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Chapter 1

Introduction

It is a fundamental problem in mathematics to embed geometric objects into
others and to study these embeddings. Fundamental guiding questions for geo-
metric objects X, Y in this context are the following:

(A) (Existence) Does there exist an embedding of X into Y'?

(B) (Equivalence) Are two embeddings f,g: X < Y related by some auto-
morphism of the ambient space Y7 More formally, having two embeddings
f,9: X — Y, one may ask for an automorphism ¢ of Y such that the
following diagram commutes:

|

(f/\'
X

T v

The study of these questions has a long history. We will first briefly address
some classical results concerning the existence of embeddings into the euclidean
(projective) space in different contexts; this small survey is by no means com-
plete.

A starting point of these embedding questions are the results obtained by
Whitney. By the weak Whitney embedding theorem, every closed smooth man-
ifold M can be smoothly embedded into the real euclidean space R™ as long
asn > 2dim M + 1 [Whi36]. Based on the now called Whitney trick [Whid4],
Whitney strengthened his result to the condition n > 2dim M. This is known
today as Whitey’s strong embedding theorem. In contrast, the real projective
space of dimension 2% for k > 0 yields an example of a 2¥-dimensional smooth
manifold that does not embed into RZ2°~1 [Pet57], and thus the dimension
condition in the strong Whitney embedding theorem cannot be strengthened.

Based on Whitney’s strong embedding theorem, Nash and Kuiper were able
to prove that every Riemannian manifold M admits a continuously differentiable
isometric embedding into R™ provided that n > 2dim M + 1 [Nasb4, [Kuib5].
In case M is compact, the dimension condition n > 2dim M is enough. In
contrast, a compact locally flat Riemannian manifold M cannot be four times
continuously differentiable isometrically embedded into the euclidean space of
dimension 2dim M — 1 [CK52].

Y
@
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In contrast to the embedding theorems due to Whitney, Nash and Kuiper
there is a much weaker dimension condition for Stein manifolds. In fact, ev-
ery Stein manifold M with dim M > 1 admits a holomorphic embedding into
the complex euclidean space C™ if n > %dimM by Eliashberg-Gromov and
Schiirmann [EG92! [Sch97]. Examples of Forster show that this dimension con-
dition cannot be improved [For70], when dim M > 1. It is still an open problem
whether every open Riemann surface can be holomorphically embedded into C2.

In algebraic geometry, there are the following existence results concerning
embeddings into the complex projective space P™(C) and into the complex affine
space C™: If X is a smooth projective (affine) algebraic variety, then there exists
an algebraic embedding into P*(C) (into C"™), provided that n > 2dim X +
1 by Theorems due to Holme [Hol75], Kaliman [Kal91] and Srinivas [Sri91].
By Theorems of Horrocks-Mumford [HM73] and Van de Ven [VAV75| (in the
projective case), and by a Theorem of Bloch-Murthy-Szpiro [BMS89] (in the
affine case), these dimension conditions are also optimal. There are also versions
for singular varieties due to Holme [Hol75], Kaliman [Kal91] and Srinivas [Sri91].

Concerning the equivalence of embeddings into euclidean space, one has
the following classical results: By Kaliman [Kal91] and Srinivas [Sri91], two
algebraic embeddings of a smooth affine variety into C™ are the same up to an
algebraic automorphism of C", provided that n > 2dim X +1. Analogous results
hold as well in different settings, see e.g. [Jel09]: In particular, two embeddings
of a smooth compact real manifold (compact real analytic manifold) into R™ are
the same up to a diffeomorphism (real analytic automorphism) of R™, provided
that n > 2dim X + 1.

Focusing on more specific settings in affine algebraic geometry, the famous
Abhyankar-Moh-Suzuki Theorem [AMT75] [Suz74] says that up to algebraic auto-
morphisms of the affine plane C? there exists exactly one algebraic embedding
of the affine line C into C2. This result holds more generally for so-called cus-
pidal curves (i.e. the normalization is isomorphic to the affine line) instead of
the affine line by a theorem due to Lin-Zaidenberg [ZL83]. Another example is
the following: The union of all the coordinate hyperplanes in the affine space
C™ has a unique embedding up to automorphisms of C"™ by Jelonek [Jel97].

It is natural to ask the above embedding questions for more general targets
than the euclidean space. The first part of my results I will present in this
habilitation, concern exactly these questions in the context of affine algebraic
geometry. L.e. the geometric objects under consideration are zero sets of poly-
nomials in finitely many variables and the considered embeddings are given by
polynomial maps. Mostly, I considered the case where the target is an alge-
braic group. This is joint work with my collaborators Peter Feller and Jérémy
Blanc. Related to these embedding questions, in the algebraic context, I studied
together with Stefan Maubach maximal C-subalgebras of a given C-algebra.

In order to attack these embedding questions, one needs to understand to
a certain amount the automorphisms of the target space Y of an embedding
X — Y. In fact, the affine varieties I consider as targets have usually a huge
automorphism group and it is a challenge for its own sake to understand these
automorphism groups. For example, the group Aut(C") of polynomial automor-
phisms is fairly good understood for n = 1,2, whereas for n > 3 these groups
are huge and still rather mysterious. The second part of my results cover my



research on several questions concerning the above mentioned automorphism
groups. Specifically, I studied the following fundamental problems:

(C) (Characterization) Understand to what extend the automorphism group
Aut(X) of a geometric object X determines X itself.

(D) (Dynamics) Understand the dynamics of automorphisms of a geometric
object X.

(E) (Low degree) Understand the automorphisms of a geometric object X
that are small with respect to some measure.

Klein proposed in his famous Erlangen program from 1872 to study geomet-
ric objects X via their automorphisms in case Aut(X) is rather big. In several
situations it turns out that Aut(X) completely determines X, i.e. if Aut(X)
and Aut(Y) are isomorphic, then X and Y are isomorphic. In particular, this
happens for smooth manifolds, symplectic manifold or contact manifolds, see
[Fil82) Ryb95,[Ryb02]. In affine algebraic geometry, usually Aut(X) is small and
hence it cannot determine X completely. However, for certain affine varieties
where Aut(X) is big enough, the group Aut(X) still determines X. Concerning
problem @I, together with Hanspeter Kraft and Andriy Regeta, I focused on
exactly these problems in the context of affine algebraic geometry. More pre-
cisely, together with Hanspeter Kraft and Andriy Regeta, I considered the case
X = C" and together with Andriy Regeta, I considered the case when X is a
quasi-affine spherical variety (i.e. there is a faithful algebraic action of a reduc-
tive algebraic group on the quasi-affine variety X such that a Borel subgroup
acts with a dense orbit) under a stronger assumption on the group isomorphism
between the automorphism groups under consideration.

The study of the dynamics of an automorphism f is the study of its iter-
ates f' = fo---o f when i goes to infinity. In algebraic geometry, one aspect
that catches the dynamical behaviour of an automorphism is its dynamical de-
gree. In case f is an automorphism of C™ one may define it as the limit of
the numbers (deg( fi))% as i goes to infinity. I studied together with Jérémy
Blanc the question, which real numbers can arise as dynamical degrees of auto-
morphisms of C". We developed a technique to compute dynamical degrees in
certain cases. In particular, we gave all dyanmical degrees of all so-called affine-
triangular automorphisms of C?, i.e. automorphisms that are a composition of
an affine linear automorphism of C? with an automorphism of C? of the form
(z,y,2) — (p(x), q(x,y),r(x,y, 2)) where p, ¢, r are polynomials over C.

Concerning problem in affine algebraic geometry, and specifically for
X = C", a natural measure of the complexity is the degree of the automor-
phism. There is a conjecture due to Rusek [Rus88] which says, that every
automorphism of degree < 2 is a so-called tame automorphism, i.e. a finite
composition of affine and triangular automorphisms of C". Whereas the con-
jecture is confirmed in case n < 5 by results due to Fornaes and Wu [FW9§],
Meisters and Olech [MO91], and Sun [Sunl4], it is an open problem, whether
the same also holds for automorphisms of degree 3. In case n < 2, all auto-
morphisms of C? are tame. Motivated by this I studied together with Jérémy
Blanc the next case, i.e. automorphisms of C? of degree 3. In particular we
were able to show that all such automorphisms are tame and we computed their
dynamical degrees.
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These are also my articles for the habilitation with the exception of the
article After uploading this article on arXiv.org, we were informed that the
main result was already proven by Kaliman in https://arxiv.org/abs/1309.3791
now published in [Proc. Amer. Math. Soc.].

1.2 Main results

My research can be manly divided up into the study of embeddings and into the
study of automorphisms in affine algebraic geometry. Each of these can again
be divided up into parts, according to the questions/problems posed in [(A),
and in

In the next section, I will survey the main results that I received after my
PhD at the University of Basel in 2013.

Existence questions about embeddings

As already mentioned,
every smooth affine va- G S.\mp[p_, ebroic qroup , Swoctla o-ﬂ-'mL
riety X admits an al- \]m'«e\’ Wt A (B > 2 diw(¥)4 2
gebraic embedding into
C™ provided that n > __> 51
2dim X +1 by the Holme- N
Kaliman-Srinivas embed-
ding theorem. Together
with Peter Feller, I was able to prove an analogous theorem where we replaced
the affine space by any simple algebraic group G under the dimension condition
dim G > 2dim X + 1; see Moreover, we were able to show that there exists
for each algebraic group G of dimension n and for each integer d > % a smooth
irreducible affine variety X of dimension d that does not admit an embedding
into G by adopting the strategy of Bloch-Murthy-Szpiro [BMS89]. In particu-
lar, the dimension condition dim G > 2dim X + 1 may be improved at most by
one in case dim(G) is odd and the dimension condition dim G > 2dim X + 1 is
optimal in case dim(G) is even.

Equivalence questions about embeddings

Together with Peter Feller, I studied algebraic embeddings of smooth affine va-
rieties X into the complex affine space C™ up to holomorphic automorphisms
We were able to weaken the classical dimension bound given by Kali-
man and Srinivas for algebraic embeddings and algebraic automorphisms to
n > 2dim X + 1 in this more relaxed setting. After we put a first version of
this manuscript on arXiv, we were informed that the main result was already
established by Kaliman [Kall5]. Therefore, I will not report on this work here.


https://arxiv.org/
https://arxiv.org/abs/1309.3791
https://www.ams.org/journals/proc/2015-143-11/S0002-9939-2015-12684-6/home.html
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- In 2013 there was a
G\ Knear a\ae‘w(aﬁc sup wilhank V\dk—”“""ﬂ\ break-through in the un-

&d,.mac’;gyr owd A (G)38|  derstanding of so-called
flexible varieties (infor-

=C= mally speaking these are
= ] A ] varieties with “a lot” of

jq.e ‘L(GB : additive group actions):

¢( ) = The flexibility of an irre-

ducible smooth affine va-
riety Y of dimension > 2 is equivalent to the transitivity of the natural action
of SAut(Y) on Y and also to the m-transitivity of this action for each m > 1
where SAut(Y") denotes the subgroup of the algebraic automorphisms Aut(Y)
that are induced by additive group actions. In particular, connected linear al-
gebraic groups without non-trvial characters of dimension > 2 are flexible. In
I proved that all algebraic embeddings of C into SL,,(C) are the same up to
an algebraic automorphism for n > 3 and up to a holomorphic automorphism
for n > 2. Together with Peter Feller, I was able to generalize the first part of
this result to linear algebraic groups without non-trivial characters of dimension
different from 3; see
Together with Jérémy '
Blanc, I studied algebraic 3 —gam‘(»] og m\u}\&i,\dr into S[_,_( C} :

embeddings of the affine SL [ (") 2
1 p & Cc' VY p omd

plane C? into the special
linear group SLs(C) [§]]

While it is a long stand- ( p.) + 9 v P#’ ’
ing open problem, whether (
all algebraic embeddings P 1 V € hut (SLZ C))

of C? into C* (or even
into C*) are the same up to algebraic automorphisms (or even holomorphic
automorphisms), we were able to provide huge families of algebraic embeddings
of C? into SLy(C), where different members of that family are not the same up
to algebraic automorphisms of SLy(C).

Maximal subalgebras

} Together with Stefan Mau-

! )‘,, h{ X Qo -
C[[{abj[ é‘io%;’iq ~3 “ff{‘l“\g:u;]gf_}] bach, I classified the so-
! called extending maximal
> Iy 4-CHe]ly) C[[t9=0]][y]-subalgebras of
Gl C[[t%]][y), where C[[t®]] de-
A~ Qeseriphion OQ {"*M‘w\/ -ty E notes the field of Hahn se-
i R it o} CU ’7] ries over C with exponents

in the rational numbers Q.
Using this classification result, we were able to describe the maximal C-
subalgebras of the polynomal ring over the ring of Laurent polynomials C[t*!, y]
[@1 This was the first such classification result for a commutative algebra of di-
mension > 1.
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Characterization of varieties via their automorphisms

Together with Andriy Re-
geta and Hanspeter Kraft, Counnected linasc rmc}\a a\a atuuf: T
I could prove that the ab- ‘S‘p[au'c«f ”‘_J,L aﬂ

stract group Aut(C") of
algebraic autor?orphisms Y trreducitla el a.fytu,e
determines C™ (up to iso-
morphisms) within the ('E ’% Av«l'( ) = AL(Y) Alat Presesves
class of n-dimensional ok
smooth irreducible quasi- qL%, qup achons =) % \/l
projective varieties with a
finite Picard group and non-vanishing Euler characteristic [@} Furthermore, to-
gether with Andriy Regeta, I was able to partially generalize the above result
in the following sense: If X is a smooth affine G-spherical variety where G is
a connected reductive algebraic group, and if Y is an affine irreducible normal
variety such that there is a group isomorphism Aut(X) ~ Aut(Y') that preserves
algebraic group actions, then X and Y are isomorphic as G-varieties

Dynamics and low degree automorphisms of the affine space

Together with Jérémy
blanc, I -developped: a D(Scr'lpk"\o&/\ o(\ da o\ymw\im\, ksyw:

technique in order to
peA(T] }

calculate dynamical de-
grees of algebraic endo- % c Av«l'(c’/ ‘f\mjular

morphisms of C"™ under

fin deg @€ —»c)[

-~ 0o
¢ t-Yinas

certain assumptions on
these endomorphisms. Using this result, we were able to compute the dynamical
degree of every composition of an affine automorphism and a triangular auto-
morphism of C3 Moreover, we described all algebraic automorphisms of C?
up to composition with affine automorphisms at the source and target and as an
application of this description, we were able to compute all dynamical degrees
of them, using the above mentioned technique
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Chapter 2

Embedding questions

As mentioned in the beginning, I studied embedding questions in the category
of affine varieties over the complex numbers C. I.e. the geometric objects are
common zero sets of polynomials in the affine space C™ endowed with the Zariski
topology. The embeddings under consideration are morphisms f: X — Y of
affine varieties such that f(X) is closed in Y and f induces an isomorphism
X ~ f(X) of affine varieties.

In affine algebraic geometry, there is a purely algebraic description of the
embeddings. In fact, denoting by C[Z] the coordinate ring of an affine variety
Z, then a morphism f: X — Y of affine varieties is an embedding, if and only
if the comorphism f*: C[Y] — C[X], p — po f is surjective. Beside this purely
algebraic characterization, there is also the following geometric description, that
turns out to be very useful (and in fact it holds not only for affine varieties): A
morphism f: X — Y of varieties is an embedding if and only if

e f is proper,

e f is injective,

e [ is immersive, i.e. for all z € X, the differential d, f : T, X — Ty,)Y is
injective

(see Appendix B in [[1]). In the following sections, I report on my articles
concerning the embedding questions and Although many results work
in more generality, I choose for the ground field always the field of complex
numbers in order to make the exposition as simple as possible.

2.1 Existence of embeddings of smooth varieties
into linear algebraic groups

In this section, I discuss the paper This is joint work with Peter Feller.
Having the classical Holme-Kaliman-Srinivas embedding theorem for the target
the affine space C™ in mind, it is natural to look for more general algebraic
groups as targets of embeddings. More precisely, X will be a smooth affine
variety and Y will be the underlying affine variety of an algebraic group. One
of our main result is the following.

11
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Theorem 2.1.1 (cf. Theorem A in . Let G be a simple algebraic group and
let X be a smooth affine variety. If the dimension condition dim G > 2 dim X 41
holds, then X admits an embedding into G.

We got also an analogous result for semi-simple algebraic groups, however,
with a stronger dimension condition, depending on the number of minimal con-
nected normal subgroups. Concerning the optimality of the dimension condition
in Theorem we were able to prove the following.

Proposition 2.1.2 (cf. Proposition B in [[1]). For every non-finite algebraic

group G and every d > dir;G, there exists an irreducible smooth affine variety

of dimension d that does not admit an embedding into G.

So in case the simple algebraic group G in Theorem is of even dimen-
sion, Proposition [2.1.2|implies that the dimension condition is optimal, whereas
for an odd dimensional G, the dimension condition can be possibly improved at
most to dim G > 2dim X + 1. The proof of Proposition [2.1.2]is a generalization
of a Chow-group-based argument due to Bloch, Murthy, and Szpiro [BMS89];
in fact, they showed Proposition [2.1.2] in the special case, when G is the affine
space.

Next, I will report on the strategy of the proof of the existence result, The-
orem We fix a smooth affine variety X of dimension d. Let us first recall
the strategy for the classical embedding theorem, where the target is the affine
space. There exists N > 2d + 1 such that X is a closed subset of CV. As long
as N > 2d + 1, for a generic linear projection m: C¥ — CN~1, the restriction
7|x: X — CN~1is proper, injective and immersive, i.e. it is an embedding.
The result is then established by induction.

In case the target is not the affine space, this strategy doesn’t work because
of the absence of generic projections. The idea is, to construct the embedding
from “bottom up”. More precisely, this idea goes back to Eliashberg-Gromov
[EG92] where they construct embeddings of Stein manifolds into affine spaces.
One starts with a finite surjective morphism X — C¢ (which exists due to
Noether normalization). Now, one needs a “nice” morphism 7: Y — C9 that
allows to lift X — C? to an injective and immersive morphism f: X — Y. By
construction, f is then also proper and thus it is an embedding. The problem
lies in the existence of the “nice” morphism 7: Y — C?. One setting where this
strategy works is the following (which constitutes our main embedding tool).

Theorem 2.1.3 (cf. Theorem 2.5 in . Let Y be a smooth irreducible affine
variety such that:

a) There is a principal G,-bundle p: Y — Q;

b) There is a smooth morphism w: Y — P such that there are “enough” alge-
braic group actions on'Y that fix m;

¢) There is a morphism n: Q — P that admits a section and satisfies nop = .

If there exists a smooth affine variety X with dimY > 2dim X + 1 and a finite
surjective morphism r: X — P, then there exists an embedding f: X — Y with
r=mo f.

A precise statement of condition b) can be found in Theorem 2.5 in The
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next diagram illustrates the situation of Theorem [2.1.3

principal G4-bundle p

Y Q
3 embedd. f]\ \ ln with a section
X P .

finite, surjective r

Roughly, the idea of the proof of Theorem is the following. We define for
every morphism f: X — Z its f-invariant by

0; =max{dim (Z xx Z\ Ax) , dim (ker(df) \ 0x) }

where A x denotes the diagonal inside the fibre product Z x x Z with respect to
f, ker(df) denotes the kernel of the differential df: TX — TZ and Ox C TX
denotes the zero section of the tangent bundle TX — X. The #-invariant is a
measure for the injectivity and immersivity of f. In particular, if 6y < 0, then
f is injective and immersive. Now, one starts with the morphism sor: X — @
where s: P — (@ is a section of n: @ — P. Then one uses the fact that p
restricts to a trivial G,-bundle p=*((s o r)(X)) — (s o r)(X) in order to get
a morphism g: X — Y with pog = sor and 0; < 0,,. The next picture
illustrates the morphism g: X — Y over sor: X — @ in the case, when X is
a curve:

/)7“.\(/‘('4\'})] e

x> g(x)

x> s(r(.rm Q

Now, one uses a parametric transversality result for flexible affine varieties
due to Kaliman [Kal2(] in order to get an automorphism of Y that fixes  such
that 65 = 00004 Note that the f-invariant of poaog: X — @ is smaller than
that one of sor: X — . Repeating this process, we find a morphism f: X — Y
with negative f-invariant, i.e. it is injective and immersive. Moreover, wo f = r,
thus f is finite and hence f: X — Y is our desired embedding.

In order to apply Theorem[2.1.3]to construct an embedding of a smooth affine
variety X of dimension d into the simple algebraic group G as in Theorem
we choose a hypersurface in G that is isomorphic to Q x C* for some algebraic
group @ and some k > 0. In fact, using the classification of parabolic subgroups
in simple algebraic groups, we can choose k and () in such a way that dim Q—1 <
k and that @ is generated by unipotent elements (see Propositions 3.8, 3.9 in
. Since dim@Q + k = dimG — 1 > 2d + 1, we get thus k > d. We then set
F = @ x CF¥=? and choose some closed subgroup U C F that is isomorphic to
Gq. Applying Theorem to the canonical projections

m: FxC¢ 4 (F/U)yxct 2 ¢
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yields then an embedding of X into F' x C?, hence also into G.

While embedding X into F' x C? ~ Q x CF, we lost possibly one dimension
in the dimension condition. In order to strengthen Theorem [2.1.1] it is natural
to try to apply the embedding tool (Theorem directly to Y = G and some
“nice” morphism 7: G — P. It seems, that the only natural candidates for such
a 7 are algebraic quotient morphisms G — G/H =: P for some closed algebraic
subgroup H of G. However, in general, there is no finite surjective morphism
X — G/H, due to the following result.

Proposition 2.1.4 (cf. Proposition 5.1 in . Let G be a simple algebraic
group, H C G a proper closed subgroup and X an irreducible smooth affine va-
riety with the rational homology of a point and such that X is simply connected.
Then, there exists no finite surjective algebraic morphism X — G/H.

The proof of Proposition is based on a purely topological fact, namely
on Hopf’s theorem on the Umkehrungshomomorphismus from algebraic topol-
ogy (cf. Theorem A.1 in . In fact this topological fact implies that for any
proper and dominant morphism f: X — Z between complex n-dimensional
smooth varieties, the induced homomorphism in Q-homology fi: Hi(X,Q) —
Hi(Z,Q) is surjective for all non-negative integers k. Then we use the knowl-
edge of the rational homology groups of complex simple algebraic groups to
deduce Proposition [2.1.4]

However, if the dimension of the target algebraic group is small, we are able
to get the existence of embeddings with an optimal dimension condition:

Proposition 2.1.5 (cf. Proposition 3.11 in . Let G be an algebraic group
without nontrivial characters such that dim G < 8. If X is a smooth affine
variety with 2dim X + 1 < dim G, then X admits an embedding into G.

Recently, Kaliman put a preprint on arXiv, which shows in particular the

optimality of the dimension bound, when the algebraic group is a product of
the form Hivzl SLy, (C):

Theorem 2.1.6 (cf. [Kal21, Theorem 1.1]). Let G be a semisimple algebraic
group such that its Lie algebra is a product of Lie algebras of special linear
groups. Then every smooth affine variety Z with 2dim Z + 1 < dim G admits
an embedding into G.

I will finish this section, by reporting on the existence of embeddings into
algebraic groups in the holomorphic setting. In fact, Andrist-Forsternic¢-Ritter-
Wold proved that every Stein manifold X admits a holomorphic embedding into
every Stein manifold Y that satisfies the (volume) density property, provided
that dimY > 2dim X + 1 [AFRW16]. Using that every connected algebraic
group G without non-trivial characters satisfies the density property or G ~ G,
by Donzelli-Dvorsky-Kaliman [DDK10], we get that every smooth affine variety
X with 2dim X + 1 < dim G admits a holomorphic embedding into G.

2.2 Algebraic embeddings of C into SL,(C)

In this section, I will report on the article[[10]| Recall that by results of Kaliman
and Srinivas and in fact also Jelonek [Jel87, Theorem 1.1], the complex line C



2.2. ALGEBRAIC EMBEDDINGS OF C INTO SL,(C) 15

admits one algebraic embedding into C™ up to algebraic automorphisms of C”,
provided that n > 4. By Abhyankar-Moh [AMT75] and Suzuki [Suz74], this
statement also holds for n = 2 and it is widely open for n = 3. However, if one
studies algebraic embeddings of C into C? up to holomorphic automorphisms of
C3, then there is exactly one by Kaliman [Kal92]. In fact, one may even replace
the complex line C by any affine curve [Kall5]. It is natural to study algebraic
embeddings into more general targets and I chose as a first example the special
linear group SLg(C). In fact, the following holds:

Theorem 2.2.1 (cf. Main Theorem in [[10]). The complex affine line admits a
unique algebraic embedding into

a) SL(C) up to algebraic automorphisms of SLi(C) for k > 3;
b) SLa(C) up to holomorphic automorphisms of SLy(C).

First, I will report on the proof of Theorem [2.2.1fa)l For this, we recall the
classical argument, that every embedding f: C — C", n > 4 is linear up to an
algebraic automorphism of C™. In fact, for a generic linear map o € GL,,(C), the
composition 7 := roaof: C — C" ! is still an embedding, where 7: C* — C*~!
denotes the projection to the first n — 1 coordinates:

f cn a cn
m lﬂ'
(Cnfl .

After replacing f by ao f, we may assume that » = 7o f is an embedding. Let
[:=7(C) Cc C" ! and let p: C"* — C be the projection to the last coordinate.
Then, the morphism I' — C, v — r~1(v) — p(f(r~1(v))) extends to a morphism
h: C*~! = C. Now, consider the automorphism

C
em

e:C" = C", (v,8)— (v,8+ h(v)).

Then, (popo f)(t) =t for all t € C. In fact, the automorphism ¢ moves the
embedding ¢ — f(t) into the embedding ¢t — (7(f(t)),t). The next picture
illustrates the curves ¢t — f(t) and ¢t — (w(f(t)),t) over I':

b 1(0) > WQ(\J // CT;

e (w(f(t)),1)

Hence, after replacing f with ¢ o f, we may assume that p(f(t)) = ¢t. Now, we
consider the automorphism

P: C" = C", (v,8) = (v—m(f(s)),s).
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Then (o f)(t) = (0,t) € C" 1 x C for all t € C, i.e. o f: C — C™ is our
desired linear embedding and this finishes the classical argument.

The idea in the proof of Theorem [2.2.1b)| is to move a fixed embedding
f: C — SL,(C) into the embedding C — SL,,(C), t — E,1(¢) via an automor-
phism of SL, (C), where E,,;(t) denotes the elementary matrix with nl-th entry
equal to t. Similarly, as in the classical argument, we may assume that 7of: C —
M,, »n—1(C) is again an embedding, where 7: SL,,(C) — M,, ,—1(C) denotes the
projection onto the first n — 1 columns. Furthermore, one may achieve then,
that the first column of f(¢) is given by the transpose of (1,0,...,t). Denot-
ing by m: SL,(C) — C™ the projection to the first column, one gets thus
m1(f(t)) = m(En1(t)) for all ¢ € C. Note that 7y is a principal bundle and,
analogously to the classical case, one can move the embedding ¢ — f(¢) into
t — E,1(t) via the mp-automorphism

@: SL,(C) = SL,(C), A A- f(An)" ' Eni(An1)

where A,; denotes the nl-th -entry of the matrix A.

Now, I will report on the proof of Theorem [2.2.1b)| Before, let me explain
the argument of Kaliman [Kal92], that every embedding f: C < C? is linear
up to a holomorphic automorphism of C3. Similarly, as before, one studies the
morphism 7 = foaom: C — C2, where a € GL3 and m: C3 — C? is the
projection on the first two coordinates. From dimension reasons, one cannot
expect that r: C — C? is an embedding. However, for a well chosen «, the
morphism r: C — C? is birational onto its image I' ¢ C? and I has at worst
finitely many simple normal crossing singularities. We replace f by ao f. Now,
after applying a certain holomorphic m-automorphism we may assume that

p(f(tin)) — p(f(tiz) =ti1 —tio forallie{l1,...,s}

where p: C? — C denotes the projection to the last coordinate, v1,...,v, € C?
denotes the simple normal crossing singularities of I and f _1(112») = {t1,;, %2}
for all ¢ € {1,...,s}. Thus, one may choose a holomorphic map ho: I' — C

such that ho(r(t)) =t — p(f(t)) for all t € C. Since I is closed in C2, one
may extend hg to a holomorphic map h: C2 — C. As before, one considers the
automorphism ¢: C3> — C3 given by ¢(v,s) = (v,s + h(v)) and one receives
(popwo f)(t) =t for all t € C. Similarly, as before, one may then move
t — f(t) into the desired linear embedding ¢ — (0,¢) € C?x C via a holomorphic
automorphism of C3.

The idea of the proof of Theorem is in some sense similar to the
argument above. One studies the principal G,-bundle 7: SLy — C2\ {(0,0)}
and one may achieve as before, that 7o f: C — C?\ {(0,0)} is briational onto its
image I and T" has at worst simple normal crossing singularities. As replacement
of the projection C3 — C to the last coordinate, one considers the morphism

p: SLy — C, (z y) =Y.

w

The idea is then to move the embedding f in such a way, that p(f(t)) = t for
all ¢ € C. This is the main bulk of the whole argument. Let p,q: C — C be
holomorphic maps such that p(t)t = z(t) — 2(0) and ¢(¢t)t = w(t) — w(0) for all
t € C. Consider the automorphism

p: SLy — SLs (ﬁ Z) = <_q1(y) (1)) ' (i i) ' <—pl(y) (1))
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of SLy. Using that z(0)w(0) = 1, one receives

(po f)t) = (IE)O) wfo)) for all £ € C.

Up to an algebraic automorphism of SLo, the embedding ¢ — (¢ o f)(¢) is equal
to the embedding ¢ — FE12(t), where F13(t) denotes the elementary matrix with
12-th entry equal to t.

After giving the idea of the proof of Theorem let me finish this section
with the following partial generalizations concerning embeddings into SL,(C)
due to Kaliman [Kal20] (in order to simplify the notation, I formulate them only
in the smooth case):

Theorem 2.2.2 ([Kal20, Theorem 0.5, Theorem 0.4]). Let p: Y1 — Y2 be an
isomorphism of two closed smooth subvarieties of SL,(C).

a) Ifn>3,Y; ~AF and k <% —1 (ork =1), then ¢ extends to an algebraic
automorphism of SL,(C).
b) If one of the following cases occur:

e 3dimY; +1 < n-2, Hi(Y1,Z) =0 for i > 3 and Hy(Y1,Z) is a free
abelian group; or

e Y| is a curve and n > 5; or

e Y7 is a curve with only one place at infinity and n > 3,

then ¢ extends to a holomorphic automorphism of SL,,(C).

2.3 Uniqueness of embeddings of the affine line
into algebraic groups

In this section, I report on the article This is joint work with Peter Feller. In
the last section, I explained that two embeddings of the affine line into SL,(C)
are the same up to an algebraic automorphism of SL,,(C) provided that n > 3.
It is natural to ask, whether this holds for more general algebraic varieties. The
following is the main result, we got in this setting:

Theorem 2.3.1 (cf. Theorem 1.1 in . Let G be an algebraic group without
nontrivial characters of dimension # 3. Then two embeddings of the affine line
are the same up to an automorphism of G.

Without loss of generality, we may and will assume that the group G in
Theorem is in addition also connected. If G is of dimension 2, then G
is isomorphic to the affine plane C? and then Theorem follows from the
Abhyankar-Moh-Suzuki Theorem [AMT75] [Suz74]. Hence, we may and will as-
sume that the dimension of G is > 4. I will now report on the idea of the
proof.

In the case G = SL,(C) from the last section, we used explicit coordinates
(i.e. we used the standard representation) to show that two embeddings are the
same up to an algebraic (a holomorphic) automorphism of SL,(C). Now, in
the general case, we do not have such explicit coordinates and thus we need
a replacement. Roughly, the idea is to replace the quotients SL,(C) — M,, ,
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that map a matrix to the first » columns by algebraic quotients G — G/H for
algebraic subgroups H in G such that G/H is affine or just quasi-affine.

In fact, there is an easy class of embedding of C into G, namely the unipotent
one-parameter subgroups U C G, i.e. one-dimensional algebraic subgroups of G
that are isomorphic to G,. In fact one can show that all these embeddings
are the same up to automorphisms of G. The idea is then first to reduce the
problem to the case, when G is a simple algebraic group and thus we assume
that G is simple.

We fix a curve X C G that is isomorhic to the complex line. The goal is now,
to give an idea, how one can move X into a unipotent one-parameter subgroup
of G. For doing this, we need a tool to move a curve inside GG. The picture after
the result illustrates the setting.

Proposition 2.3.2 (cf. Proposition 5.1 in. Let H C G be a closed subgroup
such that the quotient G/H is quasi-affine and let m: G — G/H be the quo-
tient morphism. If X1, Xs C G are close curves that are isomorphic to C with
m(X1) = 7(X2) and such that w|x,: X; — 7(X;) is an isomorphism fori = 1,2,
then there exists an automorphism ¢ of G such that p(X;) = Xa.

For this, we fix a Borel subgroup B C G and we choose a maximal parabolic
subgroup P C G that lies over B. In the quotient G/ P, there is a unique one-
dimensional B-orbit and we denote by E C G the preimage of the closure of this
one-dimensional B-orbit under the natural projection G — G/P. We choose
now an opposite parabolic subgroup P~ to P, i.e. P"NP is a common Levi factor
of P and P~ and we denote by R, (P~) the unipotent radical of P~. Now, we
use heavily the fact, that the restriction to E of the natural projection 7: G —
G/R,(P~) yields a locally trivial C-bundle and the image m(E) is a big open
subset of G/R, (P~), i.e. the complement of 7(E) in G/ R, (P~) has codimension
at least 2. After composing f with an automorphism of the form G — G,
g — gog (for a well-chosen gy € G), we may assume that 7(X) is contained in
m(E) as w(FE) is a big open subset of G/R,(P~). Since 7|g: E — w(F) is a
locally trivial C-bundle, it has a section X’ over m(X). Using Proposition m
one can thus move X into X’ C E. This furnishes the main step in the proof.
Further, the idea is then to move X into a algebraic subgroup G that is not the
whole of G. Having this, one can then move X into a one-parameter unipotent
subgroup of G.

Based on Theorem Kaliman and Udumyan proved the following gener-
alization below. Recall, the following terminology: For any closed subvariety Z
in an affine variety X and any k > 1, the closed subscheme Spec(C[X]/Ix(Z)F)
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of X is called the k-th infinitesimal neighbourhood of Z in X, where Ix(Z)
denotes the vanishing ideal of Z inside the coordinate ring C[X].

Theorem 2.3.3 (cf. Theorem 0.1 in [KU20]). Let G be an algebraic group
without nontrivial characters of dimension > 4. If C1,Cy C G are isomorphic
to the affine line, then for any k > 1, each isomorphism of the k-th infinitesimal
neighbourhoods of C1 and Cs in G where the determinant of the Jacobian is equal
to 1 extends to an automorphism of G.

2.4 Embeddings of affine spaces into quadrics

In this section, I report on the paper This is joint work with Jérémy Blanc.
We studied embeddings of affine spaces into quadrics. The later are smooth
hypersurfaces of affine spaces that are given by one polynomial of degree 2. The
motivation of this study was, that until now, it is an open problem whether all
embeddings of C? into C® (or even into C*) are the same up to algebraic (or
even holomorphic) automorphisms. Amongst others, we studied embeddings of
the plane C? into the following quadric

X t 4
= — = C
SLo(C) { <s y) ‘ Ty — st 1} CC
instead of C3.

An example of a familiy of such embeddings is the following (where A € C*):

.2 ! !
P C* — SL2(C)7 (S,t) = ()\3 1 —l—)\St) '

The images of these embeddings in SLy(C) are all the same and they are given
by the condition z = 1. Already this simple family produces many embeddings
that are distinct up to automorphisms of SLy(C):

Theorem 2.4.1 (cf. Theorem 2 in. For \, X' € C*, the emebeddings py and
px are the same up to an automorphism of SLa(C) if and only if A = £ .

In order to proof the above theorem we established the following extension
result for automorphisms of C2:

Theorem 2.4.2 (cf. Theorem 2 in. An automorphism ¢ of C? extends to an
automorphism of SLo(C) wvia p1 if and only if the determinant of the Jacobian
det(Jac(p)) is equal to £1.

Note that px(s,t) = p1(As, ) for each A € C*. We fix A, \' € C* and denote
by ¢ the automorphism of C? given by (s,t) — (A(X)7!s,t). Now, py and py
are the same up to an automorphism of SLy(C) if and only if there exists an
automorphism ¢ of SLy(C) with p1(As,t) = ¥(p1(N's,t). The latter condition
is equivalent to the fact that p; o ¢ =1 o p;. Using Theorem [2.4.2] we get now
that py and py. are the same up to an automorphism of SLs(C) if and only if
det(Jac()) = #1. This amounts to say that A = +)X" and gives Theorem [2.4.1]

In order to proof Theorem [2.4.2] let me mention that the automorphisms
of C? are generated by the group of linear automorphisms GLy(C) and the
automorphisms ¢, that are given by (s,t) — (s,t + p(s)) where p runs over
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all polynomials in C[s], as all automorphisms of C? are tame (see [Jun42]).
Hence the subgroup of automorphisms in Aut(C?) where the determinant of
the Jacobian is equal to 41 is generated by the linear involution ¢ given by
(s,t) — (t,s) and the automorphisms ¢,, p € C[s]. However ¢ and ¢, extend
to the automorphisms

x t x s x t x t+xzp(s)
—> and —
sy t oy sy s y+sp(s)
of SLy(C) via p;. This gives one implication in Theoremm
In order to establish the other implication, we give a certain geometric in-

terpretation of SLy(C) using C3. This interpretation turns out to be very useful
also for future investigations. We consider the morphisms

SLy(C) L 3 N

d
(QSj ;/) —  (z,t,9) an (z,t,8) — =

Note that 7 restricts to an isomorphism ~*(U) — U, where U C C? denotes
the complement of the plane 7=1(0). Denote H, = n~(7~(x)) C SLy(C) for
x € C. Note that n maps Hy surjectively onto the hyperbola T' in 7=1(0) that
is given by st +1 = 0 and 7 restricts to a trivial C-bundle Hy — I'. In fact,
SLy(C) is isomorphic to the complement of the strict transform of 7=1(0) inside
the blow-up Blp(C3) of C? with center I'. The following picture illustrates the
fibres of mon: SLy(C) — C:

n
. ﬁ I

27760

This establishes the existence of the following injective group homomorphism

{6’6Aut((C3) g&f:g} L {¢ € Aut(SLy(C)) | ronovy =mon}
|_>

0 nlobon.

The key step is now the following:

Proposition 2.4.3 (cf. Proposition 4.5 in. The group homomorphism Y is
an isomorphism.

Indeed, we get now the other implication in Theorem The image of
p is the hypersurface H; in SLy(C). If ¢ is an automorphlsm of SLy(C) with
¥(Hy) = Hy, then ¢ permutes the fibres of 7 o n: SLo(C — C, i.e. it permutes
the H, for x € C. Since H, ~ C? for z # 0 and Hy ~ C x C*, we get
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Y(Hy) = Hy. Together with ¢(H;) = H;, we get ¢(H,) = H, for each z € C,
i.e. mronow = mon. By Proposition there is now an automorphism 6 of
C? with ¢ = n~1 o fomn, 0 fixes the fibres of 7 and #(T") = I'. One can see, that
the latter condition gives det(Jac(f|,-1(p))) = £1. In summary we get now the
result:

det(Jac(v|n,)) = det(Jac(0]r-1(1))) = det(Jac(0]-1(p))) = £1.

The proof of Proposition is a deformation argument based on work of
Furter [Fur02]. Indeed, let ¢ € Aut(SL2(C)) such that mono = won and
let § := noton~t. Then @ restricts to an automorphism of U = C3\ 7=1(0)
and it is given by 6(z,s,t) = (z,01(x, s,t),02(x, s,t)) for all (x,s,t) € U where
01,05 are regular functions on U. Is is enough to establish that 61, 65 extend
to C3. If this is not the case, then, say 6; ¢ C[x,s,t]. There exists now [ > 0
such that f = 2'6; € Clz,s,t], but f|,—19) # 0. Note that C; = {(s,t) €
C? | f(z,s,t) =0} C C? is isomorphic to C for each  # 0, as ],-1(,) is an
automorphism of 7! (x) = C? for each x # 0. Using that f|,—1) # 0, by the
deformation argument [Fur02, Theorem 4], Cy is isomorphic to a finite number
of copies of C. On the other hand, writing p: C3 — C, (x,s,t) + x's, we get

f(T) = f(n(Ho)) = p(n(v(Hy))) = p(n(Ho)) = p(T') = {0}

as | > 0. Hence I' C {0} x Cy. Since T is a closed curve in 7=1(0) = {0} x C?
that is isomorphic to C* and since Cy ~ C is a closed curve in C2, we arrive at
a contradiction.

So far, we established that there are many distinct embeddings of C? into
SL2(C). However, all these embeddings have the same image in SLy(C). We
proved also that there are many copies of C? inside SLy(C) that cannot be
mapped onto each other by an automorphism of SLs(C):

Theorem 2.4.4 (cf. Theorem 3, the proof of Proposition 5.8(1) and Lemma 5.10
in[[8]). Let f € Cla, s,t] be an irreducible polynomial, let

Cp=Cyp={(s,t) €C*| f(zx,5,t)=0} CC* forzeC,
let Zy C C3 be given by f and let Hy =1~ (Z) C SL2(C). Then we have:

a) If C, ~ C for at least one x # 0, then: Hy ~ C? if and only if Cy ~ C for
all z # 0 and f(0,s,t) € {us™(s — A), ut™(t — N} for some p, A € C* and
m > 0.

b) If f(0,s,t) = qu:I(t — ;) for some k > 2, p € C* and pairwise distinct
AL, A € €, and if Cp =~ C for all x # 0, then won|g, is the only
morphism Hy — C with general fibre isomorphic to C up to automorphisms
of the target C.

¢) There is an uncountable set F' C C[z, s,t] such that Hy ~ C? for each f € F
and for fi # fo in F there is no ¢ € Aut(SLy(C)) with ¢¥(Hy, ) = Hy,.

Let me explain the very rough idea of the construction of the distinct copies
of C? in SLy(C) up to automorphisms of SLy(C) claimed in Whereas it is
an open problem, whether there are distinct copies of C? in C?, the so-called
Danielewski surfaces inside C? give many examples of pairwise distinct surfaces
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up to automorphisms of C2, see [DP09]. The idea is now to choose f in such a
way, that Z; is a Danielewski surface, but H; is isomorphic to C2. One shows
then that the existence of an automorphism of SLy(C) that sends Hy, onto some
Hy, would give an automorphism of C3 that sends Zy, onto Zy,.

We give now more details of the proof of Theorem [2.4.4] For this, we state
the following generalization of the Abhyankar-Moh-Suzuki Theorem:

Theorem 2.4.5 (cf. [Bha88, Theorem 3.9]). Let B be an algebraic variety
and let f: B x C> — C be a morphism such that there is a B-isomorphism
&: f710) — B x C with respect to the natural projections to B. Then there
exists a B-automorphism 9 of B x C? such that (f o 9)(b,x,y) = x for all
(b,x,y) € B x C2.

By assumption, one non-zero fibre of 7|z, : Zy — C is isomorphic to C
and therefore the same holds for (won)|x, : Hy — C as well. Now, if Hy ~ C?,
then by the Abhyankar-Moh-Suzuki Theorem [AMT5, [Suz74| all fibres of the
morphism (7 o n)|g,: Hy — C are isomorphic to C. This gives C, ~ C for
all x # 0 and T' intersects Cy transversally in exactly one point. Applying
Theoremmm B =C* and f|c-xc2: C*xC? — C and using the deformation
argument [Fur02, Theorem 4], it follows that Cy is isomorphic to a finite number
of copies of C (see also Lemma 3.8 in [[4]). The only possibilities of curves in
C? that are isomorphic to C and have no intersection with I' are given by s = 0
or t = 0. Using an analysis at the points at infinity, one can see that the
only curves in C? that are isomorphic to C and intersect I' transversally in one
point are given by t = X or s = A for some A € C*. This implies then one
direction. For the other implication, note that the assumptions give that all
fibres of (w o n)|n,: Hy — C are isomorphic to C and then H; ~ C? e.g. by
[Asa87, Corollary 3.2] and [BCWTT].

All non-zero fibres of 7|z, : Zy — C are isomorphic to C, whereas the
zero-fibre consists of k copies of C. As I' intersects each of these k copies of C
transversally in one point, 0|y, : Hy — Zy is the open subset of the blow-up
of Z¢ in these intersection points, where the strict transforms of these k copies
of C are removed. In particular all non-zero fibres of m o |y, : Hy — C are
isomorphic to C, whereas the zero fibre consists of k copies of C. In particular,
Zy and Hy are smooth. Moreover, using the geometry of 0|y, : Hy — Z; one

can in fact construct a minimal smooth projective completion H; of H; such
that the boundary Ff\ Hy is not a linear chain of projective lines P'. This
gives then the claim by [Giz71] or [Ber83, Théoreme 1.8].

Let f; € Cla,s,t], i = 1,2 such that Cy, , ~ C for each z # 0 and
£i(0,8,t) = pt™(t — 1) for some pu € C*, m > 1. In particular Hy, ~ C? by

Applying Theorem m to B = C* and fi|c-xc2: C* x C? — C, it follows
that 7|z, ,: Zf,—a — C is a trivial C-bundle over C* for all @ € C. Moreover,
fi(0,s,t) — a € C[t] has m + 1 distinct roots in C* for general a € C. By [b), for
general a € C,

Di,g = TTO 77|Hfi—a,Hfz‘*a = Zf—a = C

is the only morphism Hy,_, — C with general fibre isomorphic to C up to
automorphisms of the target C. If ¢ € Aut(SL2(C)) with ¢(Hy, ) = Hy,, then
there exists a p € C* such that ¢(Hy, _q) = Hp,—,q for all a € C and hence, it
follows that ps ,q © % is the same as p; o up to an automorphism of the target
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C for general a € C. As the zero-fibre of p;, is the only fibre that is non-
isomorphic to C, it follows that @[J(pfi(O)) = pi}m(O) for general a € C. This
gives thus ¥((m on)~1(0)) = (7 o n)~1(0). Therefore we find A € C* such that

monoy =A-(mon) =monody,

where ) € Aut(SL2(C)) is given by

N t\ _ [t
Ms y) T s Ay
Applying Proposition we find 6 € Aut(C?) with n=tofon =1 o (9))" .

Hence n™tofofyon=mn"tofonody =1, where 6, € Aut(C?) is given by
Or(z,t,s) = (Ax,t,s). As ¢(Hy,) = Hy,, we find that

(9 o 9)\)(Zf1) = Zf2 :

So we traced back the problem of finding distinct C? in SLo(C) up to automor-
phisms to the problem of finding distinct surfaces of the form Zy, in C* up to
automorphisms.

However, the hypersurfaces Zy, of C? are particular examples of so-called
Danielewski surfaces. These surfaces are widely studied for example in [DPQ9].
Explicitly we may choose

F={a%¥3s — (t —x) (t—1-2’r(z)) | r € Clz] \ {0} }
by [DP09, Proposition 3.6] (in fact, in the formula in Lemma 5.10 in [[8]| there

is a typo).

We studied also embeddings of C into the quadric surface
Q=1{(z,y,2) €C®|zy=2(2+1)} CC".

While there is only one embedding of C into C2 up to automorphisms of C2 by
the Abhyankar-Moh-Suzuki Theorem, there are many distinct embeddings of C
into Q up to automorphisms of Q:

Theorem 2.4.6 (Theorem 1 in . There is are uncountably many distinct
embedding of C into Q up to automorphisms of Q.

In fact, we studied the family of embeddings
vp: C—Q, t— (t(1+tp(t)),p(t),tp(t)) where p e C[t].

We use the fact, that @ is equal to the complement of the diagonal A in P! x P!
and showed the following (this is the key step): if there is an automorphism
a € Aut(Q) = Aut((P* xP')\A) such that v, = aov, for polynomials p,q € C|t]
of degree > 3, then a extends to an automorphism & € Aut(P! x P!). Using
the fact that & maps the diagonal A onto itself and v, = & oy, one gets p = gq.
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2.5 On maximal subalgebras

In this section I report on the work @ It is joint work with Stefan Maubach.
The guiding problem was to classify maximal subrings of a given ring. So let
me settle the definitions first:

Definition 2.5.1. A ring extension A C R is called minimal, if A # R and
there exists no subring B of R such that A C B C R. In this case A is called a
mazimal subring of R and R is called a minimal overring of A.

