it follows
from Lemma 2 that there exists an algebraic automorphism ϕ of SL2 such that
π1 ◦ ϕ ◦ f(t) = (1, t).

Assume that n ≥ 3. Let A(t) = πn−1 ◦ f(t). Since the kernel of A(t)T is
one-dimensional for all t, the following affine variety

E = { (v, t) ∈ Cn × C | A(t)T · v = 0 }

defines the total space of a line bundle over C with projection map (v, t) #→ t. Since
n ≥ 3 > dimE, this implies that there exists a vector v ∈ Cn such that vT · A(t)
is non-zero for all t ∈ C. Now, complete vT to a matrix B ∈ SLn with last row
equal to vT . Since n ≥ 3, there exists a permutation matrix P ∈ SLn, with first
column equal to (0, . . . , 0, 1)T . After applying the automorphism X #→ B ·X · P
of SLn, we can assume that

i) the map C → Mn,n−1 given by t #→ (fij(t))1≤i≤n,2≤j≤n is an algebraic
embedding and

ii) the vector (fn2(t), fn3(t), . . . , fnn(t)) is non-zero for all t ∈ C,
where fij(t) denotes the ijth entry of the matrix f(t). By ii), there exist polyno-
mials p̃k ∈ C[t], 2 ≤ k ≤ n such that

n∑

k=2

fnk(t)p̃k(t) = t− fn1(t).

By i), there exist polynomials pk in the functions xij with 1 ≤ i ≤ n, 2 ≤ j ≤ n
such that p̃k(t) = pk(. . . , fij(t), . . .). Let ϕ : SLn → SLn be the automorphism

X #→ X ·

⎛

⎜⎜⎜⎝

1
p2(X) 1

...
. . .

pn(X) 1

⎞

⎟⎟⎟⎠
.

Clearly, the left down corner of the matrix ϕ ◦ f(t) is equal to t. Now, one can
construct with the aid of Lemma 2 an automorphism ψ of SLn such that the first
column of ψ ◦ ϕ ◦ f(t) is equal to (1, 0, . . . , 0, t)T . This proves the lemma. !
Lemma 6. Let n ≥ 2 and let f : C → SLn be an algebraic embedding such that
the first column of f(t) is equal to (1, 0, . . . , 0, t)T . Then f is the same as

C → SLn, t #→ En1(t)

up to an algebraic automorphism of SLn, where En1(t) denotes the elementary
matrix with left down corner equal to t.
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Proof of Lemma 6. Let ψ be the automorphism of SLn defined by

X #→ X · f(Xn1)
−1 ·En1(Xn1)

where Xij denotes the ijth entry of the matrix X . Now, one can easily check that
ψ ◦ f is the embedding t #→ En1(t). !
Proof of Theorem 4. Start with an algebraic embedding f : C → SLn. As SLn is
flexible, for any finite set Z in SLn there exists an automorphism of SLn which
fixes Z and has prescribed volume preserving differentials in the points of Z;
see [AFK+13, Thm. 4.14 and Rem. 4.16]. Using the fact that Aut(SLn) acts 2-
transitively on SLn, see, e.g., [AFK+13, Thm. 0.1], we can assume that

det(f(0)− f(1)) ̸= 0 and det f ′(0) ̸= 0.

Since n ≥ 3, by Lemma 3 there exists a matrix A in Mn,n−1 of maximal rank, such
that t #→ f(t) ·A defines an algebraic embedding of C into Mn,n−1. Extend A with
an additional column v ∈ Cn to an n× n-matrix (A|v) of determinant one. After
applying the algebraic automorphism X → X · (A|v) of SLn, we can assume that
the composition

C f−→ SLn
πn−1−−−→ Mn,n−1

is an algebraic embedding. After an algebraic coordinate change of SLn, we can
assume that the first column of f(t) is equal to (1, 0, . . . , 0, t)T by Lemma 5. Thus,
up to an algebraic automorphism of SLn, f is the same as t #→ En1(t) by Lemma 6.
This finishes the proof. !

5. Algebraic embeddings of C into SL2

Theorem 7. Any two algebraic embeddings C → SL2 are the same up to a holo-
morphic automorphism of SL2.