Geometrically, this says the following: Having a dominant morphism be-
tween affine schemes Spec(R) — Spec(A), then A C R is a minimal ring exten-
sion, if there exists no affine scheme Z such that Spec(R) — Spec(A) factorizes
as into two dominant morphisms Spec(R) — Z — Spec(A). So, intuitively,
Spec(R) — Spec(A) is “not decomposable” and serves as a “minimal block” in
a composition.

There is the following fundamental result concerning minimal ring exten-
sions.

Theorem 2.5.2 ([FOT0, Théoréme 2.2], cf. also Theorem 1.0.1 in [9]). Let
A C R be a minimal ring extension and let ¢: Spec(R) — Spec(A) be the
corresponding morphism of affine schemes. Then there exists a unique mazximal
ideal m C A, called crucial maximal ideal, such that

Spec(R) \ ¢ (m) £ Spec(4) \ {m}

is an isomorphism. Moreover, the following statements are equivalent:

i) @ is surjective
it) R is a finite A-module
i) m=mR.

In order to make the further exposition simpler, we assume that R is a
finitely generated C-algebra which is also an integral domain. Moreover, we
assume that every maximal subring A of R is a C-subalgebra of R and we call
it then a mazimal subalgebra of R. According to the result above, there is a
dichotomy between the maximal subalgebras A of R: Either the corresponding
morphism Spec(R) — Spec(A) is finite (i.e. R is a finite A-module) and we call
this the non-extending case or the corresponding morphism Spec(R) — Spec(A)
is an embedding of Spec(R) onto an open subset of Spec(A) and we call it the
extending case.

In some situations the following tool can be used to construct maximal sub-
rings:

Lemma 2.5.3 ([FO70, Lemme 1.4]). Let A C R be a ring extension and let
a C A be an ideal that is also an ideal in R. Then A C R is a minimal ring
extension if and only if A/a C R/a is a minimal ring extension.

2.5.1 The non-extending case

Let A C R be a subalgebra. By Theorem and Lemma A is a non-
extending maximal subalgebra of R if and only if there exists a maximal ideal
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m C A such that m = Rm and A/m C R/m is a minimal ring extension.
However, in this case A/m C R/m is finite and thus A/ m is then isomorphic
to C and due to [FO70, Lemme 1.2] the minimal ring extensions C C R’ are of
the form

C—-CxC, z+(2,2) or C< Cle]/(¢?).

If we are in the first case, then the fibre of the morphism Spec(R) — Spec(A)
over m contains exactly two closed points. Intuitively, Spec(A) corresponds to
the glueing of these two points in Spec(R) in such a way that the images of the
corresponding tangent spaces form a direct sum of the tangent space of Spec(A)
at m. A prominent example is the following:

m=(t* - 1,t(t* - 1)) CA=C[t* - 1,¢(t* - 1)] C R = C[{]

and the corresponding morphism can be illustrated as follows:
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If we are in the second case, then the fibre of the morphism Spec(R) —
Spec(A) over m contains exactly one closed point my € Spec(R) and the fibre
over it is schematically non-reduced. Intuitively Spec(A) corresponds to delet-
ing one tangent direction of Spec(R) at my, i.e. the differential of Spec(R) —
Spec(A) at mg has exactly a on-dimensional kernel. A prominent example is
the following:

m= (t3,t3) C A=C[t*,t*] C R = C[t]

and the corresponding morphism can be illustrated as follows:

Spec(A)

(t— (t2,1%)

[- Jam)

Spec(R)

More details about the non-extending case can be found in [MS17] §2]. In
fact, one has in this non-extending case a rather clear picture of the situation.

2.5.2 The extending case

Much more difficult is the extending case. If A C R is an extending maximal
subalgebra, then the corresponding morphism Spec(R) — Spec(A) is an open
embedding and the complement of the image consists of exactly one (closed)
point m € Spec(A). So these morphisms are embeddings, but contrary to our
convention, these are open and not closed embeddings.

In case Spec(R) is one-dimensional, we have a full classification:
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Theorem 2.5.4 (cf. Theorem 3.0.13 and Lemma 3.0.12 in . Let R be a
finitely generated C-algebra that is also an integral domain of dimension one,
let X := Spec(R) and let X be a projective closure of X such that X is smooth
at every point of X \ X. If X \ X consists only of one point, then R has no
extending mazximal subalgebra. Otherwise, for each p € X \ X,

A={feR| [ isdefined at p}

is an extending maximal subalgebra and every extending mazximal subalgebra of
R is of this form. Moreover, each such A is a finitely generated C-algebra.

Assume now that R is a finitely generated C-algebra, that is also an inte-
gral domain and assume that the dimension is > 2. If A C R is an extending
maximal subalgebra, then A cannot be a finitely generated C-algebra, since oth-
erwise the localization A, at the crucial maximal ideal m would be a Noetherian
integral domain of dimension two and thus it would not be a discrete valuation
ring, contradicting [FO70, Corollaire 3.4]. So this gives an indication, that the
extending maximal subalgebras of R are much more difficult to understand than
the non-extending ones.

As a first exploration in the two dimensional case, we considered the algebra
R = C[t*!,y], i.e. R is the polynomial ring in the variable y over the Laurent
polynomial ring C[t*+1].

Let us consider a first example.

Ezample 2.5.5. For each polynomial p € C[t], the algebra

A=Clt,y] + (y — p)C[t*, ]

til

is an extending maximal subalgebra of R = C[t=!, y] with crucial maximal ideal

m = ¢tC[t,y] + (y — p)C[E*", 5]
Indeed, a = (y — p)C[t*!,y] is an ideal in A and in R and the ring extension
C[t] = A/a C R/a=C[t™",p] = C[t*"]

is minimal. Thus by Lemma[2.5.3] A C R is a mimimal ring extension. Ast € R
is invertible and as t € m, there exists no prime ideal p C R with m = AN p.
Hence m is the crucial maximal ideal of the minimal ring extension A C R and
A C R is extending.

Let me give now a slightly more involved example.

Example 2.5.6. For each n > 1, the algebra
A=Clt,yl+ (y" —t)C[t™, 9]
is an extending maximal subalgebra of R = C[t*!,y]. Indeed,
a=(y" —t)C[t*,y]
is an ideal in both rings A and R and the ring extension

Cly] = A/a C R/a=C[y™",y] = Cly*]
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is minimal. Thus again by Lemma we conclude that the ring extension
A C R is minimal. As in Example one can see that

m = tC[t,y] + (y" — t)C[tT", 4]

is a maximal ideal in A such that there is no p € Spec(R) with m = pnNA.
Therefore the minimal ring extension A C R is extending.

Now, there is also a different description of A. In fact, we extend the scalars
C[t] by C[t'/"] and consider the subalgebra

A =C[t™ y] + (y — t/™)CltEY", gy

of R = C[t'/™] Q¢ R = C[t*Y/",y]. Using Example (where we replace
t by t'/™) one concludes that A’ C R’ is minimal and since (y™ — t)C[t*',y] C
(y — tY/™)C[t*'/™, ] one gets A C A’. Moreover, as A C R is minimal and as
t~1 lies not inside A’ N C[t*?!, y], we get

A=A NCt,y] C R.

Thus we found a new description of A: it is the intersection of A" with C[t*, y].
The advantage of A’ over A lies in the fact, that the ideal (y —t'/™)C[t*'/™, 3] is
generated by a linear polynomial in y, whereas a = (y” —t)C[t*!, ] is generated
by a degree n polynomial in y.

So, this last example illustrates, that extending the scalars can simplify the
situation. We used exactly this idea. In order to formulate the results, let us
consider the field of so-called Hahn-series:

K =C[[tY] = Zasts as € C and supp Z ast® | C Q is well-ordered
seQ seQ

where
supp Zasts ={se€Q|as#0}.
seQ

The field K is algebraically closed and complete with respect to the metric
induced by the valuation v: K — Q, a — min(supp(«)). The valuation ring of
K with respect to v, we denote by

K+ = C[[t%]] = {a € C[[t%] | v(a) > 0}.

It turned out that extending the scalars C[t] to KT is very useful: the extend-
ing maximal subalgebras of K[y] that contain K*[y] have in fact a fairly easy
description:

Theorem 2.5.7 (cf. Theorem 1.0.2 in|[9]). The following map

K+ oda mazimal extending subalgebras
of Kly] that contain KT [y] ’

is a bijection, where Ay = KT [y] + (y — o) K[y] C K[y].
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Using the notation of the theorem above, we can now describe the extending
maximal subrings of C[t*!, y] that contain C[t, y]:

Theorem 2.5.8 (cf. Theorem 1.0.3 in . Let

s—Jackt ‘ supp(«) is contained in a strictly
o increasing sequence of Q '

Then we have a bijection

s/G

Ao NC[tEL 1y mazximal extending subalgebras
of C[t*!,y] that contain Clt,y] [’

where G = Hom(Q/Z,C*) and the action of G on 8 is given by

g- Z ast® = Zg(s)asts .

seQ seQ
In general, there is the following dichotomy:

Proposition 2.5.9 (cf. Theorem 1.0.4 in @ Let A C C[t*!,y] be a mazimal
extending subalgebra. Then exactly one of the following cases occur:

i) There exists an automorphism o of C[t*!,y] such that o(A) contains C[t,y].
ii) A contains C[tT1].

The first case is covered by Theorem and thus we are left with the
problem of the classification of all extending maximal subalgebras of C[t*!, ]
that contain C[t*!]. For this let us introduce the following notation:

M = {extending maximal subalgebras of C[t,y] that contain C[t]}

and
extending maximal subalgebras A of

N :={ CJt,y*™'] that contain C[t,y~!] and such , ,
that A — C[t,y*!]/(t — \) is surjective
where A € C is the unique complex number such that ¢ — A lies in the crucial
maximal ideal of the minimal ring extension A C C[t,y*!]. The set N can be

described using Theorem The extending maximal subalgebras of C[t*!, ]
that contain C[t*!] may now be described by the following result:

Theorem 2.5.10 (cf. Theorem 7.0.1 and Proposition 6.0.2 in [[9]). There exist
bijections © and ®

o B e M s.t. the crucial extending mazximal
N — > mazximal ideal of B @ subalgebras of C[t*!,y]
t does not contain t i that contain C[t*1]

where O(A) = ANCJt,y] and D(A") = A'NCJt, y].



Chapter 3

Automorphisms of affine
varieties

In this part, I report on my research concerning the automorphism group
Aut(X) of an affine variety X. As in the previous part, I will write the results
for simplicity over the field of complex numbers C, if not mentioned explicitly
otherwise.

The first two papers concern question specifically, I investigated the de-
termination of the affine space C™ and spherical varieties by their automorphism
groups. In order to state the results, let me mention the following terminology:
We say that a group homomorphism of automorphism groups

0: Aut(X) — Aut(Y)

preserves algebraic group actions, if for each faithful algebraic group action
G x X — X of an algebraic group G, the action G XY =Y, (g,y) — 0(g)(y) is
again a faithful algebraic group action. If # is a group isomorphism, then we say
that it preserves algebraic group actions if this holds for  and §~!. This notion
coincides with the notion of “preserving algebraic subgroups” (see §5 in |[5]| and
Theorem 9 in [[6]).

The third paper addresses question l@ specifically, in this article I investi-
gated the dynamical degree of a certain class of polynomial automorphisms of
C™; the dynamical degree A(f) of a polynomial automorphism f is defined to be
the number

A(f) = Jim (des(f) " € R,

where for any automorphism g € Aut(C") with corresponding coordinate func-
tions ¢g1,...,gn: C* — C we define the degree deg(g) of g by

deg(g) = max deg(g;).
i=1,...,n
In the last paper, I investigated question specifically I classified automor-
phisms f of C? with deg(f) < 3 up to composition with affine automorphisms
(i.e. automorphisms of degree 1) at the source and target and I computed their
dynamical degrees A(f).

29
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3.1 Is the affine space determined by its auto-
morphism group?

In this section, I will report on the article [@] joint with Hanspeter Kraft and
Andriy Regeta. If there is a group isomorphism 6: Aut(C") — Aut(X) that
preserves algebraic group actions and if X is a connected affine variety, then X
and C™ are isomorphic by a result due to Kraft [Kral7, Theorem 1.1]. Motivated
by this result, we studied to what extend one could neglect the hypothesis that
0 preserves algebraic group actions:

Theorem 3.1.1 (cf. Main Theorem in [[6]). Let X be an irreducible quasi-
projective n-dimensional variety such that there exists a group isomorphism
0: Aut(X) — Aut(C"). Then X ~ C" if one of the following conditions holds.

1) X is smooth, the Euler characteristic x(X) is nonzero and the Picard group
Pic(X) is finite;
2) X is toric and quasi-affine.

As an immediate consequence we get that Aut(C™\ S) and Aut(C™) cannot
be isomorphic for each closed subvariety S C C™ with x(5) # 1, as in this case
X(C™\ S) = x(C™) — x(S) # 0. In particular this applies to all finite subsets S
of C™ with more than one element.

In order to point out the key steps in the proof of Theorem let us
introduce the following terminology for the automorphism group Aut(X) of a
variety X. A map v: A — Aut(X) is called a morphism if the associated
map A x X — X, (a,2) — v(a,z) is a morphism (of varieties). A subgroup
G C Aut(X) is called an algebraic subgroup if there exists an algebraic group
H and a group isomorphism v: H — G C Aut(X) such that v is a morphism.
If G C Aut(X) is any subgroup, then we define the identity component by

o c ‘ there exists a morphism v: A — Aut(X) of an
=Y irreducible variety A such that g,idx € v(A) C G

and its dimension by

dim G = sup { dim A ’ there exists an injective morphism } '

v: A — Aut(X) with image in G

For a subgroup G C Aut(X) the following statements are equivalent (see
Theorem 2.9 in |[6])):

e G is an algebraic subgroup of Aut(X);
e dim (G is finite and G° has finite index in G,
e There exists a morphism A — Aut(X) with image G.

In order to show that X and C™ are isomorphic, our main tool is the following
result:

Proposition 3.1.2 (cf. Proposition 4.1 in . Let W be an irreducible quasi-
affine variety and let 0: Aut(C") — Aut(W) be a group isomorphism such
that 0 maps the standard n-dimensional torus T C Aut(C™) onto an algebraic
subgroup of Aut(W). Then W and C™ are isomorphic.



3.1. IS C" DETERMINED BY ITS AUTOMORPHISM GROUP? 31

The main steps in the proof of Proposition [3.1.2] are the following: T nor-
malizes the subgroup of translations Tr C Aut(C™) and acts on it with an open
orbit O that satisfies Tr = O o O. For a fixed vy € O, the set O consists of all
elements of the form towvgot™1 t € T. As §(T) is an algebraic subgroup of
Aut(W), there exists an algebraic group S together with a group isomorphism
v: S — 6(T) C Aut(X) that is a morphism. Then

SxS — 6(Tr) =6(0)06(0)
(s1,82) + v(s1)o0(vg)ov(s1)tov(sy)ob(vg)or(sy)t

is surjective and the composition with the inclusion 6(Tr) C Aut(X) yields a
morphism S x S — Aut(X). Thus 6(Tr) is an algebraic subgroup of Aut(W).
As 0(Tr) is commutative and contains no element of finite order except idy, it
follows that 6(Tr) is unipotent. As W is quasi-affine, all orbits of (Tr) in W
are closed. As W is irreducible and quasi-affine, one may then show that the
algebraic subgroup 0(Tr) of Aut(W') acts with a dense orbit on W. Hence 6(Tr)
acts transitively on W and this implies that W is an affine space C™. In terms
of subgroups of Aut(C?) one may characterize d as the maximal number & such
that Aut(C?) contains a subgroup isomorphic to (Z/2Z)*. This implies thus
m =n and gives the statement of the proposition.

The following theorem is our main result in order to apply Proposition [3.1.2

Theorem 3.1.3 (cf. Theorem 1.1 in . Let Y and Z be irreducible quasi-
projective varieties, and let 9: Aut(Y) — Aut(Z) be an group isomorphism.
Assume that n == dimY > dim Z and that the following conditions are satisfied:

i) Y is quasi-affine and toric;

i) Z is smooth, x(Z) # 0, and Pic(Z) is finite.

Then dim Z = n, and for each n-dimensional torus T C Aut(Y'), the identity
component of the image 9(T)° is an algebraic subgroup of Aut(Z), isomorphic
to a torus of dimension n. Furthermore, Z is quasi-affine.

In order to deduce Theorem under the assumptions we apply The-
orem[3.1.3to Y :=C", Z := X and ¥ == 0~': Aut(C") — Aut(X) and thus we
get for the standard n-dimensional torus 7' C Aut(C™) that 9(T)° is an alge-
braic subgroup of Aut(X) and moreover that X is quasi-affine. One can then
show that in fact 9(T)° = ¥(T). Hence the assumptions of Proposition
are satisfied for ¥ and we get X ~ C".

In order to deduce Theorem under the assumptions [2)} we apply The-
orem [3.13]to Y := X, Z := C" and ¥ := 0: Aut(X) — Aut(C"). Then for
a fixed n-dimensional torus 7' C Aut(X), the identity component ¢(7")° is an
algebraic subgroup of Aut(C"), isomorphic to an n-dimensional torus. One can
again show, that 9(T)° = ¥(T). Now, all n-dimensional tori in Aut(C") are
conjugated by a result due to Biatynicki-Birula [BB66]. Thus there exists a
© € Aut(C™) such that ¢ o ¥(T) o ¢! is the standard n-dimensional torus in
Aut(C™). Now,

I pod(T)op ™) =97 p)oT o (o)™

is an algebraic subgroup of Aut(X) and thus again, Proposition yields
X ~Cn.
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The proof of Theorem[3.1.3]is the main bulk of the whole article. AsY is toric
and T' C Aut(Y) is a torus of maximal dimension, the centralizer Cent gy (7)
of T in Aut(Y) is equal to T itself. If p is a prime number, then there is a
unique finite subgroup p, C T that is isomorphic to (Z/pZ)" and we have
T C Centpug(y)(pp). Thus we get (T) C Centaye(z)(0(pp)) = C. We may
choose p in such a way, that p does not divide x(Z) # 0. Hence, one can see
that the fixed point set Z?(#») is non-empty. As Z is smooth one may even find
an isolated point zy € Z%»). Using that Pic(Z) is finite and using the tangent
representation C° — T, Z, one may find C°-semi-invariant regular functions
fiseeos fu: Z — C such that zo € i, £ 1(0) € Z9"»). Let x1,...,xn: C° —
C be the corresponding characters of the semi-invariants fi,..., f,. Then one
may show that the homomorphism

xX:C° = (C)", g (x1(9)s- -5 xn(9))

is regular in the sense that for each morphism v: A — Aut(Z) with image
in C°, the composition xy o v: A — (C*)™ is a morphism. The morphism
f="1,--.,fn): Z— C™is C°-equivariant, when C° acts via g- (z1,...,T,) =
(x1(9)z1, ..., Xn(g9)zn) on C". As z is an isolated point of f~!(0), the mor-
phism f: Z — f(Z) = W has finite degree, i.e. the field extension f*: C(W) —
C(Z) is finite. Now, the kernel ker(x) acts faithfully on C(Z) (as C° does) and
leaves C(W) fixed. Thus ker(x) embeds into the finite group Autcw)(C(Z2))
and hence ker(x) is finite. Now, if v: A — C° is an injective morphism, then the
composition x ov: A — (C*)™ has finite fibers and thus dim A < n. Hence, by
definition dim C° < n. As C° = (C°)°, we get that C° is an algebraic subgroup
of Aut(Z).

One may now show that C° is an n-dimensional torus in Aut(Z) and since
dim Z < n, we get dim(Z) = n. The smoothness of Z implies thus that Z is a
toric variety and since Pic(Z) is finite (and hence trivial), one can show that Z
is quasi-affine.

Let me finish this section with the following generalization of Theorem [3.1.1
due to Cantat, Regeta and Xie, which shows that the assumptions andare
supperfluous, if one is interested only in affine varieties:

Theorem 3.1.4 (cf. [CRX19, Theorem A]). LetY be a connected affine variety
such that there exists a group isomorphism Aut(Y) — Aut(C"). ThenY ~ C".

3.2 Characterizing smooth affine spherical vari-
eties via the automorphism group

I will report on the article joint with Andriy Regeta. If X is an affine
toric variety different from the torus and if Y is an irreducible normal affine
variety such that there is a group isomorphism Aut(X) — Aut(Y’) that preserves
algebraic group actions, then X ~ Y by a result due to Liendo, Regeta and
Urech [LRU19, Theorem 1.4]. Spherical varieties are natural generalizations
of toric varieties. The aim of this paper was, to study how much information
of a (quasi)-affine spherical variety X one receives via its automorphism group

Aut(X).
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In order to fix notation and to state the main result, let G be a connected
reductive algebraic group and B C G a Borel subgroup. For any algebraic
group H, a variety X together with a faithful algebraic H-action is called an
H -variety. Recall that an irreducible normal G-variety X is called G-spherical
if B acts with a dense orbit on X. We denote by X(B) the character group of B,
i.e. the group of all regular homomorphisms B — C* and we denote by AT (X)
the weight monoid of X, i.e.

i - there exists a regular function f: X — C such

AT = {A €X(B) | o Fb-1z) = A(B) f(x) for all b€ B, z € X }

Our main result is the following;:

Theorem 3.2.1 (cf. Main Theorem A in . Let X, Y be irreducible normal
quasi-affine varieties and let 0: Aut(X) — Aut(Y) be a group isomorphism that
preserves algebraic group actions. If X is G-spherical and not isomorphic to a
torus, then the following holds:

(1) Y is G-spherical for the induced G-action via 0;

(2) the weight monoids AT(X) and AT(Y') inside X(B) are the same;

(3) if X and Y are smooth and affine, then X and Y are isomorphic as G-
varieties.

In order to formulate the strategy of the proof, we introduce some terminol-
ogy. Let H be an algebraic group and let m > 1. A faithful algebraic group
action of the additive group C™ on an H-variety X is H-homogeneous of weight
AeX(H) if

hop(v)oh™' = p(A(h)v) forall h€ H and all v € C™,

where p: C™ — Aut(X) denotes the group homomorphism induced by the C™-
action on X. This notion will be crucial for the whole proof.

Main steps for the proof of Theorem (3.2.1(1)l Assume that H is
a connected solvable algebraic group, non-isomorphic to a torus. Then for a
quasi-affine irreducible H-variety Z, the following statements are equivalent:

i) H acts with a dense orbit on Z;
ii) There exists a constant C' such that for each faithful H-homogeneous C™-
action on Z we have m < C.

Assume that H acts with a dense orbit on Z and let a faithful H-homogeneous
C™-action on Z be given. From the faithfulness of the C"-action on Z one can
see that the linear map

ToC™ — Vec(Z), w &y = (2 (dop,)w)

is injective, where Vec(Z) denotes the vector space of all sections of the tangent
bundle TZ — Z and p,: C™ — Z, v +— v - z denotes the orbit map associated
to z. As the C™-action is H-homogeneous with respect to a certain weight
A € X(H), one may see for all w € ToC™ that

(dgoh)fw((gph)_l(z)) =Ah)&w(z) forallhe H and all z € 7, (3.1)
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where pp: Z — Z denotes the automorphism z +— hz. Since H acts with a
dense orbit Hzy on Z it follows from (3.1)) that &, is completely determined by
&w(z0) for each w € THC™. Hence the composition

w—Eqy

TyC™ 78 Vee(z) £25, 17

is injective and thus we get the estimate m = dimToC™ < dim7,,Z. This
shows )| =>|17)]

Now, assume that H doesn’t act with a dense orbit on Z. As Z is quasi-affine,
there exist H-semi-invariant regular functions f1, fo: Z — C of the same weight
in X(H) with fy # 0 such that f := f1/f2 is a non-constant rational H-invariant
map on Z. Now p(fi, f2) # 0 for all non-zero homogeneous polynomials p €
C[T},T»], as otherwise the non-constant function f would be algebraic over the
algebraically closed field C. As H is not a torus, there exists a one-dimensional
unipotent subgroup U C H that is normalized by H. Denoting by p: CxZ — Z
the corresponding H-homogeneous C-action on Z induced by U, we get that

C N Z 2, ((tone ) 2) 5 p (i LR, )
=0

is a faithful H-homogeneous C™*!-action on Z for each m > 1. This shows
-

If G is not a torus, then B is also not a torus. The above characterization of
the existence of a dense B-orbit is in fact preserved under group isomorphisms
Aut(X) — Aut(Y) that preserve algebraic group actions. In order to get The-
orem [3.2.1](1)| we are left with the case when G and B are equal to a torus 7.
Hence, T acts faithfully on Y and thus dimY > dim 7T = dim X. Since G =T,
it is enough to show that dimY < dim7. As X is not a torus, one can show,
that there exists a faithful action of a connected solvable group H on X such
that H is not a torus and dim H = dim7T". Using again the characterization of
the existence of a dense H-orbit above, we get as before, that H acts faithfully
with a dense orbit on Y. Thus dimY < dim H = dim7T.

Main steps for the proof of Theorem [3.2.1(2)l To any subset D of
a finite dimensional non-zero Euclidean R-vector space V with scalar product
(,): V xV — R and associated norm |-||: V' — R one may associate the
so-called asymptotic cone in V:

there exists a sequence (z;); in D\ {0} with
|zi]| = oo such that x;/ ||z;|| = =/ ||=]|

Dm::{meV\{O} }U{O}.

The asymptotic cone is indeed a cone, i.e. for each x € D, we have tx € Dy,
for all real ¢ > 0 and D, is non-empty. The following picture illustrates two
examples in the Euclidean plane R2:

D
D Do and Doo
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The following subset of the character group X¥(B) plays a prominent role for
the proof

D(X) = {)\ € X(B) ‘ there exists a faithful B-homogeneous . }

C-action of weigth A on X

The set D(X) is contained in the lattice X(B) of the R-vector space X(B) ®z R
and we fix once and for all a scalar product on the R-vector space X(B) ®z R.

Since there is a group isomorphism Aut(X) — Aut(Y’) that preserves alge-
braic group actions, it follows that D(X) = D(Y). Now, if G is not a torus,
then the set D(X) (the set D(Y')) determines the weight monoid A*(X) (the
weight monoid AT (Y)) and thus we get AT(X) = AT(Y):

Theorem 3.2.2 (cf. Main Theorem B in . Assume that X is a quasi-affine
G-spherical variety that is non-isomorphic to a torus. If G is not a torus, then

AT (X) = Conv(D(X)s) N Spany (D(X)),
where the asymptotic cone and the linear span are taken inside X(B) ®z R.

If G is a torus and X,Y are affine, then Theorem |3.2.1)(2)| may be retrieved
from [LRUI9| Theorem 1.4]. However, in case G is a torus and Spec(0O(X)) #
C x (C\ {0})4mX=1 " the above formula in Theorem still holds. This
can be retrieved with similar methods as in the case when G is not a torus.
The case, when G is a torus and Spec(0(X)) ~ C x (C\ {0})¥™ X~ can be
done separately. However we will not consider these two special cases here and
illustrate the methods in the case when G is not a torus.

The main steps for the proof of Theorem are the following. Let T C B
be a maximal torus and let U C B be the unipotent radical of B. There is a
natural B-action on the vector space Vec(X) given by

B x Vec(X) = Vec(X),  (0,€) = (2 (dg)é((n) " (2)))

where ¢p: X — X denotes the automorphism x — bx. This action turns Vec(X)
into a B-module. Now, the fixed points Vec” (X) under the subgroup U of B
form a B-submodule of Vec(X). Moreover, VecV (X) has a natural structure of
an O(X)Y-module, where 6(X)Y denotes the subring of U-invariants of 6(X).
It turns out, that VecV (X) is a finitely generated 6(X)V-module (by using the
so-called transfer principle; see Corollary 4.8 in and thus we have a surjective
6Y (X)-module homomorphism

k

m @PoV(X)& = VeV (X),  (hn- fr &) = A&+ + fuli

i=1

for finitely many B-homogeneous &1, ..., &, € VecV (X) of weights Ap,... \; €
X(B). Moreover 7 is a B-module homomorphism. Now, if A € X(B) is the
weight of a B-homogeneous £ € Vch(X ), then one may see that there is a
B-homogeneous 7 € EB?ZI 0V (X)&; such that 7(n) = € and thus \ is the weight
of . Hence we have the following inclusion of subsets in X(B)

there exists a B-homo- k
D'(X) =< A€ X(B) | geneous vector field - U()‘i + AT (X)),
of weight A in VecV (X) i=1
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as AT(X) are precisely the B-weights of 6Y(X). There exists a faithful B-
homogeneous C-action p: C x X — X induced from a certain one dimensional
unipotent subgroup of the center of U (here we use the fact that U is non-
trivial, which is implied by the fact that G is not a torus). Let A € X(B) be the
weight of p. Then for each B-semi-invariant r € 6Y(X) of weight N € X(B),
the morphism C x X — X, (t,z) — p(r(z)t,z) is a faithful B-homogeneous
C-action on X of weight A + A" and thus A + X' € D(X). This shows

k
A+ AT(X) € D(X) € D'(X) € [ Ji +AT(X)).

i=1
Taking asymptotic cones in X(B) ®z R yields
AT(X)oo = D(X) o0 -

Now, a certain quotient torus 7” of the torus T acts faithfully on Spec(0Y (X))
and turns it into an affine toric variety (by the so-called transfer principle; see
Proposition 4.6 in. Note that there is a natural embedding X(7") C X(T) =
X(B). As Spec(0” (X)) is an affine T’-toric variety, one may see that the convex
cone generated by AT(X) in X(B) ®z R satisfies

AT (X) = Conv(AT (X)) NX(T")
Furthermore, one may see that Spany(D(X)) = X(7”). Hence, in total

AT(X) = Conv(AT(X))NX(T)
Conv(A™"(X)s) N Spany (D(X))
— Conv(D(X)a0) N Spany(D(X)),

where the second equality follows from the fact, that AT(X)s is equal to the
convex cone spanned by AT(X) inside X(B) ®z R.

The proof of Theorem [3.2.1(3)| The statement is a direct consequence of
Theorem (3.2.1)(1)| as for smooth affine G-spherical varieties X, the weight
monoid AT (X) determines the G-variety X due to a beautiful result of Lo-
sev [Los09, Theorem 1.3] (which confirmed Knop’s conjecture).

3.3 Dynamical degrees of affine-triangular auto-
morphisms of affine spaces

I will report in this section on the joint article with Jérémy Blanc, As an
exception, we formulate in this section all results over an algebraically closed
field k of arbitrary characteristic. Although all results would work over an
arbitrary field, we stick for simplicity to the assumption that the ground field
is algebraically closed.

If f1,..., fn € K[z1,...,2,] are polynomials, we write the endomorphism

K' = k", oz (fu(@),. .. fa(2))
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shortly by f = (f1,...,fn) € End(k") and we call fi,..., f, the coordinate
functions of f or components of f. Moreover, we define the degree of an endo-
morphism f = (f1,..., fn) € End(k™) by

deg(f) = jmax deg(f;)

where deg(f;) is the maximum of all the numbers > | a; where (ay,...,a,) €
N§ runs over all n-tuples such that the coefficient of the monomial z7* - - z%»
in the polynomial f; is non-zero.

The aim of this article was to study the dynamical degree A(f) of automor-
phisms f € Aut(k™), where

1
A(f) = lim (deg(f"))" €R and f':=fo...of
i—00 —_—
i times
and more precisely to give the possible numbers in R that are dynamical degrees
of automorphisms of k™. A very interesting feature of the dynamical degree is
the fact, that it is invariant under conjugation of automorphisms of k™ (and
even birational maps of k™). In case n = 1, the dynamical degree is always one
and for n = 2, the dynamical degree is an integer (which can be deduced from a
famous Theorem due to Jung [Jun42| and van der Kulk [vdK53] that describes
Aut(kz) as a certain amalgamated product). Hence, the question starts to be
interesting for n > 3 and already in this case the question is difficult.
One of the starting points of our work was the following unpublished result
due to Jonsson:

Theorem 3.3.1 (Jonsson (unpublished)). For each n > 2 and each polynomial
p E klxy,...,2n_1] of degree > 2, let f € Aut(k") be the automorphism

f=@n+plxr,...,2n-1),21,...,Tpn—1) € Aut(k").
Let I C Ng_l be the finite subset of indices of the monomials of p. Then

n—1
AMf)=max¢ AeR ‘ A= Z i A"YT for some (i1, ... in-1) € 1

j=1

The automorphisms f in Theorem [3.3.1] are special cases of so-called affine-
triangular automorphisms of k™. These are automorphisms of k™ of the form
aoT, where « is an affine automorphism of k™ i.e. a € Aut(k™) and deg(a) = 1,
and 7 = (71,...,7,) is a triangular automorphism of k™, i.e. 7 € Aut(k™) and
7 € K[zq,..., 2] forall 1 < i< n.

Our main result concerning dynamical degrees of affine-triangular automor-
phisms is the following:

Theorem 3.3.2 (cf. Theorem 1 in . For each integer d > 2, the set of
dynamical degrees of all affine-triangular automorphisms of k> of degree < d is
equal to

24+ 4b
{H\/T—C | (@b eNg, atb<d, Cﬁd}\{O}‘
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In order to write down the strategy of the proof, let me explain the technique
we used to compute dynamical degrees. For any p = (p1,. .., tn) € (R>0)", the
u-degree of a polynomial p € k[z1,...,x,] is defined by

deg, (p) = max { Z aifl;
i=1

Note that for p = (1,...,1) we get back the classical degree. Moreover, we call

the coefficient of the monomial }

a1 an : .
Ty - LUn" m p 1S Non-zero

a polynomial p € K[z1,...,z,] p-homogeneous of degree 9 if p is a finite sum of
monomials of p-degree equal to ¥. Thus we may write each p € k[z1,...,z,]
uniquely as
p=Y_ ps
ﬁGRzo

where py is p-homogeneous of degree ¥ and only finitely many of the py are
non-zero. If p # 0, then the element Pdeg,, (p) 18 called the p-leading part of p.

For any p = (pt1,. .., ptn) € (R>0)", the p-degree of an endomorphism f =
(f1,--, fn) € End(k") is defined by

deg#(f) =inf{v eR | degu(fi) <Jp;forall 1 <i<n}eRsoU{oco}.

We call an endomorphism f € End(k™) p-algebraically stable if deg,(f) < oo
and deg,, (f*) = (deg,(f))" for all 4 > 1. If all the components f1,..., f, of f
are non-zero, we define the p-leading part of f to be the endomorphism g =
(91,---,9n) € End(k"™), where g; is the p-leading part of f; for all 1 < ¢ < n.

We may associate to an endomorphism f € End(k™) in a natural manner
certain square matrices and we have then a notion of a maximal eigenvector and
maximal eigenvalue of f with respect to these square matrices. These concepts
turn out to be very fruitful in order to compute dynamical degrees.

Definition 3.3.3. Let f = (f1,..., fn) € End(k™) such that f; # 0 for all

1 <14 < n. We say that an n X n square matrix M = (m;;) with coefficients in
Ny is contained in f, if for each 4, the coefficient of the monomial 7" - - gin

in f; is non-zero. The mazimal eigenvalue of f is then defined by
07 = {|¢] € R>o | £ is an eigenvalue of a matrix that is contained in f }.

Moreover, we say that a non-zero g = (g1,...,4n) € (R>o)™ is a mazimal
etgenvector of f if

degp(fi) =0fp; foralll<i<n.

Now, we may state our main result in order to compute dynamical degrees
of endomorphisms of k™:

Proposition 3.3.4 (cf. Proposition B in [3]). Let f = (fi,..., f,) € End(K")
be a dominant endomorphism. Then the following holds:

(1) There exists a maximal eigenvector of f.
(2) For all mazimal eigenvectors p = (p1,...,pun) of f we have 0y = deg,,(f)
and the following statements hold:

(1) If f is p-algebraically stable, then A(f) = 0.
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(it) Assume that 0 > 1 and denote by g € End(k") the p-leading part
of f. Then f is p-algebraically stable, if and only if for each r > 1
there is 1 < i < n (depending on r) such that p; > 0 and the i-th
component of g" is non-zero.

The main bulk of the proof of Theorem lies in the proof of the following
technical lemma, whose proof is heavily based on Proposition [3.3.4(2)(ii):

Lemma 3.3.5 (cf. Lemma 4.3.3 in . Let f = o o1 € Aut(k®), where
o € Aut(k®) is a permutation of the coordinates and T € Aut(k®) is triangular.
Suppose that the mazimal eigenvalue 0 := 05 is bigger than 1 and let u be a
mazximal eigenvector of f such that f is not p-algebraically stable. Then, one of
the following cases holds:

(i) f = (&x3 + p3(x1,22), p1(21), S22 + pa(w1)) where &, £3 € k7, p1,p2 €
k[x1], ps € K[z1, 23], deg(p1) = 1, and deg(p2) = 6% > 1. Moreover, there
exists s € klxa] such that the conjugation of f by (x1,x2, x5+ s(x2)) does
not increase the degree of ps and (strictly) decreases the degree of pa;

(ii) [ = (&am2 + p2(z1),&323 + p3(x1,22),p1(x1)) where &, &3 € k*, p1,p2 €
klx1], ps € k[z1,z2], deg(p1) = 1, and deg(ps) = 6 > 1. Moreover,
there exists s € klx1] such that the conjugation of f by (x1,x2+ s(x1), z3)
(strictly) decreases the degrees of ps and ps.

Now, using this lemma, I will explain how Theorem [3.3.2] can be deduced.
Assume that f = a o v € Aut(k®) where « is affine and v is triangular, and
denote by d = deg(f) the degree of f. We may even assume that « is linear (as
the translation part of « can be composed with v and hence this composition is
triangular). Then, there exist linear triangular automorphisms 3, € Aut(k3)
and an automorphism ¢ € Aut(k®) that permutes the coordinates such that
a = oo o~ by the Bruhat decomposition. For the triangular automorphism
7 =rovofp e Aut(k®) we have now

fzaol/:ﬁoao'yo'y_loToﬂ_lzﬂoaoToﬁ_l,

As dynamical degrees are invariant under conjugation and as 3 is linear, we may
assume f = o o7 (the degree doesn’t change). By Proposition [3.3.4(1)] there
exists a maximal eigenvector 1 € (R>o)™ of f. Now, we may apply Lemmam
finitely many times and thus we may assume that either the maximal eigenvalue
s is one or f is p-algebraically stable (after each application the sum of the
degrees of the components of f decreases). If 85 > 1, then f is u-algebraically
stable and thus Proposition [3.3.4(2)(i)| implies that A(f) = 6;. However, a
direct computation (by inspecting all the matrices contained in f) shows that
there are (a,b,c) € N3 with a + b < d, ¢ < d such that

va? +4b
0; = atva®+dbe £0.
2
On the other hand, let d > 1 be given, and let (a,b,c) € N such that
a+b<d, c<dand (a ++Va?+4bc)/2 > 1. Consider the affine-triangular

automorphism
g = (x5 + xab, xo + 25, 21) € Aut(k®).
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Then deg(g) < d. Now, g is the composition of an automorphism of k3
that permutes the coordinates and a triangular automorphism of k®. A di-
rect computation shows that the maximal eigenvalue 6, of g is equal to (a 4
Va2 + 4bc)/2 > 1. As g is not of the form given in the two cases in Lemma
it follows that g is u-algebraically stable for each maximal eigenvector u of g.
By Proposition [3.3.4(1) there exists a maximal eigenvector u € R%, of f.
Now, Proposition [3.3.4][(2)}(i)| shows that the dynamical degree A(g) is equal to
(a + /a2 + 4bc) /2. This gives Theorem

Let me also mention the following generalization of the unpublished result
due to Jonsson (Theorem . For this, recall that a positive real number
is called a Handelman number if it is the root of a monic integral polynomial
T+ E?:_Ol ¢;T% where ¢; < 0 for all 0 < i < d — 1. In particular, the dynamical
degrees appearing in Theorem [3.3.1] are Handelman numbers.

Proposition 3.3.6 (cf. Proposition C in [[3]). Let f € Aut(k") be an auto-
morphism of the form f = o oe, where o € Aut(k™) is a permutation of the
coordinates and e is an automorphism of the form

e= (21, s Tp-1,Tn +0(T1,...,Tpn_1)) € Aut(k")

where p € k[z1,...,2n-1] is any polynomial. If the mazimal eigenvalue 0y of f
is bigger than 1, then there exists a mazimal eigenvector p of f such that f is
u-algebraically stable. In particular, the dynamical degree A(f) is equal to the
mazimal eigenvalue 0¢. This mazimal eigenvalue 05 is a Handelman number.

Let me finish this section with the following recent general result due to
Dang and Favre concerning dynamical degrees of automorphisms of k®:

Theorem 3.3.7 (IDE21, Corollary 3]). Dynamical degrees of polynomial auto-
morphisms of k> are algebraic numbers whose degree over the field of rational
numbers Q is at most 6.

3.4 Automorphisms of the affine 3-space of de-
gree 3

In this section, I report on the joint article with Jérémy Blanc As an
exception, we formulate in this section all results over an algebraically closed
field k of arbitrary characteristic.

We use the classical degree for polynomials k[x1, .. ., 2,] and automorphisms
of k™, introduced in the last section. Moreover, we also identify each morphism
f+ k" — kK™ with its m-tuple of coordinate functions (f1,..., fin) and write
then shortly f = (f1,..., fm) (analogous to the last section).

Two prominent subgroups of Aut(k™) are the so-called affine automorphisms

Aff(k™) = {a € Aut(k™) | deg(a) =1}

and the so-called triangular automorphisms

. n n 7 € klry, ..., x;
Triang(k™) := {7-_ (T1,...,7n) € Aut(k") for a11[11<i<n] } .
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The group generated by Aff(k™) and Triang(k"™) inside the automorphism group
Aut(k™) is called the subgroup of tame automorphisms and we denote it by
Tame(k™). In case n = 1, we have Tame(k) = Aut(k) and by a famous result
due to Jung and van der Kulk [Jun42, vdK53] we have also Tame(k?) = Aut(k?).
For a long time it was conjectured that the so-called Nagata automorphism

(x —2y(zz + %) — 2(zz + )% y + 2(z2 + ¥7), 2) € Aut(k®)

is not tame and eventually this conjecture was proven by Shestakov and Umir-
baev in a landmark paper [SU04] in case the characteristic of k is zero. Note
that the degree of the Nagata automorphism is 5. The least degree of a non-
tame automorphism (until now) in k* (if char(k) = 0) is also 5. Amongst other
things, we proved that all automorphisms of degree 3 of k® are tame (see The-
orem . It is still an open problem, whether all automorphisms of degree 4
in Aut(k”) are tame.

For stating our main result, we introduce the following equivalence relation
on Aut(C™): Two automorphisms f,g € Aut(C") are called equivalent, if there
exist o, B € Aff(k™) such that g = ao f o .

Theorem 3.4.1 (c¢f. Theorem 1 in . Each automorphism of k> of degree
< 3 is either equivalent to a triangular automorphism or to an automorphism
of the form

(x4 yz + za(z, 2),y + a(z, 2) + 7(2), 2) € Aut(k®), (3.2)
where a € k[z, 2] \ k[z] is homogeneous of degree 2 and r € k2] is of degree < 3.

Using Theorem we also calculated the set of dyanmical degrees of all
automorphisms of degree < 3 of k>: see the last section for the definition of
the dynamical degree of an automorphism of the affine space. In fact, the
dynamical degrees of all automorphisms of C? of degree 2 were calculated by
Maegawa [Mae01, Theorem 3.1] and the list is given by {1,v/2, (1 + v/5)/2,2}.
This list stays the same over k and in fact we came up with the following result:

Theorem 3.4.2 (cf. Theorem 2 in (4| ). We denote by Ay the set of all dy-
namical degrees of all automorphisms of K of degree d. Then we have:

A= {1
A2 = {L \/iv 1+2\/5’2}
Ay = {1,v2,1505 /3,2, 1413 1 4 /3 /6, 1517 34Y5 11 4 (/3 3},

In fact, if f € Aut(k®) and if deg(f) < 3, then either f is equivalent to
a triangular automorphism or to an automorphism of the from by Theo-
rem In the first case, f is conjugated (via an affine automorphism) to an
affine-triangular automorphism (i.e. a composition of an affine automorphism
with a triangular automorphism) and since the dynamical degree is invariant
under conjugation, this case is covered by the general result Theorem [3.3.2] from
the last section. In particular this applies to all automorphisms of degree < 2 of
k? (which follows again from Theorem as equivalent automorphisms have
the same degree). The main bulk of the proof of Theorem lies in studying
the case when f is equal to oo g, where « is affine and g is an automorphism of
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the form . We proceeded then the computation of the dynamical degrees
via the method from Proposition .

In fact, by inspecting Theorem [3.3.2] one can see, that % is the only
dynamical degree in Az that doesn’t appear in the list of all dynamical degrees

of affine-triangular automorphisms (of arbitrary degree) of k®. One may see
(again using Proposition [3.3.4) that the automorphism

f=@W+zz, 2,0+ 2(y+22) € Aut(k?)
from the last section has dynamical degree 3+2‘/5 (note that f is an automor-
phism of the form , where a = zz and r = 0) composed with a cyclic
permutation of the coordinates). As a consequence, we get that f cannot be
conjugate via any automorphism of k* (or even via any birational map of k3)
to an affine-triangular automorphism of k.

Let me explain, the main strategy of the proof ot Theorem In fact it
turned out that the following generalization of automorphisms was very fruitful
in order to classify automorphisms of degree < 3 of k®. We call a morphism

f: k% k"

an affine linear system of affine spaces, if for each affine hyperplane H in k™ the
preimage f~!(H) is isomorphic to k%=1, This property is satisfied for automor-
phisms of k™ and it is preserved under compositions by affine automorphisms
at the source and target. Moreover, the dimension of the target has to be
smaller than the dimension of the source. If two affine linear systems of affine
spaces k% — k™ are the same up to composition with affine automorphisms at
the source and target, we call them equivalent (which generalizes the notion
introduced for automorphisms). Note that for each surjective affine linear map
7: k™ — k" and for each affine linear system of affine spaces f: k¢ — k™ the
composition 7o f: k% — K" is again an affine linear system of affine spaces.
We proved in fact a generalization of Theorem In order to formulate
it, recall that variables are polynomials in k[x1, ..., x,] that are components of
automorphisms of k™, that a k-fibration is a surjective morphism f: X — Y
such that each fiber is (schematically) isomorphic to k and that a k-fibration
f+ X =Y is called trivial if there exists an isomorphism ¢: Y x k — X such
that the composition fop:Y x k — Y is the projection onto the first factor.

Theorem 3.4.3 (cf. Theorem 3 in [[4]). Every affine linear system of affine
spaces k> — K" of degree < 3 is equivalent to an element of the following eleven
families. Case 1) corresponds to n =1, Cases I1a) and IIb) correspond to n = 2
and Case III) corresponds to n = 3.

I) variables of k|x,y, 2]:

(1) z+7r2(y, 2) + r3y, z), where r; € kly, z] is homogeneous of degree i;
(2) zy +yra(y, z) + 2z, where ro € kly, 2] \ kly] is homogeneous of degree 2;
(3) zy® +y(2® + az + b) + z, where a,b € k.

ITa) trivial k-fibrations:

(4) (z+p2(y,2) +p3(y, 2),y + @22° + q32°), where p; € K[y, 2] is homogeneous
of degree i and qq,qs € k;
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(5) (yz+zas(x,2) +x,y+az(x, 2) +riz+1222 +132%), where as € klx, 2]\ k[z]
is homogeneous of degree 2 and r; € k;

(6) (yz + zaz(z,z) + x, 2), where ay € K[z, 2] \ k[z] is homogeneous of degree 2;

(7) (zy?® +y(22 + az + b) + z,y), where a,b € k.

ITb) non-trivial k-fibrations:

(8) (w+ 2%+ y3,y + x?), where the characteristic of k is 2;
(9) (z+ 2% +y3, 2 + 23), where the characteristic of k is 3.

I11) automorphisms of k*:

(10) (z+p2(y, 2) +p3(y, 2),y + q22° + q32°, 2), where p; € kly, 2] is homogeneous
of degree i and q2,q3 € k;

(11) (yz + zaz(z, 2) + 2,y + az(w, 2) + 1222 + 1323, 2), where az € klx, 2] \ k[2] is
homogeneous of degree 2 and rq, 73 € k.

Let me give the main steps for the proof of Theorem We call an affine
linear system of affine spaces f: k® — k™ to be in standard form if there exist
polynomials py,...,p, € k[y] and q1, ..., ¢, € K[y, 2] such that

f=Em@) +aw,2), ... opa(y) + an(y,2): K> > k" .

The first step was, to consider the affine linear systems of affine spaces k® — k
of degree < 3. Using a certain result about variables in k[z,y, z] due to Russell
[Rus76, Theorem 2.3] we were able to show that they are always equivalent
to an affine linear system of affine spaces in standard form and that they are
even equivalent to the systems in Case I) of Theorem In a second step
we studied affine linear systems of affine spaces k> — k™ of degree < 3 such
that the homogenous parts of degree 3 of the components are all divisible by
the same homogeneous polynomial of degree 2. In geometric terms, this means
that the extension P? --» P™ of k® — k™ has a conic in the base locus. It
turned out that all these are equivalent to affine linear systems affine spaces in
standard form. In a third step, we studied the affine linear systems of affine
spaces f: k¥ — k? of degree < 3 and we showed that either f is equivalent to
an affine linear system of affine spaces in standard form or f is equivalent to an
affine linear system of affine spaces in Case IIb) of Theorem This reduced
then our study to the case of affine linear systems of affine spaces k® — k™ of
degree < 3 in standard form for n = 2,3. This study then gave the Cases Ila)

and IIT) in Theorem

Let me finish this section by relating Theorem to the Jacobian con-
jecture. Omne can in fact prove that the following implications hold for all
f € End(k"):

f is an affine linear system

f € Aut(k") = of affine spaces

= det Jac(f) € k*.
The Jacobian conjecture says that all the implications above are equivalences
if the characteristic of k is zero. In case the characteristic of k is a prime
p, then the second implication is wrong, as can be seen for example by the
endomorphism f = (z1 + 2%, xa,...,2,) € End(k™). If n = 3 and the degree
of f e End(k?’) is at most 3, then Vistoli proved that the Jacobian conjecture
holds [Vis99]. Theorem says in particular that the first implication is an
equivalence if f € End(k”) and deg(f) < 3 for algebraically closed fields of any
characteristic.



44

CHAPTER 3. AUTOMORPHISMS OF AFFINE VARIETIES



Bibliography

[AFRW16] Rafael Andrist, Franc Forstneri¢, Tyson Ritter, and Erlend Fornaess

[AMT5]

[Asa87]

[BB66]

[BCWT7]

[Ber83]

[Bhags)

[BMSS9]

[CK52]

[CRX19]

[DDK10]

Wold, Proper holomorphic embeddings into Stein manifolds with the
density property, J. Anal. Math. 130 (2016), 135-150.

Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the
line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. MR
379502

Teruo Asanuma, Polynomial fibre rings of algebras over Noetherian

rings, Invent. Math. 87 (1987), no. 1, 101-127. MR 862714

Andrzej Biatynicki-Birula, Remarks on the action of an algebraic
torus on k™, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
14 (1966), 177-181. MR 0200279 (34 #178)

H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial al-
gebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3,
279-299. MR 432626

José Bertin, Pinceaux de droites et automorphismes des surfaces
affines, J. Reine Angew. Math. 341 (1983), 32-53. MR 697306

S. M. Bhatwadekar, Generalized epimorphism theorem, Proc. Indian
Acad. Sci. Math. Sci. 98 (1988), no. 2-3, 109-116. MR 994128

Spencer Bloch, M. Pavaman Murthy, and Lucien Szpiro, Zero cycles
and the number of generators of an ideal, no. 38, 1989, Colloque en
I’honneur de Pierre Samuel (Orsay, 1987), pp. 51-74.

Shiing-shen Chern and Nicolaas H. Kuiper, Some theorems on the
isometric imbedding of compact Riemann manifolds in euclidean
space, Ann. of Math. (2) 56 (1952), 422-430. MR 50962

Serge Cantat, Andriy Regeta, and Junyi Xie, Families of commuting
automorphisms, and a characterization of the affine space, https:
//arxiv.org/pdf/1912.01567.pdf, 12 2019.

F. Donzelli, A. Dvorsky, and S. Kaliman, Algebraic density property

of homogeneous spaces, Transform. Groups 15 (2010), no. 3, 551
576. MR 2718937

45


https://arxiv.org/pdf/1912.01567.pdf
https://arxiv.org/pdf/1912.01567.pdf

46

[DF21]

[DPOY]

[EG92]

[Fil82]

[FO70]

[For70]

[Fur02]

[FWO8g]

[Giz71]

[HM73]

[Hol75]

[Jel87]

[Jel97]

[Jel09)]

[Jun42]

[Kal91]

BIBLIOGRAPHY

Nguyen-Bac Dang and Charles Favre, Spectral interpretations of dy-
namical degrees and applications, Ann. of Math. (2) 194 (2021),
no. 1, 299-359. MR, 4276288

Adrien Dubouloz and Pierre-Marie Poloni, On a class of Danielewski
surfaces in affine 3-space, J. Algebra 321 (2009), no. 7, 1797-1812.
MR, 2494748

Yakov Eliashberg and Mikhael Gromov, Embeddings of Stein man-
ifolds of dimension n into the affine space of dimension 3n/2 + 1,
Ann. of Math. (2) 136 (1992), no. 1, 123-135.

Richard Patrick Filipkiewicz, Isomorphisms between diffeomorphism
groups, Ergodic Theory Dynamical Systems 2 (1982), no. 2, 159-171
(1983). MR 693972

D. Ferrand and J.-P. Olivier, Homomorphisms minimauz d’anneauz,
J. Algebra 16 (1970), 461-471. MR 271079

Otto Forster, Plongements des variétés de Stein, Comment. Math.
Helv. 45 (1970), 170-184. MR 269880

Jean-Philippe Furter, On the length of polynomial automorphisms
of the affine plane, Math. Ann. 322 (2002), no. 2, 401-411. MR
1893923

John Erik Fornaess and He Wu, Classification of degree 2 polynomial
automorphisms of C3, Publ. Mat. 42 (1998), no. 1, 195-210. MR
1628170

M. H. Gizatullin, Quasihomogeneous affine surfaces, Izv. Akad.
Nauk SSSR Ser. Mat. 35 (1971), 1047-1071. MR 0286791

G. Horrocks and D. Mumford, A rank 2 vector bundle on P* with
15,000 symmetries, Topology 12 (1973), 63-81.

Audun Holme, Embedding-obstruction for singular algebraic vari-
eties in PN, Acta Math. 135 (1975), no. 3-4, 155-185.

Zbigniew Jelonek, The extension of reqular and rational embeddings,
Math. Ann. 277 (1987), no. 1, 113-120. MR 884649

, A hypersurface which has the Abhyankar-Moh property,
Math. Ann. 308 (1997), no. 1, 73-84. MR 1446200

, Manifolds with a unique embedding, Colloq. Math. 117
(2009), no. 2, 299-317. MR 2550135

Heinrich W. E. Jung, Uber ganze birationale Transformationen der
Ebene, J. Reine Angew. Math. 184 (1942), 161-174.

Shulim Kaliman, Eztensions of isomorphisms between affine alge-
braic subvarieties of k™ to automorphisms of k™, Proc. Amer. Math.
Soc. 113 (1991), no. 2, 325-334. MR 1076575



BIBLIOGRAPHY 47

[Kal92]

[Kall5)

[Kal20]

[Kal21]

[Kral7]

[KU20]

[Kui55)

[Los09]

[LRU19]

[Mae01]

[MO91]

[MS17]

[Nas54]

[Pet57]

[Rus76]

, Isotopic embeddings of affine algebraic varieties into C™,
The Madison Symposium on Complex Analysis (Madison, WI,
1991), Contemp. Math., vol. 137, Amer. Math. Soc., Providence,
RI, 1992, pp. 291-295.

, Analytic extensions of algebraic isomorphisms, Proc. Amer.
Math. Soc. 143 (2015), no. 11, 4571-4581. MR 3391018

, Extensions of isomorphisms of subvarieties in flexible vari-
eties, Transform. Groups 25 (2020), no. 2, 517-575. MR 4098881

, Holme type theorem for special linear groups, https://
arxiv.org/pdf/2104.09550.pdf, 04 2021.

Hanspeter Kraft, Automorphism groups of affine varieties and a
characterization of affine n-space, Trans. Moscow Math. Soc., to
appear (2017), http://kraftadmin.wixsite.com/hpkraft.

Shulim Kaliman and David Udumyan, On automorphisms of flexible
varieties.

Nicolaas H. Kuiper, On C'-isometric imbeddings. I, II, Nederl.
Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545
556, 683-689. MR 0075640

Ivan V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier
(Grenoble) 59 (2009), no. 3, 1105-1134. MR 2543664

Alvaro Liendo, Andriy Regeta, and Christian Urech, Characteriza-
tion of affine surfaces with a torus action by their automorphism
groups, https://arxiv.org/pdf/1805.03991, 2019.

Kazutoshi Maegawa, Classification of quadratic polynomial auto-
morphisms of C3 from a dynamical point of view, Indiana Univ.
Math. J. 50 (2001), no. 2, 935-951. MR 1864065

Gary H. Meisters and Czestaw Olech, Strong nilpotence holds in di-
mensions up to five only, Linear and Multilinear Algebra 30 (1991),
no. 4, 231-255. MR 1129181

Stefan Maubach and Immanuel Stampfli, On mazimal subalgebras,
https://arxiv.org/abs/1501.03753, 2017.

John Nash, C*' isometric imbeddings, Ann. of Math. (2) 60 (1954),
383-396. MR 65993

Franklin P. Peterson, Some non-embedding problems, Bol. Soc. Mat.
Mexicana (2) 2 (1957), 9-15. MR 87940

Peter Russell, Simple birational extensions of two dimensional affine
rational domains, Compositio Math. 33 (1976), no. 2, 197-208. MR
0429935


https://arxiv.org/pdf/2104.09550.pdf
https://arxiv.org/pdf/2104.09550.pdf
http://kraftadmin.wixsite.com/hpkraft
https://arxiv.org/pdf/1805.03991
https://arxiv.org/abs/1501.03753

48

[Rus88]

[Ryb95]

[Ryb02]

[Sch97]

[Sri91]

[SU04]

[Sun14]

[Suz74]

[vdK53]

[VAV75]

[Vis99]

[Whi36]

[Whi44]

[Z1.83]

BIBLIOGRAPHY

Kamil Rusek, Two dimensional jacobian conjecture, pp. 77-98,
Proceedings of the Third KIT Mathematics Workshop held in
Taejon, Korea Institute of Technology, Mathematics Research Cen-
ter, Taejon, 1988.

Tomasz Rybicki, Isomorphisms between groups of diffeomorphisms,
Proc. Amer. Math. Soc. 123 (1995), no. 1, 303-310. MR 1233982

, Isomorphisms between groups of homeomorphisms, Geom.
Dedicata 93 (2002), 71-76. MR 1934687

J. Schiirmann, Embeddings of Stein spaces into affine spaces of min-

imal dimension, Math. Ann. 307 (1997), no. 3, 381-399.

V. Srinivas, On the embedding dimension of an affine variety, Math.
Ann. 289 (1991), no. 1, 125-132.

Ivan P. Shestakov and Ualbai U. Umirbaev, The tame and the
wild automorphisms of polynomial rings in three variables, J. Amer.
Math. Soc. 17 (2004), no. 1, 197-227. MR 2015334

Xiaosong Sun, Classification of quadratic homogeneous automor-
phisms in dimension five, Comm. Algebra 42 (2014), no. 7, 2821-
2840. MR 3178045

Masakazu Suzuki, Propriétés topologiques des polynomes de deux
variables complexes, et automorphismes algébriques de ’espace C2,
J. Math. Soc. Japan 26 (1974), 241-257. MR 338423

W. van der Kulk, On polynomial rings in two variables, Nieuw Arch.
Wisk. (3) 1 (1953), 33-41. MR 54574

A. Van de Ven, On the embedding of abelian varieties in projective
spaces, Ann. Mat. Pura Appl. (4) 103 (1975), 127-129.

Angelo Vistoli, The Jacobian conjecture in dimension 3 and degree
3, J. Pure Appl. Algebra 142 (1999), no. 1, 79-89. MR, 1716048

Hassler Whitney, Differentiable manifolds, Ann. of Math. (2) 37
(1936), no. 3, 645-680.

, The self-intersections of a smooth n-manifold in 2n-space,

Ann. of Math. (2) 45 (1944), 220-246.

M. G. Zaidenberg and V. Ya. Lin, An irreducible, simply connected
algebraic curve in C2 is equivalent to a quasihomogeneous curve,
Dokl. Akad. Nauk SSSR 271 (1983), no. 5, 1048-1052. MR 722017



EXISTENCE OF EMBEDDINGS OF SMOOTH VARIETIES

1.
2.

2.1.
2.2.
2.3.
2.4.

3

3.1.
3.2.
3.3.
3.4.

4.
d.

INTO LINEAR ALGEBRAIC GROUPS

PETER FELLER AND IMMANUEL VAN SANTEN

ABSTRACT. We prove that every smooth affine variety of dimension d
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1. INTRODUCTION

In this text, varieties are understood to be (reduced) algebraic varieties
over a fixed algebraically closed field k of characteristic zero endowed with
the Zariski topology. We will focus on affine varieties—closed subvarieties
of the affine space A™. A closed embedding, embedding for short, f: Z — X
of an affine variety Z into an affine variety X is a morphism such that f(Z2)
is closed in X and f induces an isomorphism Z ~ f(Z) of varieties.

A focus of this text lies on embeddings into the underlying varieties of
affine algebraic groups. Recall that an affine algebraic group, an algebraic
group for short, is a closed subgroup of the general linear group GL; for
some positive integer k. An algebraic group is simple if it has no non-trivial
connected normal subgroup. We prove the following embedding theorem.

Theorem A (Theorem 3.7). Let G be the underlying affine variety of a sim-
ple algebraic group and Z be a smooth affine variety. If dim G > 2dim Z+1,
then Z admits an embedding into G.

In case dim G is even, the dimension assumption on dim Z in terms of
dim G from Theorem A is optimal; while in case dim G is odd, the dimension
assumption can at best be relaxed by one, that is from dim G > 2dim Z + 1
to dim G > 2dim Z 4 1. Indeed, we have the following.

Proposition B (Corollary 4.4). Let G be the underlying affine variety of
an algebraic group of dimension n > 1. Then, for every integer d > 5 there
exists a smooth irreducible affine variety Z of dimension d that does not
admit an embedding into G.

Theorem A fits well in the context of classical embedding theorems in
different categories. We provide this context in the next subsection and an
outline of the proof of Theorem A in the subsection after that.

Before that, we discuss a domination result for the rational homology of
smooth varieties, which we believe to be of independent interest. The con-
nection to Theorem A comes from an application that explains one crucial
obstacle to weakening the dimension assumption to dimG > 2dim Z + 1
in our proof of Theorem A; see Proposition D in the outline of the proof
of Theorem A below. For this domination result we work over the field of
complex numbers, and rational homology groups H.(-;Q) are taken with
respect to the Euclidean topology.

Theorem C. Let f: X — Y be a proper surjective morphism between com-
plex n-dimensional smooth varieties. Then the induced map on k-th rational
homology Hp(X; Q) — H(Y;Q) is a surjection for all integers k > 0.

We will formulate a version of Theorem C (see Theorem A.2) in the
category of complex manifolds that can be understood as a generalization
of Gurjar’s Theorem [Gur80] (see Remark A.4). We prove Theorem C via
a version of Hopf’s Theorem on the Umkehrungshomomorphismus for non-
compact topological manifolds; see Appendix A.
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Context: embedding theorems in various settings.

Holme-Kaliman-Srinivas embedding theorem. When considering affine vari-
eties as closed subvarieties of the affine space A", it is natural to wonder
about their minimal embedding dimension in affine space. It turns out that
every smooth affine variety Z embeds into A" for n > 2dim Z 4+ 1; see
Holme [Hol75], Kaliman [Kal91], and Srinivas [Sri91]. This can be under-
stood as an analog of the following classical result in differential topology.

Whitney embedding theorem. The weak Whitney embedding theorem states
that every closed smooth manifold M can be embedded into R™ for n >
2dim M + 1 [Whi36]. The fact that Whitney’s result also holds in case
n = 2dim M is known as the strong Whitney embedding theorem, based on
the so-called Whitney trick [Whid4]. Furthermore, if M is a closed smooth
manifold such that dim M is not a power of 2, then Haefliger-Hirsch [HH63]
proved that M embeds into R24™M=1 Tn contrast, the real projective space
of dimension 2* for k > 0 yields a 2*-dimensional smooth manifold that does
not embed into R22"~1 [Pet57).

Holomorphic embeddings of Stein manifolds. Focusing on k = C (hence
A™ = C"), it is natural to compare the Holme-Kaliman-Srinivas result with
the holomorphic setup. It is known that every Stein manifold M of dimen-
sion at least 2 can be holomorphically embedded into C™ for n > %dim M,
see Eliashberg-Gromov [EG92] and Schiirmann [Sch97]. Examples of Forster
show that this dimension condition is optimal [For70].

Focusing on more general targets, Andrist, Forsterni¢, Ritter, and Wold
proved that for every Stein manifold X that satisfies the (volume) density
property and every Stein manifold M such that dim X > 2dim M + 1, there
exists a holomorphic embedding of M into X [AFRW16]. In particular, if
G is a characterless algebraic group, then G satisfies the density property
by Donzelli-Dvorsky-Kaliman [DDK10, Theorem A] or G is isomorphic to
C. Hence, every smooth affine variety Z with 2dim Z 4+ 1 < dim G admits
a holomorphic embedding into G. As far as the authors know, it remains
open whether a dimension improvement a la Eliashberg-Gromov is possible.

Embeddings into projective varieties. Comparing with the projective setting,
a further analog of the weak Whitney embedding theorem states that every
smooth projective variety Z embeds into P" provided n > 2dim Z + 1; see
Lluis [Llu55].

While the Holme-Kaliman-Srinivas embedding result concerning affine
spaces generalizes to some, possibly all affine algebraic groups, the embed-
ding result due to Lluis concerning projective spaces cannot generalize to
projective algebraic groups, better known as abelian varieties. In fact, each
rational map Z --+ A from a rationally connected variety Z into an abelian
variety A is constant; see [Lan83, Corollary to Theorem 4, Ch. II].
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Optimality of the dimension condition for algebraic embeddings. As seen
above, in many categories, d-dimensional objects embed into the standard
space of dimension 2d, e.g. the strong Whitney embedding theorem, or even
lower like in the case of the Eliashberg-Gromov result. In contrast, even
the analog of the strong Whitney embedding theorem is known to fail for
affine varieties. Indeed, by a result of Bloch-Murthy-Szpiro [BMS89], for
every d > 1 there exists a d-dimensional smooth affine variety that does not
embed into A%?. In fact, their argument (based on Chow group calculations)
suffices to also yield Proposition B, as we will see in Section 4.

Incidentally, in the Lluis embedding theorem, the dimension bound is
optimal in the sense that for every d > 1 there is a smooth projective variety
of dimension d that does not admit an embedding into P2?; see Horrocks-
Mumford [HM73] and Van de Ven [VAVT75].

Proof strategy: an embedding method and its limits.

Proof strateqy of the Holme-Kaliman-Srinivas theorem and an approach to
more general targets. We recall the basic idea behind the Holme-Kaliman-
Srinivas embedding theorem, which uses the same method as the proofs of
the weak Whitney embedding theorem and the Lluis embedding theorem.
To show that every smooth affine variety Z embeds into X = A2dmZ+1
one starts from an arbitrary embedding Z C A™ for some large integer
m > 2dim Z + 1, and shows that the composition of the inclusion Z C A™
with a generic linear projection A™ — A2dmZ+1 5 still an embedding.

For more general targets X, one looses the availability of (many) pro-
jections from A™ to X. In contrast with the above strategy, instead, we
consider a morphism 7: X — AY™Z and a finite morphism Z — Ad™Z
(guaranteed to exist by Noether normalization) in order to build our em-
bedding Z — X as a factorization of Z — A4™Z through m. This approach
is similar to the setup of Eliashberg-Gromov and their notion of relative em-
bedding using their ‘background map’; see [EG92, Section 2]. A strength of
this approach lies in the following fact: checking that a morphism f: 7 — X
is an embedding (i.e. a proper injective morphism with everywhere injective
differential), reduces to checking that f is injective and has everywhere in-
jective differential, since any morphism that can be composed with another
yielding a finite (in particular proper) morphism is proper. Sloppily speak-
ing, one gets properness ‘for free’.

Outline of the proof of Theorem A. More concretely, our approach to prove
Theorem A can be understood in two steps. Step one involves finding a
specific subvariety of a simple algebraic group using classical algebraic group
theory. Using parametric transversality results, in step two we promote finite
maps with target the base space of a principal bundle to embeddings into the
total space. Here the total space is the subvariety constructed in step one.
These two steps will be treated in detail in Sections 3 and 2, respectively.
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We provide a short outline, where we fix a smooth affine variety Z and a
simple algebraic group G with dim G > 2dim Z + 1.

Step one. We find a closed codimension one subvariety X C G iso-
morphic to AY™Z x H where H is a characterless closed subgroup of G.
This will be achieved using a well-chosen maximal parabolic subgroup in G
and constitutes the bulk of Section 3. It turns out that G itself cannot be
a product of the form A™ x H for any variety H underlying an algebraic
group and m > 0; hence, the X we found has the largest possible dimension.

Link between the two steps. We note that step one reduces the proof
of Theorem A to finding an embedding of Z into AM™Z x H. We set up
a principal bundle together with a finite morphism from Z into the base.
For the latter, denoting by G, the underlying additive algebraic group of
the ground field k, we consider the principal G,-bundle p: AY™Z x H —
AY™Z 5 H/U, where U is a closed subgroup of H that is isomorphic to
Gq. Using Noether normalization, one has a finite morphism Z — A4mZ
which yields a morphism r: Z — AY™Z x H /U by composing with a section
of the projection n: AY™MZ x H/U — AYMZ to the first factor. Writing
X = AMmZ [ and Q = AY™Z x /U, we have the following commutative

diagram
| 0

7T Q n Adim Z

Step two. We consider the following setup generalizing (1). This con-
stitutes our embedding method mentioned earlier. Consider a principal G,-
bundle p: X — @, where X is a smooth irreducible affine variety of dimen-
sion at least 2dim Z + 1, and a finite morphism Z — AY™Z that is the
composite of morphisms r: Z — Q and 1: Q@ — AY™Z such that the follow-
ing holds. The composition 7 := 1o p: X — AY™Z is a smooth morphism
such that there are sufficiently many automorphisms of X that fix 7 (see
Definition 2.1). Given this setup, we show that there exists an embedding of
Z into X (see Theorem 2.5). This is done in Section 2 building on notions
and results due to Kaliman [Kal20]. Next, we explain in broad strokes how
we build such an embedding.

Note first that p: X — @ restricts to a trivial G,-bundle over any affine
subvariety of ). Hence, there exists a morphism

fo: Z—=pt(r(2) =r(Z) x G, C X

such that po fo = r. Then we use a generic automorphism ¢ of X that
fixes m to construct an ‘improved’ morphism fi: Z — X with po f; =
powo fo. Improved’ means that f; and its differential are ‘more injective’
than fy and its differential, respectively. After finitely many, say k, such
‘improvements’, we get an injective morphism fj: Z — X with everywhere
injective differential. Note that by construction we have that = o fr =
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nor: Z — AYmZ is finite. This shows the properness of f,, and thus f;, is
an embedding of Z into X.

The case of small dimensions and other cases. While, in general, we do not
know how to weaken the dimension assumption to the optimal dim G >
2dim Z + 1 in Theorem A, we are able to treat the case dim G < 8: every
smooth affine variety Z embeds in every characterless algebraic group G of
dimension < 8 if 2dim Z 4+ 1 < dim G; see Proposition 3.11.

From the method of the proof it is clear that Theorem A generalizes to
products of a simple algebraic group with affine spaces (Theorem 3.7) and
to products of a semisimple algebraic group with affine spaces but with a
stronger dimension assumption (Theorem 3.10). In case the dimension of the
affine space in the product is big enough, we get in fact the embedding result
with the optimal dimension assumption; see Corollary 3.1. In particular, we
give a new proof of the Holme-Kaliman-Srinivas embedding theorem; see
Remark 3.2.

Our embedding method also yields that if a smooth affine variety Z em-
beds into a smooth affine variety X with dim X > 2dim Z + 1, then Z
embeds into the target of every finite étale surjection from X, whenever
X has sufficiently many automorphisms; see Corollary 2.26. In particular,
Theorem A generalizes to homogeneous spaces of simple algebraic groups
with finite stabilizer; see Proposition 2.13.

Limits of the method and relation to Theorem C. We end the introduction by
coming back to a statement from earlier: the seemingly unrelated Theorem C
explains a major obstacle to treating the case dimG = 2dim Z + 1. We
explain this in terms of the above short two step outline. In fact, in step one
we find 7: X — A4™Z by restricting the natural projection p: G — G/H
for some closed subgroup H to X C G, i.e. 7 :=p|x: X = p(X) C G/H.
However, by the dimension assumption that we need for step two, if we were
to follow that strategy, we would have to choose X C G of full dimension.
Hence, assuming w.l.o.g. that G is irreducible, we would have to choose
X = @ and would have to replace AY™Z with a homogeneous space G /H of
dimension dim Z in diagram (1). For the embedding method from step two
to work for G/H in place of AY™Z in diagram (1), we need in particular
a finite morphism from Z to G/H; compare Theorem 2.5. However, there
exist Z such that no finite morphism from Z to G/H exists. Concretely,
working over C, rational homology calculations for homogeneous spaces (see
Proposition 5.2) and Theorem C yield the following result.

Proposition D (Proposition 5.1). Let Z be a simply-connected complex
smooth algebraic variety with the rational homology of a point. If G/H is a
dim Z-dimensional complex homogeneous space of a complex simple algebraic
group G, then there is no proper surjective morphism from Z to G/H.
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And indeed, we do not know whether such Z embed into simple algebraic
groups of dimension 2dim Z + 1. Concretely, the authors cannot answer the
following question, even over C and for contractible Z.

Question. Does every T-dimensional smooth affine variety embed into SLy ¢

Addendum: In a new arXiv preprint, Kaliman has answered this question
affirmatively [Kal21, Theorem 1.1]. In fact, more generally, he proves that,
if G is a semisimple algebraic group such that its Lie algebra is a product
of Lie algebras of special linear groups, then every smooth affine variety Z
with 2dim Z 4+ 1 < dim G admits an embedding into G.

Acknowledgements. We thank Jérémy Blanc, Adrien Dubouloz, Stefan
Friedl, Matthias Nagel, Patrick Orson, Pierre-Marie Poloni, and Paula Trudl
for helpful conversations. Moreover, we would like to thank the anonymous
referee for the detailed and helpful comments. We are in particular grateful
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tion 2.15.
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2. EMBEDDINGS INTO THE TOTAL SPACE OF A PRINCIPAL BUNDLE
For the main result in this section the following definition will be useful:

Definition 2.1. Let X be a variety. A subgroup G of the group of algebraic
automorphisms Aut(X) acts sufficiently transitively on X if the natural
action on X is 2-transitive and the natural action on (7X)° is transitive,
where (T'X)° denotes the complement of the zero-section in the total space
T X of the tangent bundle of X.

Let us recall the definition of an algebraic subgroup of an automorphism
group which goes back to Ramanujam [Ram64].

Definition 2.2. Let X be a variety. A subgroup H C Aut(X) is called
algebraic subgroup if there exists an algebraic group G and a faithful alge-

braic action p: G x X — X such that H is the image of the homomorphism
fo: G — Aut(X) induced by p.

Remark 2.3. Note that the algebraic group G in Definition 2.2 is uniquely
determined by H in the following sense: if G’ is another algebraic group
with a faithful algebraic action p’ on X such that f,(G') = H, then there
exists an isomorphism of algebraic groups o: G' — G such that f, = f,o0
[KRvS19, Theorem 9]. This allows us to identify G and H.

Moreover, we will use the following subgroups of the automorphism group
of a variety:

Definition 2.4. Let X be a variety. Then Aut®2(X) denotes the subgroup
of Aut(X) that is generated by all connected algebraic subgroups of Aut(X).
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If X comes equipped with a morphism 7: X — P, then Autp(X) denotes
the subgroup of Aut(X) that consists of the o € Aut(X) with moo = 7.

We define Aut%g(X ) as the subgroup of Autp(X) that is generated by all
connected algebraic subgroups of Aut(X) that lie in Autp(X).

The main result to construct embeddings in this article is the following
theorem. Note that G, denotes the underlying additive algebraic group of
the ground field k. The proof of the theorem is contained in Subsection 2.4.
Theorem 2.5. Let X be a smooth irreducible affine variety such that:

a) There is a principal Gg-bundle p: X — Q;

b) There is a smooth morphism w: X — P such that Aut?,lg(X) acts suffi-
ciently transitively on each fiber of m;

c) There is a morphism n: Q — P that satisfies no p = 7.

If there exists a smooth affine variety Z such that dim X > 2dim Z 4+ 1 and

d) there exists a morphism r: Z — @ such that nor: Z — P is finite and
surjective,

then there exists an embedding of Z into X.

Part of Theorem 2.5 can be illustrated by the following diagram

I

z-rsQ-1sp

3 embedding
A

Remark 2.6. Let X be a smooth affine irreducible variety and assume that
conditions a), b), ¢) of Theorem 2.5 are satisfied. If Z is a smooth affine
variety with dim X > 2dim Z + 1, P = AY™Z and n: Q — P has a section
s: P — @, then condition d) is also satisfied. Indeed, in this case there exists
a finite morphism p: Z — AY™Z due to Noether’s Normalization Theorem
and one can choose r :=sop: Z — Q.

2.1. Transversality results. This subsection essentially amounts to col-
lecting and rephrasing some material from [Kal20] that we need for the proof
of Theorem 2.5.

Definition 2.7. Let X — P be a smooth morphism of smooth irreducible
varieties and let H = (Hi,..., Hs) be a tuple of connected algebraic sub-
groups Hy,..., Hs C Autp(X). Then H is

(1) big enough for proper intersection, if for every morphism f: Y — X
and every locally closed subvariety Z in X there is an open subset U C
Hy x --- x Hg such that for every (hy,...,hs) € U we have

dimY Xx hy-+-hs- Z <dimY Xp Z + dim P — dim X . (PI)
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(2) big enough for smoothness if there exists an open dense subset U C
Hq x --- x Hg such that the morphism

Py:H X xH;x X >X xpX,
((h1y...,hs)yx) = (h1---hs-z,x)
is smooth on U x X.

Proposition 2.8. Let X — P be a smooth morphism of smooth irreducible

varieties and let H = (Hy,...,Hs) be a tuple of connected algebraic sub-

groups Hy,...,Hs in Autp(X). Then:

(1) If H is big enough for smoothness, then H is big enough for proper
intersection.

(2) If H is big enough for smoothness and Hy, Hsy1 C Autp(Y) are two
connected algebraic subgroups, then (Ho, H1, ..., Hs, Hs11) is big enough
for smoothness.

Proof. (1): The proof closely follows [Kal20, Theorem 1.4]. By assumption,
there is an open dense subset U C Hj X - - X Hg such that ®y|pxx: Ux X —
X xp X is smooth. Let f: Y — X be a morphism and let Z be a locally
closed subvariety of X. Let W be the fiber product of Y xp Z — X xp X
and Py |yxx:

w Y Xp A

b |

Ux x 2% % p X
By generic flatness [GW10, Theorem 10.84], we may shrink U and assume
that 7: W — U x X — U is flat. Take h = (hy,...,hs) € U. Then
7"-_1(]7‘)red — (Y Xx hi---hg- Z)red ) ((h,x), (ya Z)) - (3/7 hi---hs- Z)

is an isomorphism, since (hy - - - hs-x,2) = (f(y), 2) for each ((h, z), (y,2)) €
7 (h)req- If 771(R) is empty, then (PI) from Definition 2.7 is satisfied (as
by convention dim @ = —oc) and thus we may assume that 7~ (h) is non-
empty and we get dimm~!(h) < dim W — dim U by the flatness of 7. By
the smoothness of ®4|yxx and the pullback diagram above, W — Y xp Z

is smooth since smoothness is preserved under pullbacks. In particular,
dimW <dimY xp Z+dimU x X —dim X xp X. In total we get

dimY xx hy---hg- Z = dimn1(h)
<dimY xpZ+dimX —dimX xp X
=dimY xp Z+dimP — dim X,
since dim X X p X = 2dim X —dim P, which in turn follows from the smooth-

ness of X — P and the irreducibility of X, P.
(2): This follows directly from [Kal20, Remark 1.8]. O

Proposition 2.9 ([Kal20, Proposition 1.7]). Let k: X — P be a smooth
morphism of smooth irreducible varieties and let a subgroup G C Autp(X)
be generated by a family G of connected algebraic subgroups of Autp(X)
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which is closed under conjugation by G. Moreover, assume that G acts
transitively on each fiber of k.

Then there exist Hy,...,Hs € G such that (Hy, ..., Hy) is big enough for
smoothness. O

2.2. Sufficiently transitive group actions. For a variety X we denote
by SAut(X) the subgroup of Aut(X) that is generated by all unipotent
algebraic subgroups; in particular, SAut(X) C Aut*#(G). Transitivity of
the natural action of SAut(X) on X implies m-transitivity for all m and
that one can prescribe the tangent map of an automorphism of X at a finite
number of fixed points:

Theorem 2.10 ([AFK*13, Theorem 0.1, Theorem 4.14 and Remark 4.16]).
Let X be an irreducible smooth affine variety of dimension at least 2. If
SAut(X) acts transitively on X, then:

(1) SAut(X) acts m-transitively on X for each m > 1;
(2) for every finite subset Z C X and every collection 3, € SL(T,X), z € Z,

there is an automorphism ¢ € SAut(X) that fizes Z pointwise such that
the differential satisfies dyp = 3, for all z € Z. O

Ezxample 2.11. Let F be an irreducible smooth affine variety of dimension
> 2 such that SAut(F') acts transitively on it. Then, Theorem 2.10 implies
that SAut(F) acts sufficiently transitively on F'; see Definition 2.1.

Ezxample 2.12. If G is a connected characterless algebraic group, then the
group Aut®®(G) acts sufficiently transitively on G. Indeed, such a G is
generated by its unipotent subgroups (see e.g. [Popll, Lemma 1.1]) and
thus G C SAut(G). In particular, SAut(G) acts transitively on G. Now, if
dim G = 0, then the statement is trivial. If dim G = 1, then G is isomorphic
to G, and thus Aut®®(G) = Aut(A'); hence, the statement is also clear. If
dim G > 2, then the statement follows from Example 2.11.

Incidentally, the above example characterizes algebraic groups G such
that Aut®®(G) acts sufficiently transitively on G:

Proposition 2.13. Let G be an algebraic group. Then Aut®®(Q) acts suf-
ficiently transitively on G if and only if G is connected and characterless.

Proof. According to Example 2.12 we only have to show the ‘only if’-part.
Let G be an algebraic group such that Aut®®(Q) acts sufficiently transi-
tively on it.
Let g,¢' € G. Since Aut®®(G) acts transitively on G, there exist con-
nected algebraic subgroups Hy, ..., H, in Aut(G) such that ¢’ lies in the
image of the morphism

H1X"'XHT_>G) (hl’“_’hT)|—>(h10...0hr)(g)-

Hence, g,¢' € G lie in an irreducible closed subset of G. Since g, g were
arbitrary elements of G, it follows that G is connected.
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Denote by G" the algebraic subgroup of GG that is generated by all unipo-
tent elements in G. Then G" is closed and normal in G and each invertible
function on G is constant. There exists an algebraic torus 7' C G (i.e. T'is
a product of finitely many copies of the underlying multiplicative group of
the ground field) such that G = G* x T); see e.g. [FvS19, Lemma 8.2].

Let m: G — T be the canonical projection. Take an arbitrary algebraic
action p: H X G — G of an arbitrary connected algebraic group H. Since
each invertible function on each fiber of 7 is constant, the morphism

HxGLHa5ST

is invariant under the algebraic action N x (H x G) — H x G that is given
by n - (h,g) = (h,ng). Hence, the morphism w o p factors through idg x m,
i.e. there is a commutative diagram

HxG-'>@q
idmi l 2)
HxT- 2.1

for a unique morphism pp: H x T'— T. As p is an action, pp is an action
as well. Since Aut#(G) acts 2-transitively on G and since each action p of
a connected algebraic group on G induces an action pp on T such that (2)
commutes, we get that Aut®8(T) acts 2-transitively on 7. By Lemma 2.14
below, we find that T is trivial, and thus G = G“ is characterless. O

The following lemma is certainly well-known to the specialists. However,
for lack of a reference we give a proof of it.

Lemma 2.14. Let T be an algebraic torus. Then
At (T ={T =T, trsst|scT}.

Proof. Let H C Aut(T) be an algebraic subgroup. Hence there exists a
faithful algebraic H-action p: H xT' — T such that the image of the induced
homomorphism in Aut(7") is H (see Remark 2.3). By [Ros61, Theorem 2]
there exist morphisms p: H — T and A\: T'— T such that

p(h,t) = u(h)A(t) foreachhe H,teT.

After replacing p and A by tou and t; L), respectively, for some tg € T, we
may assume that p(ey) = er, where ey and er denote the neutral elements
of H and T, respectively. Hence, t = p(eg,t) = A(t) for each t € T, and
thus

p(h,t) = u(h)t foreachhe H teT.

This implies that H lies inside {T" — T', t — st | s € T'}, and thus the
lemma follows. O
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2.3. Sufficiently transitive group actions on fibers. In the next propo-
sition, we provide a class of smooth morphisms 7: X — P such that
Aut?;lg(X ) acts sufficiently transitively on each fiber of .

Proposition 2.15. Let G be a connected algebraic group and H C G be
a connected characterless algebraic subgroup of dimension > 2. Then, the
algebraic quotient w: G — G/H =: P is a smooth morphism such that

Aut?;lg(G) acts sufficiently transitively on each fiber of .

We note that the dimension condition dim H > 2 in Proposition 2.15 is
necessary, as the following example shows.

Ezample 2.16. Denote by m: SLy — P := SLg /H the algebraic quotient,
where H C SLy denotes the subgroup of unipotent upper triangular matri-
ces. In this case each automorphism ¢ in Autp(SLg2) acts as a translation
on m~Y(p) ~ Al for each p € P. In particular, for each p € P we have that
Aut?}g(SLg) does not act sufficiently transitively on 7~ !(p) (while the group
Aut¥8(7=1(p)) acts sufficiently transitively on 7—1(p) by Example 2.12).

That ¢ acts as a translation on each fiber of m can be checked explicitly
by writing ¢ with respect to the following parametrizations

Al \ {0} x Al x A' — SL,, (z,2,y) — (i yzy+1>
x
and

z w

Tzw—1
Al x A\ {0} x A' — SL,, (x,z,w)b—><$ z >

For the proof of Proposition 2.15, we need some preparation. First, we
recall a more general version of Theorem 2.10 stated in terms of the following
definition.

Definition 2.17 ([AFK'13, Definition 2.1]). Let X be an affine variety
and let A/ be a set of locally nilpotent derivations on the coordinate ring
O(X) and let G(N) be the subgroup of SAut(X) that is generated by all

automorphisms of X that are induced by the locally nilpotent derivations
in A. Then N is called saturated, if

(i) NV is closed under conjugation by elements from G(N') and
(ii) for each D € N and each f € ker(D) we have fD € N.

Remark 2.18. If X is an affine variety and if N is a set of locally nilpotent
derivations on O(X) that satisfies (ii) from Definition 2.17, then there exists
a bigger set N’ of locally nilpotent derivations on O(X) that is saturated
and satisfies G(N') = G(N); see [FKZ17, Lemma 4.6].

We come now to the promised generalization of Theorem 2.10.

Theorem 2.19 ([AFK*13, Theorem 2.2, Theorem 4.14 and Remark 4.16)).
Let X be an irreducible smooth affine variety of dimension at least 2 and
let N be a saturated set of locally nilpotent derivations on O(X). If the
subgroup G(N) of SAut(X) acts transitively on X, then:
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(1) G(N) acts m-transitively on X for each m > 1;
(2) for every finite subset Z C X and every collection 3, € SL(T,X), z € Z,

there is an automorphism ¢ € G(N) that fizes Z pointwise such that
the differential satisfies dyp = 3, for all z € Z. O

Lemma 2.20. Let G be an algebraic groups and let U C H C G be closed
subgroups such that H is characterless and U is unipotent. Then, the restric-
tion map O(G) — O(H), q — q|u induces a surjection on the U-invariant
rings O(G)Y — O(H)YV where the U-actions are induced by right multipli-
cation.

The following example shows, that the assumption that H is characterless
1S necessary:

Example 2.21. Let G = SLo, H the subgroup of upper triangular matri-
ces and let U C H be the subgroup with 1 on the diagonal. Denote the

coordinates on SLo by
Ty
zZ w

Then O(G) — O(H) identifies with the homomorphism

z—x, y—y, 2—0, w—w

k[$, Y, z, w]/(a:w — Yz = 1) k[xv Y, U)]/(.I'U} - 1)
and thus O(G)Y — O(H)Y identifies with the non-surjective homomorphism

k[z, 2] oow, 200, k[z, w]/(zw — 1) ~ k[z,z™].
We first provide the proof of Proposition 2.15 using Lemma 2.20. After-
wards, we provide the setup and the proof of Lemma 2.20.

Proof of Proposition 2.15. We have to show that AutZ}f 1 (G) acts sufficiently
transitively on each fiber of 7: G — G/H. Since 7 is G-equivariant with
respect to left multiplication by G, it is enough to show that Autz%% (@)

acts sufficiently transitively on the closed subset H of GG. Let

D is a locally nilpotent derivation of O(H) induced
N =< fD | by right multiplication of a one-dimensional
unipotent subgroup of H and f € ker(D)

Since H is connected and characterless, H is spanned by all its one-dimen-
sional unipotent subgroups; see [Popll, Lemma 1.1] Hence, the subgroup
G(N) of SAut(H) generated by N acts transitively on H. By Remark 2.18,
there exists a saturated set of locally nilpotent derivations N7 with G(N) =
G(N"); hence, Theorem 2.19 implies that G(N) acts sufficiently transitively
on H. Therefore, it suffices to show that every element of G(N) can be

extended to an automorphism in Aut?i% 4 (G).

Let D € N, f € ker(D) and denote by U C H the corresponding one-
dimensional unipotent subgroup. Note that ker(D) is equal to the invariant
ring O(H)V. By Lemma 2.20, there exists ¢ € O(G)Y such that q|y = f.
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Denote by E the locally nilpotent derivation of O(G) induced by right
multiplication of U on G. Since ¢ € O(G)Y = ker(E), the derivation ¢F
of O(G) is locally nilpotent. Since U is a subgroup of H, the fibers gH,
g € G of 7 are stable under the induced Gg-action of gF and thus this
Gg-action gives an algebraic subgroup of AutZ}f 1 (G). Note that we have a
commutative diagram of the following form

0(G) - 0(G)

o,

oH) 2~ oH)

where the vertical arrows are induced by the embedding H C GG. Therefore
we found our desired extension of the G,-action induced by fD. O

Proof of Lemma 2.20. Since H and U are characterless, the quotients G /U,
H/U and G/H are quasi-affine; see [Timll, Example 3.10]. Hence, the
canonical morphisms

o gy GIU = (G/U)agp = Spec(O(G)Y)

o vy HIU — (H/U )ag = Spec(O(H)Y)

o wg/n: G/H — (G/H)ag = Spec(O(G)H)

are dominant open immersions; see [Gro61, §5, Proposition 5.1.2]. The tar-
gets of these open immersions are affine schemes that are, in general, not of fi-
nite type over k. There are unique G-actions on (G/U )ag and (G/H)ag such
that 1y and tq/p are G-equivariant and a unique H-action on (H/U )z
such that vy is H-equivariant; see [KRvS19, Lemma 5]. Moreover, the
canonical G-equivariant morphism p: G/U — G/H induces a unique G-
equivariant morphism

Paff - (G/U)af‘f — (G/H)aff
such that the following diagram commutes

lg/u

G/U——(G/U)ast

ip ipaf‘f
lG/H
G/H — (G/H)ag .

Let V' C G/H be an open affine neighbourhood of ¢ := H € G/H. We
may assume that there is an s € O(G/H) = O(G) such that V = (G/H)s,
i.e. V consists of all points in G/H where s does not vanish. Further we may
assume that the extension s.g: (G/H)a.g — Al of s: G/H — Al via LG/H
vanishes on the complement of vq,f(G/H) in (G/H).g. Hence, g,y (V) =
((G/H )at)s,q and therefore

1 (0™ (V) € pag (e (V) = pag (G/H)a)sue) = (G/U)at)suiropas -
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By [Sta21, Lemma 01P7] we have (O(G/U))sop = O((G/U)s0p) and thus
(G/U)att)supopar = (G/U)sop)art = (p7H(V))art -

Hence, we have the following commutative diagram

pH (V) == (G/U)sop —= ((G/U)att)sugopas == (p~"(V))ast
openl iopen (A)
GIU—""  (G/U)us .

Furthermore, we may shrink V' such that there exists a finite Galois covering
7: V! = V for some finite group I' (i.e. 7 is a geometric quotient for a free
I-action on V') such that the pull-back map p’ in the following pull-back
diagram

V' sy p (V) ——=p (V)

iﬂ’ lp|p1<v>

v’ z |4
is a trivial H/U-bundle; see [Ser58, §1.5 and Proposition 3]. In particular,
there exists an isomorphism ¢: V’ x (H/U) — V' xy p~}(V) such that
plop: V' x(H/U) — V' is the projection onto the first factor. As7: V/ =V
is finite and V is affine, V' is affine as well. Note further, that the I'-action
on V' induces a natural free T-action on V' xy p~1(V) such that p’ is I-
equivariant and 7' is a geometric quotient for this I'-action. Choose ¢’ € V'
such that 7(¢') = q.

Let f € O(H/U) = O(H)Y. The goal is to extend f to an element in

O(G)Y. Consider the morphism

/¢ 7'/| /— /

2 D (HJU) SR, () g T2, ) =y L AL
Then the extension flg: I'q’ x (H/U).g = (D¢’ x (H/U))at — Al of f’ can
be extended to a morphism

V! x (H/U)ag — A", (%)
as I'q’ x (H/U ). is a closed subscheme in the affine scheme V' x (H/U) .
Let F': V' x (H/U) — A! be the composition of idys X ¢y with the
morphism (*). By construction we have that F'|py g0y = f'- Now, let

1 _ _
G’:ZEZV'(FIOQO DV xy p N (V) — Al
~yel

be the average of F'o@~! over I'. Since f’o(ap|(pl)71(pq,))_1 = foT|(y)-1(rg)

is [-invariant, it follows that
fOT/|(p’)—1(1"q’) = G/|(p’)—1(1"q’) . (**)

Since G’ is I'-invariant and since 7’ is a geometric quotient for the I'-action
on V' xy p~1(V), there exists a morphism F': p~1(V) — A! such that G’ =
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For7'. Using (+*), we find F|,~1, = f. The commutative diagramm (A)
implies that F' extends to a morphism Fug: (p™(V))ag = p;f%(Lg/H(V)) —
Al via LG/us 1-€.

Fa(tgyu(gU)) = F(gU) for all gU € p~' (V).
Hence the restriction Faff|p}1(H): pot (H) — Al satisfies
Fag(tgu(RU)) = F(hU) = f(hU) forallhe H .

Since p 7 (H) is a closed subscheme of the affine scheme (G/U)ag, there
exists an extension of Faff|p}% (gr) t0 & morphism (G/U)ag — AL This is our

desired element in O(G)Y. O

2.4. The proof of Theorem 2.5. Throughout this subsection we use the
following notation.

Notation. Let f: X — Z be a morphism of varieties, then we denote by

X(Z2) the complement of the diagonal in the fiber product X Xz X and we
denote by (kerdf)° the complement of the zero section in the kernel of the
differential df: TX — TZ.

We start with the following rather technical result that will turn out to
be the key.

Proposition 2.22. Let 7: X — P, p: X — @Q be smooth morphisms of
smooth irreducible varieties such that there exists a morphism n: Q — P
with m =mnop. Assume that Aut;lg(X) acts sufficiently transitively on each
fiber of m.