Remark 1. Since for all (a, b) ∈ C∗ × C the embeddings

t #→
(
1 t
0 1

)
and t #→

(
1 at+ b
0 1

)

are the same up to an algebraic automorphism of SL2, it is enough to prove The-
orem 7 up to an algebraic reparametrization of the embeddings C → SL2.

For the proof of Theorem 7, we need the following rather technical result, which
enables us to bring an arbitrary algebraic embedding C → SL2 in a “nice” position.

Proposition 8. Let f : C → SL2 be an algebraic embedding. Then there exists a
holomorphic automorphism ϕ of SL2 and a constant a ∈ C such that the embedding

C → SL2, t #→
(
g11(t) g12(t)
g21(t) g22(t)

)
:= (ϕ ◦ f)(t+ a)

satisfies:

530



ALGEBRAIC EMBEDDINGS OF C INTO SLn(C)

(1) for all t ∈ g−1
11 (0) we have g12(t) = t;

(2) the map t #→ (g11(t), g21(t)) is a proper, bimeromorphic immersion such
that the image Γ has only simple normal crossing singularities;

(3) the singularities of Γ are distinguished by the first coordinate of C2;
(4) the line {0} × C intersects Γ transversally; in particular, Γ is smooth in

every point of Γ ∩ {0}×C;
(5) the map t #→ g11(t) is polynomial.

The proof of this proposition uses the following easy result which is a direct
application of the Baire category theorem:

Lemma 9. Let H(Cn) be the Fréchet space of holomorphic functions on Cn with
the compact-open topology. If S is the countable union of closed proper subspaces
of H(Cn), then H(Cn) \ S is dense in H(Cn).

Let p ∈ Cn and let i ∈ {1, . . . , n}. In our proof of Proposition 8 we use the fact
that the non-zero linear functionals on H(Cn)

h #→ h(p) and h #→ Dxih(p)

are continuous and thus their kernels are proper closed subspaces of H(Cn).
Additionally, we use for the proof of Proposition 8 the following, again rather

technical result:

Lemma 10. Let f : C → SL2 be an algebraic embedding. Then there exists an
algebraic automorphism ϕ of SL2 such that the embedding

C → SL2, t #→ (ϕ ◦ f)(t) =
(
x(t) y(t)
z(t) w(t)

)

satisfies:

a) the maps t #→ x(t) and t #→ w(t) are non-constant polynomials;
b) the maps t #→ (x(t), z(t)) and t #→ (x(t), w(t)) are bimeromorphic and im-

mersive;
c) the singularities of the image of t #→ (x(t), z(t)) lie inside (C∗)2;
d) the image of t #→ (x(t), z(t)) intersects {0}×C transversally.

Proof of Lemma 10. Clearly, we can assume that f(0) is the identity matrix E2 ∈
SL2. By [AFK+13, Thm. 4.14 and Rem. 4.16], there exists an algebraic automor-
phism of SL2 which fixes E2 and maps the tangent vector f ′(0) ∈ TE2 SL2 =
Lie SL2 to the matrix

F2 =

(
1 0
0 −1

)
∈ Lie SL2 .

Thus we can assume that f(0) = E2 and f ′(0) = F2. In particular, property
a) is satisfied. Since f ′(t) is never zero and since f ′(t) is invertible for generic t
(note that f ′(0) = F2 is invertible) it follows that f ′(t) · v is non-zero for generic
v ∈ C2 \ {(0, 0)}. For generic µ ∈ C, this implies that the embedding

t #→ f(t) ·
(
1 0
µ 1

)
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still satisfies property a) and the projection to the first column gives an immersive
map. Let us fix such a µ. For generic λ ∈ C the embedding

t #→ f(t) ·
(
1 0
µ 1

)
·
(
1 λ
0 1

)

still satisfies property a) and the projection to the first column and the projection
to the diagonal give immersive maps. Since any immersive morphism of C to an
irreducible affine curve is birational, we can assume that f satisfies properties a)
and b). Now, for generic a ∈ C the embedding

t #→
(
1 0
a 1

)
· f(t) (#)