If Z is a smooth variety and f: Z — X is a morphism such that each
non-empty fiber of mo f: Z — P has the same dimension k > 0, then there
exists a o € Autpd(X) with

dim((g o f) x (9o f)"HXS) < dim Z + dim P — dim Q + k (A)
dim(d(¢ o f)) " ker dp)° < dim Z + dim P — dim Q + k. (B)

For the proof of the estimate (B) in this key proposition, we need the
following estimate:

Lemma 2.23. Let f: X — Y be a morphism of varieties such that X is
smooth and denote by k the mazximal dimension among the fibers of f.
Then the kernel of the differential df: TX — TY, i.e. the closed subva-
riety
ker(df) == | J ker(d.f) C TX,
zeX
satisfies dimker(df) < dim X + k.
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Proof of Lemma 2.23. Let X = J;_, X; be a partition into smooth, irre-
ducible, locally closed subvarieties X1, ..., X, in X such that

fi=flx Xi = f(X3)
is smooth for each i = 1,...,n (see [Har77, Lemma 10.5, Ch. III]). Note that
f(X;) is an open subvariety of f(X;) that is smooth, see [GR03, Proposition

3.1, Exposé II]. Let € X;. Thus the differential d, f;: T X; — Ty f(X5)

is surjective and since dim f; !(z) < k, we get dimker(d,f;) < k. Then the
kernel of

X, = T,X 41,7
has dimension < k, which implies dim ker(d, f) < dim7, X —dim T, X; + k.
Since X is smooth, we have dim 7, X < dim X (we did not assumed that X
is equidimensional, hence we do not necessarily have an equality) and since
X; is smooth and irreducible, we have dim T, X; = dim X;. Thus we get

dimker(df)|x, < dim X; + max dim ker(dg f)
TEX;
<dimX; +dimX —dimX; +k=dim X + k.
Hence, dimker(df) < max;<ij<,dim(kerd, f) NTX|x, < dim X + k. O

Proof of Proposition 2.22. Let G = Aut;lg(X) and let G be the family of all
connected algebraic subgroups of Aut(X) that lie in Autp(X). By definition
G is generated by the subgroups inside G and G is closed under conjugation
by elements of G.

Since m: X — P is smooth and G acts sufficiently transitively on each
fiber of 7, the morphisms

k: XD 5P (2,2)) ()
and
Ko (kerdm)® — X =5 P
are smooth and G acts transitively on each fiber of x and &'.

Applying Proposition 2.9 to x and the image of G in Autp(XI(DQ)) under
Y+ @ Xpygives Hy,...,Hs € G such that H = (Hy,..., Hy) is big enough
for smoothness with respect to k. Likewise one gets Hj, ... ,H;, € G such
that H' = (Hi,...,H.) is big enough for smoothness with respect to «'.
Using Proposition 2.8(2), M = (Hy,...,H,, Hi,..., H.,) is big enough for
smoothness with respect to x and «’. By Proposition 2.8(1), M is also big
enough for proper intersection with respect to x and x’. Hence, there is an
open dense subset U C Hy X --- X Hy x H{ x --- x H., such that for each
element in U the estimate (PI) in Definition 2.7 is satisfied with respect to

e the smooth morphism «: Xl(,z) — P,
e the morphism (f x f)|(f><f)*1(X1(3>): (f x f)_l(X](JZ)) _ XI(JZ) and
e the closed subset Xg) in XI(DQ)

and
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e the smooth morphism «’: (kerdm)® — P,
e the morphism df|qs)-1 (kerdm)o : (df) ! (kerdmr)® — (kerdm)® and
e the closed subset (kerdp)® in (kerdm)°.

That means that, if we choose an element (hi, ..., hs,h},...,h.,) € U, then
the automorphism ¢ = (hy---hg - b} ---h.,))~1 € G satisfies the following
estimates:

dim((p o f) x (g o ) "HXS)
= dim(f x /) THXE) x g (0% 9)HXG)
(PT)

PI
< dim(f x f)"HXE)) xp X§) + dim P — dim X

and
dim(d(p o f))~" (kerdp)°®
= dim(df) ! (ker dm)° X (s amye (dip) ! (Ker dp)°

(PD)
< dim(df) ! (kerdr)° x p (kerdp)° + dim P — dim(ker d7)°.

Since 7: X — P and k: X — @ are both smooth morphisms of smooth
irreducible varieties, we get

e dim X = 2dim X — dim P
o dimX{) = 2dim X — dim Q
e dim(kerdn)® = 2dim X — dim P.
Hence, it is enough to show the following estimates:
(1) dim(f x f)"(XP) xp X < 2dim X +dim Z — dim Q — dim P + k
(2) dim(df)~!(ker dm)°x p(ker dp)°® < 2dim X +dim Z—dim Q—dim P+
k
We establish (1): Consider the following pull-back diagram

(F x H7HXE) xp XG) = XG
' I (3)
(F x H7H(XE) P

Let Qo C @ be the image of p: X — (. Since p is smooth, @y is an
open dense subset of (). Hence n|g,: Qo — P is a morphism of smooth
irreducible varieties. Since m = n|g, o p: X — P is smooth, it follows that
g, is smooth. Thus

ul
e XY =X QB8P

is smooth as well of relative dimension 2 dim X — dim ) — dim P. Since each
non-empty fiber of wo f: Z — P has dimension k, the image of Z xpZ — P
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is contained in 7(f(Z)) and each non-empty fiber of it has dimension < 2k.
Thus the same holds for

(f x /) HxP) - P.

Hence dim(f x f)_l(Xl(f)) < dimn(f(Z))+ 2k = dim Z + k and the esti-
mate (1) follows from the pull-back diagram (3).
We establish (2): Consider the following fiber product:

(df) " (ker dm)° x p (ker dp)°® — (ker dp)°

| | (4)
(df)~(kerdr)° P

Since p: X — @ is smooth, we get dim(kerdp)® = 2dim X — dim ). Hence
(kerdp)® — P is smooth of relative dimension 2dim X — dim @ — dim P
(since (kerdp)® — X and m: X — P are smooth). Moreover,

dim(df) ! (kerdr)° < dimkerd(m o f) < dim Z + k

where the second inequality follows from Lemma 2.23, since each non-empty
fiber of mo f: Z — P has dimension k and Z is smooth. Thus the desired
estimate (2) follows from the pull-back diagram (4). O

Lemma 2.24. Let f: Z — X and p: X — @ be morphisms of varieties.
Then we have the following:
dimZg) = max{dim(f X f)_l(Xg)),dimZE?)}
dimker d(p o f)° = max {dim(df) " (ker dp)°, dim(ker df)°} .

Proof. The first equality follows, since the underlying set of Zg ) is the dis-
joint union of

{(21.22) € Zx Z | p(F(21)) = p(F(22)) . f(21) # flz2)} = (f x /)7HXS)

and the underlying subset of Zg?) in Z x Z. The second equality follows,
since the underlying set of ker d(p o f)° is the disjoint union of

[0eTZ | dpo () =0, (@f)(v) £0} = (df) " (kerdp)°
and the underlying subset of (kerdf)° in T'Z. d

In order to construct embeddings, we use the following characterization
of them:

Proposition 2.25. A morphism f: Z — X of varieties is an embedding if
and only if the following conditions are satisfied

e f is proper

o f is injective

e for each z € Z, the differential d,f: T,Z — Ty,)X is injective.
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We prove this proposition in the Appendix B for the lack of a reference
to an elementary proof; see Proposition B.1. From Proposition 2.22 and
Lemma 2.24 we get now immediately the following consequence:

Corollary 2.26. Let X be a smooth irreducible variety such that Aut®#(X)
acts sufficiently transitively on X. If p: X — Q is a finite étale surjec-
tion and Z C X is a smooth closed subvariety with dim X > 2dim Z + 1,
then there exists p € Aut™8(X) such that po ¢: X — Q restricts to an
isomorphism Z — p(¢(Z)).

Proof. We apply Proposition 2.22 to 7: X — P = {pt}, p: X — Q (note
that @ is irreducible and smooth by [GR03, Proposition 3.1, Exposé II]),
and the inclusion f: Z < X in order to get a ¢ € Aut®8(X) such that
dim((po f) x (o ) HXS) <2dimZ — dimQ < dim X — 1 —dimQ < 0

dim(d(p o f)) " (kerdp)® < 2dim Z — dimQ < dim X — 1 —dimQ < 0
where we used the assumption dim X > 2dim Z + 1. Applying Lemma 2.24
topo f: Z — X and p: X — Q yields, that the composition

74 x £ x 20

is injective and the differential d,(po @ o f): T.Z — T, (.))@ is injective

for each z € Z. As the composition popo f: Z — @ is also proper, the
statement follows from Proposition 2.25. O

The following number associated to each morphism will be crucial for the
proof of Theorem 2.5:

Definition 2.27. For each morphism f: Z — X of varieties we define the
0-invariant by

0f == max{ dim Zg{z) , dim(kerdf)° }.
In case W C Z is locally closed, we define the restricted 0-invariant by
0¢|w = max{ dim W, dim(kerdf)°|w }.

Note that 6 stays the same if we replace f with o f for an automorphism
¢ € Aut(X). Moreover, the following remarks hold.

Remark 2.28. If f: Z — X is a proper morphism, then f is an embedding
if and only if 6y < 0. This follows directly from Proposition 2.25.

Remark 2.29. If f: Z — X is a morphism and if X1,..., X, C X are locally
closed subsets with | J; X; = X, then we have

0f = mzaxﬁf\fq(Xi) .

The next result will enable us to inductively lower the #-invariant in the
proof of Theorem 2.5. We formulate it first in a general version suitable for
the applications, and we formulate it afterwards in the special case needed
for the proof of Theorem 2.5.
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Proposition 2.30. Let p: X — Q be a principal G-bundle, Z an affine
variety and r: Z — @ a finite morphism. Moreover, let A C Z be a closed
subset, let g4: A — X be a morphism with poga =r|a and let Zy,...,Zs C
Z \ A be locally closed subsets.

Then there is a morphism g: Z — X with pog =1, gla = ga and such
that the restricted §-invariants satisfy 04|z, < 6|z, — 1 for all i.

Part of Proposition 2.30 can be illustrated by the following commutative
diagram with filler g:

A9 x

3 7
g
n " p

7 Q

Proof. Let W = r(Z) C Q. Since r: Z — @ is finite and Z is affine, W
is a closed affine subvariety of @ by Chevalley’s Theorem, [GW10, Theo-
rem 12.39]. The restriction p~1(W) — W of p is locally trivial with respect
to the Zariski topology (see [Ser58, Example, §2.3]) and since W is affine,
it is a trivial principal G4-bundle (see e.g. [Gro58, Proposition 1, §1]); this
means, there exists a W-isomorphism ¢: W x G, — p~1(W).

For i € {1,...,s}, we choose finite subsets

R; C (2)5 and S; C (kerdr)®|,

such that each irreducible component of (Zi)g) and of (kerdr)® |z contains

a point of R; and of S;, respectively. Let pr{,pry: Z x Z — Z be the

projection onto the first and second factor, respectively. As Z is affine and

Z; C Z \ A for all i, there exists a morphism ¢: Z — G, such that

e ¢ restricted to A is equal to prg, ot™! o g4 where prg : W x G, — G,
denotes the natural projection onto G,

e ¢ restricted to pri(R;) Upry(R;) is injective for all ¢ and

e dq: T'Z — TG, restricted to S; never vanishes for all <.

Now, we define
g: Z——=WxGa—=p H(W)CX.
2= (r(2),q(2))

Since ¢: W x G, — p~1(W) is a W-isomorphism, p o g = r. Moreover, by
construction we have g|4 = ga. Now, we claim that

dim(Z)§ < dim(Z)$) —1 forall i, (5)
dim(kerdg)°|z, < dim(kerdr)°|z, —1 for all 7. (6)

For proving (5), take an irreducible component V' of (Zi)g). Then
V= {(v1,02) € V | g(v1) # g(v2) }
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is an open subset of V. By construction, there exists (z1,22) € Ry NV
with g(z1) # g(22). Hence, V° is non-empty. This implies that V' N (Zi)g?)

(2) 2)
X

is properly contained in V. Since (Z;)%’ is a closed subset of (Z;);", we

get (5). Similarly, we get (6) by using that dg restricted to S; never vanishes.
Together, the estimates (5) and (6) imply that 64|z, < 0|z, —1 foralli. O

By choosing A as the empty set, s = 1, and Z; equal to Z, Proposition 2.30
becomes the following.

Corollary 2.31. Let p: X — @Q be a principal Gg-bundle, Z an affine
variety and r: Z — @Q a finite morphism. Then there exists a morphism
g: Z — X such that pog =1 and 0, < 6, — 1. (]

We prove Theorem 2.5 by inductively applying Corollary 2.31.

Proof of Theorem 2.5. Let Z be a smooth affine variety such that dim X >
2dim Z + 1 and such that condition d) is satisfied. Let n := dim P = dim Z.
The following claim will enable us to lower the #-invariant.

Claim: 3 f: Z — X such that mo f: Z — P is finite and 0y > 0
= dg: Z — X such that mog: Z — P is finite and 0, < 0

Proof of Claim. Let f: Z — X be a morphism such that mo f: Z — P
is finite and 6y > 0. By condition d), n: Q@ — P is surjective and since
p: X — @ is surjective, we get that m: X — P is surjective as well. Since
p and 7 are smooth surjections and since X is smooth and irreducible, it
follows that P and @ are smooth and irreducible; see [GR03, Proposition

3.1, Exposé II]. By condition b), Aut?,lg(X ) acts sufficiently transitively on
each fiber of w. Thus we may apply Proposition 2.22 to f: Z — X and may
choose a ¢ € Aut;lg(X) such that f’ := p o f satisfies

max{ dim(f’ x f’)_l(Xg)) , dim(df") " (kerdp)°}

<dimZ +dim P — dim @,
since wo f: Z — P is finite (see condition d)). Note that

dimZ +dmP —dim@Q =2n —dim@Q <dimX —1—-dim@ =0,

since p: X — @ is a principal G,-bundle. Thus by Lemma 2.24:

dim Z(QZ)pof/ < max{0, dim Zg?)f, }

dimkerd(po f')° < max{0, dimker(df")°}
where we compute Zg )po o and Zg?)f, with respect to po f/ and f’, respec-
tively. Thus Qf/ < Gpof/ < HlaX{O, 9f/}, which implies (as 9f = l9f/ > 0)
9]" = 9]"/ = Hpof/ . (7)

Note that po f': Z — (@ is finite, since m o f' = 7w o f is finite. Hence,
applying Corollary 2.31 to po f': Z — @Q yields a morphism ¢g: Z — X such
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that pog = po f" and 6, < 6,.5r. Thus, we get 6, < 0y by (7). Since
mog=mo f’is finite, this completes the proof of the claim. O

By condition d), the composition nor: Z — P is finite. In particular,
r: Z — @ is finite and since Z is affine, there exists a morphism f: Z — X
such that po f = r; see Corollary 2.31. By the finiteness of mo f =nor, we
can iteratively apply the claim in order to get a morphism g: Z — X such
that m o g: Z — P is finite and 6, < 0. In particular, g: Z — X is proper,
and, thus, g: Z — X is an embedding by Remark 2.28. ([

3. APPLICATIONS: EMBEDDINGS INTO ALGEBRAIC GROUPS

In this section we apply the results from Section 2 in order to construct
embeddings of smooth affine varieties into characterless algebraic groups.

In the entire section, we use the language of and results about algebraic
groups, with more notions showing up in later subsections. For the basic
results on algebraic groups we refer to [Hum?75] and for the basic results
about Lie algebras and root systems we refer to [Hum?78|.

3.1. Embeddings into a product of the form A" x H. In this subsec-
tion, we study embeddings of smooth affine varieties into varieties of the
from A™ x H where H is a characterless algebraic group. While this is of
independent interest, for us it is also a preparation to establish Theorem A;
compare with the outline of the proof in the introduction.

Corollary 3.1. Let H be a characterless algebraic group and let Z be a
smooth affine variety with

2dimZ+1<m+dimH. (%)
If dim Z < m, then Z admits an embedding into A™ x H.

Proof. We may and do assume that H is connected. We set d :==dim Z < m
and G = A™ % x H. Since G is a connected characterless algebraic group,
Aut?®(G) acts sufficiently transitively on G by Example 2.12.

Let X = A%x G ~ A™x H. Since dimG = m+dim H—d > d+1 > 1 due
to () and since G is characterless, we may and do choose a one-dimensional
unipotent subgroup U C G. Let Q = A% x G/U. We apply Theorem 2.5
and Remark 2.6 to the natural projections

X —>5AY, prX—>Q and n:Q— A?
and get our desired embedding 7 — X. O

Remark 3.2. Corollary 3.1 gives us back the Holme-Kaliman-Srinivas em-
bedding theorem, when we take for H the trivial group.
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3.2. Embeddings into a product of the form A™ x (SLg)%. In this
subsection we study the special case A™ x (SL2)®. The main result of the
subsection is Proposition 3.3, which is an analog of Corollary 3.1 with a
weaker dimension condition. This result will be used in order to get optimal
dimension conditions for embeddings into characterless algebraic groups of
low dimension in Subsection 3.4.

Proposition 3.3. Let s,m > 0 be integers and let Z be a smooth affine
variety with
2dim Z + 1 < m+ dim ((SL2)?) . (%)

If dimZ < m+ s, then Z admits an embedding into A™ x (SLy)*.

Remark 3.4. In Proposition 3.3 we may replace the condition dim Z < m
by s —1 < m in case m+ 3s is odd and by s —2 < m in case m + 3s is even.
Indeed, if m + 3s is odd, then s — 1 < m implies that
dimZ(*g*) m+3s—1 m+(s—1)+2s < m+m+ 2s s
2 2 2
and if m + 3s is even, then s — 2 < m implies that

dimZ(*g*) m+3s—2  m+(s—2)+2s < m+m + 2s
2 2 2

Proof of Proposition 3.3. We may and do assume that dim Z > 0. If dim Z <
s, we may replace Z with Z x AS~4™Z and the assumed dimension estimates
are still satisfied; thus, we may and do assume that dimZ > s. We set
d:=dim Z.

Choose a finite morphism r: Z — A? (which exists due to Noether Nor-
malization). For any subset I C {1,...,s}, let

Hy ::{(xl,...,xd)EAd|xi:()foreachiefandxi#Oforeachigéf}.
Moreover, we denote for k € {0,...,d}
Zy ={z€Z]| rankd,r =k},

which is a locally closed subset of Z. Note that dimZ; < k. (Indeed,
since 7|z, : Z, — r(Zy) is a finite morphism, there exists z € Z; with
dim Z, = rankd,(r|z,) < rankd.r = k.) Using Kleiman’s Transversality
Theorem [Kle74, 2. Theorem] there exists an affine linear automorphism ¢
of A4 such that

dim Z N~ (e Y (Hy)) < dim Zy, + dim Hy —d < k — |I].

=m-+s.

Hence, after replacing r by ¢ o7, we may assume that the dimension of the
locally closed subset

Zyr=ZyNr Y (H) C Z
is less than or equal to k — |I|. Since rankd,r = k for each z € Zj, ; we get

dim(ker dr)°|z, ; < dim(kerdr)|z, , = dim Zy 1+ (d — k) <d —[I]. (8)
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Now, for I C {1,...,s}, let

d
Zy=r"'H) =] ZsCZ.
k=0
Since dim Zj 1 < k—|I| for all k, we get dim Z; < d—|I|. Since r|z,: Z; — A¢
is finite, the projection dim(Z I)gd) — Z1 to one of the factors is quasi-finite.
Hence, dim(ZI)g} < dimZ; < d — |I|, and by the estimate (8) we get
dim(kerdr)®|z, < d — |I|. In total the restricted #-invariants of r satisty
Orlz, <d—|I| forall I C{1,...,s}. (9)

We set

X = A2\ {0,007 x A7 x AT Q= (AN {(0,0)}) x AT,
and

pl = id(A2\{(0,0)})l—1 X pry XidAd—zZ Xl — Ql,1 s

where pry: A2 — Al denotes the projection onto the first factor. Next, for
l €40,...,s}, we construct inductively finite morphisms ¢;: Z — @Q; such
that we have pjo g1 = gi—1, 04|z, < by_,|z, for all I C {1,...,s}, and
092y <O0g_ |z, —1for I C{1,...,s} withl ¢ I.

Let go: Z — Qo be the finite morphism r: Z — A?. By induction, we
assume that the finite morphism

gi—1 = (gl(i)p s 7gl(l_—qd_1)) D 4= Ql—l

is already constructed for some 1 <[ < s. We apply Proposition 2.30 to the
trivial Gg-bundle p;: X; — @Q;—1, the closed subset

A=rt ({@n e et lm=0y) = |J  zicz,
IC{1,...,s}: lel
and the morphism

ga:A—=Q, aw (gl(i)l(a), . ,gl(flfl)(a), Lgﬁll)(a), . ,gl(lfld*l)(a))

in order to get a morphism g¢;: Z — X; with p; o g, = g;-1, gila = ga and

Oglz; <O0g |1z, —1 forall I C{1,...,s} withl¢&]I (10)
(here we used that Z; C Z\ A for each I with [ & I). Since pjog; = g;—1, we
get Og,|z, <04, .|z, forall I C{1,...,s}. Since g;|a = ga and since gl(ilfl)

is equal to the [-th coordinate function of r, we get that the image of g; is
contained in ;. Thus, we may consider g; as a morphism Z — Q.
Now,

(10) )
Oglz, < Oplz, —(s—1|I]) <d—s forall I C{1,...,s}.
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Since 7: Z — A? factorizes through gs: Z — Qs, A? = |J; H, and Z; =
r~1(Hy), Remark 2.29 implies that
04, = (R Og.lz, <d—s. (11)
Finally, let p :== n° x pr: (SLy)® x A™ — Qs = (A% \ {(0,0)})* x A4,
where n: SLy — A%\ {(0,0)} denotes the projection to the first column
and pr: A™ — A% is a surjective linear map (such a map exists, since
d < s+m). Since 1 is a G,-bundle, p is the composition of 2s +m — d many
Gg-bundles. Thus, Corollary 2.31 gives us a morphism g: Z — (SLg)® x A™
such that pog = g, and 0, < 0, — (25 + m — d). Using the estimate (11)
gives us 0, < 2d — (3s+m). By (¥x), we have 2d — (3s +m) < 0. Since g is
proper, Remark 2.28 implies that g is an embedding. O

3.3. Embeddings into (semi)simple algebraic groups. In this sub-
section, we consider arbitrary (semi)simple algebraic groups G as targets of
embeddings of smooth affine varieties Z. However, while doing so the price
we have to pay is to relax the dimension condition 2dim Z + 1 < dim G in
order to get an embedding of Z into G.

From the point of view of the outline of the proof of Theorem A in the in-
troduction, the content of this subsection can be summarized as follows. Fix-
ing a semisimple algebraic group G, we start with two lemmas (Lemma 3.5
and Lemma 3.6) that yield closed subvarieties Xp C G with Xp ~ A™ x H
based on a choice of a parabolic subgroup P C G. We then formulate a
version of Theorem A for semisimple algebraic groups where the dimension
assumption on Z depends on dimension estimates for a chosen parabolic
subgroup P and its subgroups P* and R, (P) defined below. Finally, we
provide dimension estimates for P* and R, (P) for good choices of P C G
for simple algebraic groups based on the classification of simple Lie algebras
(Proposition 3.9). This suffices to yield Theorem A by applying Corollary 3.1
to Xp for a good choice of P (Theorem 3.7).

We recall a few notions. If G is an algebraic group, we denote by R(G) the
radical, by R,(G) its unipotent radical, and by G* the closed subgroup of
G that is generated by all unipotent elements of G. Recall that a connected
algebraic group G is called semisimple if G is non-trivial and R(G) is trivial,
and it is called simple if G is non-commutative and contains no non-trivial
proper closed connected normal subgroup. Moreover, a non-trivial algebraic
group G is called reductive if R, (G) is trivial.

For lack of a reference, we insert a proof of the following classical facts:

Lemma 3.5. Let G be a semisimple algebraic group and let P C G be a

parabolic subgroup. Then the following holds:

(1) If L is a Levi factor of P, then R, (P) x L"* = P".

(2) If P~ C G is an opposite parabolic subgroup to P, then we have dim G =
dim R, (P) + dim P and the product morphism

Ru(P™) x Ru(P) x (PN P7) = G
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is an embedding'.
(8) If P is a mazimal parabolic subgroup of G (i.e. P is a mazimal proper
subgroup of G that contains a Borel subgroup), then dim P* = dim P—1.

For the proof of Lemma 3.5 we need the following Lemma.

Lemma 3.6. Let G be a connected reductive algebraic group. Then
a) G* =[G, G,
b) G=G" R(G), G*N R(G) is finite and G" is trivial or semisimple.

Proof of Lemma 3.6. Note that G/G" is an algebraic torus, as it is con-
nected and contains only semisimple elements; see [Hum75, Proposition
21.4B and Theorem 19.3]. In particular, G* contains the commutator sub-
group |G, GJ.

On the other hand, for every non-trivial character o of a maximal alge-
braic torus T' C G, [G, G] contains the root subgroup U, C G with respect
to T, since for each isomorphism \: G, — U, we have

Mat) — 1) = Ma®)AD) L = AN € [G,G] for every t € T

Hence [G, G] contains G* and thus we get the first statement.
The second statement follows from the first statement and from [Bor91,
Proposition 14.2, Ch. IV]. O

Proof of Lemma 3.5. (1): By definition we have R, (P) x L = P. Hence,
we get an inclusion R, (P) x L* C P*. On the other hand, the inclusion
P* C P induces an inclusion P*/R,(P) C P/R,(P) and n: P — P/R,(P)
restricts to an isomorphism =|,: L — P/R,(P). Hence,

L S (P/Ry(P))" = P/ Ru(P),

which implies (1).

(2): By [Timll, Example 3.10], the algebraic quotient G/P* is quasi-
affine. Let P~ be an opposite parabolic subgroup to P. The orbit in G/P"
through the class of the neutral element under the natural action of the
unipotent radical R, (P~) is therefore closed in G/P*. This implies that
R, (P~)P" is closed in G.

By definition, L := PN P~ is a Levi factor of P (and also of P~). The
product morphism induces an isomorphism of varieties

Ru(P7) x Ry(P) x L = Ry(P™) x P = R,(P™)P
and R, (P~)P is an open dense subset of G (see [Bor91, Proposition 14.21]
or [FvS19, Appendix B.2]). This gives the first statement. Due to (1),
we have P* = R, (P) x L*. Hence, the above isomorphism restricts to an
isomorphism:
Ru(P7) x Ry(P) x L" = R,(P~)P".

1By convention, for us embeddings are closed. In contrast, the product morphism
G x G x G — @G restricts to an isomorphism R, (P~) x R, (P) x (PN P~) — W, where
W is open in G.
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(3): By construction G/R,(G) is a reductive or trivial algebraic group.
In the second case, G contains no maximal parabolic subgroup and thus
we may assume that G/R,(G) is reductive. Since R,(G) is contained in
every Borel subgroup of G, it follows that R, (G) is contained in P. Thus
P/R,(G) is a maximal parabolic subgroup of G/R,(G). Since R,(G) C P,
we get an isomorphism

P/P" ~ (P/Ru(G))/(P"/Ru(G)) -

Thus, it is enough to show (3) in case G is reductive (and by definition it is
connected).

Let B C G be a Borel subgroup, 77 C B a maximal algebraic torus,
r =dim T, r is the rank of G, and let X(T") be the group of characters of T'.
We may choose simple roots aq,...,q, € X(T') such that P is the parabolic
subgroup with respect to aq,...,a,_1; see [Hum75, Theorem in §29.3]. Let

[¢]

i
Z; = ﬂker(aj) cT foreachi=1,...,r
j=1

where H° denotes the identity component of a closed subgroup H C G.
Since by definition ay, ..., «, form a basis of X(T) ®zR, it follows that over
Z the elements aq,...,qa, are linearly independent. Hence, the dimension
of Z; is r —i. From [Hum?75, §30.2], it follows that

R(P) = Ry(P) % Zy_1 .

Now, let @ := P/R,(P). Thus @ is a connected reductive algebraic group.
Since P" is the preimage of Q" under the canonical projection 7: P — @,
we get

P/P"~Q/Q".
Note that m(R(P)) is a normal solvable connected subgroup of @ and thus
7(R(P)) C R(Q). On the other hand, 7~!(R(Q)) is a normal, connected
subgroup and it is solvable, as R, (P) = ker(w) and R(Q) are solvable. The
latter two statements together imply that 7=(R(Q)) = R(P) and thus
R(Q) >~ Zr—l .

By Lemma 3.6, Q = Q" - R(Q) and R(Q)NQ" is finite. Thus, the canonical
projection @ — Q/R(Q) restricts to an isogeny Q" — Q/R(Q). In total:

1=dimZ,_; =dim R(Q) = dim Q—dim Q" = dimQ/Q" = dim P/P". O

Theorem 3.7. Let G be a simple algebraic group, let k > 0 be an integer,
and let Z be a smooth affine variety. If dmG + k > 2dim Z + 1, then Z
admits an embedding into G x AF.

For the proof of Theorem 3.7 we will use the two next propositions.
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Proposition 3.8. Let G be a semisimple algebraic group and let k > 0 be
an integer. If there exists a parabolic subgroup P C G with dim P* — 1 <
3dim R, (P), then for every smooth affine variety Z with

2dim Z 4+ dim P — dim P* < dim G + k
there exists an embedding of Z into G x AF.

Proposition 3.9. Let G be a simple algebraic group. Then there exists a
maximal parabolic subgroup P C G such that dim P* < 3dim R, (P).

Proof of Theorem 3.7. Let P C G be a maximal parabolic subgroup as in
Proposition 3.9. By Lemma 3.5(3) we have dim P — dim P* = 1. Thus the
theorem follows from Proposition 3.8. O

Proof of Proposition 3.8. By Lemma 3.5(2) there exists an embedding of
A™ x H into G x A* where m = 2dim R, (P) + k and H = (P N P~)% for
an opposite parabolic subgroup P~ C G of P. By Lemma 3.5(1) we have
dim H = dim P* — dim R,,(P). Now, we get
dimH —1=dim P* —dim R,(P) — 1 < 2dim R,(P) < m. (12)
By Lemma 3.5(2) we get dim G = dim R,,(P) + dim P. Hence
2dimZ +1<dimG —dimP +dim P" + k&
= dim P" + dim R, (P) + k
=dimH +m.

Thus, we get dimZ < dimH% < m by (12). Hence, the proposition
follows from Corollary 3.1. O

Proof of Proposition 3.9. Let P C G be a maximal parabolic subgroup. By
Lemma 3.5(2),(3) we get dim R, (P) +dim P* 41 = dim G. Let L be a Levi
factor of P. Then, by Lemma 3.5(1) dim P* = dim L* + dim R, (P). Now,
if we find a maximal parabolic subgroup P in G such that

dimG >2dim L* + 1, (13)
then we are done, as in this case we would get
3dim R, (P) = dim R,(P) + dim P* + 1 — 1+ 2dim R,(P) — dim P
=dimG — 1+ 2dim R, (P) — dim P
> 2dim L* 4+ 2dim R,,(P) — dim P*
= dim P“.
We treat first the case, when G is one of the classical Lie-types A, B, Cp,

or D,,. Forn > 1, we denote by an, by, cn, d,, the dimension of the Lie algebra
of type A,,, By, C,, and D,,, respectively. By [Hum78, §1.2], we get

an:n2+2n, bn:cn:2n2+n, d, =2n>—n.

Now we choose s € Ny according to the Lie-type as follows



30 PETER FELLER AND IMMANUEL VAN SANTEN

Lie-type | Dynkin diagram | s

Apyn>1 1] oo os [(n+1)/2]
Cpyn >3 | oo o ete |(4n+1)/6]
Dy, 1> 4 H% [(4n —1)/6]

where |z] means the largest integer that is smaller or equal than z. In
order to specify the maximal parabolic subgroup P of G, let I be the set
of all simple roots in the Dynkin diagram of G, except the simple root at
position s, when we count from the left in the Dynkin diagram. We let P
be the standard parabolic subgroup with respect to I and some fixed chosen
Borel subgroup of G and we let (as above) L C P be a Levi factor. Then
L™ is semisimple or trivial (by Lemma 3.6) and the corresponding Dynkin
diagram is the Dynkin diagram of G with the vertex s (counted from the
left) deleted; see [Hum75, §30.2]. For example, if the Lie type of G is By,
then s = [17/6] = 2 and we have the following Dynkin diagrams (the cross
= means to delete the corresponding simple root):

G: e—o—oxe P: oo — dimL" = a1 + by = 13.

By considering the Dynkin diagrams for the classical types A,, B,, C, and
D,, and by using that a; = b; = c1, do = 2a; and d3 = a3, we get

Lie-type |s dim L*

A,,n>1 [”;FIJZl as 1+ an, s = 282 —(2n+2)s+n’+2n—1

B,,n>2 L4"grlJ >1| as1+byps= 32— (An+1)s+2n?+n—1

Coyn>3| [ >2 a1+ = 32— (dn+1)s+ 20’ +n—1

Dp,n>4| |22 >2 a1 +does = 3(s+1)>— (dn+5)(s+1)
+2n2 + 3n + 1.

From this table we conclude dim G — 2dim L* > 0 as desired. We provide
the detailed calculation. For A,, with n > 1, we note

1 12
dimG — 2dim L* — 1 = —n2—|—4(n—|—1){n+ J "; J —on+1
—n? +4(n+ 1)L —4 () —2m 41

if n is odd
—n2 44 +1)2 —4(2)* —2n+1
if n is even
_ 2 if nis odd
o 1 ifn is even
>0.
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For B,, and C,, with n > 2 and n > 3, respectively, and z € {0,—-2,—4}
such that 6 divides 4n + z, we calculate

dn+1 dn+112
dimG—2dimL“—1——2n2—|—2(4n—|—1){n+ J—6\‘ n6+ J —n4+1
4 4 2
S (R e L
22 +n 2 — 12 onZ+n
= 1 > 1-4
3 +1+ 6 > 3 +

For D,, with n > 4 and x € {0, 2,4} such that 6 divides 4n + x, we calculate

4n—|—5J _6{4n+5J2
6

dim G — 2dimL* — 1 = —2n2+2(4n+5){

—Tn —3
4 4 2
= —2n? +2(4n +5) nte (nto)
6 6
—Tn—3
_2n2—n+10x—x2 3
3 6
om?—n
- 3
>0.

-3

Now, for the exceptional Lie-types, we choose P as in the table below
and the estimate (13) follows from the same table (again the cross = in the
dynkin diagram of P means, to remove the corresponding simple root):

Lie-type | Dynkin diagram | dim G | Dynkin diagram | dim L*
of G of P

E6 o—Q—I—o—o 78 .—Q—I—H a1+a2—|—a2:19
E7 .—.—I—C—.—Q 133 .—Q—I—H—. a1+ ag +asz = 26
FEg .—Q—I—C—Q—Q—. 248 o—o—I—H—H a1 +as 4+ ag = 35

Fy D 52 e —x by =21

GQ [ == 14 [ ==4 a1:3 . O

Having settled the case for simple algebraic groups, we go on to semisimple
algebraic groups. The following result generalizes Theorem 3.7.

Theorem 3.10. Let G be a semisimple algebraic group and let k > 0 be
an integer. Let r > 1 be the number of minimal normal closed connected
subgroups of G. If Z is a smooth affine variety with dim G+k > 2dim Z +r,
then there exists an embedding of Z into G x AF.
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Proof. Let G, ..., G, be the minimal normal closed connected subgroups of
G. By [Hum75, Theorem in §27.5], the product morphism Gy x---x G, — G
is a finite étale surjection. In the light of Corollary 2.26 we may thus assume
G = G; X --- x G,. Since G; is a simple algebraic group, there exists a
maximal parabolic subgroup P; C G; such that 3dim R,,(P;) > dim P}, by
Proposition 3.9. Let

P=P xXPyx---XP.CGi xGyx-xG,.
Then we get P* = P/' x --- x P" and R,(P) = Ry(P1) x --- X Ry (P,)

and therefore 3dim R, (P) > dim P*. Since dim P; — dim P = 1 for each
i € {l,...,7} (Lemma 3.5(3)), we get dim P — dim P* = r. Thus, the

theorem follows from Proposition 3.8. O

3.4. Embeddings into algebraic groups of low dimension. Our main
result concerning characterless algebraic groups of low dimension is the fol-
lowing.

Proposition 3.11. Let G be a characterless algebraic group with dim G <
10 and let Z be a smooth affine variety with 2dim Z + 1 < dimG. If the
Lie algebra of G is non-isomorphic to sls X sly X slo and non-isomorphic to
sls X k, then Z admits an embedding into G.

Before giving the proof, let us shortly comment on the above result.
Proposition 3.11 implies that for any characterless algebraic group G with
dim G < 8 the condition 2dim Z 4+ 1 < dim G suffices to get an embedding
of Z into G.

Question. Does every 4-dimensional smooth affine variety embed into the
algebraic group SLg x SLo X SLg or into SLg xG, ?

Proof of Proposition 3.11. Let G be a characterless algebraic group of di-
mension < 10 such that its Lie algebra is neither isomorphic to sly x sl X sl
nor to sls x k. We may and will assume that G is connected. Using a
Levi decomposition [OV90, Theorem 4, Ch. 6], G is isomorphic as a va-
riety to A™ x H where H is a connected reductive characterless algebraic
group. In particular, H is semisimple or trivial; see [FvS19, Remark 8.3] and
Lemma 3.6. In case H is trivial, the result follows from the Holme-Kaliman-
Srinivas embedding theorem. Thus we may assume that H is semisimple.
Since every semisimple algebraic group is the target of a finite homomor-
phism of a product of simple algebraic groups (see [Hum75, Theorem in
§27.5]), we may assume that H is the product of simple algebraic groups by
Corollary 2.26. From the classification of simple Lie algebras it follows that
a simple algebraic group of dimension < 10 has Lie algebra equal to slo, sl3
or 505 = sp,. Again using Corollary 2.26, we may assume that the factors
of H are simple algebraic groups that are not targets of non-trivial finite
homomorphisms. Hence, H is a product of the groups

SLy, SLs and Spy.
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If H has a factor equal to SL3 or Sp,, then the statement follows from
Theorem 3.7 (note we excluded the case A! x SL3). Hence, we are left with
the case

G~ A™ x (SL9)*®.
for some s > 1. We distinguish two cases:

e m+ 3s is odd: In case s — 1 < m, the statement follows from Remark 3.4
and Proposition 3.3. Thus we assume that s — 1 > m. Since m + 3s < 10
by assumption, we get 0 < m < min{10 — 3s, s — 2}. Since m + 3s is odd,
this implies that (s,m) = (3,0), which contradicts the assumption that
the Lie algebra of G is non-isomorphic to sl X sly X sls.

e m + 3s is even: Again using Remark 3.4 and Proposition 3.3 we may
assume that s — 2 > m. Similarly as above we get 0 < m < min{10 —
3s,s —3}. Hence, (s,m) = (3,0), and since m + 3s is even, we arrive at a
contradiction. O

4. NON-EMBEDABILITY RESULTS FOR ALGEBRAIC GROUPS

Recall from the last section that, for all simple algebraic groups G and
smooth affine varieties Z such that dimG > 2dim Z + 2, there exists an
embedding of Z into G (see Theorem 3.7). In this section, for every algebraic
group G and every integer d such that dim G < 2d, we construct a smooth
affine variety Z of dimension d such that Z does not allow an embedding
into G (see Corollary 4.4 below). Thus, for a simple algebraic group G this
gives optimality of our embedding result (Theorem 3.7) in case dim G is
even, and optimality up to one dimension in case dim G is odd. We will
focus more on this last case in Section 5.

We recall some facts of the Segre- and Chern class operations. For this
we use the excellent book of Fulton [Ful98] as a reference. For a smooth
irreducible variety X of dimension d we denote by CH;(X) its i-th Chow
group, i.e. the group of i-cycles modulo linear equivalence for each 0 < i < d.
For i > d and i < 0 we set CH;(X) = 0. For each vector bundle £ — X
and each i > 0, we get the so-called Segre class operations

Si(E): CHk(X) —>CHk_i(X), OU—)S,L'(E)QCM

and thus endomorphisms s;(£) on CH(X) = @fzo CH;(X) (see [Ful98,
§3.1]). By [Ful98, Propsition 3.1(a)] we have that so(E) = 1 is the identity
in End(CH(X)). Following [Ful98, §3.2] we consider the formal power series
st(E) = Y20 s(E)t" and define ¢;(E) = Y22, ¢;(E)t' as the inverse of
s¢(F) inside the formal power series ring End(CH(X))[[t]]. This makes sense
since the endomorphisms s;(F), i > 0 commute pairwise [Ful98, Proposition
3.1(b)]. It follows that ¢;(£) maps CH(X) into CHy_;(X) and we denote
the image of @ € CHg(X) under ¢;(E) by ¢;(E) Na € CHg_;(X). The
operations ¢;(F), i > 0 are called Chern class operations. Moreover, by
[Ful98, Example 8.1.6] we have

() N (e;(B) N [X]) = (e(B) N [X]) - (;(E) N [X]) for all i,j,
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where ‘-’ denotes the intersection product; see [Ful98, §8.1]. In the sequel
we denote by T*X — X the cotangent bundle of X.

Proposition 4.1. For d > 1, there exists an irreducible smooth affine vari-
ety Z of dimension d such that sq(T*Z) # 0.

Proof. By the proof of [BMS89, Theorem 5.8|, there exists a smooth irre-
ducible affine variety Z of dimension d such that the component in CHy(Z)
of the total Segre class of T*Z — Z is non-vanishing, sq4(7*Z) N [Z] # 0 in
CHo(Z). This implies that sq(7*Z) # 0 inside End(CH(Z)). O

From a Theorem of Grothendieck, [Gro58, Remarque p.21] or [Brill,
Proposition 2.8] we get the following result:

Proposition 4.2. Let G be a connected algebraic group of dimension n.
Then CH;(QG) is a torsion group for 0 <i<mn—1 and CH,(G) = Z. O

Lemma 4.3. Let Z be an irreducible smooth affine variety of dimension
d > 1. If there is a connected algebraic group G of dimension 2d such that
there is an embedding v: Z — G, then sq(T*Z) = 0.

Proof. Since d > 1, by Proposition 4.2, we get that 1.([Z]) € CHy(G) is a
torsion element where [Z] € CHg(Z) denotes the class associated to Z. By
[Ful98, Corollary 6.3] we have

(e([2])) = ca(NT) N [2] € CHo(Z)

where N* denotes the conormal bundle of Z in G. Hence t*(1([Z])) is a
torsion element in CHy(Z). In case d = 1, we have dim G = 2 and thus G is
solvable. In particular CH;(G) = 0. In case d > 2, it follows from [BMS89,
Proposition 2.1] that CHp(Z) is torsion free. Thus in both cases ¢*(1.([Z]))
is zero. Moreover c¢q(N*)Na = 0 for each o € CHg(Z) if k < d. This implies
that cq(IN*) = 0, it is the zero endomorphism of CH(Z).

Since G is an algebraic group, the cotangent bundle T*G — G is trivial.
Moreover, we have a short exact sequence of vector bundles over Z:

0—=N*"—=(T"G) > T"Z —0.
Then we get
1=c¢("(T"G)) = ct(N")er(T*Z) inside End(CH(2))][t]]
by [Ful98, Theorem 3.2(e)]. By definition we get s;(7%Z) = ¢;(N*) and thus
sq(T*Z) = cq(N*) = 0. O

Now, we apply the above results in order to get irreducible smooth affine
varieties that do not admit an embedding into algebraic groups for appro-
priate dimensions.

Corollary 4.4. Let G be an algebraic group of dimension n > 0. Then,
for each integer d > 5 there exists a smooth irreducible affine variety Z of
dimension d that does not admit an embedding into G.
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Proof. By assumption 2d > n. Let k := 2d — n > 0. By Proposition 4.1
there exists a smooth irreducible affine variety Z of dimension d such that
sq(T*Z) # 0. Towards a contradiction, assume that Z allows an embedding
into G. As Z is irreducible, there exists an embedding of Z into the identity
component G° of G and hence also into G° x (G,)*. Since dim G® + k =
n+ 2d —n = 2d, by Lemma 4.3 we get s4(T*Z) = 0, contradiction. O

5. LIMITS OF OUR METHODS FOR ODD DIMENSIONAL SIMPLE GROUPS

In Section 4 we proved that Theorem 3.7 is optimal for even dimensional
simple algebraic groups G. Moreover, by Proposition 3.11 we also get opti-
mality in case dim G < 8. In this section we will explain, why we are not
able to apply our method to an odd dimensional simple algebraic group G
and smooth affine varieties Z with dimG = 2dim Z + 1 and dim Z > 1.

Concretely, let G be an odd dimensional simple algebraic group. In or-
der to apply our method (Theorem 2.5) to a smooth affine variety Z with
dim G = 2dim Z + 1 we need at least the following: a smooth morphism

7:G@— P with dmP=dimZ

that factors through a principal G,-bundle, Au‘c?;lg (G) acts sufficiently tran-
sitively on each fiber of 7, and a finite surjective morphism Z — P.

The only way to construct such a m: G — P seems to be forming the al-
gebraic quotient by some proper connected characterless algebraic subgroup
H C G of the right dimension; see Proposition 2.13 and Proposition 2.15.
However, in this section we prove Proposition D which yields an obstruction
to the existence of proper surjective morphisms Z — G/H; see also the
discussion in the introduction.

Since the obstruction comes from algebraic topology, in this section we
work with varieties over the complex numbers, i.e. our ground field will be
C. However, using an appropriate Lefschetz principle, we promote a version
of Proposition D back to every algebraically closed field of characteristic
zero; see Appendix C.

In order to avoid confusion with the category of complex manifolds, below
we write algebraic morphism instead of just morphism. We restate Propo-
sition D:

Proposition 5.1. Let Z be a simply-connected complex smooth algebraic
variety with the rational homology of a point. If G/H is a dim Z-dimensional
complexr homogeneous space of a complex simple algebraic group G, then

there is no proper surjective algebraic morphism from Z to G/H.
In Appendix C we prove that Proposition 5.1 holds for Z = AdimG—dimH
over any algebraically closed field of characteristic zero; see Proposition C.1.

Proof of Proposition 5.1. Let G be the universal cover of G. Then p: G — G
is a homomorphism of simple complex algebraic groups [GR03, Théoreme
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5.1, Exposé XII]. Since G/p~'(H) and G/H are isomorphic as algebraic
varieties, we may assume that G is simply connected.

Assume that there exists a proper surjective algebraic morphism Z —
G/H. Let H° be the identity component of H. Denote by p: G/H° — G/H
the canonical projection, which is a finite algebraic étale surjection. As Z
is simply connected, there exists a holomorphic map f: Z — G/H® such
that po f: Z — G/H is the original proper surjective algebraic morphism.
By [Ser58, Proposition 20], it follows that f: Z — G/H® is an algebraic
morphism, and it is also proper and surjective. Thus, by replacing H by
H°, we may assume without loss of generality that H is connected.

Since G is simply connected and H is connected, the long exact homotopy
sequence assocaited to H < G — G/H yields the exact sequence

1= 7T1(G) — 7T1(G/H) — 7T(](H) =1.
Thus, since G is connected, we get that G/H is simply connected. Let
ig =inf{i > 1| m(G/H)®z Q is non-vanishing } .

By Proposition 5.2 below, it follows that 1 < iy < co. As G/H is simply
connected, we may apply a rational version of the Hurewicz Theorem [KK04,
Theorem 1.1] and get

0+# m,(G/H) ®z Q ~ H;,(G/H; Q)

where H,(-;Q) denotes singular homology with rational coefficients. Since
f:Z — G/H is a proper surjective algebraic morphism, Theorem C applies,
and we get that f.: H;(Z;Q) — H;,(G/H;Q) is surjective. However, this
contradicts H;,(Z;Q) = 0. 0

Proposition 5.2. Let G be a simple complex algebraic group. Then, for
each proper closed complex subgroup H C G, there exists i > 1 such that

For the proof of this proposition, we use facts about the rational homotopy
groups of all simply connected simple complex algebraic groups. We recall
those facts next.

Denote by GG a simply connected semisimple complex algebraic group. Re-
call that there exists a maximal compact connected real Lie subgroup K C G
such that G and K are homotopy equivalent [Hel78, Theorem 2.2, Ch. VI].
In particular, K is simply connected, and thus we may apply [MT91, Theo-
rem 6.27, Ch. IV] to get a continuous map of a product of odd dimensional
spheres into K

fr8%m—ly o g2l LK

that induces an isomorphism between the singular cohomology rings with
rational coefficients

H*(K;Q) ~ H* (5% 7! x ... x 5271 Q).
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By the universal coefficient theorem for cohomology, f induces an isomor-
phism between singular homology groups with rational coefficients. Since
K is simply connected, we get by Kiinneth’s formula

H1(52m_1;Q) Q- @HI(SQW_I;Q) ~ Hl(KZQ) =0.

This implies n; > 2 for each i € {1,...,l}. In particular, the product of
spheres S2m~1 x ... x §2u~1 i5 simply connected as well. Now, by the
Whitehead-Serre Theorem [FHTO01, Theorem 8.6], f induces for each ¢ > 0
an isomorphism of rational homotopy groups

7_(_1_(52n1—1> Rz Q x -+ X ﬂ_i(San—l) ®R7Q ~ WZ(K) ®zQ = 7Ti(G> ®7Q. (14)

Note that by a Theorem of Serre ([FHTO01, Example 1 in §15(d)] or [KK04,
Theorem 1.3], for odd positive integers k, the group m;(.S k)®z(@ is isomorphic
to Q if ¢ = k and otherwise it vanishes.

Definition 5.3. For a simply connected semisimple complex algebraic group
G, we call the above constructed unordered I-tuple {2n; — 1,...,2n; — 1}
the rational homotopy type of G.

In the following table we list the complex dimension and rational homo-
topy type for each Lie type (the statements follow from [MT91, Theorem
6.5, Ch. IIT and Theorem 5.10, Ch. VI}):

TABLE 1. Rational homotopy types

Lie-Type | Complex dimension | Rational homotopy type of the
simply connected simple
complex algebraic group

A, m>1 m? +2m {3,5,...,2m + 1}
B, m>2 2m? +m {3,7,...,4m — 1}
Cp,m >3 2m? +m {3,7,...,4m — 1}
D,,, m >4 2m? —m | {3,7,....,4m -5} U{2m — 1}
Es 78 {3,9,11,15,17,23}
Ey 133 {3,11,15,19,23,27,35}
Eg 248 {3,15,23,27,35,39,47,59}
Fy 52 {3,11, 15,23}
Go 14 {3,11}

Proof of Proposition 5.2. With the same argument as in the beginning of
the proof of Proposition 5.1, we may assume that G is simply connected.
Let H° C H be the identity component of H. Since G/H® — G/H is a finite
étale surjection, we get for each 7 > 1 an isomorphism 7;(G/H®) ~ m;(G/H).
Hence, in addition we may assume that H is connected.

Let R(H) be the radical of H. By definition H/R(H) is a semisimple
complex algebraic group. Let S — H/R(H) be the universal covering. As
before, S is a simply connected semisimple complex algebraic group. Since
R(H) is the product of an algebraic torus and a unipotent algebraic group,
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it follows from the long exact homotopy sequence that
mi(H) =m(H/R(H)) = m(S) for each i > 2
and
mo(H) < ma(H/R(H)) = m2(S5)
is injective. From (14) it follows that m2(S) ®z Q = 0. Hence we get
mi(H) @7 Q =7;(S) ®z Q for each i > 1.

Let Sq,...,.S5; be the connected normal minimal closed complex subgroups
of S. Then each S; is a simple complex algebraic group and the product
morphism Sy X---xS; — S is a finite étale surjection (see [Hum?75, Theorem
in §27.5]). Hence, we get

mi(S) = mi(S1) x -+ x m(S;) foreachi>1.

Now, assume towards a contradiction that m;(G/H) ®z Q = 0 for each
i > 1. By tensoring the long exact homotopy sequence associated to H —
G — G/H with Q, we get isomorphisms

mi(H) ®z Q~mi(G) @z Q foreachi>1.
In particular,
m3(51) ®z Q x -+ X m3(S)) ®z Q ~ 73(G) ®z Q. (15)

According to Table 1, we have m3(S;) ®z Q ~ 73(G) ®z Q ~ Q for each
i€ {l,...,l}. Hence, due to (15), we get [ = 1, S is already simple, and

mi(S) @z Q ~ m;(G) ®z Q for each i > 1.
Since S and G are both simply connected we get even
mi(S) ®z Q ~ m;(G) ®z Q for each i > 0.

This implies that S and G have the same rational homotopy type. However,
according to Table 1 this can only happen if the Lie types of S and G
coincide or the Lie types of S and G are B,,, and C,,, respectively, for some
m > 3 (note that the 5™ rational homotopy group is non-vanishing only
for A,, with m > 2 and the 7*" rational homotopy group is non-vanishing
only for B,,, C,, and D,,). In both cases the complex dimension of S and
G coincide, which contradicts the fact that H is a proper closed complex
subgroup of G. O

ApPPENDIX A. HorPF’S UMKEHRUNGSHOMOMORPHISMUS THEOREM

In this chapter we use a version of Hopf’s Umkehrungshomomorphismus
theorem to prove Theorem C. Apart from the proof of Theorem C, in this
section we consider the Euclidean topology on (topological, smooth and
complex) manifolds and subsets thereof. For lack of reference, we provide
a proof of the following version for (in general) non-closed manifolds of a
result going back to the work of Hopf in the case of closed (smooth) mani-
folds [Hop30]. While we will apply the result only for smooth maps, we take
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the opportunity to formulate the statements for topological manifolds and
proper continuous maps between them. Aspects of our proof are written
with smooth concepts in mind (definition of degree, exhaustion of manifolds
by full-dimensional compact manifolds with boundary), even if the proficient
topologist might have worked differently, e.g. to avoid topological transver-
sality in Lemma A.5. An advantage is that this proof works very naturally
in the smooth setup as well, and it seems like the fastest path from citable
literature to the theorem.

The reader may read what follows for the ring R being Z or Q without loss
for the application in this paper. Recall that an orientation on a manifold is
a Z-orientation. The notions used in the result will be explained afterwards.

Theorem A.1. Let R be a commutative unital ring, M and N be R-oriented
non-empty topological manifolds of the same dimension where N is con-
nected, and let f: M — N be a proper continuous map. Denote by d € R
the degree of f, by fr: H (M;R) — Hi(N;R) the induced map in k-th
homology, and by fir : Hy(N; R) = Hi(M;R) the Umkehrungshomomor-
phismus. Then, for all non-negative integers k and all ¢ € Hi(N; R), we
have fi o fir(c) = de.

We use Theorem A.1 to prove Theorem C. In fact we prove the following.

Theorem A.2. Let f: X — Y be a proper surjective holomorphic map
between complex n-dimensional manifolds. Assume that'Y is connected and

let the integer d > 1 be the number of preimages of a reqular value of f.

Then the following hold.

(a) The image of the induced map on k-th homology H(X; R) — H(Y; R)
contains dH,(Y'; R) for all integers k > 0.

(b) Assume that X is connected. Then for all x in X, the image of the in-
duced homomorphism on the fundamental groups fi: m (X, x) — 71 (Y, f(x))
has finite index in w1 (Y, f(x)) and this index divides d. In case X has
the rational homology of a point, then f. is a surjection.

Proof of Theorem C. Since f is proper (in the sense of algebraic geometry),
it is proper as a map when X and Y are endowed with the Euclidean topol-
ogy (i.e. their topology as (complex) differentiable manifolds); see [GRO3,
Proposition 3.2, Exp. XII], [Bou71, Proposition 6, §10]. From here on we
consider X and Y with their Euclidean topology. W.L.o.G. X and Y are
connected. Since d # 0 is a unit in Q, the statement follows by applying
Theorem A.2(a) for R = Q. O

Proof of Theorem A.2. Since X and Y are complex manifolds, they are
canonically oriented, and since f is holomorphic, for every regular point
x € X, f maps a neighborhood orientation-preservingly to Y. Consequently,
the local degree of f at a regular value y € Y (see Remark A.6 for a topolog-
ical definition) equals the non-negative integer d of the number of elements

of f7H(y).
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The degree of f is well-defined as the local degree d > 0 of any regular
value y € Y, and, since preimages of regular values are non-empty, the
degree of f is non-zero.

(a): We apply Theorem A.1 to find that

fe(He(X5 R)) 2 fr(fin(Hr(Y; R))) = dHp(Y; R) .

(b): W.lo.g., we fix x € X such that y = f(z) € Y is a regular
value of f. Let p: Y — Y be the covering of Y corresponding to the sub-
group f«(m1(X,x)) C 71(Y,y). We show that this is a finite cover, whence
f(m1 (X, z)) has finite index in m (Y, y).

We pick y € p~!(y) and denote by f: X > Y alift of f with f(;v) =79.

First we show that p~!(y) is contained in the image of f. Indeed, take
Z € pYy) and let B: [0,1] — Y be a path connecting § and 7. We arrange
for 5 to lie in p’l(Yreg), where Y™ C Y denotes the subset of regular
values of f. This can, for example, be achieved by composing 3 with p,
homotoping the resulting path rel endpoints into Y**® (here we invoke that
f is holomorphic?), and lifting the resulting path. The loop 8 = po B can
be lifted to a path a: [0,1] — f~1(Y™8) starting at = since f restricts to
a covering f~1(Y™8) — Y8 (recall that proper local homeomorphisms are
coverings). By construction, fo o and B are lifts of 8 starting at y; in
particular, f(a(1)) = % as desired.

We conclude that p~!(y), which is the index of fi(m1(X,7)) in m (Y, y),
must be finite. In fact,

@] = |(po ) 0| =170 =den

where the first equality follows since f restricts to a covering f “l(yres) —

p~ (Y"8) and, thus, |f~'(y)| = |f~'(y)] for all y’ € p~'(y).
_ Assume now, that X has the rational homology of a point. Note that
fisa holorgorphic map between complex n-dimensional manifolds; hence,

its degree d equals f~1(7) by the same argument we used above to find

2We provide an argument for the claim that any smooth path g: [0,1] — Y with
endpoints in Y"*® can be homotoped relative endpoints to a smooth path in Y8,

Note that Y& := Y\ Y8 is the image f(X*"8) of the closed analytic subset X*"& =
{z € X | fissingular at z} C X, and thus Y*"¢ is a closed analytic subset of Y by
Remmert’s Proper Mapping Theorem [Rem57, Satz 23]. As such, Y*# can be stratified
as a finite union M1U--- UM} of complex submanifolds M; C Y of complex codimesion
at least 1; see e.g. [Chi89, §5.5. Stratifications]. Let G: [0,1] x RY — Y be a smooth map
for some N € N with Gljo,1]x{0} = B such that for each ¢t € [0,1], the map RY Y,
v — G(t,v) is submersive (see e.g. [GP74, Corollary to the e-Neighbourhood Theorem]).
Let F: [0,1] x RY — Y be given by F(t,v) := G(t,t(1 — t)v). Then, F and dF': 9[0,1] x
RY — Y are both transversal to each submanifold M; of Y. By Thom’s Transversality
Theorem, 8,: [0,1] = Y, t — F(t,v) is transversal to Y*"8 for each v € RY away from a
nullset. As the M; have real codimension at least 2 in Y, this means that the image of 3,
is disjoint from each M;. We set 8’ = 3, for some v not in that nullset.
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d = f~'(y). Hence, since f and f have non-zero-degree, Theorem A.1
implies that they both induce surjections on rational homology. Hence, both
Y and Y have the rational homology of a point and, in particular, they both
have Euler characteristic 1. However, for a finite covering p: Y — Y of index
k, the Euler characteristic of Y is k-times that of Y, thus k = 1. O

Remark A.3. An n-dimensional manifold M is said to dominate an n-
dimensional connected manifold N, if there exists a proper continuous map
f: M — N of non-zero degree. Using this term, the above proof of Theo-
rem A.2(a) amounts to observing that a proper surjective holomorphic map
between complex n-dimensional manifolds is a map that establishes that the
domain dominates the target and then applying Theorem A.1.

Remark A.4. Only after a preprint of this article appeared on the arXiv, the
authors became aware of Gurjar’s result [Gur80]. This was the motivation
to add (b) to Theorem A.2, so that Theorem A.2 specializes to Gurjar’s
result by setting X = C". Our proof of part (b) can also be understood as
the natural generalization of the argument from [Gur80].

Before providing the proof of Theorem A.1, we recall orientations, dual-
ities, the Umkehrungshomomorphismus, and the degree. We do this some-
what detailed and in a for us suitable way since we need all notions to work
for non-compact manifolds. We take [Hat02] as our reference for algebraic
topology.

For readability, we will drop the coefficients from the notation of homology
and cohomology.

Manifold. A topological manifold, short manifold, of dimension n is a sec-
ond countable Hausdorff space locally homeomorphic to R™. In particular,
manifolds have no boundary unless otherwise stated. A manifold is said to
be closed if it is compact.

Orientation. An R-orientation is a map o: M — J,cps Ho(M, M \ {z})
such that o(x) € H, (M, M\{x}) ~ Ris a generator (i.e. Ro(x) = H, (M, M\
{z})) and o is continuous. Here, |J s Hn(M, M \ {z}) is endowed with
the following topology, which turns the canonical projection to M into a
covering map and o into a section of this covering map. The topology is the
inductive limit topology with respect to the maps

(@.r)res ()

R x R 2, g Ha(R™ R\ {}) =2~ Uyers Ha(M, M\ {2})
for all local charts ¢: R® — U where R carries the discrete topology, u €
H,(R™,R™\{0}) is a fixed generator and ¢, : H,(R",R™"\{0}) — H,(R",R™\
{z}) is induced by the translation R” — R", y — y + x; see [Hat02, R-
orientation]).

For every compact K C M, we denote by ox € Hy,(M, M\ K) the unique
element in Hy,(M,M \ K) that maps to o(z) under the map induced by
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inclusion of pairs (M, M \ K) C (M, M \ {z}) for all x € K; see [Hat02,
Lemma 3.27].

For context, recall that for a closed oriented manifold M, oy is the fun-
damental class in H,,(M).

Cohomology groups with compact supports as a limit. For any topo-
logical space X, we denote by Hckomp(X ) cohomology groups with compact
supports; that is, the limit group of the directed system of groups given by
the groups and maps
{Hk(X,X\K)} and HY(X, X\ K) % H*(X, X\ L),
KCX, K compact
where K C L C X are compacts and ¢ : (X, X \ L) — (X, X \ K) denotes
the inclusions of pairs, respectively; see [Hat02, Paragraph after Prop 3.33].
This yields a functor from the category of topological space with mor-
phisms given by proper continuous maps to the category of R-modules for
each non-negative integer k: to a proper continuous map f: X — Y we
associate

tompt Heomp(Y) = Heomp(X), [0] = [f¥(¢) € H* (X, X\ f7H())],

comp * +¥comp comp
where ¢ € H*(Y,Y \ J) for some compact subset J C Y, and we denote
by f&: H¥(Y, Y\ J) = H*(X, X \ f~1(J)) the homomorphism induced by
FrEXNFH)) = (VYA ).

Poincaré duality and the Umkehrungshomomorphismus. We recall
that for an R-oriented topological manifolds M we have the Poincare duality
isomorphism. One can write the Poincaré duality map

PDy(M): HY.E (M) — Hy (M)

comp

as the homomorphism induced by
H"M(M, M\ K) = Hy(M), ¢+ ok N9

for all compact subsets K in X; see [Hat02, Theorem 3.35].

Correspondingly, for all non-negative integers k, one defines the Umkehr-
ungshomomorphismus in homology of a proper continuous map f: M — N
between R-oriented m-manifolds as

fug = PDy(M) o fis.k o (PDy(N))™: Hy(N) — Hy,(M).

comp

Alexander duality. For an R-orientable manifold M and a locally con-
tractible compact path-connected subset K C M, one has the following

H(M,M\ K)~ H"(K) for all l € {0,...,n}, (16)
which we only use for | = n and K path-connected, so that H"~/(K) ~ R.

Proof of (16). Let K be a compact in an R-orientable n-dimensional man-
ifold M. If M is closed, see [Hat02, Theorem 3.44] for a proof (the proof
given there works as stated for every R).
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If instead M is not closed (i.e. M is not compact), we find a compact n-
dimensional submanifold My C M with boundary such that K is contained
in the interior of M{ of My; see Lemma A.5 below. Now (16) follows from
the case above since by excision

HI(M, M\K) ~ HI(MS,MOO\K) ~ H, (M() U idaMoMg,M() U idaMOﬁo\K) ,

where MoUidgpz, Mo denotes the doubling of My, i.e. the closed R-orientable
n-manifold obtained by gluing M, to a copy of itself along their boundary
via the identity. O

Every compact sits in a compact submanifold. The following lemma
was used above to assure that Alexander duality holds for non-compact
manifolds. We will also use it below for degree calculations.

Lemma A.5. Let M be an n-dimensional manifold. If K C M is a com-
pact subset, then there exists a compact n-dimensional manifold My (with
boundary if K has non-empty intersection with at least one non-compact
component of M) such that the interior of My contains K. If M is con-
nected, then My can be chosen to be path-connected.

Proof. If K has empty intersection with all non-compact components of M,
set My to be the union of connected components of M that have non-empty
intersection with K. Hence, we consider the case that K has non-empty
intersection with at least one non-compact component of M (in particular,
M is non-compact).

Pick a proper continuous map f: M — R. (For example, exhaust M by
a countable union of compacts K1 C Ky C -+ with K; C K7 (possible by
second countability), define f to be ¢ on the compacts K; \ K, and extend
it to map K1 \ K7 to [i,7 + 1] by the Tietze extension theorem.)

Let a,b € R be such that a +1 < f(z) < b—1 for all z in K. Up to
changing f by a homotopy that is constant outside of the compact f~!([a —
1,a+1]U[b—1,b+ 1] (in particular, the resulting f stays proper), we may
and do assume that f is transversal to a and b, which in particular implies
that Mo = f~1([a, b]) is a compact manifold with boundary f~(a)Uf~1(b);
see [FNOP19, Definition 10.7 and Theorem 10.8] for necessary definitions
and statements.?

In case M is connected, one can easily arrange for My to be connected.
Indeed, let L be the union of My with the image of (finitely many) paths in
M between components of My. Thus L is a path-connected compact subset
of M that contains the original K. Find a compact submanifold (with
boundary) of dimension n of M that contains L (as done in the previous
paragraph) and take its connected component that contains L. O

3We abstain from providing the details of topological transversality (details and further
references can be found in [FNOP19]). We note that in the rest of the paper we use this
appendix only for smooth manifolds, and the proof is written such that replacing f by a
smooth map the argument works with the notion of transversality and the corresponding
transversality theorems in smooth manifold theory.
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Degree. Let f: M — N be a proper continuous map, where M and N are
R-oriented n-manifolds.
For y € N, we set K := f~!(y) and consider the induced map

fot Ho(M, M\~ (y)) = Ho(N,N\{y}) = Ro(y) ~ R.

We define the local degree d, of f at a point y € N as the unique d, € R
such that f,,(ox) = dyo(y).

Remark A.6 (Local degree for y with finite preimage). In the special case
that K is finite, say given by pairwise distinct points x1, - - - x;, we have that

l
dl/ = Z r(xi)v
i=0
where 7(z;) € R is such that for an open neighborhood U of z; with UNK =
{z;} the induced map of pairs f,: Hp(M, M \ {z;}) ~ H,(U,U \ {z;}) —
Hy (N, N\ {y}) satisfies fn(o(xi)) = r(zi)o(y).

If y1 # yo are in the same connected component of IV, then d,, = dy,.
This follows from the following lemma, which is immediate from naturality
of induced maps in homology of pairs.

Lemma A.7. Let f: M — N be a proper continuous map, where M and
N are R-oriented n-manifolds.

If J is a compact subset of N such that H,(N, N\ J) ~ R, e.g. J is path
connected and locally contractible (Alexander duality; see (16)), then the
unique d € R such that fy,(op-1(y)) = doy satisfies d = dy for ally € J. O

And, indeed, it follows that d,, = d,,: let J be a closed arc embedded in
N with endpoints y; and yo (such an arc exists since connected components
of manifolds are arc-connected), hence d,, = dy, by Lemma A.7.

Hence, if N is connected, the degree d of f is defined to be the local degree
of fataye N.

The proof.

Proof of Theorem A.1. Let f: M — N be a proper continuous map be-
tween R-oriented manifolds M and N, where N is connected. Fix a non-
negative integer k and cy € Hy(N). We choose a compact J C N such that
PDy(N)([¢]) = ey for some ¢ € H"*(Y,Y \ J). In fact, by increasing J if
necessary (and changing v to the corresponding class given by the inclusion
map), we may and do choose J to be connected and locally contractible
(indeed, we may choose it as a connected submanifold with boundary by
Lemma A.5). We set K := f~!(J) C M, which is compact since f is proper.
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With this setup we calculate
Ji (fislev)) = i (PDR(M) © flity o (PD(N)) ™ (ev)) (17)

= fi (PDROM) (fitto ([1)) (18)

= fi (PDLOD([FF(0))) (19)
= fi ok N f" @) (20)
= fu(ox) N1 (21)
=doy N (22)
= dPDR(N)([¢]) = dey . (@)

where we use the following. (17) holds by the definition of the Umkehrungs-
homomorphism. (18) holds by our choice of 1. (19) follows by the definition
of the induced map on cohomology with compact support. (20) holds by
the definition of PDy(M). (21) is an application of the naturality of the cap
product
N: Hy(M, M\ K) x H""*(M, M\ K) = Hy(M);

see [Hat02, more general relative cap product, The Duality Theorem, p. 240].
For (22), note that doj = f,(0ox) by Lemma A.7 since K = f~1(J) and by
Alexander duality (see (16)) we have H, (N, N \ J) ~ R by our choice of J.
Finally, (23) holds by the definition of PDy(N) and since PDy(N)([¢]) =
cy. O

APPENDIX B. A CHARACTERIZATION OF EMBEDDINGS

For the lack of a reference to an elementary proof of the following char-
acterization of embeddings, we provide a proof here.

Proposition B.1. Let f: X — Y be a morphism of varieties. Then the
following are equivalent:

a) [ is an embedding;
b) f is proper, injective and for each x € X the differential d.f: T, X —
Ty()Y is injective.

For the proof, we use the following two lemmas from commutative algebra.

Lemma B.2. Let B be a ring and S C B be a multiplicative set such that
the localization R = S™'B is a local ring. Denote by n the mazimal ideal of
R, by p: B — R the canonical homomorphism and set m :== @~ 1(n).

Then there exists an isomorphism ¢: R — By such that ¢ o ¢: B — By,
is the canonical homomorphism of the localization.

Proof of Lemma B.2. As ¢(S) consists of units in R, we get ¢(S) C R\ n,
ie. S C B\ m. By the universal property of localizations there exists a
homomorphism : R — By, such that 1) o ¢ is equal to the canonical homo-
morphism ¢: B — By. Thus it is enough to show that 1 is an isomorphism.
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By definition ¢(B\m) C R\n, i.e. (B \m) consists of units in R. Hence
p: B — R factors through ¢: B — By, there exists 8: By, — R such that
0 ot = . Thus the following commutative diagram exists:

SN
rR-Y.B R,

For r € R there exist b € B and s € S with r = g in R and we get
(@ow)(r) = (Bov)(p®)e(s) ™) = p(b)p(s) ™ =r.

Hence 6 o ¢ is the identity on R and in particular, ¢ is injective. On the
other hand, let 2 € By, where b € B and t € B\m. Since ¢(B\m) consists of
units in R, we get ¢(b)p(t) " € R and thus 1 (p(b)p(t) 1) = 1(b)u(t) "t = L.
This shows that 1 is surjective.

Lemma B.3. Let A C B be a ring extension of Noetherian local rings where
my and mp denote the mazimal ideals of A and B, respectively. If

a) my C mp,

b) the induced field extension A/ my C B/ mp is trivial,

c) the induced homomorphism mu /m% — mp /m% is surjective,

d) B is a finite A-module,

then A = B.

Proof of Lemma B.3. We claim that myq B = mp. Indeed, by a) we know
that mq B C mp. Since my /m?% — mp/m% is surjective, we get mp =
my +m% and inductively

mp =myg+mp foreachn > 2. (24)

Let m: B — B/my B be the canonical projection. Since B/my B is a
Noetherian local ring and m(mp) is a proper ideal of B/ m4 B, Krull’s in-
tersection theorem implies the second equality below:

r(mg) E ) w(mp)" = (0).

n>1

This implies mp C m4 B and proves the claim.
Since by b), we have that the field extension A/my4 C B/ mp is trivial,
the claim implies now that

B=A+mgp=A+myB.

This in turn gives us M = my M for M = B/A. Since B is a finite A-module,
M is a finite A-module as well. Since A is a local ring with maximal ideal
my4, we conclude by Nakayama’s lemma that M =0, A = B. U

Proof of Proposition B.1. Clearly, a) implies b), hence we are left with the
proof of the reverse implication and thus we assume b) holds.
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Note that f(X) is closed in Y, since f is proper. We may therefore replace
Y with f(X) and assume in addition that f is surjective. Now, we have to
show that f is locally an isomorphism. Since f is proper and injective, it
is finite; see [GW10, Corollary 12.89]. Thus, for each x € X there exists
an open affine neighbourhood U C Y of f(x) such that f~1(U) is affine
and Ox (f~1(U)) is a finite Oy (U)-module via the induced homomorphism
I Oy (U) = Ox(f~HU)). As f is surjective, f}; is injective.

Let A:= Oy (U), B := Ox(f~}(U)) and denote by m,4, mp the maximal
ideals corresponding to the points f(x), x, respectively. We identify A with
a subring of B and then my = mpNA. By the flatness of A — Ay, the
homomorphism An,, — An, ®4 B is injective and it is finite, since A C B
is finite. Let R = An, ®a B. Then R is the localization of B at the
multiplicative set A\ my4. Hence, we have a commutative push-out diagram

An, € R
LA’T ¥ (25)
A c B

where ¢4 and ¢ denote the canonical homomorphisms into the corresponding
localizations.

Let n be a maximal ideal in R. We claim that n = ¢(mp)R. Indeed,
nNApy, is a maximal ideal of Ay ,, since An, C R is finite; see [Mat86,
Lemma 2, §9]. This implies the first equality below and the second one
follows from the commutativity of (25):

ma =1, (nNAn,) =¢ '(n)NA. (26)

Since ¢~!(n) is a prime ideal of B, p~'(n) N A = m4 is a maximal ideal
of A and since A C B is finite, it follows from [Mat86, Lemma 2, §9] that
¢~ Y(n) is a maximal ideal of B. Since f: X — Y is injective, mp is the only
maximal ideal in B with mpNA =m4. By (26), we get now ¢~ !(n) = mp,
which implies the claim.

Using the claim, ¢(mp)R is the unique maximal ideal in R. In particu-
lar R is a local ring and mp = ¢ '(¢p(mp)R). By Lemma B.2 there is an
isomorphism ¢: R — By, such that ¢ o ¢ is equal to the canonical homo-
morphism ¢g: B — By, of the localization. Hence we may identify R with
By, and ¢ with tp and we have to show now that Ay, = By,. However,
this follows from Lemma B.3 applied to the ring extension Ay, C Bn,
(condition ¢) in Lemma B.3 follows from the injectivity of d,f: T,X —
Tt Y and condition b) follows from the fact that A/my = Aw,/ma An,,
B/mp = B,/ mp By, and from the assumption that the ground field is
algebraically closed). O
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APPENDIX C. NON-EXISTENCE OF PROPER SURJECTIVE MORPHISMS OF
AFFINE SPACES INTO HOMOGENEOUS SPACES

In this last appendix, we prove a version of Proposition D that works over
an arbitrary algebraically closed field k of characteristic zero:

Proposition C.1. Letd > 1. If G/H is a d-dimensional homogeneous space
of a simple algebraic group G, then there is no proper surjective morphism
from A% to G/H.

The idea is simply to reduce the situation to the case of complex numbers
and then to use Proposition D. In other words, we check that the Lefschetz
principle holds for the specific statement we need.

For the proof we make the following convention. If X is a variety over k
and if k C K is a field extension such that K is algebraically closed as well,
we denote by Xg the fiber product X Xgpeck Spec K. In case X is affine,
we will denote the coordinate ring of X by k[X]; in particular we then have
K[Xk] = K ®x k[X]. In the proof we will use the following properties of
G for an algebraic group G over k:

Lemma C.2. Let k C K be a field extension such that K is algebraically
closed and let G be an algebraic group over k. Then the following holds:

(1) The algebraic group G is connected if and only if Gx is connected.

(2) The group of k-rational points G(k) is dense in G.

(8) Let H be a closed subgroup over k of G. Then Gx/Hig = (G/H)k.

(4) If G° denotes the identity component of G, then (G°)x = (Gk)°.

(5) Assume that G is connected. Then, G is simple (semisimple, reductive)
if and only if Gk is simple (semisimple, reductive).

Remark C.3. Let G be a non-trivial algebraic group G over k. Then G is
reductive if and only if the identity component G° is reductive or trivial.
Hence, for any field extension k C K where K is algebraically closed, the
algebraic group G is reductive if and only if Gk is (see Lemma C.2).

Proof of Lemma C.2. (1): If G is connected, then k[G] is an integral domain.
There is a canonical inclusion K[Gg| = K @k k[G] C K @k k(G) where k(G)
denotes the field of rational functions on G. Since k is algebraically closed,
by [ZS58, Corollary 1, §15, Ch. III], we get that K ®k k(G) is an integral
domain and thus Gk is connected.

If Gk is connected, then K[Gk] = K ®x k[G] is an integral domain. As
k C K is an inclusion, it follows that k|G] — K ®y k[G] is an inclusion and
thus k[G] is an integral domain as well. This shows that G is connected.

(2): Note that a k-rational point of G corresponds to a k-algebra ho-
momorphism k[G] — k which in turn induces a K-algebra homomorphism
K[Gk] = K @k k[G] — K ®x k = K and thus gives a (closed) point in G-
In this way we see G(k) as a subgroup of G.

Denote by G° the identity component. Hence there exists a finite set
E C G(k) such that G = [[,cpe- G°. Since (G°)f is connected (see (1)),
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it follows from [Bor91, 18.3 Corollary| that G°(k) is dense in (G°)g. Hence
Gk) = H e-G°(k) isdensein Gk = H e (G%)k .

ecl e€kl

(3): Denote by i : Gk — (G/H)k the pull-back of the natural projec-
tion m: G — G/H. Let pr: H x G — G be the projection onto the second
factor. Since 7 is H-invariant, we get the commutativity of

G x g g G x Hy — M0
lpr Wl and thus of ier WKi
G— " -~G/H Gx —X - (G/H)k .

This shows that wg is Hg-invariant. In particular, there exists a morphism
0: Gk /Hkg — (G/H)k such that mx factors as

Gx — Gr/Hg 5 (G/H)k (27)

where the first morphism denotes the canonical projection.

Let U C G/H be an open affine subvariety and let V' — U be a finite
étale morphism such that V xy 7= 1(U) — V is a trivial principal H-bundle.
In particular, V xy 7~ 1(U) ~ U x H is affine and since V xy G — 7~ 1(U) is
finite, it follows that 7—1(U) is affine by Chevalley’s Theorem [GW10, Theo-
rem 12.39]. Using (27), we get that the restriction mg | -1y, : 7~ H(U)g —
Uy factorizes as

7T_1(U)K — W_l(U)K/HK % Uk,

where 6y, denotes the restriction of 6 to 7= }(U)g/Hy. Since 7~ 1(U) is
affine, we get K[r~1(U)k] = K @ k[x~1(U)].

We claim that 0y, is an isomorphism. To achieve this it is enough to show
that the induced map of 6, on global sections of the structure sheaves is
a K-algebra isomorphism (since U is affine). Since Ux = (7~ 3(U)/H)k,
this amounts to showing that the invariant rings satisfy

(K @ k[r 1 U))Tx = K @ k[wHU))?  inside K @y k[x~H(U)].

The inclusion ‘D’ follows from the existence of 07,.. For the reverse inclu-
sion let (e;); be a k-basis of the k-vector space K and let ) . e; ®x f; €
K @y k[r~}(U)] be Hp-invariant (almost all f; € k[x~1(U)] are zero). In
particular, we get for all h € H(k) and g € 7~ 1(U) that

D eifith-g)=> eifi(g) inside K.

(3 (2
As (e;); is a k-basis for K, we get fi(h-g) = fi(g) for each h € H(k), each
g € 7~ 1(U) and each i. This implies f; € k[r~}(U)]¥ for each i and shows
‘C’. Hence 0y, is an isomorphism.



50 PETER FELLER AND IMMANUEL VAN SANTEN

As we may cover G/H by open affine subvarieties U such that there is a
finite étale morphism V — U that trivializes w over U, it follows that 6 is
an isomorphism.

(4): The connectedness of (G°)x follows from the connectedness of G°;
see (1). Since (G/G°)x = Gg/(G°)k is finite (see (3)), we get that (G°)x
is the identity component in G.

(5): Let T' be a maximal algebraic torus of G, denote by X(T") the charac-
ter lattice of T" and denote by g the Lie algebra of G. Moreover, let R C X(T")
be the roots of g with respect to 7" and for each o € R, let g® denote the
corresponding eigenspace. Hence we get

s=g’o@Ps".

aceR

Note that K ®y g is the Lie algebra of G, that we may naturally identify
X(T) with X(Tk) and that the natural T-action on g induces naturally a
Tk-action on K ®x g. Since (K ®y g)* D K ® g* for each v € R and
(K @k 9)" D K ®y g°, we get

(Koxg) o PEK kg =Kerg=Kekg’®P K o g”
aER aER

and
(K ®xp)’=Kokg’, (K®kg)*=K®kg" for cach o € R.

We assume first that G is semisimple (reductive). Using that Gk is
connected, it follows from [DG11, Proposition 1.12, Corollaire 1.13, Exp.
XIX] that Tk is a maximal algebraic torus in Gg and Gk is semisimple
(reductive). If G is simple, then Gk is semisimple. Moreover, the roots
system of G with respect to T is irreducible, and thus the root system of
G with respect to Tk is irreducible as well. Hence, if G is simple, then
G is simple as well.

Assume now that G is simple. If there exists a proper connected nor-
mal subgroup N over k of G, then N is a proper connected normal sub-
group of G, since G(k) is dense in Gx and N (k) is dense in Ng; see (2).
Hence, N contains only the identity and thus N as well. Moreover, as
G is non-commutative and G(k) is dense in Gk, we get that G is non-
commutative. Analogously one shows that G is semisimple (reductive) in
case G is semisimple (reductive). O

Proof of Proposition C.1. We assume towards a contradiction that there ex-
ists a proper surjective morphism ¢: A" — G/H. In particular, ¢ is quasi-
finite and since ¢ is proper, we conclude that ¢ is finite; see [GW10, Corol-
lary 12.89]. By Chevalley’s Theorem [GW10, Theorem 12.39], G/H is affine.
In particular, we get a finite ring extension

k[G/H] Ck[zy,...,zy],
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where x1, ..., 2, are variables. By the assumption there exist monic poly-
nomials fi,..., f, € k[G/H]|[T] such that fi(x;) =...= fu(z,) =0.

There exists an algebraically closed subfield k’ C k of finite transcendence
degree over Q, an algebraic group G’ over k’, and a proper subgroup H’ over
k' of G’ such that G = G} and H = Hj.

Since G/H 1is affine and G is reductive, H is reductive or trivial (see
[Tim11, Theorem 3.8]). By Remark C.3, H' is reductive or trivial, and thus
G'/H' is affine. Hence, k'[G'/H’] is a finitely generated k’-algebra, and
thus there exists a surjective k’-algebra homomorphism n’: K'[y1, ..., ym] —
k'[G'/H’], where y1,. .., ym are new variables. By Lemma C.2(3)

n=k&wn: kly,...,ym] = k@ K[G'/H'] = k|G/H]

is a surjective k-algebra homomorphism. For each i = 1,...,n, let d; =
deg(f;) > 0 and let p;; € k[y1,...,Yym], where j =0,...,d; — 1, such that

di—1
fi=T%+ > npy)T7 .
=0

By enlarging k/ we may assume in addition that the coefficients of all the
pij € kly1,...,ym] and all the n(y;) € k[z1,...,x,] are contained in k. In
particular, the polynomial f; has coefficients in k’[G’/H’] for each i and

K[G'/H') C K[z1, ..., 2,]. (28)

As fi(z;) = 0 for each i, we get that (28) is a finite ring extension.
Since the field extension @ C k' has finite transcendence degree, there
exists an embedding of kK’ into the field of complex numbers C. Hence,

C[(G'/H')¢] = C @y K[G'/H'] € Clar, ..., 2]

is a finite ring extension and G/Hg = (G'/H’)c is affine. Thus, we get a
finite surjective morphism A¢ — G/Hg. Since G simple, we get that G’
is simple, and thus also G is simple; see Lemma C.2(5). This contradicts
Proposition D. O
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DYNAMICAL DEGREES OF AFFINE-TRIANGULAR
AUTOMORPHISMS OF AFFINE SPACES

JEREMY BLANC AND IMMANUEL VAN SANTEN

ABsTrACT. We study the possible dynamical degrees of automorphisms of
the affine space A™. In dimension n = 3, we determine all dynamical degrees
arising from the composition of an affine automorphism with a triangular one.
This generalises the easier case of shift-like automorphisms which can be stud-
ied in any dimension. We also prove that each weak Perron number is the
dynamical degree of an affine-triangular automorphism of the affine space A™
for some n, and we give the best possible n for quadratic integers, which is
either 3 or 4.
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1. INTRODUCTION

1.1. Dynamical degrees of polynomial endomorphisms. In this text, we
work over an arbitrary field k. For each n > 1, recall that an endomorphism
f € End(A™) of A" = A} is given by

fi(xy, oo mn) = (fi(xr, o smn), oo fa(mn, o))

where f1,..., fn € K[z1,...,2,]. To simplify the notation, we often write f =
(f1,---, fn) and thus identify End(A"™) with (k[z1,...,z,])".

The degree of an endomorphism f = (f1,..., fn), denoted by deg(f), is defined
to be deg(f) = max(deg(f1),...,deg(fn)). The set End(A™) of endomorphisms of
A"™ is a monoid, for the composition law, and the subset of invertible elements is
the group Aut(A™) of automorphisms of A™.

The dynamics of endomorphisms of A", specially in the case of the ground field
k = C, was studied intensively in the last decades, see for instance [FsW98, Sib99,
Mae00, BFs00, MaeOla, Mae01lb, Gue02, GS02, Gue04, Ued04, FJ11, JW12, Xiel7,

2010 Mathematics Subject Classification. 14R10, 37F10.
1
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DL18]. For each dominant endomorphism f € End(A™), the (first) dynamical degree
is defined as the real number

A(f) = lim deg(f7)" € Rz

(the limit exists by Fekete’s subadditivity Lemma, see Lemma 2.2.1). If f €
End(A') or f € Aut(A?), then A(f) is an integer, but in higher dimensions, it
can be quite complicated to understand the possible dynamical degrees. In [DF,
Corollary 3|, the authors conjecture that A(f) is an algebraic integer of degree < n,
and of degree < n—1if f € Aut(A"™), a conjecture proven until now only for n < 2.

In this article, we study some particular family of automorphisms of A™, that we
call affine-triangular. These are compositions consisting of one affine automorphism
and one triangular automorphism (see Definition 2.1.1) below. Our two main results
are Theorem 1 and Theorem 2 below:

Theorem 1. For each field k and each integer d > 2, the set of dynamical degrees
of all affine-triangular automorphisms of A3 of degree < d is equal to

{a+\/a2+4bc
2

(a,b,c)ENg,a+b§d,C§d}\{0}-

Moreover, for a,b,c € N such that A = ¥va+dbe V‘122+4bc # 0, the dynamical degre X\ is
achieved by either of the automorphisms

a,.b c a,.bc
(z3 + 2z, 0 + 25, 21) and (x5 + xfas’, 1, 22) .

Using Theorem 1, we prove in [BvS, Theorem 2] that the set of dynamical degrees
of all automorphisms of degree 3 of A3 is equal to

1 1 1 1 1
{Lx/i P8 s, BB s v, *f,?’*@lﬂ/i?)}.

2 2

Note that % is the only number that does not belong to the list in Theorem 1
and thus it is the dynamical degree of an automorphism of degree 3 of A3 that is
not conjugate to an affine-triangular automorphism of any degree.

For the next theorem, we recall the definition of (weak)-Perron numbers (see
Theorem 3.2.4 for some equivalent characterisations).

Definition 1.1.1. A Perron number (respectively weak Perron number) is a real
number A > 1 that is an algebraic integer such that all other Galois conjugates
w € C satisfy |u| < A (respectively |u| < N).

Theorem 2. Fach weak-Perron number X\ is the dynamical degree of an affine-
triangular automorphism of A™ for some integer n. Moreover:
(1) If A > 1 is an integer, the least n possible is 2.
(2) If X\ is a quadratic integer and its conjugate is negative, the least possible n
s 3.
(3) If X is a quadratic integer and its conjugate is positive, the least possible n
15 4.
Note that Statement (1) in Theorem 2 is well-known, as {\(f) | f € Aut(A?)} =
Z>1. We include it to emphasise the relation between the degree of the weak-Perron

numbers and the possible n. In view of the above theorems and of the techniques
developped in this text, it is natural to ask the following
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Question 1.1.2. Is every dynamical degree of any element of End(A™) (respectively
Aut(A™)) equal to a weak Perron number of degree < n (respectively of degree
<n-—-1)7

As already mentioned above, a positive answer to this question, where “weak
Perron number” is replaced by “algebraic integer”, was conjectured in the recent
preprint [DF, Corollary 3] (that appeared after we asked the above question in a
first version of this text). In [DF], it is also proven that the dynamical degree of any
element in Aut(A3) is an algebraic number of degree at most six. More generally
they prove that the dynamical degree of any element of End(A™) is an algebraic
number of degree at most n in case the square of the first dynamical degree is bigger
than the second dynamical degree of f [DF, Theorem 2].

Theorem 1 shows in particular that the dynamical degree of every affine-triangular
automorphism of A3 is equal to the dynamical degree of a shift-like automorphism.
However, for each d > 3 the set of dynamical degrees of all affine-triangular au-
tomorphisms of A3 of degree d strictly contains the set of dynamical degrees of
all shift-like automorphisms of A of degree d. Indeed, the latter set of dynamical
degrees consists of the numbers (a + va? + 4d — 4a)/2 where 0 < a < d and does
not contain (1+4+/1+ 4d)/2 , which is the dynamical degree of the affine-triangular
automorphism (r3 + 122, T2 + §, 1), see Corollary 4.3.7.

dynamical degrees of shift-like
d | automorphisms of A% of degree
d not appearing in degree < d

dynamical degrees of affine-triangular
automorphisms of A? of degree d
not appearing in degree < d

{1}
(V2,155 2}
{(V3,1+v2,3}

1 13 3 13
(Y18 1 4 /3, 3113 4}

= W N

{1}
(V2,145 9}
(V3,118 1 1 2,16, Y17 1 4 /3,3)
{2v2,1+ /5, 318 1533 9 /3 14437

3+V17 3+v21
+T7l+\/77+774}

Note that 2v/2 and /3 appear as dynamical degrees of affine-triangular auto-
morphisms in degree 4 and 3, respectively (and not smaller), even if 2¢/2 < 3 and
V3 < 2. Similarly, for each prime p, the number /P is the dynamical degree of
a shift-like automorphism of degree p, but it is not the dynamical degree of an
affine-triangular automorphism of degree < p.

1.2. Dynamical degrees of affine-triangular automorphisms in higher di-
mensions. In dimension n > 4, we are not able to compute all dynamical degrees
of all affine-triangular automorphisms, but can get some large families. The case
of shift-like automorphisms is covered by our method, and we retrieve a proof of
the result of Mattias Jonsson (Proposition 4.2.5), but we can also study wider
classes. We give the dynamical degrees of all permutation-elementary automor-
phisms (a family that strictly includes the shift-like automorphisms) in §4.2 (es-
pecially Proposition 4.2.3) and also give the dynamical degrees of other affine-
triangular automorphisms. In particular, we show that in any dimension n > 4,
there are affine-triangular automorphisms of A™ whose dynamical degrees are not
those of a shift-like automorphisms or more generally of a permutation-elementary
automorphisms, contrary to the case of dimension n < 3. The reason is that dynam-
ical degrees of shift-like automorphisms are special kinds of weak Perron numbers.
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Indeed, they are positive real numbers that are roots of a monic integral polyno-
mial where all coeflicients (except the first one) are non-positive. These numbers
are called Handelman numbers in [Bas97| (see especially [Bas97, Lemma 10]) and
they have no other positive real Galois conjugates (Lemma 3.2.7). This implies that
Handelman numbers are weak Perron numbers (see Corollary 3.2.8). Theorem 1
implies that the dynamical degree of an affine-triangular automorphism of A% is a
Handelman number (and the same holds for all automorphisms of Al and A?), but
for any n > 4, there are affine-triangular automorphisms of A™ whose dynamical
degrees are not Handelman numbers. This follows in particular from Theorem 2,
applied to any weak Perron quadratic integer with a positive conjugate, for instance
to (3++/5)/2. We can also apply Theorem 2 to weak Perron numbers of arbitrary
large degree.

1.3. Results in the literature on dynamical degrees of endomorphisms of
A™. Let us recall what is known on the dynamical degrees of elements of End(A™).

(1) The case where n = 1 is obvious: in this case we have A(f) = deg(f), so
each dynamical degree is an integer, which is moreover equal to 1 in the case of
automorphisms.

(2) When n = 2, the case of automorphisms follows from the Jung-van der
Kulk Theorem [Jun42, vdK53|: every dynamical degree is an integer, as deg(f") =
deg(f)" for each r, when f is taken to be cyclically reduced (this is explained in
Corollary 2.4.3 below, or in [Fur99, Proposition 3]). The set of all dynamical degrees
of quadratic endomorphisms of A% is equal to {1,v/2, (1 4+ v/5)/2,2} by [Gue04,
Theorem 2.1|. Moreover, the dynamical degree of every element of End(A%) is a
quadratic integer, by [FJ07, Theorem A’].

(3) The case of dimension n > 3 is open in general: there is for the moment no
hope of classifying all dynamical degrees, even when studying only automorphisms.

The set of dynamical degrees of all automorphisms of A of degree 2 is equal to
{1,v/2,(14++/5)/2,2} by [Mae0Ola, Theorem 3.1] (and the same holds over any field
[BvS, Theorem 2]).

Apart from the above classification results, two natural families are also known:
the monomial endomorphisms and the shift-like automorphisms.

(A) A monomial endomorphism of A™ is an endomorphism of the form f =

(fi,---, fn), where each f; is a monomial. When we write f; = oz -z, "
with «; € k™ and m;1,...,m;,, € N and assume that f is dominant, then the

dynamical degree of f is the spectral radius of the corresponding matrix M =
(mi ;)i j—1 € Mat,(N). This classical result is proven again in Corollary 3.2.5 below.
The numbers arising this way are the weak Perron numbers (see Theorem 3.2.4).

(B) For eachn > 1, a shift-like automorphism of A" is an automorphism of the
form (zp11+p(x1,...,20),21,. .., Ty) for some polynomial p € k[z1,...,2,]. These
are particular examples of affine-triangular automorphisms. The dynamics of such
automorphisms have been studied in various texts (see for instance [BP98, Mae00,
Mae01b, Ued04, BV18]). The dynamical degrees of shift-like automorphisms are
known, by a result of Mattias Jonsson (see Proposition 4.2.5 below). For a proof
of this result, together with a generalisation, see §4.2.

1.4. Description of the techniques associated to degrees. In the rest of this
introduction, we describe the main technique that we introduce in order to compute
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dynamical degrees of endomorphisms of A™. This is related to degree functions (or
monomial valuations), and may be applied to endomorphisms of A™, not only affine-
triangular automorphisms. We also give an outline of the whole article.

Definition 1.4.1. For each p = (u1,...,pn) € (R>0)™ \ {0}, we define a degree
function deg,,: k[r1,...,2,] = R>o U {—o0} by deg,(0) = —occ and

n
ds S e G,J-zl;lxgz---xzn)—max{zaim

(a1,...,an)EN™ i=1

We say that a polynomial p € k[z1,...,x,] is u-homogeneous of degree 6 € R
if p is a finite sum of monomials p; with deg, (p;) = ¢ for each i (where the zero
polynomial is p-homogeneous of degree 6 for each 6).

We can then write every element g € k[z1,...,2,] \ {0} uniquely as
q= Z q9 ,
QEREO
where each gy € k[z1,...,x,] is p-homogeneous of degree 6 (and only finitely many

go are non-zero). We then say that gy is the p-homogeneous part of q of degree 6.
The p-leading part of g is the p-homogeneous part of ¢ of degree deg,(q).

Remark 1.4.2. Note that if p € (R>q)™ \ {0}, then

k(z1,...,2,) > RU{oco}, [/g deg,(g) —deg,(f)
is a valuation in the sense of [Mat89, p.75] where k(x1,...,z,) denotes the field of

rational functions in x1,...,x, over k. Such valuations are often called “monomial
valuations” in the literature.