satisfies properties a) and b) and the singularities of the image of the projection
to the first column lie inside C × C∗. Let us fix such an a. For generic b ∈ C the
embedding

t #→
(
1 b
0 1

)
·
(
1 0
a 1

)
· f(t) ($)

satisfies now the properties a) to c). Let (p(t), q(t))T be the first column of the
embedding (#). Then the top left entry of the embedding ($) is given by p(t) +
bq(t). Now, if ($) satisfies properties a) to c), then ($) satisfies property d) if and
only if p(t) + bq(t) has only simple roots. However, this last condition is satisfied
for generic b, since p(t) + bq(t) has only simple roots if and only if for all t the
vector (1, b)T does not lie in the kernel of the matrix

(
p(t) q(t)
p′(t) q′(t)

)

and since this last matrix is invertible for generic t and never vanishes. This finishes
the proof. !
Proof of Proposition 8. Using Lemma 10 we can assume that f satisfies the prop-
erties a) to d) of Lemma 10. As a consequence of b) and c) we get that the map
t #→ (x(t), z(t), w(t)) is a proper holomorphic embedding.

Let t1, . . . , tn be the roots of x(t) = 0 (which are simple according to property
d)). After a reparametrization of f of the form t #→ t + a one can assume that
w(ti) ̸= w(tj) for all i ̸= j and ti ̸= 0 for all i. Let ai ∈ C such that e−ai = −tiz(ti)
and let b : C → C be a polynomial map such that b(w(ti)) = ai and b′(w(t)) = 0
for all t with x′(t) = 0. After applying the holomorphic automorphism

SL2 → SL2,

(
x y
z w

)
#→

(
x e−b(w)y

eb(w)z w

)

we can assume that the embedding f satisfies y(ti) = ti for all i, and f still satisfies
the properties a) to d).

Let ρ be the embedding t #→ (x(t), y(t), z(t)). Fix x0 ̸= 0 such that

I) z(s) ̸= 0 and x′(s) ̸= 0 for all s ∈ x−1(x0) and
II) the maps t #→ z(t) and t #→ w(t) are injective on x−1(x0).
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Let {s1, . . . , sn} = x−1(x0). With the aid of Lemma 9 one can see that there exists
a holomorphic function c : C2 → C that satisfies the following:

i) for all (x, z, w) ̸= (x, z, w′) ∈ ρ(C) we have c(x,w) ̸= c(x,w′);
ii) for all t with x′(t) = 0, the partial derivative Dwc vanishes in (x(t), w(t));
iii) for all i = 1, . . . , n we have c(0, w(ti)) = 0;
iv) for all integers k, q and for all 2-element sets {i, j} ̸= {l, p} we have

[
log z(sl)−log z(sp)+2πiq

]
·
[
c(x0, w(sj))−c(x0, w(si))

]

̸=
[
log z(si)−log z(sj)+2πik

]
·
[
c(x0, w(sp))−c(x0, w(sl))

]
;

v) for all integers k and for all i ̸= j we have

[
logz(si)−log z(sj)+2πik

]
·
[
x′(si)c(x,w)

′(sj)−x′(sj)c(x,w)
′(si)

]

̸=
[
z′(si)x

′(sj)/z(si)−z′(sj)x
′(si)/z(sj)

]
·
[
c(x0, w(sj))−c(x0, w(si))

]
.

Let V ⊆ C∗ be the largest subset such that for all x0 ∈ V the properties I) and II)
are satisfied. By property a), the complement C\V is a closed discrete (countable)
subset of C. The inequalities in iv) and v) are locally holomorphic in x0 ∈ V after
a local choice of sections s1, . . . , sn of the covering x−1(V ) → V and a local choice
of the branches of the logarithms. Since V is path-connected, one can now deduce
that there exists a subset U ⊆ V such that C \ U is countable and for all x0 ∈ U
the properties iv) and v) are satisfied.