Definition 1.4.3. Let pp = (1, ..., ttn) € (R>0)™\{0}. Foreach f = (f1,..., fn) €
End(A"™) \ {0} we denote the u-degree of f by

deg, (f) = inf{0 € R>¢ | deg,,(fi) < Ou; for each i € {1,...,n}}

and we say that deg, (f) = oo if the above set is empty.
We moreover say that f is p-algebraically stable if deg,(f) < oo and deg,,(f") =
deg,, (f)" for each r > 1.

Remark 1.4.4. 1f p = (1,...,1), then deg, (f) = deg(f) is the standard degree and
the notion of being p-algebraically stable is the standard notion of “algebraically
stable”, studied for instance in [GS02, Bis08, Blal6]. The fact of being algebraically
stable can be interpreted geometrically by looking at the behaviour of the endo-
morphism at infinity: [Blal6, Corollary 2.16].

In order to compute the dynamical degree of an endomorphism f € End(A™),
the following endomorphism associated to f will be of great importance for us:

Definition 1.4.5. Let f = (f1,..., fn) € End(A™) be a dominant endomorphism,
let 1 = (p1,...,pn) € (R>0)"™ be such that deg,(f) = 6 < oco. We define the y-
leading part of f to be the endomorphism g = (g1,...,9») € End(A™), where g; €
k[z1,...,x,] is the p-homogeneous part of f; of degree Oy, for each j € {1,...,n}.

The degree functions are studied in §2. Basic properties are given in §2.3, and
the relation with py-homogeneous endomorphisms is given in §2.5 (we explain in
particular when deg,,(f) = oo in Lemma 2.5.6). In §2.6, we explain how degree
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functions allow us to give an estimate on the dynamical degrees, and sometimes to
compute it exactly. In particular, we prove the following result (at the end of §2.6).

Proposition A. Let f = (f1,...,fn) € End(A"™) be a dominant endomorphism.
For each = (p1, ..., pn) € (Rso)™ the following hold:

(1) 0 :=deg,(f) < oo,

(2) The dynamical degree of | satisfies 1 < A(f) < 6.

(3) Let g € End(A™) be the p-leading part of f. If > 1, then

M) =0 < f is p-algebraically stable < g" # 0 for each r > 1.

Remark 1.4.6. Let = (1,...,1). In this case, the u-degree is the classical degree
and Proposition A(2) is the classical inequality A(f) < deg(f).

Remark 1.4.7. Proposition A is false when we apply it to u € (R>o)™ \ {0}. For
instance, if f = (z1,23), u = (1,0), then deg,(f) =1but 1 <A(f) =2.

To apply Proposition A to compute the dynamical degree, we need to find some
eigenvectors and eigenvalues. This is done here by looking at monomial maps
associated to endomorphisms in End(A™). These behave quite well with respect to
degree functions (see Corollary 3.2.5).

Definition 1.4.8. Let f = (f1,..., fn) € End(A™) be an endomorphism such that
fi # 0 for each i. We will say that a square matrix M = (m; ;)7 ;_; € Mat,(N) is
contained in f if for each i € {1,...,n}, the coefficient of the monomial []}_, x;n”
in f; is nonzero. The set of matrices that are contained in f is then finite and
non-empty.

The mazximal eigenvalue of f is defined to be

0 =max{|£| € R | £ is an eigenvalue of a matrix that is contained in f} .

An element g = (p1,...,4n) € R>0)™ \ {0} is a mazimal eigenvector of f if
deg,,(fi) = Ou; for each i € {1,...,n}. In particular, we then get deg,,(f) = 6 < oc.

It often happens that we cannot apply Proposition A to compute the dynamical
degree, but that we can do it by allowing p to have some coordinates, but not all,
to be equal to zero. In fact, the following generalization of Proposition A is our
main tool to compute dynamical degrees:

Proposition B. Let f = (f1,..., fn) € End(A™) be a dominant endomorphism
with mazimal eigenvalue 6. Then the following holds:

(1) There exists a mazimal eigenvector = (p1, ..., ) € (R>0)™ \ {0} of f.
(2) We have 1 < A(f) <6 < deg(f).
(3) For each mazrimal eigenvector ju of f, we have 0 = deg,,(f), and the following
hold:
(4) If [ is p-algebraically stable, then \(f) = 6.
(it) If A(f) =6,0 > 1 and u € (Rso)", then f is p-algebraically stable.
(iii) Let g € End(A™) be the u-leading part of f. If @ > 1, then f
is p-algebraically stable if and only if for each v > 1 there is i €
{1,...,n} with p; > 0 and such that the i-th component of g" is
non-zero.

Remark 1.4.9. In Proposition B(1), there are examples with no possibility for u to
be in (Rs0)", as the examples f = (z1,73) € End(A?) or f = (21,253,172 + 23) €
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Aut(A3) show. Hence, Proposition A cannot be directly applied in order to prove
Proposition B. However, if some coordinates of y are zero, then a linear projection
is preserved (this follows from Lemma 2.5.6, see also Corollary 2.6.2). To prove
Proposition B, we will use Lemma 2.6.1, that is a version of Proposition A that
also works for p € (R>o)™ \ {0}.

Remark 1.4.10. The implication of Proposition B(3)(4) is not an equivalence, as we
show in Example 3.4.2 below.

The proof of Proposition B is given in Section 3. For each dominant endomor-
phism f € End(A™), Proposition B(1) gives the existence of a maximal eigenvec-
tor p. Moreover, Proposition B(3) shows that if f is u-algebraically stable then
A(f) is equal to the maximal eigenvalue 6 of f. We will use this to compute the
dynamical degree of many endomorphisms of A™.

The following result allows to compute all dynamical degrees of permutation-
elementary endomorphism of A™, and generalises in particular Proposition 4.2.5.
Its proof is given in §4.2:

Proposition C. Let f € Aut(A"™) be a permutation-elementary automorphism. If
the maximal eigenvalue 0 of f is bigger than 1, there exists a maximal eigenvector
wof f such that f is p-algebraically stable. In particular, the dynamical degree A(f)
is equal to the maximal eigenvalue 0 of f, which is a Handelman number.

Proposition C is false if we replace “permutation-elementary” by “permutation-
triangular” (see Example 4.3.4 for examples in dimension 3). We can however obtain
the following result, which is proven in §4.3:

Proposition D. Every affine-triangular automorphism f € Aut(A3) is conju-
gate to a permutation-triangular automorphism f' € Aut(A3) such that deg(f’) <
deg(f) and such that f' has the following property: either the mazimal eigenvalue
0 of [’ is equal to 1, or [’ is p-algebraically stable for each maximal eigenvector
w. In particular, the dynamical degrees A(f) and A(f') are equal to the maximal
eigenvalue 0 of f', which is a Handelman number.

The proof of Theorem 1 is given at the end of §4.3, directly after proving Propo-
sition D, as it follows almost directly from this result. We use these results in §4.4,
to prove Theorem 2.

Acknowledgements. The authors thank the referee for his careful reading and
helpful suggestions. We thank Jean-Philippe Furter and Pierre-Marie Poloni for
helpful discussions on dynamical degrees of automorphisms of A3 and Christian
Urech for indicating us the result of Mattias Jonsson (Proposition 4.2.5) that in-
spired our generalisation.

2. INEQUALITIES ASSOCIATED TO DEGREE FUNCTIONS AND THE PROOF OF
PROPOSITION A

2.1. Definitions of elementary, affine and triangular automorphisms. Let
us recall the following classical definitions (even if our definition of elementary is
slightly more restrictive than what is used in the literature):

Definition 2.1.1. An endomorphism f = (fi,..., f,) € End(A") is said to be
o triangular if f; € k[z1,..., ;] for each i € {1,...,n},
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o elementary if f; = x; for for each i € {1,...,n —1}.
o an affine automorphism if f € Aut(A™) and if deg(f) =1,
» a permutation of the coordinates if {f1,..., fo} ={x1,...,2s},

o affine-triangular if f = a o7 where a is an affine automorphism and 7 is a
triangular endomorphism,

o affine-elementary if f = oo e where « is an affine automorphism and e is an
elementary endomorphism,

o permutation-triangular if f = aoT where « is a permutation of the coordinates
and 7 is a triangular endomorphism.

o permutation-elementary if f = aoe where a is a permutation of the coordinates
and e is an elementary endomorphism.

For each n < 4, if char(k) # 2, every automorphism of A™ of degree 2 is conju-
gate, by an affine automorphism, to an affine-triangular automorphism, see [MO91].
This result is false in dimension n = 5 [Sunl4], as for example

f = (x1 4 xom4, T2 + 2125 + 2324, T3 — Tols, T, T5) € Aut(A®)

shows: the Jacobian of the homogeneous part of degree 2 of an affine-triangular
automorphism of degree < 2 contains a zero-column, but the Jacobian of the ho-
mogeneous part of degree 2 of f contains linearly independent columns (see also
[Sunl4, Theorem 3.2]).

There are quite a few automorphisms of A? of degree 3 that are not conjugate,
by an affine automorphism, to affine-triangular automorphisms. More precisely,
when k is algebraically closed, then each automorphism of A3 = Spec(k|x,y, 2])
of degree 3 is conjugate, by an affine automorphism, either to an affine-triangular
automorphism or to an automorphism of the form

(%) alr +yz + za(z, 2),y + a(z, 2) + r(2), 2) € Aut(A?)

where a € k[z, 2] \ k[z] is homogeneous of degree 2, r € k|z] is of degree < 3
and « is an affine automorphism, see [BvS, Theorem 3]. In fact, non of the auto-
morphisms in (*) is conjugated, by an affine automorphism, to an affine-triangular
automorphism, see [BvS, Proposition 3.9.4].

For k = C various (dynamical) properties of the affine-elementary automor-
phisms (z¢ + 21 + 2324, 20, ax2) € Aut(A®) with a € C, 0 < |a| < 1,¢>2,d > 1
are studied in [DL18] and in particular their dynamical degree is computed, which
is equal to the integer q.

2.2. Existence of dynamical degrees. We recall the following folklore result,
which implies that the dynamical degree is well-defined.

Lemma 2.2.1. Let (a,),>1 be a sequence of real numbers in R>1 such that a,ys <
a, - ag for each r,s > 1. Then, ((ar)l/r)rzl s a sequence that converges towards
infrzl((ar)l/r) € Rzl’

Proof. As (log(ar))r>1 is subbadditive, (%) >1 converges to inf,>q (M) >0
by Fekete’s subadditivity Lemma (see [Fek23 Satz II] or [Ste97, Lemma 1.2.1]). O

In case g = (p1,...,p4n) € (R>g)™ \ {0} is of the from p; = ... = pp, = 0
and fpy1 = ... = py = 1 for some 0 < m < n we denote for any polynomial
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p € k[z1,...,z,] its p-degree deg, (p) by deg, .. . (p). Moreover, we denote for
an endomorphism f = (f1,..., fn) € End(A™)

d = d ).
€8airan () jemax €8airsan (F7)
If m = 0, then deg,(f) is simply the classical degree that we denote by deg(f). If
m > 0, then deg,(f) is in general not equal to deg, .. . (f). In fact, deg,(f)
is equal to deg, ., . (f)in case deg, . (f;)=0forallie {1,...,m} and
otherwise it is equal to co.

.....

Corollary 2.2.2. Let f € End(A™) be an endomorphism. For each integer m €
{0,...,n — 1}, the sequence

degmmﬂ,m,zn (fr)l/r

converges to a real number p.,, > 1. This gives in particular the dynamical degree

Xf) = po, which satisfies A(f%) = X(f)? for each d > 1.

Proof. This follows from Lemma 2.2.1, as

degfvm+1,m7mn (fr+s) = degxm+17~"7mn (fv) ’ degm7yb+17"->x71. (fs)’

for all r,s > 1. O

2.3. Basic properties of degree functions. Below we list several properties of
degree functions (see Definition 1.4.1). Apart from the easy observations deg,, [x+ =
0, deg,(f-g) = deg,(f)+deg,(g9) and deg,,(f +g) < max(deg,(f),deg,(g)), which
correspond to say that —deg, is a valuation (see Remark 1.4.2), we have:

Remark 2.3.1. We fix g = (p1,...,n) € (R>0)™ \ {0} and get:

(1) As explained in Definition 1.4.1, each polynomial p € k[z1,...,2,]\ {0} can
be written uniquely as a finite sum

pP= > po

OGRZO

where each py € k[z1,...,x,] is p-homogeneous of degree §. We then obtain
deg,, (p) = max{6 | py # 0}.

(2) Let m € {0,...,n — 1} and assume that p; = 0 for ¢« < m, but u; > 0 for
i > m. Then we have for each polynomial p € k[z1,...,2,]\ {0}

Hmin * degx,,,,Jrl,.“,ac,,L (p) < degp (p) < Hmax * degwm+17---,$n (p)

where Hmin = minm+1§i§n i and HPmax = MaXyym1<i<n Hi- In partiCUIara
for each dominant endomorphism f € End(A™) we have

lim deg, rn(fr)%: lim max degﬂ((fr)i)%

r—oo TRy r—ooie{l,...,n}

where (f"); denotes the i-th coordinate function of f". Note that the left
hand side is the dynamical degree A(f) in case m = 0, i.e. when p € (R-o)™.
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2.4. Endomorphisms that preserve a linear projection. The following is an
algebraic analogue of the application of [DN11, Theorem 1.1] to endomorphisms of
A™ that preserve a linear projection:

Lemma 2.4.1. Let f = (f1,..., fn) € End(A"™) be a dominant endomorphism. For
each r > 1, we write

.fr = ((fr)la---a(fr)n)'
Letm € {0,...,n—1} be such that f1,..., fm € k[z1,...,2m]. Then, the dynamical
degree of f is given by A(f) = max{Ai, A2}, where

Moo= lim max{deg((F)1), -, deg((F)m)}" = M(frs - fn))
/\2 = 711>H010 max{degzv#l,.‘.,xn ((fr)m-‘rl)v s 7degzm+1,...,mn((fr)n)}l/r

el (YT

are two limits which exist. (If m =0, by convention we set A\ = 1.)

I
=
g
o,
)

a2
&
t

Proof. For each r > 1, we write

ar = max{deg((f")1),...,deg((f")m)}
by = max{deg((f")m+1),...,deg((f")n)}
Cr = maX{degxm+1,...,wn ((fr)m+1)7 te ﬂdegajm+1,...,mn ((f’r')n)}
= deg%nﬂ),,,,x,L(fT').
As b, > ¢, we obtain for each r > 1
deg(f") = max{a,, b.} > max{a,,c,}.
It follows from Corollary 2.2.2 that the limits
A= lim a7, A = lim ¢/" and A(f) = lim deg(f")'/"
700 r—00 T—00

exist (and all belong to R>1). We obtain

A(f) = lim max{ai/r7bi/r} > lim max{ai/r7ci/r} = max {\1, A2} .
r—00 r—>00

We may thus assume that A(f) > A1, which implies that lim,_, o bi/r exists, and is
equal to A\(f). It remains to see that in this case A(f) < max{A1, A2}.

For all r,s > 1 and each i € {m + 1,...,n}, the polynomial (f"**); is obtained
by replacing 1, ..., 2, with (f")1,..., ("), in (f%);, so the degree of (f7%); is at
most

deg,, ., ((f%)i) - deg((f")1: -5 (f)m)
+degy, e, ((F7)i) - deg((f)mats - (f ) -
This gives by+s < bs - ar + ¢5 - b.. When we choose then s = r, we obtain
bar < b, (ar +c).

As A(f) = lim by/*", we have A(f)2 = lim bY/". The above inequality gives
r—00 T—>00

Af)? = lim by
< lim bi/T limsup(a, + ¢,)*/"
r—co r—00
< M) - limsup(2max{a,, ¢, })'/"

A(S) - H:;}?{O)\D)QL
so A(f) < max{A1, A2} O
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Corollary 2.4.2. Let n > 2 and let f € Aut(A™) be an automorphism such
that f1,..., fn—2 € k[z1,...,2Zn_2] and such that the dynamical degree of g =
(fi, - fn2) € Aut(A™"2) is an integer. Then, the dynamical degree of f is
an integer.

Proof. By Lemma 2.4.1, one has A(f) = max{A(g), A2}, where
)\2 = 711}11010 max{degzn,l,azn ((fr)"—l)? degmn,l,mn ((fr)n)}l/r .

It remains to see that As is an integer. As K[x1,...,Tn_2, fu—1, fn] = k[z1,. .., 20],
one has K[fn_1, fn] = K[xn—1,2,], where K = k(z1,...,2,_2). Hence, one can
see the automorphism (x1,...,2,) — (T1,...,Tn_1, fn_1, fn) of A™ as an auto-
morphism F € Autx(A?) of A% defined over K. For each i > 0, the auto-

morphism g~*

o (z1,.. .,xn_l,fn_;,fn) o g’ of A" can be seen as an element of
Autg (A?) that we denote by F9 where we identify g with the automorphism

(fis--s fo—2,Zn—1,zy,) € Aut(A™). This gives
max{degmn,l,xn (<fr)7’b*1)7 degzn,l,m" ((fr)n)} = deg(GT>

where G, = F9 ' 0---0 F9 o F90 F € Autg(A?), since G, = g~" o f” when we
consider G, g and f as automorphisms of A"™.

According to the Jung-van der Kulk Theorem [Jun42, vdK53|, one can write
F =F,o0---0F, where each F; € AutK(AQ) is either triangular or affine. One can
moreover assume that two consecutive F; are not both affine or both triangular (as
otherwise one may reduce the description), and get then deg(F) = [[;_, deg(F;)
(follows by looking at what happens at infinity or by [vdE00, Lemma 5.1.2]). We
prove that As is an integer by induction on s. If s = 1, then F is either affine or
triangular; this implies that the set {deg(G,) | » > 1} is bounded, so Ao = 1. If
s > 1and Fy, Fy are both affine or both triangular, we replace F with (Fy)9oFoF, !,

1

This replaces G, = F9 o---0F90F with G, = (F})? oG,oF ', Asdeg((F})?") =
deg(F}) for each r > 1, one has

ﬁ deg(G,) < deg(Gy) < deg(G,) - deg(F1)?
so this replacement does not change the value of A\o. As this decreases the value
of s, we may assume that F} and Fy are not both triangular or affine. Hence, for
each 7 > 1, G, is a product of rs elements that are affine or triangular, with no
two consecutive in the same group. This gives deg(G,) = H::_()l [15-, deg(Fjgl) =

H:;Ol szl deg(F};) = deg(F)". Hence, Ay = deg(F) is an integer. O

Corollary 2.4.3. The dynamical degree of any element of Aut(A?) is an integer.
Similarly, the dynamical degree of any element of Aut(A3) (respectively Aut(A?))
which preserves the set of fibres of a linear projection A3 — Al or A3 — AZ?
(respectively A* — A?) is an integer.

Proof. The fact that the dynamical degree of any element of Aut(A?) is an integer
follows from Corollary 2.4.2 applied to n = 2. If f € Aut(A?) is an automorphism
that preserves the set of fibres of a linear projection A® — A' or A®> — A2, then
one may conjugate by an element of GL3 and obtain f = (f1, f2, f3) with either
fi1 € k[z1] or f1, fo € k[z1,z2]. The fact that A(f) is an integer follows then from
Corollary 2.4.2 and Lemma 2.4.1, respectively (in the second case, one uses the
fact that the dynamical degree of (fi, f2) € Aut(A?) is an integer). Similarly, in
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the case of an automorphism of A* preserving a linear projection A* — A2, one
restricts to the case f = (f1,..., f1) € Aut(A?) with f1, f2 € k[x1, 2], and applies
Corollary 2.4.2. O

2.5. Homogeneous endomorphisms.

Lemma 2.5.1. Let h = (hy,...,hy) € End(A"), let p = (p1, ..., pn) € (R>0)™\
{0} and let 0 € R>q. The following conditions are equivalent:
(1) The polynomial h; is p-homogeneous of degree Ou; for each i € {1,... ,n}.
(2) For each p-homogeneous polynomial p of degree & and each integer r > 1,
the polynomial p o h™ is u-homogeneous of degree 07&.
If additionally h; # 0 for each i € {1,...,n}, then (1) and (2) are equivalent to

(3) For each Matriz M contained in h, p is an eigenvector to the eigenvalue 6.

Proof. The implication (2) = (1) is given by choosing p = z; for i = 1,...,n, so
we may assume (1) and prove (2). It suffices to prove (2) for r = 1, as the general
result follows by induction.

If p = 0, then h(p) = 0 is p-homogeneous of any degree. It then suffices to
do the case where p is a monomial: we write p = (x{*x3?--- 2% with ¢ € k¥,
ai,...,a, > 0, which is y-homogeneous of degree deg,,(p) = St aipi. As hy is p-
homogeneous of degree 0p;, the polynomial poh = Ch{*h3? - - - h% is y-homogeneous
of degree Y " | a;0u; = 0 deg,(p).

Now, we assume additionally that h; # 0 for each ¢ € {1,...,n}. The equivalence
between (1) and (3) follows immediately from the definition of the y-degree. O

Definition 2.5.2. Let g = (p1,...,pn) € (R>0)™ \ {0} and let 6 € R>o. We say
that h € End(A"™) is pu-homogeneous of degree 0 if the conditions of Lemma 2.5.1
are satisfied.

Lemma 2.5.3. Let pt = (pt1, .-, tn) € (R>0)™ \ {0}. For each f = (f1,...,fn) €
End(A") and each 6 € R>g, the following are equivalent:

(1) We can write f as a finite sum f =3 -cq ge, where each ge € End(A") is
w-homogeneous of degree €.
(2) deg,(f) <0.

Proof. (1) = (2): For each 7 € {1,...,n}, the polynomial f; is the sum of the i-th
components of the endomorphisms g¢. As each of these polynomials has degree
§ui < Opi, the polynomial f; is of p-degree deg,,(fi) < Op.

(2) = (1): As in Remark 2.3.1(1), we write each f;, i € {1,...,n} as f; =
Zo<n<0m pi. where each p; . is p-homogeneous of degree k.

We define go = (p1,0,- - -,Pn0) € End(A™), which is u-homogeneous of degree 0.

For each £ € R with 0 < ¢ < 6, we define the i-th component (g¢); of ge as
follows: if y1; = 0 and § > 0, then (g¢); = 0 and otherwise, we choose (ge)i = Diep,-
By construction, ge¢ is p-homogeneous of degree &.

Moreover, f; = ZOSNSGW Dik = Zoggge(gﬁ)i for each i € {1,...,n} with u; >
0. If Wi = 07 then fz = ZOSHS@ui Pi,k = Pi,0 = ZOSESe(gg),L This ylelds f =
2o<e<o J¢- U

Remark 2.5.4. In the decomposition of Lemma 2.5.3(1), the i-th component of each
ge¢ is unique, if p; > 0, but is not unique if p; = 0.
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Ezample 2.5.5. We have deg(; _1)(f) = deg(f) and deg,(ida») = 1 for each u €
(R>0)™ \ {0}. However, deg(2,370)(x1, To + 2313, 13) = %.

Lemma 2.5.6. Let pp = (p1,...,1n) € (R>0)® \ {0}. For each f = (f1,...,fn) €
End(A™), the following are equivalent:
(1) deg,(f) < oo.
(2) For each i € {1,...,n} such that p; = 0, the element f; is a polynomial in
the variables {z; | j € {1,...,n},u; =0}.
In particular, if 1 € (Rso)™ then the above conditions hold.

Proof. (1) = (2): Suppose that 6 = deg,, (f) < oo. For each i € {1,...,n}, we get
deg,,(fi) < O (Definition 1.4.3). If y; = 0, then deg,,(f;) = 0, which means that
fi is a polynomial in the variables {z; | j € {1,...,n}, u; = 0}.

(2) = (1): it follows from (2) that deg,,(f;) < 0 for each i € {1,...,n} such that
pi = 0. This gives deg,(f) = max {degﬂ(fi)/,ui | i >0} < oo. O

Lemma 2.5.7. Let f = (f1,..., fn) € End(A") be a dominant endomorphism. For
each mazimal eigenvector u of f, the p-leading part g = (g1, ..., gn) € End(A™) of
f has the following properties:
(1) The mazimal eigenvalue 0 of f is such that deg,(g) = deg,(f) = 0 < oo;
(2) For each i€ {1,...,n}, the polynomial g; is non-constant.

Proof. As p = (p1,...,pn) € (R>0)™ is a maximal eigenvector of f, we have
deg,,(fi) = Ou; for each i € {1,...,n}, where 0 is the maximal eigenvalue of f.
This gives deg,(f) = ¢ < oo and therefore deg,(g;) = 0u; = deg,(f;) for each
i € {1,...,n}. Hence, we get (1). In case y; > 0, we have deg,(g;) = 0u; > 0 and
thus g; is non-constant. In case y; = 0, we have deg,,(f;) = 0p; = 0 and thus g; = f;.
As f is dominant, the latter polynomial is non-constant. This shows (2). O

2.6. Inequalities obtained by iterations.

Lemma 2.6.1. Let f = (f1,...,fn) € End(A") be a dominant endomorphism.
Suppose that 1 = (p1,...,pn) € (R>0)" and that 0 = deg,(f) € R>o. Let g =
(g1, --,9n) € End(A™) be the p-leading part of f. Then the following hold:
(1) We can write f as a finite sum f = 9+Zogg<9 ge, where each ge € End(A™)
is u-homogeneous of degree €.
(2) The i-the coordinate function (¢g"); of g" is the p-homogeneous part of degree
0"w; of (f7); for eachi € {1,...,n} and each r > 1.
(3) deg, (f") < 0" for eachr > 1.
(4) We have
LE M e,y der((0' = i (deg, (1) <0
(5) If 8 > 1, the following are equivalent:
(4) lim,_o0(deg, (f7))Y/" = 6.
(it) f is p-algebraically stable.
(#ii) For each r > 1 there isi € {1,...,n} with pu; >0 and (¢"); # 0.

Proof. As deg,(f) = 0, we have deg, (f;) < 0u; for each i € {1,...,n}. Moreover,
as f is dominant and g # 0, there are 4,5 € {1,...,n} such that g; > 0 and
deg,,(f;j) > 1. This implies that deg,,(f;) > p; > 0 and thus

0 <deg,(f)=0.
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We now observe that deg,(f — g) < 0. Indeed, for each j € {1,...,n}, the j-th
component g; of g is the y-homogeneous part of f; of degree 0u; > deg, (f;). If
pj = 0, then f; = g;, and if p; > 0, then deg,,(f; — g5) < Op;.

By Lemma 2.5.3, we can write f — g as a finite sum f — g = Zo<5<9 ge, where
each g¢ € End(A") is p-homogeneous of degree £. This gives (1).

We now prove (2)-(3) by induction on r > 1. For r = 1, (2) follows from the
definition of g. Moreover, (3) is given by hypothesis.

We now assume (2)-(3) for some integer r > 1 and prove them for r + 1. For
each i € {1,...,7}, we write (f"); = (¢"); + si, where (¢"); is p-homogeneous of
degree 0"p1; and deg,,(s;) < 0" p;. This gives

(™ = ((g")i+si)of
L (g4 siog 2 (@it s g

—~

As g is p-homogeneous of degree 6, the polynomial (g"*!); is u-homogeneous of
degree 671, (Lemma 2.5.1). As s; is a sum of py-homogeneous polynomials of
degree < 0"p; and g¢ is p-homogeneous of degree £ < 0, we have

deg,(siog+ > (g7 +s:)0ge) <0 g
0<e<0

(by using Lemma 2.5.1 again). This yields (2)-(3) for r 4 1.

We now prove (4). We choose ¢ € {1,...,n} such that p; = max{u1,...,pun},
and observe that for each » > 1, there is j € {1,...,n} such that deg, ((f");) >0
(as f is dominant), so deg,,((f");) > pi = max{pu1,...,n} > 0. This implies that

<l s e (7))
(the limit exists by Remark 2.3.1(2)). Let us write Iy = {i € {1,...,n} | u; = 0}.
For each i € Iy, we have deg,, (fi;) < 0u; = 0, so f; is a polynomial in the variables
{z; | j € In}. This implies that the same holds for (f");, for each integer r > 1.
Hence, deg,, ((f"):) = 0 for each i € Iy. Writing I = {i € {1,...,n} | u; > 0}, we
get for each r > 1,

deg,, (f") = max{cleg*‘ib(iﬁm|¢ € I>0} .

As deg,, (f") < 6" (Assertion (3)), we obtain

1/r
i (s, o) = i (e, (1) <0

It remains to prove (5); for this, we assume that § > 1. For each r > 1,
Assertion (3) gives deg,(f") < 0", or equivalently deg, ((f");) < 6"pu; for each
i € {1,...,n}. The equality deg,(f") = 6" holds if and only if there exists
i € {1,...,n} such that p; > 0 and deg,((f"):) = 0"p;. Since (g"); is the u-
homogeneous part of (f7); of degree 6" ; (follows from (2)), this gives the equiva-
lence between (i) and (44). It remains then to prove (i) < (4).

“(iii) = (1)”: Suppose that for each r > 1 thereisi € {1,...,n} such that y; > 0
and (¢"); # 0. There is then j € {1,...,n} and an infinite set I C N such that
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pj > 0and (g"); # 0 for each r € I. Assertion (2) implies that deg,,((f");) > 0",
for each r € I, which implies that

1/r
li )i >0.
rl)nolo <z€?11,ax,n} degu(f )Z> =

This, together with (4), gives lim,_,o(deg,, (f7))*/" = 6.

“(i) = (4ii)”: Conversely, suppose that there exists s > 1 such that (¢*); = 0 for
each i € {1,...,n} with p; > 0. For all such 7 we obtain deg,((f*):) < 6°u; (by
(2) and (3)). As 0 > 1, there exists then 6’ € R with 1 < 6’ < 6 such that

deg,, ((f%)i) < 6" pi

for each i € {1,...,n}. Applying the inequality of (4) for f*, we obtain

lim < max (degﬂ(fs’")i)l/r) <”

r—o0 \i€{1,...n}

which gives, by taking the s-th root,

li ™). Ur) < g ]

Now we can give a short proof of Proposition A.

Proof of Proposition A. (1): As i € (R50)", we have 0 := deg,,(f) < oo (Lemma 2.5.6).
Using Remark 2.3.1(2) we get

A(f) = lim  max (degu(fr)i)l/r.

r—o0ie{l,...,n}

By definition, g is the p-leading part of f. Now, Lemma 2.6.1(4) implies that
1 <A(f) <6. If 6 > 1, we moreover obtain

A(f) =0 < deg,(f") = 0" for each r > 1 & g" # 0 for each r > 1
(by Lemma 2.6.1(4) and Lemma 2.6.1(5)). O

Another consequence of Lemma 2.6.1 is the following result, that generalises
Proposition A to the case where some coordinates of y are zero.

Corollary 2.6.2. Let f = (f1,..., fn) € End(A"™) be a dominant endomorphism
and let p = (p1,...,pn) € (R>0)™ be such that 0 = deg,(f) < oo, and assume
that m € {0,...,n} exists, such that u; = 0 for i € {1,...,m} and p; > 0 for

i € {m+1,...,n} (which can always be obtained by conjugating with a permutation).
Then, the following hold:
(1) For each i € {1,...,m}, we have f; € k[z1,...,z,]. Hence, the element

f="(f1,-.., fm) belongs to End(A™).
(2) If X(f) =6, then A(f) = 6.
3) If )\(f) < 0, then \(f) = 0 < f is u-algebraically stable.

Proof. Assertion (1) follows from the fact that deg,(f) < oo and the choice of m
(Lemma 2.5.6(2)).



16 JEREMY BLANC AND IMMANUEL VAN SANTEN

using the equality lim, oo deg, .. . (f7)"" = lim, o deg,(f7)'/" (see Re-
mark 2.3.1(2) and Lemma 2.6.1(4)), we obtain

A(f) = max{A(f), lim deg,, (f7)"/"}.

Moreover, Lemma 2.6.1(4) implies that lim, degﬂ(fr)l/r < deg,(f) = 6. This

provides (2). To show (3), we assume that A(f) < 6 and obtain A(f) = 6 <
lim,_s o degu(fr)l/r = f. This is equivalent to ask that f is p-algebraically stable,

by Lemma 2.6.1(5) (note that 1 < A\(f), since f and thus f is dominant). O
We finish this section by the following simple observation:

Lemma 2.6.3. Let f € End(A") be a dominant endomorphism. For each u €
(R>0)" such that 6 = deg,,(f) € R>1 and each translation 7 = (x1 + c1,...,Tn +
¢n) € Aut(A™) where ¢, ..., ¢, € k, the following hold:

f is p-algebraically stable < 7o f is p-algebraically stable.

Proof. Denote by g the u-leading part of f. As u € (Rs¢)", no component of g con-
tains any constant. Hence, g is also the u-leading part of 7o f. By Lemma 2.6.1(5),
f (respectively 7o f) is u-algebraically stable if and only if for each r > 1 there is
i€ {1,...,n} such that (¢"); # 0. O

3. MATRICES ASSOCIATED TO ENDOMORPHISMS AND THE PROOF OF
ProprosiTION B

3.1. Spectral radii of N-uples of matrices. In the sequel, we fix the usual
Euclidean norm on R™, and on n X n-matrices:

Definition 3.1.1. Let n > 1.

(1) We endow R™ will the usual norm:

n

2 _ n
E x7, for each x = (21,...,2,) € R™.
i=1

(2) This endows the ring Mat,, (R) of n x n-real matrices with the norm

M
||M|| = sup { ||| TH veR™\ {0}} , for each M € Mat,,(R).
v
(3) The spectrum of M € Mat,,(R) is the finite subset o(M) C C of eigenvalues
of M.

(4) The spectral radius of M € Mat,,(R) is defined by

M) = A
p(M) A?i?f\%)"

and satisfies
p(M) = lim || M|/
n— o0

If M = (m;;)}j—; and N = (n;;)}';_; are matrices in Mat, (R) such that
for each (7,7) we have 0 < m; ; < n; ;, then p(M) < p(N).
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(5) We have a partial order on R" given by
r<y iff x;<y;foralli=1,...,n

where © = (x1,...,2,) and y = (y1,...,yn). Note that for 0 < z < y we
have [|z]| < [|y[-
(6) For M € Mat,,(R) we denote by xas the characteristic polynomial of M.

3.2. The Perron-Frobenius Theorem and its applications. The Perron-Frobe-
nius theory was first established for matrices with positive coefficients, then gener-
alised to irreducible matrices with non-negative coefficients and then to any matrices
with non-negative coefficients. There are three equivalent definitions of reducible
matrices (see [Gan59, Vol. 2, Chap. XIII, §1, Definitions 2,2’,27]). Let us recall one
of them:

Definition 3.2.1. [Gan59, Vol. 2, Chap. XIII, §1, Definition 2’] For each n > 1,
a matrix M € Mat,(R>o) is called reducible if there is a permutation matrix
S € GL,(Z) such that the matrix SM S~ € Mat,,(R>¢) is block-triangular, i.e.

(A0
SMS _<C b

where A, D are square matrices, and where the zero matrix has positive dimensions.
A matrix M € Mat,, (R>¢) is called irreducible if it is not reducible.

Lemma 3.2.2. [Gan59, Vol. 2, Chap. XIII, §4] For each reducible matric M €
Mat,,(R>0), there is a permutation matriz S € GLy,(Z) such that SM S~ is a lower
triangular block-matriz

Ay 0 e 0
Az1 Az " 0
: " i 0
Am,l e Am,m—l Am,m
where Ay 1, ..., Am.m are irreducible matrices.

Theorem 3.2.3 (Perron-Frobenius Theorem). [Gan59, Vol. 2, Chap. XIII, §2
and §3, Theorems 2 and 3| For each M € Mat, (R>¢), there exists an eigenvector
v € (R>0)™ \ {0} to the eigenvalue p(M). If M is moreover irreducible, we can

n

choose v in (Rsg)™.

Theorem 3.2.4 (Theorem of Lind on weak-Perron numbers). For each A € R, the
following conditions are equivalent:

(1) A is a weak Perron number (see Definition 1.1.1);

(2) A is the spectral radius of a non-zero square matriz with non-negative integral
coefficients;

(3) A is the spectral radius of an irreducible square matriz with non-negative
integral coefficients;

(4) A > 0 and \™ is a Perron number for some m > 1.

Proof. The equivalence between (1) and (3) follows from [Lin84, Theorem 3, page
291], and the equivalence between (2) and (3) follows from Lemma 3.2.2. The
equivalence between (1) and (4) can be found for instance in [Sch97, Lemma 4] or
[Brul3, Theorem 2]. O
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As a consequence of Corollary 2.6.2 and of the Perron-Frobenius theorem, we
obtain the following result (which is classical, see for instance [FW12, Lin12|):

Corollary 3.2.5. For each matriv M = (m;;);_; € Mat,(N) and for each
(a1,...,ap) € (K)™, the monomial endomorphism

far = (™t g gt g ) € End(A™)

is dominant if and only if det(M) # 0. In this case, the dynamical degree of far is
equal to the spectral radius of M :

A far) = p(M) € Ry,

Proof. Note that the endomorphism fj; € End(A™) restricts to an endomorphism
har € End((AY\ {0H)™).
If det(M) = 0, any non-zero element of the kernel of the transpose of M gives

rise to a non-constant element p in the Laurent polynomial ring k[xli, ..., ] such

that po hy; is constant, so hys and thus fjs is not dominant. We then assume that
det(M) # 0. This implies that hys € End((A\ {0})") is surjective on k-points and
thus fys is dominant. In particular, A(fas) > 1. Thus we only have to show that
A fam) = p(M). By the Perron-Frobenius-Theorem (Theorem 3.2.3), there exists
an eigenvector p1 € (U1, ..., t1n) € (R>0)™ of M to the eigenvalue p(M). Since the
spectral radius of M and the dynamical degree of fj; do not change if we conjugate
M with a permutation matrix, we may assume that there is m < n such that
H1 = ... =y = 0 and p; > 0 for each ¢ > m + 1. Since (fp)" = fur we get
for each r > 1 and each i € {1,...,n} that deg,(((far)"):) = (M"1); = p(M)" ;.
This implies that deg, ((far)") = p(M)" for each r > 1. Thus fy is p-algebraically
stable and deg,,(far) = p(M) < co. By Corollary 2.6.2(1), we may write

()

where M € Mat,, (N) with det(M) # 0. By induction, the endomorphism fy, €
End(A™) satisfies A(fy;) = p(M) < p(M). By Corollary 2.6.2(2),(3) we get then
A(far) = deg,, (far) = p(M). U

Corollary 3.2.6. For each endomorphism f € End(A™) and each matric M €
Mat,,(N) that is contained in f, we have p(M) < deg(f).

Proof. By the Perron-Frobenius-Theorem (Theorem 3.2.3), there exists an eigenvec-
tor p1 = (pu1, ..., pin) € (Rx0)™ of M to the eigenvalue p(M). Hence, Y77, m; jju; =
p(M)p; for each i € {1,...,n}. By choosing an integer r € {1,...,n} such that
tr = max{1, ..., iy}, we obtain

n n
p(M ), = Z Moty < Z My j.
=1 J=1

The coefficient of the monomial H?Zl :1:2””

see Definition 1.4.8). This monomial has degree Z?zl my ;, so deg(f) > Z?:l My j.
As p, > 0, this gives p(M) < deg(f). O

in f, is nonzero (as M is contained in f,

In the following we will use the next basic property of Handelman numbers. It
is a straightforward application of Descarte’s Rule of Signs, see e.g. [Str86, p.91]:
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Lemma 3.2.7 (Basic property of Handelman numbers). Let n > 1. For each
(g, ... an—1) € (R>0)™\ {0}, the polynomial x™ — Z?:}} a;x' € R(z] has a unique
positive real root. In particular, a Handelman number has no other positive real
Galois conjugate.

Corollary 3.2.8. Fach Handelman number is a weak Perron number.

Proof. Let A € Ry be a Handelman number. There exists (ao, .. .,an—1) € Z"\{0}
such that X is a root of P(z) = 2" — Y7 ' a;a’ € Z[z]. By Lemma 3.2.7, all
roots of P, except A, are either non-real or real and non-positive. Since P is the
characteristic polynomial of the matrix

Up—1 ay ap
1 .- 0 0

A= . . . . S Matn(Rzo) R
0 e 10

it follows by the Perron-Frobenius-Theorem (Theorem 3.2.3) that the spectral ra-
dius of A is equal to A. This implies that A is a weak Perron number (Theo-
rem 3.2.4). O

3.3. Sequences of matrices. To study endomorphisms of A", we will need to
consider finite sets of elements of Mat, (R) that have the property that we can
exchange rows. In order to take the norm on such sets, we will have to see them
ordered, and thus see these in Mat,, (R)"™ for some N > 1.

Notation 3.3.1. Let n, N > 1. We denote by ./(/l\mN C Mat,, (R)Y the R-vector
subspace of N-tuples (Mq,..., My) that have the following property:

For each i,j € {1,...,N} and each | € {1,...,n}, the replacement of the l-th row
of M; with the l-th row of M; gives a matriz which lies in {Mi,...,Mn}.

We then denote by M, y C /\//\ln,N the subset that consists of the N-tuples
(My,...,My) where My,..., My are N distinct matrices with non-negative coef-
ficients.

Remark 3.3.2. If f € End(A"™) is an endomorphism, then there exists some integer
N > 1 and some N-tuple (Si,...,Sn) € M,y such that {S1,...,Sn} is the set
of matrices that are contained in f (as in Definition 1.4.8).

The following two lemmas build the key ingredients for proving the existence of
maximal eigenvectors of endomorphisms of A™ in the next subsection (see Propo-
sition 3.4.1). This eventually leads then to a proof of Proposition B.

Lemma 3.3.3. Let n,N > 1. For each M = (My,...,Mn) € M, n, there
exists a sequence (Dy),cy of elements Dy = (Dy 1, ..., Dy N) € My N that converges
towards M (with respect to the topology of Mat,,(R)YN that is given by the norm as
in Definition 3.1.1) and such that for each t € N, there is no complex number which
is an eigenvalue of two elements of Dy, ..., Dy N.

Proof. The result being trivially true for N = 1, we will assume N > 2. For each
t € {1,...,n}, we denote by I'; C R™ the finite set of i-th rows of the matrices
Ml, ey MNZ

I, = {r € R" | r is the i-th row of one of the matrices M, ..., My}.
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We then write I'; = {r;1,...,7is,}, where s; > 1 is the cardinality of T';.
As all matrices My, ..., My are pairwise distinct and as one can “exchange rows”
(see Notation 3.3.1), we have N = s; - - - - s, and obtain a unique R-linear map

n
o [T®R™)™ = Myn
i=1
with the following properties:
(1) For each k € {1,...,N}, the composition of ¢ with the projection map
71 Mat, (R)Y — Mat,,(R) onto the k-th factor is of the form

T O P [T, (R™)s: —  Mat,(R)
V1,51
(vighi<isni<j<s; —
Un,jn
where j; € {1,...,s;} for each i € {1,...,n}.
(2) (My, ..., My) = ¢((rij)icicni<j<s,)-
Indeed, the possibilities for maps 7 o ¢ as in (1) are parametrised by the N pos-
sible choices of j; € {1,...,s;} for each i € {1,...,n}, and by (2) the image of
(ri,j)1<i<n,1<j<s; by the maps m o ¢,...,mn o ¢ give the matrices Mi,..., My;
this gives the existence and the unicity of .
We now identify [])"_;(R™)% with the real locus X (R) of the affine space X =
An2s
For any two matrices A, B € Mat, (R), the resultant of the characteristic poly-
nomials x4 and yp is denoted by (A4, B). Recall that r(A, B) = 0 if and only if
A and B have a common eigenvalue. Hence, for any distinct a,b € {1,..., N}, the

set
Za,b = {x c H(Rn)&'
=1

corresponds to the elements of X (R) that satisfy one polynomial equation P, ; €
R[X].

We now prove that P,; # 0, or equivalently that Z,, # X (R) = [, (R")*,
by showing that m,(p(z)) and m,(p(x)) have no common eigenvalue for at least
one x € X(R). We consider j1,...,j, and j1,...,J;, so that m, o ¢ and m, o p are
respectively given by

the matrices 7, (p(x)) and m,(¢(x))
have a common eigenvalue

[T— (R")%  — Mat,(R) [TiZ,(R™)*  — Mat,(R)
V15, . v jt
. an
(Vig) 1<i<n = : (vig) 1<i<n
155 < s 155< s
Vnjn U ji,

Since the matrices M, and M, are distinct, the linear maps 7, o ¢ and 7, o ¢ are
also distinct. There is thus I € {1,...,n} such that j; # j/. Suppose first that
I =1, ie j1 # j;. We may choose z € X(R) such that

Ta(p(2)) = ( Lgl (1) > and - my(p(2)) = < Jno,l 8 )

These matrices have characteristic polynomials t™ — 1 and t", respectively. If [ > 1,
we simply consider conjugation of the above matrices by permutations. In all cases,
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we find an € X (R) such that 7, (¢(2)) and (¢ (2)) are matrices without common
eigenvalue in C. This shows that Z,, # X(R), i.e. P # 0.

The product of all polynomials P, ; with distinct a,b € {1,...,n} gives a non-
zero polynomial P € R[X]. We can thus take a real affine linear map ¢: A — X =
A™2 5 such that £(0) = (1i,j)1<i<n,1<j<s,, such that the coordinates of {(Rx() are
non-negative and such that the restriction of P to £(R) is non-zero. We obtain that
P(é(%)) # 0 for any sufficiently large positive integer n. It suffices then to fix a
sufficiently large ¢ > 1 and to define D, = <p(€(t+%)) for each integer ¢ > 0. O

Lemma 3.3.4. Let S = (S1,...,5n8) € My n and let v > 0 be an eigenvector of Sy
to the eigenvalue A > 0. Suppose moreover that A > p(S;) for each i € {2,...,N}.
Then S;v < v for each i € {1,...,N}.

Proof. Assume for contradiction that there is ¢ € {2,..., N} such that S;v £ Av.
Denote by v; the j-th component of v for each j € {1,...,n}. Since we may replace
each row R; in S; such that Rjv < Av; with the j-th row from S; and still get an
element in {S1,..., SNy}, we may assume that S;v > Av > 0. As the coeflicients of
v and S; are non-negative, we obtain by induction that (S;)"v > A"v > 0 for each
r > 1. In particular,

[1(S)" ]|
105"l = >\
o]l
and we obtain p(S;) = lim, ,0||(S;)"||'/" > A. This contradicts the assumption
that A > p(5;). O

3.4. Existence of maximal eigenvectors of endomorphisms of A”.

Proposition 3.4.1. For each n,N > 1 and each S = (S1,...,Sn) € My, n, there
exists j € {1,...,N} and an eigenvector v € (R>g)™ \ {0} of S; to the eigenvalue
A =max{p(51),...,p(SN)} such that for each i € {1,..., N} we have

Siv < Sjv =M.

Proof. Let S = (S1,...,58~8) € My n. By Lemma 3.3.3, there exists a sequence
(D¢),cn of elements Dy = (Dy 1, ..., D¢ n) € My n that converges towards S and
such that for each ¢t € N, there is no complex number which is an eigenvalue of two
elements of Dy 1,..., D n. In particular, p(Dy ;) # p(Dy ;) for distinct ¢, j by the
Perron-Frobenius-Theorem (Theorem 3.2.3).

By possibly replacing this sequence with a subsequence, we may assume that
there is a j € {1,..., N} such that p(D; ;) > p(Dy;) forall i € {1,...,N}\ {j}
and each t € N. After exchanging the ordering of Si,...,Sy, we may assume
that j = 1. For each i € {1,..., N}, the sequence (D;;)ten converges towards
Si, 50 (p(Dy,i))ten converges towards p(S;) [Ost73, Theorem in Appendix A]. In
particular, p(S1) = A = max{p(S1),...,p(Sn)}. By the Perron-Frobenius-Theorem
(Theorem 3.2.3), there is for each ¢ € N an eigenvector vy > 0 of D;; to the
eigenvalue p(D; 1). Lemma 3.3.4 then gives for each ¢ € {1,..., N} and each t € N

Dy ve < p(Dy,1)vy -
Now, we may assume that ||v;|| = 1 for all ¢ (after normalizing v;). Let

S t={weR" | ||Jw|=1}.
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Since S"~! is compact (with respect to the Euclidean topology), we may take a
subsequence and assume that (v;);en converges to a v > 0 in S"~1. Thus we get
M = p(S1)v = lim p(Dyq)vy = lim Dy v, = Syv
t— 00 t—o0
and for each ¢ € {1,..., N}
Siv = lim Dy vy < lim p(Dy1)ve = p(S1)v = v
t—o00 t—o0
This finishes the proof of the proposition. O

Proof of Proposition B. By Remark 3.3.2, there exists (S1,...,Sn5) € M, n such
that {S1,...,Sn} is the set of matrices contained in f. By Proposition 3.4.1 there
exists j € {1,...,N} and an eigenvector p = (p1,...,4n) € (R>0)™ \ {0} of S;
to the eigenvalue § = max{p(S1),...,p(Sn)} such that S;u < S;u = Ou for each
i € {1,...,N}. We now prove that this implies that deg,(f;) = 6 for each
l €{1,...,n}, which shows that u = (u1,..., 1) is a maximal eigenvector of f,

and thus proves (1). For each monomial m = xz7*-- -zl of f; with x € k™ there
is a matrix S; with its I-th line equal to (r1 72 -+ r,). The I-th component of

Sip is equal to rypuy + -+ + rppi, = deg,(m). The inequality S;u < 0p then yields
deg, (m) < Opy. As this holds for each monomial of f;, we obtain deg,,(fi) < Op;.
The equality follows from S;u = 6, since the monomial m that corresponds to the
l-th row of S; has u-degree equal to 0.

We now prove (2). The dominance of f implies that 1 < deg(f") for each r and
this in turn gives 1 < A(f). The inequality 8 < deg(f) follows from Corollary 3.2.6,
so we only need to prove A(f) < 6. This is done by induction on n. If n =1, then
p € (Rso)! and the statement follows from Proposition A(2). Now, let n > 1. We
may assume (after a permutation of the coordinates) that py < po < ... < .
Now, let m € {0,...,n — 1} with u; = 0 for ¢ < m and p; > 0 for ¢ > m. From
Remark 2.3.1(2) we get

.....

From Lemma 2.5.6 we get that for each i € {1,...,m}, the element f; is a
polynomial in the variables {z1,...,2,,}. Thus we get from Lemma 2.4.1 that
A(f) = max{A1, A2} where

M =A(f) = lim deg(f)7 and f:=(fi,..., fm) € End(A™).
Since m < n — 1, by induction hypothesis we have

A <6y = max{ |€] € R | € is an eigenvalue of a matrix that is contained in f} .

Note that each eigenvalue of a matrix that is contained in f is an eigenvalue of a
matrix that is contained in f. Thus we get 6; < 6. From Lemma 2.6.1(4), it follows
that A2 < 0. In summary we proved that A(f) = max{A\1, A2} < 0, i.e. (2) holds
for n.

We now prove (3). We take a maximal eigenvector p of f. As deg, (fi) = O
for each i € {1,...,n}, we have deg, (f) = 0. If & = 1, (i) follows from (2) and (ii)
is trivially true, so we may assume that 6 > 1. If f is p-algebraically stable, then
Lemma 2.6.1(5) gives Ao = 0 and thus A(f) = 6, so (i) is proven. Conversely, if
u€ (Rsg)™ and A\(f) = 6 > 1, then f is p-algebraically stable by Proposition A(3).
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This achieves the proof of (ii). As 6 = deg, (f) € R>¢ (i.e. is not equal to +o0),
(49) is a direct consequence of Lemma 2.6.1(5). O

We now give an example that shows that the implication of Proposition B(3)(1)
is not an equivalence.

Example 3.4.2. We consider the automorphism
f=(f1, f2, 3, f12) = ((21)? + w2, 1, 03 + (w3 + 24)%, 24 — (w3 + 24)%) € Aut(A?).

As deg(f) = 2, the maximal eigenvalue 6 of f (see Definition 1.4.8) satisfies § < 2
(Corollary 3.2.6). Moreover, 6§ = 2, as the matrix

2 0 00
1 0 0 O
0 010
0 0 01

is contained in f. When we choose u = (0,0,1,1), we get deg,(f) = 2, and we see
that f is not u-algebraically stable, as degu(fZ) = 2 < 4. Moreover, deg,(fi;) =0
for i € {1,2} and deg,(f;) = 2 for i € {3,4}. Thus p is a maximal eigenvector
of f (see Definition 1.4.8). However, A(f) = 6. Indeed, A(f) < deg(f) = 2, and
((w1)? + 29, 71) is algebraically stable for the standard degree, as its homogeneous
part of degree 2 is ((z1)?,0), which satisfies ((x1)2,0)" = ((z1)?",0) for each r > 1
(see Proposition A).

4. EXPLICIT CALCULATION OF DYNAMICAL DEGREES OF AFFINE-TRIANGULAR
AUTOMORPHISMS

In this section, we apply Proposition B to compute the dynamical degrees of
affine-triangular dominant endomorphisms of A™. We prove Proposition 4.2.3,
which implies Propositions 4.2.5 and C.

Notation 4.0.1. We denote by TEnd(A™) and TAut(A™) (respectively EEnd(A")
and EAut(A™)) the monoid and group of triangular (respectively elementary) en-
domorphisms and automorphisms of A”. We denote by Aff(A™) the group of affine
automorphisms of A” and by Sym(A™) C Aff(A™) the group of permutations of the
coordinates.

4.1. From affine-triangular to permutation-triangular endomorphisms.
We can restrict ourselves to permutation-triangular endomorphisms, as the next
simple result shows.

Proposition 4.1.1. Each affine-triangular endomorphism of A™ is conjugate by
an element of AfT(A™) to a permutation-triangular endomorphism.

Proof. We take o € Aff(A™) and 7 € TEnd(A™) and show that we can conjugate
f = aor to a permutation-triangular endomorphism by an element of Aff(A™).
Let p = (p1,...,pn) € A™ be the point such that a(p) = 0 and consider the
translation 7, = (21 + p1,...,2n +pn) € Af(A™) N TAut(A"). Then o = o7, €
Aff(A™) fixes the origin (0,...,0) € A™. We then replace a with o and 7 with
7-1o7, and may assume that o belongs to the subgroup GL,, = GL, (k) C Aff(A")

D
of elements that fix the origin.
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The group B = TAut(A") N GL,, is a Borel subgroup of GL,,. It consists of all
lower triangular matrices. The so-called Bruhat decomposition of GL,,:

GL,, = BSym(A")B
yields 8,7 € B and ¢ € Sym(A"™) such that & = 3 o0 o o~. This gives
671ofoﬁ:ﬁfloaoToﬁ:UO’yoToB
where yo 7o 8 € TEnd(A™). This achieves the proof. O

4.2. Permutation-elementary automorphisms. Up to conjugation, each per-
mutation-elementary automorphism has a particular form. This shows the following
easy observation.

Lemma 4.2.1. Let n > 1 and let h € End(A""!) be a permutation-elementary
automorphism. There is a permutation of the coordinates o € Sym(A"H) such
that

f:aohoa_l :(flv"'7fma§$'n+1 +p(x17"'7x’n)7x’m+17---al‘n)7
where 0 <m <n, {z1,...,xm} ={f1,..-, fm}, EEK andp € k[zq,...,2,].

Proof. We write h = o o 7 where o € Sym(A"™!) and 7 € EAut(A"™!). We may
choose a = (a1, ..., an11) € Sym(A"1) such that a1 = 2,41 and oo oa™!
induces the following cyclic permutation on the last coordinates

(O[ 000 a_l)m+1 = Tn+1, (OL 00 o a_l)m+2 = Tm+ls - (Oé 000 a_l)n+1 =Tn,

for some integer m with 0 < m < n. This gives

aocoa ™ = (fi,. .., s Tagl, Tomgls- - Tn)
where {z1,...,2m} ={f1,---, fm}. AS i1 = Tpy1, we obtain
aoToa = (21, Tny ETpyr + (1, ..., T0))
for some ¢ € k* and p € k[xy,...,x,]. This implies that « o h o a~? is equal to
(ocoao(aoToa™) = (fi,..., fms&Tns1 +D(T1, ., Tn), Tong1s - - Tn) -

O

We will need the following result to obtain Proposition 4.2.3 below. Proposi-
tion 4.2.3 will be the key ingredient to show Proposition 4.2.5 and Proposition C.

Lemma 4.2.2. Let 0 < m < n, let f = (f1,...,fm) € Aut(A™) and let q €
klz1,...,2n41] \ {0}. For each r > 1, every component of g" is non-zero where

g=(f1, s frs @ Tms1, .-, Tn) € End(A™1).

Proof. For each r > 1, we write ¢" = ((¢")1,.--, (9" )n+1). The result is true by
assumption when r = 1. For each r > 1 and 1 <4 < m we have (¢"); = (j‘q’")Z #0.

As (f1,.- .y fm) € Aut(A™), we also have (f1,..., fm, Tm+1,---,Tn) € Aut(A™).
In particular, g is dominant if ¢ ¢ k[z1,...,2,], i.e. if deg, . (¢) > 1. Thus we
assume that ¢ € k[zy,...,2z,] \ {0}.

Suppose first that m = n, in which case g = (f1,..., fm,q). For each r > 2, we
get ¢" = ((g")1s - (9 )ms (0" D1, ..., (¢ )m)). As f is dominant and ¢ is not
the zero polynomial, every component of ¢g” is not zero.

We then assume that n > m and prove the result by induction on n — m.
As (f1,- s fms Tty .- @n) € Aut(A™), there is a polynomial h € k[xy,...,z,)
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such that h(f1,..., fim,Tms1,--.,%n) = g, since ¢ € k[z1,...,2,]. We denote by
¢: A" < A" the closed embedding that is given by

(@1, oy ) 2 (X1 oy Ty, (T, e oy Ty Tt 1y - -+ X))
and we write 7 = (f1,..., fms Ny Tma1, -+, Tn—1) € End(A™). We now prove that
gop=q¢or:
god(xy,...,xn)
=(f1, s Sy @(@1, oo oy Ay Ty - ey 1), By T 1y ey 1)
=(f1, s S, A(f1, oo oy foy Py Tty ooy Be1) By Tty -+ Tne1)
=¢oT(x1,...,Tn)-

Hence, g" 0 ¢ = ¢ o 7" for each r > 1. By induction, every component of 7" is
non-zero, so every component of g” is non-zero, except maybe the (m + 1)-th one.
But if the (m + 1)-th component of g" were zero, then the (m + 2)-th of g" ™! would
be zero, impossible as the (m + 2)-th component of g"! o ¢ = ¢ o 77! is not equal
to zero. (]

Proposition 4.2.3. Let 0 <m < n, let f = (f1,..., fm) € Aut(A™), € € k¥ and
p € k[z1,...,x,). Denote by I C N™ the finite subset of indices of the monomials
of p, and define

n
f=max{ AR\ = Z i; A" for some (i1, ..., i) € I
j=m+1

Then,

f = (flv ey f’r‘rnf'rn-O-l +p($17 e 7xn)axm.+17 ... 7$n) € AUt(An+1)
has the following properties:

(1) Ifdeg,, ., _..(p) <1, then A(f) = A(f).
(2) Ifdeg,, ., .. (p)>2, define

M:(va---wum+1) :(Oa"'70a9n_m70n_m_17"'a9a1)7

ie. wj = 0 for j < m and p; = 0" for j > m + 1. Then we have
0 > 1, deg,,(f;) = Op; for each j (in particular deg, (f) = 0) and f is p-
algebraically stable. If moreover )\(f) < @ (in particular, if m = 0), then
A(f)=0.

(3) Assume {f1,..., fm} = {z1,...,2m}. Ifdeg, .. . (p) <1, then the
mazimal eigenvalue of f is equal to 1 and otherwise it is equal to 6.

Remark 4.2.4. The case m = n, not treated in Proposition 4.2.3, is rather trivial.
We have f = (f1,..., fn,ETnt1 +0(21, ..., 2,)) where {f1,..., fn} = {x1,..., 20}
Every matrix contained in f is then a block-matrix with a (n x n)-permutation-
matrix and a (1 x 1)-matrix with a 0 or a 1 on the diagonal, so every eigenvalue
is either 0 or a root of unity. This implies that § = 1 is the only possible maximal
eigenvalue.

Proof of Proposition 4.2.3. (1) Since deg, . . . (p) < 1, Lemma 2.4.1 implies
that

A(f) = max{A(f), lim deg, ., .. (f)"} =)
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where by convention A(f) = 1 in case m = 0.
(2): For each i = (i1,...,in) € I, we set

n
pi = Z ija"7 € Z[]
j=m+1

and g; = 2"~ ™ —p; € Z[z]. Then 6 is the biggest real root of one of the polynomials
in {g; | 7 € I'}. Note that g; is monic and of degree n—m > 0. Asdeg, ., . (p)>
2, there is i = (i1,...,%,) € I such that p;(1) > 2. This implies that ¢;(1) =
1 —pi(1) <0, so ¢; has a real root that is bigger than 1. This proves that 6 > 1.
For each i € I, we moreover have ¢;() > 0, since ¢; has no real root bigger than 6.
This gives 6"~™ > p;(0), with equality for at least one i € I.

We now prove that deg,,(f;) = 0p; for each j € {1,...,n + 1} where f; denotes
the j-th component of f: For each j € {1,...,m} we have deg,(f;) =0 = 0u; and
for each j € {m+2,...,n+ 1}, we have deg, (f;) = deg,(z;-1) = pj—1 = Op;. We
moreover have

n

deg, (frns1) = max | {deg,(@as)} US> ijny ’ (iv,. .., in) € N

j=m+1
=max ({1} U{0-p;(0) | i=(i1,...,in) €EN"}) = 0" =0, 1.

This gives in particular 6 = deg,,(f).

It remains to prove that f is u-algebraically stable, i.e. that deg,(f") = 6" for
each r > 1; this will then give the result by Corollary 2.6.2.

By Lemma 2.6.1(5), this corresponds to ask that for each r > 1, there exists
j € {m+1,...,n} such that (¢"); # 0, where g = (g1,...,gn+1) € End(A""!) is
the p-leading part of f and (¢”); denotes the j-th component of g”. We observe
that

g= (fla"'afm,gm+laxm+17"'7$n)

where g1 € K[z1,...,2Zn41] \ {0}. The result then follows from Lemma 4.2.2

(3): The maximal eigenvalue of f is the biggest real number that is an eigenvalue
of one of the matrices contained in f. Each such matrix is either contained in
(f1, - fm,&Tn+1, Tmt1, - - -, Tn), but then has spectral radius equal to 1, or is
contained in (f1,..., fm, H?zl x;j,xm_H, ..., ZTp) for some (i1,...,4,) € I. In this
latter case, the spectral radius is the one of the matrix

inz+1 'Ln 0
1 - 00

and thus equal to the biggest real root of the polynomial x"~™ *Z;'l:m-s-l ijx”_j. If
deg, ..., (p) <1, the maximal eigenvalue is again equal to 1, and if deg,, . (p) >
2, we get that 6 is the maximal eigenvalue of f.

As mentioned in the introduction, the following result is due to Mattias Jonsson
(unpublished).
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Proposition 4.2.5. For eachn > 1 and each polynomial p € k[z1,...,x,] of degree
> 2, let e, € Aut(A™HL) be the automorphism

ep = (Tnt1 +p(T1,. o T0), 21, .., ) € Aut(A"Th).
Let I C N™ be the finite subset of indices of the monomials of p. We get

Aep) =max A e RN = Zij/\"_j for some (i1,...,i,) €1

j=1
Proof. Apply Proposition 4.2.3(2) with m =0 and £ = 1. O

Proof of Proposition C. Let h € End(A™™!) be a permutation-elementary auto-
morphism. By Lemma 4.2.1 there is a permutation of the coordinates v € Sym(A"™+1)
such that

f=aohoa t= (f1,- s fmy ETnar +0(X15 - o Xn)y Tt 1y - - -y ),

where 0 <m < n, {z1,...,Zm} = {f1,-- -, fm}, £ €k" and p € k[z1,...,2,]. In
particular A(f) = 1 where f = (f1,..., fm) € Sym(A™).

As the maximal eigenvalue 6 of f is bigger than 1, we have m < n (see Re-
mark 4.2.4). Moreover, Proposition 4.2.3(3) yields that deg, ., (p) > 2. Then,
Proposition 4.2.3(2),(3) give the existence of a maximal eigenvector u such that f
is p-algebraically stable and prove that the dynamical degree A\(f) is equal to the
maximal eigenvalue 6 of f (this latter fact also follows from Proposition B). Since
a € Sym(A"t!) we get that a~!(u) is a maximal eigenvector of h = a~!o f o a,
h is a1 (u)-algebraically stable and @ is the maximal eigenvalue of h. Moreover,
A(h) = A(f). Proposition 4.2.3(2) shows that 6 is the root of a monic integral
polynomial where all coefficients (except the first one) are non-positive, so it is a
Handelman number by definition. (I

4.3. Affine-triangular automorphisms of A3. In this section, we apply Propo-
sition B to affine-triangular automorphisms f € Aut(A3) and prove Proposition D
and Theorem 1. By Proposition 4.1.1, we can reduce to the case of permutation-
triangular automorphisms. If the maximal eigenvalue 6 of f is equal to 1, then
Proposition B gives A(f) = 0. If § > 1, there is a maximal eigenvector p =
(M1, ptn) € (R)™ \ {0} of f, and if f is p-algebraically stable, we obtain
A(f) = 6 (Proposition B(3)). We will then study the cases where f is not u-
algebraically stable. This implies that the p-leading part g of f is such that one
component of g" is equal to zero for some r > 1. The possibilities for such endo-
morphisms g are studied in Lemma 4.3.2 below. The following result is a simple
observation, whose proof is left as an exercise.

Lemma 4.3.1. Let n > 1 and let f = (f1,..., fn) € TEnd(A™) be a triangular
endomorphism. Then,

(1) f is dominant if and only if deg,. (f;) > 1 for eachi € {1,...,n};

(2) f is an automorphism if and only if deg, (fi) = 1 for each i € {1,...,n}.

Lemma 4.3.2. Let g = (g1,92,93) = 0 o7 € End(A3) where 7 € TEnd(A?) is a
triangular endomorphism, o € Sym(A®) is a permutation of the coordinates, where
all g; are non-constant and such that one of the components of g" is a constant for
some r > 2. Then, one of the following holds:
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(1) 92,93 € k[z1], g1 € k[z1,x2, 23] \ (K[x1,22] U K[z1, 23]) and there exists ( € k
such that g1(t, g2, g3) = ¢ for each t € k;

(2) 91,93 € k[x1], g2 € K[z1, 23] \ K[x1];

(3) 91,92 € k[z1], g3 € k[z1, x2] \ Klz:];

(4) 91,92 € K[y, 2] \ klz1], g5 € K[z1] and g1(g1,92) = C1. 92(91,92) = 2 for
some (1, € k.

Proof. We distinguish some cases, depending on which of the polynomials g1, g2, g3
belong to k[z1].

We first observe that ¢1, g2, 93 € k[z1] is impossible, as each component of ¢",
for each » > 1, would then be obtained by composing dominant endomorphisms of
A' and thus would not be constant.

« Suppose that g1, g3 € k[z1]. By induction, we obtain (¢")1, (¢")s € k[x1]\k for
each r > 1,50 (¢")2 € k for some r > 2. If g € k[z1, 23], we obtain (2). Otherwise,
deg,,(g2) = d > 1 and proceeding by induction we obtain deg,,((9")2) = d" > 1
for each r > 1, impossible.

o If g1,92 € k[z1] we do the same argument as before (by exchanging the roles
of x5 and x3) and obtain (3).

+ Suppose now that go, g3 € k[z1]. As g1 € k[z1, 29, x3] \ k[z1], the closure of
the image of g € End(A3) is then equal to A' x T', where I' C A? is the irreducible
curve that is the closure of the image of Al — A% z1 +— (g2(21),93(21)). The
restriction of g gives an endomorphism h = g|s14p € End(A! x T).

We now prove that h is not dominant. For each r > 1 and each i € {1,2,3},
the restriction of (g7); to Al x ' is equal to m; o h™, where m;: A! x T — Al is the
i-th projection. Choosing i and r such that (¢"); is constant, we find that m; o A"
is constant, so h” is not dominant, as 7; is dominant. This proves that A is not
dominant.

Denote by I'" € A! x T the closure of h(A! x T'), which is an irreducible curve,
that contains { (g1(x,92(y),95(¥)), g2(2), g9s(2)) | (z,y) € A }. This implies that
the polynomial s = g1(z, g2(v), g3(y)) € k[z,y] is contained in k[z]. We moreover
observe that s is a constant. Indeed, otherwise the restriction of h to IV would
be a dominant map IV — T’ and since m;|r: IV — Al is non-constant for each
i € {1,2,3}, the restriction of (¢"); to I'" would be non-constant for each r > 1 and
each i € {1,2,3}, contradiction. Hence, 71 o h = gi|g1xp: Al x I' — Al is equal
to a constant ¢ € k. This yieldsg; (¢, g2,93) = ¢ for each t € k and implies that
g1 € k[x1, 2] UK[zq, x5, since g1, g2, g3 are non-constant, whence (1).

o It remains to assume that at most one of the g; belongs to k[z1]. We write
7 = (11,72,73), and observe that {g1,¢2,95} = {71,72,73}. As 11 € k[z1] \ k,
we get that exactly one of the g; belongs to k[z1] and that 7 € k[x,za] \ k[x1].
As ¢ is not dominant, neither is 7; Lemma 4.3.1 then implies that 75 € k[x1, z2].
So g1, 92,93 € k[x1,x2] and exactly one of the three belongs to k[z;1]. Note that
the endomorphism h = (g1, g2) € End(A?) is not dominant. Indeed, otherwise no
component of g” is constant for each r > 1, as g3 € k[z1, 23] is non-constant. It is
thus impossible that g1 € k[z1] or g2 € k[z1], as (g1, g2) (respectively (g2, g1)) would
be a dominant triangular endomorphism of A? (Lemma 4.3.1). Hence, g3 € k[z1]\k
and g1,92 € k[r1,72] \ k[z1]. As h is not dominant, the closure of h(A?) is an
irreducible curve I' C AZ.

If g;(T) is not a point for j =1 or j = 2, then the restriction h|r: I' = I would
be dominant. As g3 is not constant on I' (because g3(g1(z1,22)) is not constant),
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we get that (¢"); is non-constant for each r > 1 and each i € {1, 2, 3}, contradiction.
Thus g;(T") = {¢;} for i = 1,2 where ¢; € k. This gives (4). O

Lemma 4.3.3. Let f = ocov € Aut(A?) be a permutation-triangular automorphism,
where o € Sym(A®) and v € TAut(A®). Suppose that the mazimal eigenvalue 0 of
f is bigger than 1 and let p be a maximal eigenvector of f such that f is not
wu-algebraically stable. Then, one of the following cases holds:

(1) f = (&x3 + p3(z1,22), p1(x1), Eax2 + p2(x1)) where &,&3 € K, p1,p2 €
k[z1], p3 € K[x1,22], deg(p1) = 1, and deg(ps) = 02 > 1. Moreover, there
exists s € klxg] such that the conjugation of f by (x1, 2, x5 + s(x2)) does
not increase the degree of p3 and (strictly) decreases the degree of ps.

(i1)  f = (L2 + p2(21), 8323 + p3(x1, 2), p1(x1)) where &,&3 € K, p1,p2 €
k[z1], ps € K[r1,z2], deg(p1) = 1, and deg(p2) = 6 > 1. Moreover,
there exists s € k[x1] such that the conjugation of f by (z1,x2 + s(x1),T3)
(strictly) decreases the degrees of pa and ps.

Proof. Denote by g = (g1, 92, 93) the u-leading part of f. As pu = (p1, p2,u3) €
(R>0)3\{0} is a maximal eigenvector of f, g; & k for each i € {1,2,3} (Lemma 2.5.7).
Moreover, as f is not p-algebraically stable, there is some r > 1 such that (¢"); =0
for all ¢+ € {1,2,3} with p; > 0 (Lemma 2.6.1(5)). We write ¢ = o o 7 where
7 = (11,72, 73) € TEnd(A?); Lemma 4.3.2 gives then four possibilities (1)-(2)-(3)-
(4) for g, that we consider separately. We will show that (i) and (i) occur in
Cases (1) and (4), respectively and that (2)-(3) do not occur.

(2)-(3): Let us first observe that Case (2) (respectively (3)) of Lemma 4.3.2
does not occur. Indeed, otherwise the first and the last (respectively the first two)
components of ¢g" belong to k[z1] \ k for each » > 1, so p = (0, p2,0) (respectively
w = (0,0, p3)), since (¢g"); = 0 for each i € {1,2,3} with p; > 0. This gives
deg,(g:;) = 0 for i = 1,2,3, as g1, g2, g3 belong to k[r1, x3] (vespectively k[z1, z2]),
impossible as deg,,(g) = deg,(f) =60 > 1 (Lemma 2.5.7).

(1): Suppose now that Case (1) of Lemma 4.3.2 occurs: As g1 € k[x1,x2, x3] \
(k[z1, z2] Uk[z1, z3]) and since the monomials of g; are some of those of f1, that is
one of the coordinates of the triangular automorphism v € TAut(A?%), the polyno-
mial f; is equal to the third coordinate of v and g¢; is of the form g; = {3x3+q(z1, 22)
for some &3 € k™ and g € k[xy, z2] \ k[z1]. Since g1(¢, g2,93) = ¢ € k for each t € k,
we obtain £3g3 + ¢(t, g2) = ¢ for each t € k, so ¢ € k[zz] \ k and

g = (§&373 + q(72), 92, (€ — 9(92))/&3),

where go € k[z1]. By definition (Definition 1.4.5), g; is the u-homogeneous part of
fi of degree 6pu;, for each i € {1,2,3} so each monomial of g; is of u-degree Op;.
The explicit form of g1, g2, g3 directly gives

Opy = ps = deg(q)pz , Opz = deg(ga)pr and Gus = deg(gs)pr = deg(q) deg(ga)pa -
In particular, g, pg, 3 € Rso and deg(gs) = deg(q) deg(g2) = 62 > 1. Since two
monomials in the same variables have distinct p-degrees, we moreover find that g,
g2 and g3 are monomials, so ¢ = 0.

One component of f (and of 7) belongs to k[z1] and is of degree 1. As g1 & k[z1]
and deg(gs) > 1, we find that fy € k[z1] is of degree 1. This yields o = (23,1, 22)
and deg(fz) = deg(ge) = 1, whence deg(q) = deg(gs) = 02 > 1. We obtain the
form given in (i): the automorphism f is equal to

f = (&xs + ps(z1,22), p1(z1), 222 + pa(x1))
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where &5,&3 € K*, p1,ps € k[z1], p3 € k[z1, 23], deg(p1) = 1. Moreover, g3 =
—q(g2)/&s € k[zq] is the p-leading part of f3 = &xa + pa(z1), S0 g3 is only one
monomial, of degree 62 = deg(g3) = deg(p2).

To prove that we are indeed in Case (7), it remains to show that the conjugation
by h = (21, 22,23 +&5 "q(22)) does not increase the degree p3 and strictly decreases
the degree of py. We calculate

ho foh™ = (a3 + ps(w1,22) — q(x2),p1(21), E2ma + p2(21) + q(p1(21))/E3).

As every monomial of ¢1 = €323 + ¢(x2) is contained in f1 = €323 + p3(r1, T2), the
degree of p3(x1,x2) — ¢(x2) is at most the one of p3(x1,z2). It remains to see that
deg(ps + q(p1)/€3) < deg(pe) which follows from the fact that g5 = —q(g2)/&3 €
k[z1] is the p-leading part of f3 = axa+pa(x1), and that gs is the leading monomial
of p1 (of degree 1.

(4): It remains to consider Case (4) of Lemma 4.3.2. As g1, g2 € k[z1, z2] \ k[z1],
the only component of f which belongs to k[z1] (and is of degree 1) is f3, so
o = (x3,%2,21) or 0 = (x2,x3,21). Let j € {1,2} be such that f; = v, where
v = (v1,v9,v3). We then have f; = &9 + po(z1) for some & € k™ and some
p2 € klx1]. As g; € klz1, x2]\k[z1], we get g; = {axo+¢(z1) for some g € klxq], that
consists of some monomials of pa. Since (5 = g;(g1,g2), we obtain (; = &ag2+¢(g1)-

We now show that j = 2 leads to a contradiction. It gives

g2 = &wa + q(1) = & (& — a(gn))-

Since ox9 + g(x1) is irreducible, the polynomial (o — ¢(g1) is irreducible, and thus
deg(q) = 1, which in turn implies that g2 and thus g; is of degree 1. Hence, g1, g2, g3
are of degree 1, impossible, as 6 > 1 is the eigenvalue of a matrix that is contained
in g (Lemma 2.5.1).

This contradiction proves that j = 1, so o = (22, x3,x1). This yields

f = (§az2 + pa(z1), E323 + p3(z1, T2), p1(21))

where &3,&5 € K™, p1,p2 € K[21], ps € k[z1,x2] and deg(p1) = 1, as in (i1).

We also have g1 = &uxo + q(z1) and ¢ = g2 + ¢(g1), which yields go =
(¢1—q(q1))/&2 = (G1 — q(&aza + g(x1)))/E2. As g is the p-leading part of f, the
polynomial g is not constant (Lemma 2.5.7), so deg(q) > 1. Recall that g; is the
p-homogeneous part of f; of degree 0pu;, for each ¢ € {1,2,3} (Definition 1.4.5) so
each monomial of g; is of p-degree Op;. We thus obtain

Our = po =deg(q)pn  and  Oug = pq .

This proves that iy, pi2, 13 € Rsg, that deg(q) = 6 > 1 and that pu = (Qus, 0% s, p3).
Since two monomials in the same variables have distinct u-degrees, we moreover
find that ¢ is a monomial, the leading monomial of ps, so deg(ps) = deg(q) = 6 > 1,
as stated in (i1).
To prove that we are indeed in Case (i7), it remains to show that the conjugation
by h = (z1,x2+¢(x1) /&2, 3) strictly decreases the degree of p; and ps. We calculate

ho foh™ = (&ua + phlx1), Esas + ph(ar, 22), p1(21)),
where

py(r1) = pa(w1) — q(w1),
p3(z1,72) = pa(@r, 22 — q(21)/&) + q(ama + ph(1))/Ea -
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As q is the leading monomial of py, this conjugation decreases the degree of ps,
i.e. deg(ph) < deg(pz) = 6. It remains to see that deg(p}) < deg(ps). To simplify
the calculations, we replace p by a multiple of itself (this is still a maximal eigenvec-
tor) and may assume that u = (1,6,071). As g2 = ((1 — q(&2w2 + q(1))) /&2 is the
p-homogeneous part of fo = 323+ p3(w1,12) of u-degree Ous = 62, the polynomial
A = ps — g2 € K[z1, 22] is equal to

6—1
A= "aiA,
=0

where each A; € k[r1] is such that deg(A;) +i6 < #%. As 6 > 1, this implies that
deg(z4A;) = i + deg(A;) < 62 for each i, so deg(A) < 62, which implies that the
degree of p3 = A+ go is equal to 02, since deg(gs) = 6%. We then need to show that
deg(py) < 2. Since deg(ph) < deg(q) = 6, we have deg(a(€2 + ph(21))/E2) < 67,
so we only need to show that deg(ps(z1, 72 — q(w1)/€2)) < 6. This is given by

p3(w1, w2 — q(r1)/&2) = Ari, 2z —q(21)/82) + g2(x1, 22 — q(21)/62).
= ;0(332 —q(21) /&) A + (G — q(&222)) /&2
and by the fact that deg(A;) + i6 < 62 for each i. O

Ezample 4.3.4. We now give two distinct examples to show that Cases (i)-(ii) of
Lemma 4.3.3 indeed occur.
(i) Let n > 2, and let f = (23 — 2%, 21,22 + 27) € Aut(A3). Because of the
matrix contained in (x5, x1, 27), the maximal eigenvalue satisfies 6§ > /n > 1
and as f2 = (v9, 73 — 2%, 71 + (3 — 23)") and f3 = (21,72, 23), the map f
is not p-algebraically stable for any maximal eigenvector p of f. It has then
to satisfy Case (i) of Lemma 4.3.3, so 6 = /n.
(ii) Let n > 2, and let f = (w3 — 2%, 23 + (2 — 7)™, 1) € Aut(A?). Because
of the matrix contained in (—z%,zs,21), the maximal eigenvalue satisfies
0 >n>1and as f2 = (v3,21 + 24,22 — 2}) and f3 = (v1,29,23), the
element f is not p-algebraically stable for each maximal eigenvector p of f.
It has then to satisfy Case (i) of Lemma 4.3.3, so § = n.

We now give examples of permutation-triangular automorphisms of A% which
are p-algebraically stable. These will be useful in the proof of Theorem 1.

Lemma 4.3.5. For all a,b,c € N such that \ = etvae+dbe V“;Hb“ # 0, the mazimal
eigenvalue and the dynamical degree of the automorphisms
f=(@{@h + w3, 20 + 25, 21) and [ = (23 + {25, 21, 72)

are equal to \. Both automorphisms are p-algebraic stable for each mazimal eigen-
vector [i.

Proof. The matrices that are contained in f are

a b 0\ fa b 0\ /0 0 1 00 1
¢c 00,01 0],[c 0 0]and |0 1 0
100 100/ \1o0o0 100

whose characteristic polynomials are z(z? — ax — bc), x(x —a)(z — 1), (2% — 1) and
(x + 1)(x? — 1), respectively. The corresponding spectral radii are respectively A,
a, 1 and 1. Hence, the maximal eigenvalue of f is A.
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Similarly, the matrices contained in f’are

a be 0 0 01
1 0 O0)and [1 O O
0 1 0 01 0
whose characteristic polynomials are z(z? — ax — be) and 23 — 1. The maximal

eigenvalue of f’ is then also \.

As neither f nor f’ satisfies any of the two Cases (7)-(ii) of Lemma 4.3.3, both
f and f’ are p-algebraically stable for each maximal eigenvector p (of f and f,
respectively). This gives then A(f) = A(f’) = A (Proposition B) and achieves the
proof. O

Lemma 4.3.6. The maximal eigenvalue 6 of a permutation-triangular automor-
phism f € Aut(A3) of degree d > 1 is a non-zero number equal to (a++/a2 + 4bc) /2
for some (a,b,c) € N> where a+b<d and c < d. It is thus a positive integer or a
quadratic integer and a Handelman number.

Proof. Each real number 6 = ‘”'7v";+4bc # 0, where (a,b,¢) € N3 is a root of
the polynomial P(z) = 2? — ax — be, with a,b,c € N?\ {0} so it is a Handelman
number. If P is irreducible, then # is a quadratic integer, and otherwise it is a
positive integer. It remains to see that the maximal eigenvalue of every f is of the
desired form.

We write f = o o7, where 0 € Sym(A3) and 7 € TAut(A?) is a triangular
automorphism, that we write as 7 = (1121 + €, voxe +p(x1), V33 + q(x1, 2)) where
vi,ve,v3 € k", e € k, p € k[z1] and ¢ € k[z1,22]. The matrices contained in 7 are
all of the form

m 0 0 m 0 0 m 0 0 m 0 0
0O 1 0)J,{k 0 O0),{0 1T O)J,{%k O O
0 0 1 0 0 1 i 7 0 i 7 0

where m, k,4,j are non-negative integers and 0 < m < 1, k < deg(p) < d and
i+ 7 < deg(q) < d. Since the spectral radius is order-preserving on real square
matrices with non-negative coefficients (see Definition 3.1.1(4)) and since v4 # 0,
the maximal eigenvalue is the spectral radius of a matrix where m = 1. The matrices
contained in f are obtained from one of the above four types by permuting the rows.
Permuting the rows of the identity matrix only gives a spectral radius equal to 1.
In the second case, we conjugate by the permutation of the last two. In any case,
we obtain that @ is either equal to 1 or is the spectral radius of a matrix o’ M, where
o’ is a permutation matrix and M is of the form

1 0 0 1 0 0 1 0 0
01 0},{0 1 O0fJ,[k 0 O
kK 0 0 i j 0 i 7 0
where k < d and ¢ 4+ j < d. We obtain
myp mpz2 0
CT/MZ mo1 M99 0

m3; m3z2 0

for some m;; € N, so 6 is the spectral radius of the matrix

mi1 Mmi2
ma1  M22
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This last matrix is one of the following:

(o)) GGG (o) (o)

where 7, s € {1,4,7,k}. In the first four cases, 6 is an integer in {1,...,d}, so has
the desired form, with a = 6, and b = ¢ = 0. In the fifth case, the characteristic
polynomial is 22 — iz — jr. Choosing a = i, b = j and ¢ = r we get 0 = (a +
Va2 + 4bc)/2. In the sixth case, the characteristic polynomial is 22 — jz —i. When
we choose a = j, b =14 and ¢ = 1, we get again 6 = (a + va? + 4bc)/2. In the last
case, the characteristic polynomial is 22 — rs. We then choose a = 0, b = r and
c=s. ]

We can now give the proof of Proposition D.

Proof of Proposition D. We take an affine-triangular automorphism f € Aut(A3).
By Proposition 4.1.1, there exists o € Aff(A3) such that ' = afa~! is a permuta-
tion-triangular automorphism. We then have deg(f’) = deg(f). Moreover, Propo-
sition B shows that there exists a maximal eigenvector of f. We denote by 6 the
maximal eigenvalue of f’. If § = 1 or if f’ is u-algebraically stable for each maxi-
mal eigenvector u, the dynamical degrees A(f) and A(f’) are equal to the maximal
eigenvalue 6 of f’ (Proposition B), which is a Handelman number (Lemma 4.3.6)
so the result holds.

Suppose now that # > 1 and that f’ is not u-algebraically stable for some
maximal eigenvector y. Lemma 4.3.3 gives two possibilities for f’:

I = (&x3 + p3(w1, 22), p1(x1), Eox2 + pa(1))  or
f' = (§awa + pa(1), E323 + p3(z1, 22), p1(21))

where p1,ps € k[z1], p3 € k[z1, 22, &,83 € k7, deg(p1) = 1 and deg(pz) > 1. In
both cases, Lemma 4.3.3 shows that one can replace f’ by a conjugate, decrease
the degree of po and do not increase the degree of f’. After finitely many steps, we
obtain the desired case where 6§ = 1 or f’ is u-algebraically stable for each maximal
eigenvector . Moreover, we still have deg(f") < deg(f). O

Proof of Theorem 1. Let f € Aut(A3) is an affine-triangular automorphism of A3
of degree d. Proposition D gives the existence of a permutation-triangular automor-
phism f’ € Aut(A3) such that deg(f’) < deg(f) and such that either the maximal
eigenvalue 6 of f’ is equal to 1, or § > 1 and f’ is u-algebraically stable for each
maximal eigenvector p. In the first case, the dynamical degree A(f) is equal to
A(f’) = 1, by Proposition B(2). In the second case, we obtain A\(f) = A(f') = 0,
by Proposition B(3). Moreover, Lemma 4.3.6 proves that § = ‘“'7“‘22*'41’6 for some
a,b,c € Nwith a+b<d,c<d (and that 0 # 0).

Conversely, for all a,b, ¢ € N such that 6§ = ‘”“7”‘22% # 0, the element 6 is the
dynamical degree of (z¢28 +x3, 20+ 25, 21) and (23 + 2828, 21, v2) (Lemma 4.3.5),
and thus of a permutation-triangular automorphism of A3. This achieves the proof.

O

Corollary 4.3.7. For each d > 3 the set of all dynamical degrees of shift-like
automorphisms of A% of degree d is strictly contained in the set of all dynamical
degrees of affine-triangular automorphisms of degree d.
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Proof. As each shift-like automorphism is also an affine-triangular automorphism,
we have an inclusion, that we need to prove to be strict. From Proposition 4.2.5
it follows that the set of dynamical degrees of all shift-like automorphisms of A3 of
degree d is equal to

{(a+\/a2+4d—4a)/2’0§a§d}.

From Theorem 1 it follows that Ay = (1 4+ v/1 4 4d)/2 is the dynamical degree of
the affine-triangular automorphism (z3 + x122, T2 + x{l, z1). In order to show that
Ad is not the dynamical degree of any shift-like automorphism of A3 of degree d, for
each d > 3, we only have to show that there exists no d > 3 and no a € {0,...,d}
such that

VIi+4d=(a—1)+ Va2 +4d —4a.
Indeed, if this would be the case, then 1 +4d = (a —1)? +2(a — 1)va2 + 4d — 4a +
a®? + 4d — 4a, which yields
a(3—a)=(a—1)va®+4d —4a.
This implies that a < 3 and a & {0, 1}, i.e. a = 2. However, in this case d = 2.
O

4.4. Automorphisms of affine spaces associated to weak-Perron numbers.
In this section, we construct some affine-triangular automorphisms associated to
weak-Perron numbers and prove Theorem 2.

Lemma 4.4.1. Let n > 1 and let A = (a;;)}';—; € Mat,(N) be an irreducible
matriz with spectral radius p(A) > 1. The automorphism f € Aut(A?") given by

n n n
ai,i az,i An,i
(*) xn+1+||xi ',xn+2+Ha:i ’,...,xzn—l—Hxi“,xl,...,xn
i=1 i=1 i=1

has dynamical degree A(f) = p(A).

Proof. Let us write 8 = p(A) and choose an eigenvector v = (v1,...,v,) € (Rsg)"”
of A to the eigenvalue 6 (which exists by Theorem 3.2.3). We then choose p =
(Bvy,...,00,,v1,...,0,) € (Rsg)?™. The matrix

M= <}‘i 8) € Maton (N)
is contained in f, its spectral radius is # and p is an eigenvector of M to the
eigenvalue 0. Writing f = (f1,..., fan), we now prove that deg,,(f;) = Ou; for each
j €A{1,...,2n}, and compute the p-homogeneous part g; of f; of degree fp;:
(1) For each j € {1,...,n}, we have deg,(z,1;) = v; and deg,, ([T;—, ;") =
S 0aj v = 6%v;, so degﬂ(fj) =0%v; = 0p; and g; =[], a9,
(2) Foreach j € {n+1,...,2n} we have deg,,(f;) = deg, (vj—n) = Ovj_pn = Op;
and g; = f;.
This implies that deg,(f) = 0. As the endomorphism g = (g1,...,g2.) € End(A%")
is monomial, it satisfies g" # 0 for each r > 1 (and moreover each component of g"
is not zero). This implies that f is p-algebraically stable and that A(f) = 6 (see
Proposition A). O
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Proposition 4.4.2. Let A € R be a weak Perron number that is a quadratic integer,
and let 2 — ax — b be its minimal polynomial, with a,b € Z. We then have a > 0
and the following hold:

(1) If b >0, then X is the dynamical degree of the shift-like automorphism
(23 + x925, 21, 72) € Aut(A®).

(2) If b < 0, then X is not the dynamical degree of an affine-triangular auto-
morphism of A3, but is the dynamical degree of a permutation-triangular
automorphism of A* of the form (x) in Lemma 4.4.1.

Proof. Let us write 22 —ax—b = (x—\)(x— ) for some ;1 € R. Note that u # ), as
otherwise A2 € Z and 2\ € Z would imply that A € Z, impossible as A is a quadratic
integer. Since A is a weak-Perron number, we have A > 1 and —A < p < A. In
particular, @ = A 4+ p > 0. As 22 — ax — b is irreducible and has a real root by
assumption, the discriminant is a® + 4b > 1.
If b > 0, Assertion (1) follows from Lemma 4.3.5 (and also from Proposi-
tion 4.2.3).
Suppose now that b < 0. As Ay = —b, this implies that © > 0, so A is not
a Handelman number (Lemma 3.2.7) and thus is not the dynamical degree of an
affine-triangular automorphism of A® (Proposition D). It is now enough to show
that
o ala—a)+b_a—a 4
f=(zg+ 222, x4 + 2] x5~ %, x1,T2) € Aut(A®)

is a permutation-triangular automorphism with dynamical degree A\(f) = A.

Firstly, we prove that f is a permutation-triangular automorphism of A? by
showing that the exponents are non-negative. As a > 0, the numbers o = |a/2]
and a — o are non-negative integers, so we only need to see that a(a — ) +b > 0.
Since a?+4b > 1 we get in case a is even, that a(a—a)+b = a?+b = (a®+4b)/4 > 0
and in case a is odd, that o = (a—1)/2, so a(a—a)+b = ((a—1)/2)-((a+1)/2)+b =
(a® +4b—1)/4 > 0.

Secondly, the matrix

A= (a(a, Wb a ! a> € Matz(R)

has characteristic polynomial 22 — ax — b and thus spectral radius p(A) = \. As
2% — ax — b is irreducible by assumption, it follows that A is an irreducible matrix.
Moreover, as b < —1 and as 2% — ax — b has a real root, we get a # 0, hence a > 1.
Since a? +4b > 1, we get A = (a++va? +4b)/2 > 1. Now, if A\ =1, then 1 <a <2
and thus a? +4b < 0 (as b < —1), contradiction. Thus A > 1 and we can apply
Lemma 4.4.1 and get that the dynamical degree of f is A(f) = p(4) = \. O

Proof of Theorem 2. Let A > 1 be a weak-Perron number. By Theorem 3.2.4, A
is the spectral radius of an irreducible square matrix with non-negative integral
coefficients. Lemma 4.4.1 then shows that A is the dynamical degree of an affine-
triangular automorphism of A™ for some integer n. We denote by ng the least
possible such n.

If A =1, then ng = 1, by taking the identity.

If A > 1 is an integer, then ng > 2, as every automorphism of A! is affine and
thus has dynamical degree 1. Moreover, ng = 2 as f = (x7 + 29, 1) has dynamical
degree equal to A (f is p-algebraic stable for = (1,0) and deg,,(f) = A).
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If A\ is not an integer, then ny > 3, as the dynamical degree of every automor-
phism of A? is an integer (Corollary 2.4.3). If ) is a quadratic integer, the minimal
polynomial of \ is equal to 2% — ax — b with @ > 0 and b € Z (Proposition 4.4.2). If
the conjugate of X is negative, we have b > 0, so ng = 3 by Proposition 4.4.2(1). If
the conjugate of A is positive, we have b < 0, so ng = 4 by Proposition 4.4.2(2). O

To complement Theorem 2, we now give a family of examples of quadratic inte-
gers that do not arise as dynamical degrees of affine-triangular automorphisms of
Aut(A3) but which arise as dynamical degrees of some other automorphisms of A3.

Lemma 4.4.3. For all integers r,s,t > 1, the dynamical degree of the automor-
phism

f=w+aztz, o+ 2°(y+a"2")) € Aut(A?)
is the biggest oot of x> — ax +b € Rlx], with a = r + s+, b = rs and satisfies
Af) > s+ 1. In particular, if A(f) is not an integer, it is not the dynamical
degree of an affine-triangular automorphism of A%, so f is not conjugate to an
affine-triangular automorphism of A3.

Proof. Let 0 be the biggest root of P(z) = 22 —ar+b= (z —r)(z — s) — tx € R[x]
As P(s+1)=(s+1—r)—t(s+1)=(s+1)(1—t)—r <0, we find that § > s+ 1.
In particular, p = (6 —s,1,0) € R>q.

We compute deg,,(z"2°%") = r(0 — s) + (s + £)0 = (r + s+ 1)) — rs = 6 and
deg, (z"2") = 6% — s0 = (0 — s). This gives deg,(f) = 0, with p-leading part
g = (z"2%, 2,27 2°Tt). Hence, A\(f) = @ by Proposition A.

If 6 is not an integer, the other root of P(z) is positive, so € is not the dynamical
degree of an affine-triangular automorphism of A3 (Theorem 2). This implies that
f is not conjugate to an affine-triangular automorphism of A3. |

Example 4.4.4. We now apply Lemma 4.4.3 to small values of r, s, ¢, and find some
examples of automorphisms f = (y + 2"2%, 2,2 + 2°(y + 272%)) € Aut(A3) whose
dynamical degree A(f) is not the one of an affine-triangular automorphism of A3.
We give below all examples of A(f) < 5 given by Lemma 4.4.3. Exchanging r and
s does not change the value of A(f), so we will assume that r < s < 3.

f A(S)
(y+zz,z,x+ z(y + xz)) (3+5)/2
(y+x22 2,2 + z(y + 22?)) 2++/3
(y +22% 2,2 + 2(y + 22°)) | (5+V21)/2

(y+xz, 2,7+ 22 (y + 12)) 2++/2
(y+22° 2,0+ 22y +22°)) | (5+V17)/2
(y+ 2z, 2,2+ 25y +22)) | (5++13)/2
1| (y+2%2, 2,2 + 23(y + 2%2)) 3+V3

L I I

DO == === =]
W W[N] == ®

Remark 4.4.5. Let A be a weak-Perron number that is a quadratic integer.

By Theorem 2, A is the dynamical degree of an affine-triangular automorphism
of A% but is the dynamical degree of an affine-triangular automorphism of A3 if and
only if its conjugate A’ is negative. If X’ > 0, then one can ask if \ is the dynamical
degree of an automorphism of A% (which would then necessarily be not conjugate
to an affine-triangular automorphism). Writing 22 — ax +b the minimal polynomial
of A\, with a, b positive integers, Lemma 4.4.3 shows that this is indeed true if one
can write b = rs with r,s > 1 and a > r + s. In particular, this holds if b < 4,
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as a® —4b > 0,50 a > 2v/b. If b =5, then a > 5 (as a > 2v/b), and Lemma 4.4.3
applies as soon as a > 6. The case where a = b = 5 corresponds to A = (5++/5)/2,
which is then the “simplest” weak-Perron quadratic integer that is not covered by
Theorem 2 or Lemma 4.4.3.