According to i) and c) there exists λ ∈ C∗ such that for all x1 ∈ C \U we have
the following: If (x1, z, w) ̸= (x1, z′, w′) ∈ ρ(C), then eλc(x1,w)z ̸= eλc(x1,w

′)z′.
Now, let ϕ be the following holomorphic automorphism

SL2 → SL2,

(
x y
z w

)
#→

(
x e−λc(x,w)y

eλc(x,w)z w

)

and let g = ϕ◦f . According to iii), g satisfies property (1) of the proposition. Prop-
erty ii) implies that t #→ (g11(t), g21(t)) is immersive. Clearly, t #→ (g11(t), g21(t)) is
proper and g satisfies property (5) of the proposition. By iii), it follows that g satis-
fies property (4) of the proposition and thus t #→ (g11(t), g21(t)) is bimeromorphic.
By the choice of λ, it follows for x1 /∈ U that g21(t) ̸= g21(t′) for all t ̸= t′ ∈ x−1(x1).
Since all x0 ∈ U satisfy iv) and v), the image of t #→ (g11(t), g21(t)) has only sim-
ple normal crossings, which have distinct first coordinates in C2. This implies
properties (2) and (3) of the proposition. !
Proof of Theorem 7. Let f : C → SL2 be an algebraic embedding. We will prove
that up to a holomorphic automorphism of SL2 and up to an algebraic reparametri-
zation, f is the same as the standard embedding t #→ E12(t).

After applying a holomorphic automorphism of SL2 and performing an alge-
braic reparametrization we can assume that f satisfies properties (1) to (5) of
Proposition 8. We denote

f(t) =

(
x(t) y(t)
z(t) w(t)

)
.
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As usual, π1 : SL2 → C2 denotes the projection onto the first column. Let S be
the (countable) closed discrete set of points s ∈ C2 \ {0} such that (π1 ◦ f)−1(s) =
{s1, s2} with s1 ̸= s2; see property (2). For every s in S, it holds that y(s1) ≠ y(s2),
since f is an embedding and since all simple normal crossings of the image of π1 ◦f
lie inside C∗ × C due to property (4). Thus, we can choose as ∈ C such that

s1 − easy(s1) = s2 − easy(s2).

Let ψ1 : C → C be a holomorphic function with ψ1(0) = 0 such that for all s ∈ S
we have ψ1(x(s1)) = as. This function exists, since x(s1) = x(s2) ̸= 0 for all
s ∈ S (by property (4)), since x((π1 ◦ f)−1(S)) is a closed analytic subset of C (by
property (5)), and since x(s1) ̸= x(s′1) for distinct s, s

′ of S (by property (3)). Let
α1 be the holomorphic automorphism of SL2 defined by

α1

(
x y
z w

)
=

(
x eψ1(x)y

e−ψ1(x)z w

)
.

By composing f with α1, we can assume that s1− y(s1) = s2− y(s2) for all s ∈ S.
The embedding f still satisfies the properties (1) to (5).

Let Γ ⊂ C2 be the image of π1 ◦ f : C → C2. By Remmert’s proper mapping
theorem [Rem57, Satz 23], Γ is a closed analytic subvariety of C2. Now, using that
π1 ◦ f is immersive and Γ has only simple normal crossings, we get a holomorphic
factorization

C

t%→t−y(t) # #❄
❄❄

❄❄
❄❄

❄
π1◦f " " Γ

e

!!
C .

Using properties (1) and (4), it follows that the map

ẽ : Γ → C, (x, z) #→ e(x, z)

x

is holomorphic. Using Cartan’s Theorem B [Car53, Thm. B], we can extend ẽ to a
holomorphic map ψ2 : C2 → C. Let α2 be the holomorphic automorphism of SL2

defined by

α2

(
x y
z w

)
=

(
x y + xψ2(x, z)
z w + zψ2(x, z)

)
.

After applying the automorphism α2 to f we can assume that y(t) = t. This
implies that x(0)w(0) = 1. Let p, q be the holomorphic functions such that p(t)t =
x(t)−x(0) and q(t)t = w(t)−w(0). After applying the holomorphic automorphism

(
x y
z w

)
#→

(
w(0) 0
0 x(0)

)(
1 0

−q(y) 1

)(
x y
z w

)(
1 0

−p(y) 1

)

we can additionally assume that w(t) = x(t) = 1, which implies z(t) = 0. The
statement follows now from Remark 1. !
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