According to Remark 4.4.5, it seems natural to ask if every quadric weak-Perron
number is the dynamical degree of an automorphism of A3. A first intriguing case
concerns the following question, which was in fact already asked to us by Jean-
Philippe Furter and Pierre-Marie Poloni:

Question 4.4.6. Is (5 + /5)/2 the dynamical degree of an automorphism of A3?
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AUTOMORPHISMS OF THE AFFINE 3-SPACE OF DEGREE 3

JEREMY BLANC AND IMMANUEL VAN SANTEN

ABsTRrRACT. In this article we give two explicit families of automorphisms of
degree < 3 of the affine 3-space A3 such that each automorphism of degree
< 3 of A% is a member of one of these families up to composition of affine
automorphisms at the source and target; this shows in particular that all of
them are tame. As an application, we give the list of all dynamical degrees of
automorphisms of degree < 3 of A3; this is a set of 3 integers and 9 quadratic
integers. Moreover, we also describe up to compositions with affine automor-
phisms for n > 1 all morphisms A% — A" of degree < 3 with the property that
the preimage of every affine hyperplane in A" is isomorphic to AZ2.
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1. INTRODUCTION

1.1. The results. In this text, we fix an algebraically closed field k of any charac-

teristic. We denote by A™ or sometimes A} the affine n-space Spec(k[z1,...,zy])
over k for a specified choice of coordinates x1,...,z,. Every morphism f: A™ —
A™ is given by
A i) AM
(1, oy xm) — (fi(xr, ooy xn)ye ooy frn(T1, ooy 20))
for polynomials f1,..., fm € kK[z1,...,2,]. If n =3, we often use x,y, z instead of

1, %2, x3 as coordinates. For simplicity we denote the above morphism sometimes
by f = (f1,..., fm). For a morphism f = (fi,...,fn): A" — A™ we denote
by deg(f) its degree which is by definition equal to the maximum of the degrees
deg(fl)» te 7deg(fn)'

Let Autyx(A™) be the group of all automorphisms of A™ over k. In the last
decades, there has been done a lot of research on this group Autyk(A™), see e.g.
the survey [vdE00]. There are two prominent subgroups of Autyk(A™), namely the
group of affine automorphisms

Affy(A™) = { (fi,-.., fn) € Auti(A™) l fi € Kz, .., 2a] and deg(fi) =1 }

foralli=1,...,n

and the group of triangular automorphisms

Triang, (A") — { (Frr- o ) € Auii(A) | i € Koo, T x”]n } .
The subgroup generated by Affy(A™) and Triang, (A™) inside Autyx(A™) is called
the group of tame automorphisms and we denote it by Tamey(A™). In case n =1,
all automorphisms of Al are tame (in fact they are affine) and for n = 2 it is proven
by Jung and van der Kulk [Jun42, vdK53] that all automorphisms of A? are tame.
Since a long time it was conjectured that the famous Nagata-automorphism

(z = 2y(zz +3°) — 2(za + y*)%, y + 2(z2 + ¢%), 2) € Auti(A?)

is non-tame, until Shestakov and Umirbaev gave fifteen years ago an affirmative
answer if char(k) = 0, see [SU04]. It is still an open problem whether Tamey (A™) #
Auty (A™) for n > 4 and when char(k) # 0 also for n = 3.

It is conjectured by Rusek [Rus88| that all automorphisms of A™ of degree 2 are
tame. If n = 3 and k = C, Fornaes and Wu [FsW9§] classified all automorphisms
of A% of degree 2 up to conjugation by affine automorphisms and it turned out that
all of them are triangular up to composition of affine automorphisms at the source
and target. For n = 4 and k = R, Meisters and Olech [MO91] and for n = 5 and
k = C, Sun [Sunl4] gave affirmative answers to Rusek’s conjecture.

Motivated by these investigations of the tame automorphisms in Auty(A™), we
study in this paper automorphisms of A3 of degree 3. For this let us introduce
the following equivalence relation: f,g € Autkx(A™) are equivalent if there exist
a, B € Aff(A™) such that f = ao g o 8. The main theorem of this article is the
following description of degree 3 automorphisms of A®:

Theorem 1 (see Theorem 3). Each automorphism of A3 of degree < 3 is either
equivalent to a triangular automorphism or to an automorphism of the form

(%) (x4 yz + za(z,2),y + alz, z) +r(2),2) € Autk(A3)
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where a € k[x, 2] \ k[z] is homogeneous of degree 2 and r € k|z] is of degree < 3.

In fact we prove that none of the automorphisms of (x) is equivalent to a trian-
gular automorphism, see Proposition 3.9.4.

Theorem 1 implies in particular that all automorphisms of degree < 3 of A3 are
tame, see Corollary 3.9.5.

As an other application of Theorem 1 we compute all dynamical degrees of au-
tomorphisms of degree < 3. Recall, that the dynamical degree of an automorphism
f € Aut(A™) is defined by

A(f) = lim deg(f7)" € R,

satisfies 1 < A(f) < deg(f) and is invariant under conjugation (in Aut(A™) but
also in the bigger group Bir(A™) of birational transformations of A™). It gives
information about the iteration of the automorphism f. The dynamical degree of
an automorphism of A2 is always an integer, and all possible integers are possible,
by simply taking (z,y) + (y,z + y¢), for each d > 1. The set of dynamical
degrees of automorphisms of A® is still quite mysterious. In 2001, K. Macgawa
proved that the set of dynamical degrees of all automorphisms of A2 of degree 2 is
equal to {1,v/2, (1++/5)/2,2} [Mae01, Theorem 3.1|. This also holds for each field
(Theorem 2 below). Recently, we proved that for each d > 1 and each ground field
k, the set of all dynamical degrees of automorphisms of A} of degree < d that are
equivalent to a triangular automorphism is

244
(ST o e o,

see [BvS19a, Theorem 1], reproduced below as Theorem 4.1.1. Using Theorem 1,
we prove the following result:

Theorem 2. For each d > 1 and each field k, let us denote by Agx C R the set of
dynamical degrees of all automorphisms of A} of degree d. We then have

A = {1}
Az x {1,v2,(1++5)/2,2}
A3,k = {17\/57 1+2\/57 \/3727 HT\/ﬁ: 1+\/§7 \/67 1+§/ﬁ7 3+2\/57 1+\/§7 3}

Note that the automorphisms in () in Theorem 1 all fix a linear projection
A3 — A! and thus the dynamical degree of these automorphisms are integers, see
e.g. [BvS19a, Corollary 2.4.3]. Thus one has to permute the coordinate functions
of these automorphisms in order to produce interesting dynamical degrees. The
most interesting number in Theorem 2 is (3 + 1/5)/2. It is the dynamical degree
of f = (y+az,z,2 + 2(y + 22)) € Aut(A}), for each field k. It follows from
[BvS19a, Theorem 1] that A(f) = (3 + v/5)/2 is not the dynamical degree of any
automorphism of A® that is equivalent (over k or over its algebraic closure k = k)
to a triangular automorphism, of any degree, see [BvS19a, Example 4.4.6]. The
fact that all dynamical degrees above arise essentially follows from [BvS19a], the
main contribution of this text to Theorem 2 is to show that we cannot get more
dynamical degrees. Theorem 2 implies that every dynamical degree of an element
of Aut(A®) of degree 2 is also the dynamical degree of an element of Aut(A®) of
degree 3, contrary to the case of dimension 2 (an element of Aut(A?) of degree 3
has dynamical degree equal to either 1 or 3).
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1.2. Outline of the article. In order to classify all automorphisms of degree < 3
up to equivalence we study first degree 3 polynomials in k[z,y, z] that define the
affine plane A? in A® in Section 2. The closure in P? of such a hypersurface in
A3 is singular, so the polynomial has the form xp + ¢ for some p, ¢ € kly, 2] up to
an affine automorphism, see Corollary 2.1.2. These polynomials were studied by
Sathaye [Sat76] for fields with char(k) = 0 and by Russell [Rus76] for all fields and
it turns out that all of them are variables of k[z,y, 2], i.e. there are polynomials
g,h € K[z,y, 2] with k[zp + ¢,g,h] = Kk[z,y, z], see also Propositions 2.2.1, 2.2.2
and Corollary 2.2.3 for more detailed informations. We then give a description
of all such hypersurfaces up to affine automorphisms (Proposition 2.3.5). As the
polynomials of degree 3 of the form zp + ¢ correspond to cubic hypersurfaces of
A3 whose closures in P3 are singular at [0 : 1 : 0 : 0] (Lemma 2.1.1), it is also
useful to classify them up to affine automorphisms that fix this point; this is done
in Proposition 2.3.4, where a bigger list is given. Corollary 2.3.7 then corresponds
to the case where we focus on a line at infinity instead of a point.

Then we investigate these hypersurfaces in families in Section 3. The best suited
notion for us is the following: a morphism f: A4 — A" is called an affine linear
system of affine spaces if the preimage of each affine hyperplane of A" is isomorphic
to A%"1, see Definition 3.2.1. In case d = 3, we say that f is in standard form if
f=@pi+aq,...,xpn + gn) for some polynomials p;, q; € K[y, z]. An affine linear
system of affine spaces g: A% — A" of degree 3 is equivalent to one in standard
form if and only if for general affine hyperplanes H C A3 the closures of g~!(H)
in P3 have a common singularity, see Lemma 2.1.1. Two affine linear systems of
affine spaces f,g: A? — A" are called equivalent if there are a € Aff)(A™) and
B € Affi(A3) such that f = a0 go 3. The key point in the proof of Theorems 1
and 3 is to show that each affine linear system of affine spaces A3 — A3 of degree
< 3 is equivalent to one in standard form, see Proposition 3.6.1.

In Section 3.9, we give a description of all affine linear systems of affine spaces
A3 — A" of degree < 3 which implies Theorem 1. We call a morphism f: Y — X
an Al-fibration if each closed fiber is (schematically) isomorphic to Al and we call
f a trivial A'-fibration if there exists an isomorphism ¢: X x Al — Y such that
the composition f o ¢: X x A — X is the projection onto the first factor. Note
that the above definition of an A!-fibration differs from the notions of A!-fibrations
in [GMM12| and [KM78|. In fact we show:

Theorem 3. Every affine linear system of affine spaces A3 — A™ of degree < 3
is equivalent to an element of the following eleven families. Case I) corresponds to
n =1, Cases 11a) and IIb) correspond to n = 2 and Case II) corresponds to n = 3.
I) variables of klz,y, 2]:
(1) =+ r2(y, 2) +r3(y, z) where r; € kly, z] is homogeneous of degree i;
(2) zy +yra2(y, 2) + z where ro € kly, 2] \ kly] is homogeneous of degree 2;
(3) zy® +y(2? + az + b) + z where a,b € k.
Ia) trivial A'-fibrations:
(4) (x+p2(y, 2) +p3(y,2),y + q22° + q323) where p; € kly, z] is homogeneous of
degree i and q2,q3 € k;
(5) (yz + zaz(z, 2) + 2,y + az(x, 2) + 112 + 1oz + r323) where as € K[z, 2] \ k[z]
is homogeneous of degree 2 and r; € k;
(6) (yz 4+ zao(z,2) + x,2) where as € K[z, 2] \ k[z] is homogeneous of degree 2;
(7) (xy® +y(2% + az + b) + z,y) where a,b € k.
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ITb) non-trivial A*-fibrations:

(8) (x4 22+ v,y + %) where char(k) = 2;
(9) (z+ 2%+ 9%, 2 + 2°) where char(k) = 3.

III) automorphisms of A3:

(10) (2 +pa(y, 2) +p3(y, 2), y + q22° +32°, 2) where p; € K[y, 2] is homogeneous
of degree i and qa2,q3 € k;

(11) (yz + zas(w, 2) + 2,y + as(x, 2) + ro2% + r32°, 2) where ay € k[, 2]\ k[2] is
homogeneous of degree 2 and rq, 13 € k.

The proof of Theorem 3 is given towards the end of Section 3.9. All the eleven
cases in our list are in fact pairwise non-equivalent, see Proposition 3.9.4. For
n =1 and k = C, Ohta gave in [Oht99, Theorem 1] a list of all possibilities for
affine linear systems of affine spaces A® — A! of degree < 3, together with a
description of the curve at infinity. This corresponds then to a refined list of the
items (1)-(2)-(3) of Theorem 3. Note that the fact that each affine linear system
A3 — Al of affine spaces of degree < 3 is equivalent to one of the items (1)-(2)-(3)
is proven in Proposition 2.3.5 below, and is thus the very first part of our study.
Moreover, Ohta gave in [Oht01, Theorem 2| and [Oht09, Theorem 2] lists of all
possible affine linear systems A3 — A! of affine spaces of degree 4 in case the
closure of the corresponding hypersurface in P? is normal. In particular, he proves
that all of them are variables of A3.

Let us give the connection of our results to the Jacobian conjecture. Recall
that an endomorphism f € Endx(A™) has a constant non-zero Jacobian deter-
minant det(Jac(f)) € k* if and only if for all affine hyperplanes H C A"™ the
preimage f~'(H) is a smooth hypersurface of A", see Lemma 3.2.6. Thus for all
f € Endg(A™) we have the following implications

FeAunar) — s alfne lnear systen gy g
For fields with char(k) = 0, the Jacobian conjecture asserts that the implica-
tions are equivalences. For n = 3, Vistoli proved the Jacobian conjecture in case
f € Endy(A?) has degree 3, see [Vis99]. For fields with char(k) = p > 0, the last im-
plication is certainly not an equivalence, take e.g. (z1+2z%,22,...,2,) € Endk(A™).
However, Theorem 3 shows that in case n = 3 and f € Endy(A?) is of degree < 3,
the first implication is an equivalence.

It is also worth to mention that in case n = 2, there are affine linear systems of
affine spaces A% — A" of degree < 3 that are A3 "-fibrations which are not trivial
A3~"fibrations, contrary to the cases n = 1 and n = 3. In fact, an affine linear
system of affine spaces A% — A" of degree < 3 is a trivial A3~ "-fibration if and only
if it is equivalent to a linear system in standard form, see Corollary 3.9.2. Note
that there are even non-trivial Al-fibrations A2 — A! in positive characteristic,
see [KM78, Example on p.670].

In the last Section, we then compute the dynamical degree of all automorphisms
of A3 of degree < 3 by using the technique introduced in [BvS19a] and we prove
Theorem 2 at the end of this section.

Acknowledgements. The authors would like to thank Pierre-Marie Poloni for
many fruitful discussions and the indication of the references [Oht99, Oht01, Oht09].
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1.3. Conventions. All schemes, varieties, rational maps and morphisms between
them are defined over k. Points of varieties refer to closed points of the associated
scheme. If f: X — Y is a morphism of varieties, then the fibre over a point y € Y
refers to the schematic fibre of f over y, i.e. f~1(y) = Spec(k(y)) xy X where
Spec(k(y)) — Y corresponds to the embedding of the point y in Y. More generally,
the preimage of a closed subvariety Y’ of Y corresponds to the schematic preimage
of Y/ under f,i.e. f~1(Y’) =Y’ xy X. If we speak of an n-dimensional scheme X,
then we mean that every irreducible component of X has dimension n.

We denote for each d > 0 by k[z1,...,2,]qs the vector space of homogeneous
polynomials of degree d in the variables x1,...,z,. By convention, the zero poly-
nomial will be assumed to be homogeneous of any degree d > 0 (even if it has
degree —o0).

2. HYPERSURFACES OF A® THAT ARE ISOMORPHIC TO AZ2

2.1. Existence of singularities at infinity. In the sequel, we always see A3 as
an open subvariety of P? via the open embedding A® — P3, (z,y,2) — [1:2:y: 2]
and denote by [w : x : y : 2] the homogeneous coordiantes of P3.

Recall that the multiplicity m of a hypersurface Y C P™ at a given point p € Y
is the multiplicity of the equation at this point, that can be computed locally, or is
equivalently the multiplicity at p of the polynomial obtained by restriction of Y to
a general line through p.

Lemma 2.1.1. Let F € k[w,z,y, z] be a homogeneous polynomial of degree d, let
[ =FQ,z,y,2) € K[z,y,2] and let X = Spec(klz,y,2]/(f)) C A3 be the corre-
sponding hypersurface. The following conditions are equivalent:

(1) f =ap+ q for some polynomials p, q € kly, z].

(2) The closure X in P3 has multiplicity > d — 1 at the point [0:1:0:0].

Proof. We write f = Z?:o 297 fi(y, z) where f; € kly,z] is of degree < i for
i =0,...,d. For each i, we denote by F; € k[w,y, z] the homogeneous polynomial
of degree i such that F;(1,y,2) = f;. This implies that F = Y",_ % 'F;. Note
that deg(F) = d and that X is given by F in P3. Note that the multiplicity of
X, or equivalently of F, at the point [0 : 1 : 0 : 0] is the smallest integer m > 0
such that F}, is not zero. Hence, this multiplicity m satisfies m > d — 1 if and only
F =xFy_1 + Fy, which corresponds to ask that f =xfs_1 + fq. O

Corollary 2.1.2. Let X C A® be a hypersurface of degree d < 3 with X ~ A2,
(1) If d = 3, then the closure X in P3 is singular.
(2) Up to an affine coordinate change, X is given by xp+ q = 0 for polynomials
p,q € kly, 2] with max(deg(p) + 1,deg(q)) = d.

Proof. (1): If X is a smooth cubic hypersurface of P2, then Pic(X) ~ Z7, see
[Har77, Chp. V, Proposition 4.8(a)]. However, since X \ X has at most 3 irreducible
components Pic(X) is not trivial, so X cannot be isomorphic to A2

(2): There exists a point in X C P3 having multiplicity > d — 1: this is clear
if d < 2 and follows from (1) if d = 3. Applying an affine automorphism of A3
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we can assume that this point is [0 : 1 : 0 : 0], and the result then follows from
Lemma 2.1.1. g

Remark 2.1.3. Corollary 2.1.2(1) is also true for d > 4: If X is smooth, then it is
a K3-surface in case d = 4 and of general type in case d > 4. In both situations X
is not rational.

Corollary 2.1.2(2) is false for d > 4: Consider the hypersurface X in A3 which is
given by f:= 2z + (z +yz)?-y?~* = 0. Note that X is isomorphic to A%, since f is
the first component of the composition ¢ o0 ¢; of the automorphisms

A3 L A8 d A3 2 A3
aq
(z,y,2) — (z4+yz,y,2) (z,y,2) +— (@,y,2+2%y?™?).

Note that the closure X in P? is singular only along the lines w = y = 0 and
w = z = 0 and that the multiplicity at each of these points is < d—2. In particular,
by Lemma 2.1.1 there is no affine coordinate change of A3 such that X is given by
xp+q =0 for p,q € K[y, z].

2.2. Hypersurfaces of A% of degree 1 in one variable. Motivated by Corol-
lary 2.1.2, this section is devoted to the study of hypersurfaces X C A3 given
by

ap(y,2) +qy,2) =0
for some polynomials p, ¢ € k[y, z] where p # 0. We start with the following result
which is due to Russell [Rus76, Theorem 2.3]

Proposition 2.2.1. Let p,q € kly, z] be such that
X = Spec(klz,y, 2]/ (xzp + q))

is isomorphic to A2 and such that p € k. Then there is an automorphism of kly, 2]
that sends p onto an element of kly]. In particular, the irreducible components of
the scheme Spec(kly, z]/(p)) are disjoint and isomorphic to Al.

By Proposition 2.2.1 we are led to study the case of hypersurfaces in A3 of the
form ap(y) 4+ q(y, z). This is done in the next result.

Proposition 2.2.2. Let p € kly] \ k, q € kly, z] and consider the polynomial

f=ap(y) +ay, 2) € klz,y, 2]
Write p = [],_,(y — a;) where a1, ..., a, € k are the r distinct roots of p. Then the
following statements are equivalent:
(1) X = Spec(k[z,y,2]/(f)) is isomorphic to A?;
(2) There exists p € Autg(k[x,y, z]) such that p(z) = f and p(y) = y;
(3) There exist a € kly, z],ro,r1 € kly] with deg(r;) < r for i = 0,1 such that
r1(a;) # 0 for eachi € {1,...,r} and

q(y,z) = ap+ zr1 + 1.

Proof. (1) = (2): This is done in [Rus76, Theorem 2.3|, see also [Sat76] for the
case char(k) = 0.

(2) = (1): The automorphism ¢ corresponds to an automorphism of A® that
sends X onto Spec(k[z,vy,2]/(x)) ~ A2

(1) = (3): We consider the morphism 7: X — A! given by (z,v, z) — y. Then,
outside of {ai,...,a,}, 7 is a trivial Al-bundle. If X is isomorphic to A2, then
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each fibre of 7 needs to be isomorphic to A! (this follows for instance from [Gan11,
Theorem 4.12]). We write ¢(y,z) = Zj:o 2 (q;p + rj), with ¢;,7; € k[y] and
deg(r;) < r = deg(p) for each j.

For eachi € {1,...,r}, the fibre of 7 over a; is Spec(k[z, 2]/(¢(a;, 2))), so q(a;, z)
is a polynomial of degree 1 in z (as each fibre of 7 is isomorphic to A'). This implies
that 7;(a;) = 0 for each j > 2 and that r1(a;) # 0. As deg(r;j) < r, we obtain that
r; =0 for j > 2. This gives (3) with a = Z?:o 2q;.

(3) = (1): Let R = k[z,y,2]/(f) be the ring of regular functions on X. For
each ¢ € {1,...,7}, Assertion (3) gives f(z,a;,z) = q(ai, z) = zri(a;) + ro(a;), so
R/(y — a;) ~ k[A'], which implies that (y — a;) is a prime ideal of R and that
7 Ya;) = X N {y = a;} is isomorphic to Al. Hence, every (closed) fibre of 7 is
isomorphic to Al.

We consider hg = z and construct inductively a finite sequence hg, h1,..., AN,
of regular functions on X such that (7, h;): X — A? restricts to an isomorphism
7Y U) =5 U x A, where U = A"\ {a1,...,a,}.

If h; is constant on m~*(ay), then there is a ¢; € k such that h; — ¢; is a multiple
of y—ay. We then choose h;+1 € R such that h; —¢; = (y—a1)-h;+1. This sequence
ends up at some point, i.e. that there exists N3 > 0 such that hpy, is not constant
on 7 1(ay). Indeed, this is a direct application of [KW85, Lemma 1.1] where we
use that R is a Noetherian integral domain.

Now, we start with hy, € R. With the same argument as above, there exists
now hy, € R that is not constant on 7~ (ay), not constant on 7~ (as) and (7, hy,)
restricts to an isomorphism 7= (U) — U x Al. Proceeding the same way with
i=3,...,r wefind h € R that is not constant on each 7~ !(a;) for j =1,...,r and
such that (7, h) restricts to an isomorphism 7' (U) — U x A'.

We observe that (m,h): X — A2 is birational, quasi-finite and surjective. By
Zariski’s Main Theorem [Gro61, Corollaire (4.4.9)] it is thus an isomorphism. O

Remark that the implication (3) = (1) of Proposition 2.2.2 also follows from [BvS19b,
Lemma 3.10] (the argument is essentially due to Asanuma [Asa87, Corollary 3.2]),
but the argument given above is much simpler and goes back to [KW85].

Corollary 2.2.3. Let f € klz,y, 2] be a polynomial of degree < 3. Then f is a
variable of k[x,y, z] if and only if Spec(k[x,y, 2]/(f)) ~ A%. In particular, if this
holds, then Spec(klx,y, 2]/(f — X)) =~ A? for each \ € k.
Proof. If f is a variable of k[z, vy, 2], then Spec(k[x,y, 2]/(f —\)) ~ A? for each \ €
k, and thus in particular for A = 0. Conversely, we suppose that Spec(k[z,y, z]/(f))
is isomorphic to A%, and prove that f is a variable.

After an affine coordinate change we may assume f = zp(y) + q(y,z) with
p € kly] \ {0} and ¢q € kly, 2] (Proposition 2.3.5). If p € k*, then f is a variable
as (f,y,z) € Aut(A®). If p € k[y] \ k, then Proposition 2.2.2(2) implies that f is a
variable. O

2.3. Hypersurfaces of A3 of small degree that are isomorphic to AZ.

Lemma 2.3.1. Let p,q € k[t] be two polynomials such that

k[t] = K[p, q] and deg(p) < deg(q)-
Then, either 1 € {deg(p),deg(q)} or 2 < deg(p) < deg(q) — 2.
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Proof. Suppose first that deg(p) < 0, which is equivalent to p € k. We obtain
k[t] = k[g], which implies that deg(q) = 1. Indeed, deg(q) > 1 since ¢ ¢ k and
deg(q) > 1 is impossible, as the degree of any element of k[q] is a multiple of deg(q).

If deg(p) = 1, the result holds, so we may assume that deg(p) > 2. It remains to
see that deg(p) < deg(q) — 1. We then consider the closed embedding f: Al — A2
given by ¢t — (p(t),q(t)), which extends to a morphism f: P! — P2 given by
[t :u] = [u? : P(t,u) : Q(t,u)], where d = deg(q) and where P(t,u) = u® - p(L),
Q(t,u) = u?- q(L) are homogeneous polynomials of degree d. The image I' = f(IP’l)
is a closed curve of P? that is rational and smooth outside of [0: 0: 1] = f([1 : 0]).
The degree of I' is the intersection of I" with a general line, which is then equal
to d = deg(q) > 3. The multiplicity m of T at the point [0 : 0 : 1] satisfies then
m > 1, as a smooth curve of degree d > 3 has genus W > 1. It remains to
observe that m = deg(q) — deg(p). This can be checked in coordinates, or simply
seen geometrically: a general line of P? passing through [0 : 0 : 1] intersects the
curve I'\ {[0: 0 : 1]} in deg(q) — m points and these points correspond to the roots
of p — A for some general . O

Corollary 2.3.2. Let C C A% = Spec(k[z,y]) be a closed curve isomorphic to Al,
of degree < 3. Then, up to applying an element of Aff(A2), the curve C is given by
x + p(y) =0 for some p € k[y] of degree < 3 with no constant or linear term.

Proof. Let p,q € k[t] be such that ¢t — (p(t),q(t)) is an isomorphism Al — C
defined over k. The polynomials p, ¢ satisfy then k[p, q] = k[¢]. After applying an
affine automorphism of A2, we may assume that deg(p) < deg(q). By Lemma 2.3.1,
we obtain 1 € {deg(p), deg(q)}.

We first assume that deg(q) = 1, which implies that deg(p) < 1, so p € k. After
applying an affine automorphism of A%, we get p = 0 and ¢ = ¢, so the curve C is
given by z = 0.

We then assume that deg(p) = 1. After applying an automorphism of Al we
may assume that p = t. Hence, C is given by y — ¢(z) = 0. After applying
the automorphism (x,y) — (y,z), the equation is © — ¢(y) = 0. By using an
automorphism of the form (z,y) — (z+ay+b,y) for some a,b € k, we may assume
that ¢ has no constant or linear term. (I

Lemma 2.3.3. Let f € klx,y, 2] be a polynomial of the form

[ =ap(y,2) +q(y,2),

for some p, q € kly, z] with p # 0 and deg(p) < 3. If the surface Spec(klx,y, 2]/(f))
is isomorphic to A2, then after applying an affine automorphism on y and z, one
of the following cases hold:

(1) p € kly] has degree < 3;
(2) p=y+r(2) for somer € k[z] of degree 2 or 3.

Proof. If p € k, then we are in case (1). We may thus assume that p ¢ k. By
Proposition 2.2.1, the irreducible components of F,, = Spec(k[y, z]/(p)) are disjoint
and isomorphic to AL

We use the embedding A? < P2, (y,2) — [1:y : 2] and denote by Lo, = P2\ A2
the line at infinity.
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If the irreducible components of F), are lines, then their closures in P? have to
pass through the same point in L.,. After applying an affine automorphism, we
may assume that the point is [0 : 0 : 1], which implies that p € k[y].

It remains to study the case where at least one irreducible component has degree
> 2. This component corresponds to an irreducible curve C C A2 of degree d €
{2,3} whose closure C' in P? is again an irreducible curve of degree d.

By Corollary 2.3.2, we may apply an affine automorphism and assume that C
is the zero locus of y + r(z) for some polynomial r of degree d. If F, is equal to
C, then p = y + r(2) (up to some constant which can be removed by an affine
automorphism). Otherwise, as F), has degree < 3, we get that F, is reduced, and
it is the disjoint union of the degree 2 curve C' with some line. But there is no such
line in A?: by Bézout’s theorem, the closure of the line in P2 would be tangent to
the conic C at the point at infinity of C, impossible as already Lo, is tangent to C
at that point. O

Proposition 2.3.4. Let f € k[z,y, 2] be a polynomial of degree < 3 of the form

[ =aply, 2) +q(y,2),

for some p,q € Ky, z]. If the surface Spec(k[x,y,2]/(f)) is isomorphic to A2, then
after applying an affine automorphism that fizes the point [0:1: 0 : 0], one of the
following cases occurs:

(1) f=y+s(z) for some polynomial s € k[z] of degree < 3;

(2) f=a(y+2%)+2

3) f=x+r2y,2) + r3(y, z) for some homogeneous r; € kly, z] of degree i;
(4) f=ay+yra(y, z)+ 2z for a homogeneous polynomial ro € kly, 2] of degree 2;
(5) f=xy?+ys(z) + z for a polynomial s € k[z] of degree < 2;

(6) f=ay(y+1)+s(y)z+t(y) for some polynomials s,t € kly] of degree <1

with s(0)s(—1) # 0.

Proof. Ifp =0, then f = q € k[y, 2], so Spec(k[z,y, 2]/(f)) = Al xSpec(kly, 2]/(f)),
which implies that Spec(ky, 2]/(f)) ~ A!. By Corollary 2.3.2, we may apply an
affine automorphism on y and z in order to be in case (1). We may thus assume in
the sequel that p # 0.

According to Lemma 2.3.3, we only need to consider the following two cases:
either p € k[y] or p = y + r(z) for some r € k[z] of degree 2.

Suppose first that p = y + r(z) for some r € k[z] of degree 2. By using the
(non-affine) automorphism (z,y, z) — (z,y — 7(2), 2) of A3, we get

Spec(k(z,y, 2]/(f)) = Spec(klz, y, 2]/ (xy + q(y — (2), 2))-

Then, Proposition 2.2.2 shows that ¢(y —r(z), z) = ay+ Az + p for some a € K[y, 2],
A € k™ and i € k. This gives

f=zp+qg=(x+3s)(y+r)+z+pu,

where s = a(y + 1, 2) € k[y, z]. As deg(r) = 2, we obtain that deg(s) < 1. Hence,
after applying the affine automorphism (z,y, z) — (x—s(y, 2), y, ), we may assume
that f is equal to z(y + r(z)) + Az + p. Using the affine automorphism (z,y, z) —
(z,y, A" (2 — p)), we obtain z(y + 1”(2)) + z for some ' = 7 ;2% € k[2] of
degree 2. After replacing y with y — o — p12z we get 2(y + po2?) + 2. We then
apply (2,y,2) — (uy 'z, g2y, z) in order to be in case (2).
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It remains to consider the case where p € k[y]. We distinguish the different
cases:

If p € k*, we may assume that p = 1 and after applying (z,y,2) — (z — qo —
q1(y, z)) we are in case (3), where qo,q1 € Kly, 2] are the constant and linear part
of g, respectively.

If p has one single root, we may assume that p = y* for some i € {1,2}. Then,
Proposition 2.2.2 shows that ¢(y, z) = ay + Az + p for some a € k[y, 2], A € k* and
u € k. After applying the affine automorphism (z,vy,2) — (z,y, \"1(z — u)) we
may assume that A =1 and p = 0.

If i« = 1, then f = zy + yr(y, z) + 2z for some polynomial r of degree < 2. Let
r1,70 € K[y, 2] be the homogeneous parts of degree 1 and degree 0 of 7, respectively.
We may apply the affine automorphism (z,y, 2) — (z —r1(y, 2) — 70, ¥y, 2) and thus
we may assume that r is homogeneous of degree 2. Hence, we are in case (4).

If i = 2, then f = xy? + yr(y,2) + z for some polynomial r of degree < 2.
Now, after applying a suitable affine automorphism of the form (x,y,z) — (z —
b(y, 2),y,2) we may assume that r € k[z] and thus we are in case (5).

We then assume that p has two distinct roots. We may assume that p = y(y+1).
Proposition 2.2.2 shows that ¢(y,z) = ay(y + 1) + sz + t for some a € kly, 2] of
degree < 1, and some s,t € k[y] of degree < 1 with s(0) # 0, s(—1) # 0. After
applying (x,y, z) — (z — a(y, 2),y, z) we are in case (6). O

Proposition 2.3.5 (Hypersurfaces isomorphic to A2 of degree < 3). Let f €
k[z,y, z] be an irreducible polynomial of degree < 3. If the surface Spec(klx,y, z]/(f))
is isomorphic to A2, then there is o € Aff(A3), such that one of the following cases
occur:

A) a*(f) =x+7r2(y, 2) +r3(y, z) for some homogeneous r; € kly, z| of degree i;
B) o*(f) =xy+yra(y,2) + z for a homogeneous ro € kly, 2] \ k[y] of degree 2;
C) a*(f) :$y2+y(z2+az+b)+zf0r some a,b € k.

Moreover, if f € k[x,y, 2| is one of the polynomials from cases (3)-(6) of Proposi-
tion 2.3.4, then we may in addition assume that o*(y) € kly].

Proof. By Corollary 2.1.2 we may assume that

f=zp+q

for some p, g € K[y, z] with deg(p) < 2 and deg(q) < 3. We go through the different
cases of Proposition 2.3.4.

(1): We exchange x, y and get f = z+s(z) and then we replace x with 4+ a+bz
for some a,b € k in order to be in case A).

(2): We exchange z, y and get f = y(z + 22) + 2 = 2y + yz? + z which is a
subcase of B).

(3) and (4) directly give A) and B), except if we are in case (4) with ry € k[y],
in which case we exchange z, z in order to be in case A).

(5): We have f = xy? + ys(z) + z for some polynomial s of degree < 2. We
distinguish three cases:

If deg(s) < 0, we have s € k. After the coordinate change (z,y, z) — (x,y, z2—sy)
and the exchange of z, z we are in case A).

If deg(s) = 1, we have f = xy? + y(az + b) + 2 for some a € k* and b € k.
We replace z,y,z with a(az +b), (y — 1)/a,z and obtain zy + yr2(y, z) + z where
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ro = yz+uy + vz +w for some u, v, w € k. After replacing x with z — uy — vz — w,
we may assume that o is homogeneous and still not in k[y]; this gives B).

If deg(s) = 2 we apply a homothety in z and y, and obtain C).

(6): We exchange = and z and get f = zs(y) + y(y + 1)z + ¢(y) for some
polynomials s,t € k[y| of degree < 1 with s(0)s(—1) # 0. If s € k, then s # 0
and after applying (z,y,2) — (s7'(z — t(y)),y, z) we are in case A). Otherwise,
we replace s(y) with y and get zy + u(y)z + v(y) where u,v € kly|, deg(u) = 2,
deg(v) < 1 and u(0) # 0. Hence, we get zy + ya(y, z) + Az + p with a € K[y, 2],
A € k™ and p € k. After replacing Az + p with 2z we get f = ay + yb(y,2) + 2
for some b € k[y,z]. When we write b as by + by + ba, where each b; € K[y, 2] is
homogeneous of degree i, we may replace x with & — by — by and obtain B), except
when by € k[y]: then we exchange x and z in order to be in case A).

Moreover, in cases (3)-(6) we see that the constructed affine coordinate change
maps k[y] onto itself. This shows the last statement. O

In the next corollary, we list several properties of the closure in P? of a hyper-
surface in A3 of degree 3 which is isomorphic to AZ.

Corollary 2.3.6. Let f € k[z,y,z] be a polynomial of degree 3 such that X =
Spec(klz, y, 2]/(f)) ~ A* and write f = fo + f1 + fo + f3 where fi € klx,y,z] is

homogeneous of degree i.

(1) If f3 defines a conic T and a tangent line L in P2, then the singular locus of
X C P? equals the point (TN L)eq.

(2) If f3 defines one line (with multiplicity 3) in P2, then fy is either zero or
defines some lines in P2 and all the lines given by f3 and fa have a point
in P? in common. Moreover, the singular locus of X C P is given by
w=fy=f3=0.

(3) If f3 neither defines a conic and a tangent line in P2, nor one line in P2,
then fs defines several lines in P2 and all these lines pass through the same
point g € P2. Moreover, q lies in the singular locus of X C P3.

Proof. Applying an affine automorphism, we are in one of the three cases A)-B)-C)
of Proposition 2.3.5. The affine automorphism induces an automorphisms of the
plane at infinity and thus an isomorphism between the curve in P2 given by f3 =0
and respectively r3(y, z) = 0, yra(y, 2) = 0 and y(zy + 22) = 0 where r; € k[y, 2] is
homogeneous of degree ¢ for ¢ = 1,2. We thus obtain two cases for f3 = 0, namely
a conic and a tangent line (1), or a set of lines through the same point: (2)-(3).
The distinction between (2) and (3) corresponds to ask whether the lines are all
the same or not. We study the three cases separately.

(1): Here we are in Case C) of Proposition 2.3.5. There exist thus ¢ € Aff(A3)
and a,b € k with f = ¢*(g) where g = zy? +y(22 +az+b)+2. Let G € k[w, z,v, 2]
be the homogeneous polynomial of degree 3 such that G(1,x,y, z) = g. The gradient
of G

96 96 06 oG
ow’ 0z’ Oy’ Oz
= (y(az + 2bw) + 22w, %, 22y + 2° + azw + bw?, y(2z + aw) + w?)

is equal to zero if and only if w =y = z = 0 and thus [0 : 1 : 0 : 0] is the only
singularity of the hypersurface G = 0 in P3.
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(2): Here we are in Case A) of Proposition 2.3.5. There exist thus 1 € Aff(A3)
and a homogeneous o € K[y, z] of degree 2 such that f = ¢*(h) where h =
x+1a(y,2) + 32, Let ¢ € GL3(k) be the linear part of 1. Then f3 = ¢*(y)® and
T2 =r2(p*(y), ¢*(2)) + 30¢* (y)? where ¥*(y) = ¢*(y) + 6. Thus fa, f3 € k[s, t] for
s = ¢*(y), t = ¢p*(2) and the first claim follows. Let H € k[w,z,y, z] such that
H(1,z,y,z) = h. The gradient of H

OH O0H 0H OH ary ors
— =2 2 == 2 22
(871)7 o ) ay ) 9z ) ( xw—i—rg(y,z),w , W 8y (y7z)+3y , W 9z (y72)>

is equal to zero if and only if

w=y=ra(y,z) =0 if char(k) # 3
w =ry(y,z) =0 if char(k) =3

Since the intersection of H = 0 with the plane w = 0 at infinity only consists of
the line w = y = 0, the singular locus of H = 0 is equal to w =y = r2(y,2) =0
(where k has any characteristic). Note that this singular locus is mapped via ¢!
onto w = s = ra(s,t) + 39> = 0 and thus the second claim follows.

(3): The first claim directly follows from Proposition 2.3.5 and we may assume
(after an affine automorphism) that f is as in case A) or in case B). In both cases
the common intersection point of the lines defined by f5 is [0:1: 0 : 0] which is a
singularity of X C P3 by Lemma 2.1.1. |

Corollary 2.3.7. Let [ € klz,y, 2] be an irreducible polynomial of degree 3 such
that the hypersurface X = Vys(f) is isomorphic to A% and such that the closure of
X inP3 contains the line w = y = 0. After applying an affine automorphism of A3
that preserves the line w =y = 0, we obtain one of the following cases:

a) f=az+1ray,2)+ysa(y, z) for some homogeneous ra, s2 € kly, z] of degree
2, with so # 0;

b) f=ay+yra(y,z) + 2z for a homogeneous ro € kly, z] \ kly] of degree 2;

¢) f=uzz+yzri(y,z)+y+dz for some homogeneous r1 € kly, z]\ {0} of degree
1 and d € k;

d) f=uxy?>+y(z%+az+b)+ z for some a,b € k;

Proof. There exists an affine automorphism that sends f onto a g € k[, y, z] wich
is one of the polynomials from Proposition 2.3.5. We then look at the image ¢ of
the line w = y = 0 in the plane at infinity Hoo = {[w: 2z :y: 2] € PP | w = 0} and
apply an affine automorphism to send it back to w =y = 0.

In case A), g = = + r2(y, 2) + r3(y, 2) for some homogeneous r; € K[y, z] of
degree i. As deg(g) = 3, we get r3 # 0, and the line £ is given by p1(y, 2) = 0 for
some homogeneous polynomial p; € k[y, z] of degree 1 that divides r3. We apply
an element of GL2(k) acting on y, z and obtain a).

In case B), g = 2y +yra(y, z) + z for a homogeneous polynomial ro € k[y, 2]\ k[y]
of degree 2. The line ¢ is given by p1(y,2) = 0 for some homogeneous polynomial
p1 € K|y, z] of degree 1 that divides yra(y,z). If £ is the line y = 0 we get b).
Otherwise, the line is ay + Sz with 8 # 0 and g = zy + y(ay + 82)s1(y,2) + 2
for some homogeneous degree 1 polynomial s; € k[y, z] \ {0}. We apply a linear
coordinate change and send ay + 5z and y respectively to y and z; this sends z
onto vy + §z with v € k*, § € k, and sends g onto zz + yzs)(y,2) + vy + 6z for
some homogeneous degree 1 polynomial s} € k[y, z] \ {0}. We replace y with v~ly
and get ¢).
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In case C), g = xy? + y(2% + az + b) + 2 for some a, b, € k and thus the line £ is
y = 0. Hence we obtain d). O

Corollary 2.3.8 (Hypersurfaces isomorphic to A% of degree 2). Let f € k[z,y, 2]
be an irreducible polynomial of degree 2 and assume that X = Spec(klz,y, z]/(f))
is isomorphic to A%. Then, after applying an affine automorphism, one of the
following cases occur:

(1) f=z+y*

(2) f=o+yz.

Proof. Since f is of degree 2, it follows from Proposition 2.3.5 that f is equal to
x + r2(y, z) for a non-zero homogeneous polynomial of degree 2 up to an affine
automorphism. Depending whether ro(y, z) = 0 has one ore two zeros in P! we are
in case (1) and case (2), respectively. O

3. FAMILIES OF CUBIC HYPERSURFACES OF AB, ALL ISOMORPHIC TO A?

In this section, we study families of cubic hypersurfaces of A3 that are isomorphic
to A2, In order to to this we begin with linear systems on P2.

3.1. Linear systems on P2. To study families of hypersurfaces of A2, it is natural
too look at the behaviour at infinity. In the following, for d > 0, we denote by
k[z,y, z]4 the vector space of homogeneous polynomials of degree d in k[z, y, 2] and
we consider it as an affine space (of dimension (dgz)). In particular, k[z,y,z]q
carries the Zariski topology. Moreover, for any vector space V, we let P(V) =
Projy (SymV™*) be the projectivisation of the symmetric algebra SymV* of the dual
vector space V*.

Lemma 3.1.1. Let f, g € k[z,y, z] be two homogeneous polynomials of degree d > 1
without common factor. The following are equivalent:

(1) The polynomial Af + ug is divisible by a linear factor, for all A, u € k.

(2) The polynomial A\f + g is divisible by a linear factor, for infinitely many
A€k

(3) There are two linear polynomials s,t € klx,y, z]1 such that f, g € k[s,t].

Proof. Observe that the subset Ry C k[z,y, z]q of elements that are divisible by a
linear factor is closed. Indeed, P(Ry) is the image of the morphism P(k[x, y, z]1) X
P(k[z,y, z]a—1), (p,q) — pq. Hence, the set

{IN:u] €P" | Af 4 pg is divisible by a linear factor }

is a closed subset of P!. Thus it is infinite if and only if it is the whole P!. This
gives the equivalence (1) < (2).

Let us prove (3) = (1). As f and g have no common factor, s,¢ are linearly
independent. We apply a linear coordinate change and may assume that s = z and
t = y. Now, it is enough to remark that every homogeneous polynomial of k[x, y]
is a product of linear factors.

It remains to prove (1) = (3). We prove this by induction on d = deg(f) =
deg(g). The case where d = 1 holds by choosing s = f and ¢ = g. We consider
the dominant rational map n: P2 --» P!, [z : y : 2] = [f(z,y,2) : g(x,y,2)]. If
k(g) is separably closed in k(Z, £), then a general fibre of 9 is irreducible [FOV99,
Theorem 3.3.17, page 105] (but not necessarily reduced). After replacing f, g with
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another basis of kf @ kg, we may thus assume that the zero locus of f and g
are irreducible curves in P2. The assumption (1) implies that two linear factors
s,t € k[z,v, 2] exist such that f = s? and g = t?. This gives (3). If k(%) is not
separably closed in k(Z, £), then there is a rational map ¢ (where a, b € k[z,y, 2] are
homogeneous of the same degree without common factor) such that k(ﬁ) Ck(3)is
a proper algebraic field extension, by the Primitive Element Theorem. Hence, we
may decompose 1 as = von', where v: P! — P! is a finite morphism which is not
an isomorphism and n’: P2 --s P! is given by [z : y : 2] = [a(z,y, 2) : b(x, vy, 2)].
Note that deg(a) = deg(b) < d, since v is not an isomorphism. As infinitely many
fibres of 7 contain lines, the same holds for 7', so (2) holds for a and b. By induction,
we find two homogeneous linear polynomials s,t € k[z,y, z] such that a,b € Kk[s, ¢]
and hence f, g € k[s, t] too. O

Lemma 3.1.2. Let d > 2 and let V C klz,y, z]a be a vector subspace such that
the ged of all elements of V' is 1, and such that each element of V is divisible by a
linear factor. Then, one of the following holds:

(1) There are two linear polynomials s,t € klx,y, z]1 such that V C k[s,t].
(2) The degree d is a power of char(k) =p >0, and V = kx? © ky? @ k<.

Proof. Since the ged of all elements in V' is 1, we get dimV > 2. Suppose first
that every element of V' is a d-th power in k[z,y, z]. Then up to a linear coordinate
change we may assume that z%,y? € V. Since ¢ -y is a d-th power and is divisible
by z —y, we get 2% —y? = (x —y)?. As d > 2, this implies that char(k) = p > 0 and
that d is a power of p. We get (1) if V is generated by ¢ and y? and (2) otherwise.

Suppose now that some element f € V is not a d-th power. By Lemma 3.1.1, we
may apply a linear coordinate change and may assume that f € k[z,y]. For each
element g € V that has no common factor with f, there exist two linear polynomials
s,t € k[x,y, z]; such that f,¢g € k[s,t] by Lemma 3.1.1. As f € k[z,y] is not a
power of an element of klx,y,z]1 and as f € k[z,y] is homogeneous, there are
linearly independent p1,q; € k[z,y]; such that f is divisible by the product p1q;.
Since k[s, t] is factorially closed in k[z,y, 2] and as f € k[s, t], we get p1, 1 € Kk[s, 1]
and thus z,y € k[s, 1], i.e. k[z,y] = k[s,t]. In particular, g € k[z,y]. Since the set
of elements g € V that have no common factor with f is Zariski open in V, this set
spans V as a k vector space and so V' C k[z,y]. O

Lemma 3.1.3. Assume that char(k) = 2 and let g1,...,9, € k[z,y]2, such that
kg1 +- -+ kg, = kxS ky®. If s >0 and ha, ..., hy, € k[z,y]s are such that >, N\ig;
and Y, \ih; have a common non-zero linear factor for all (A1,...,\,) € k", then
either h; = 0 for all i or s > 2 and there exists h € k[x,y]s—2 \ {0} with h; = hg;
for all 1.

Proof. Note that n > 2. After a linear coordinate change in x, y and after replacing
hi,...,h, and g¢1,...,g, with certain linear combinations we may assume that
g1 =% and g; = y* for all i = 2,...,n. For each i € {2,...,n} and each «, 8 € k,
(ax + By)? = a®g; + B%g; and a®hy + B%h; have a common non-zero linear factor,
so ax + By divides a?hy + $2h;, which means that o?hy (3, @) + 5%h;(B,a) = 0. As
this last equation is true for all a, 8 € k, the polynomial y%h; + x2h; is zero. We
get a polynomial h; such that hy = h;z? and h; = h;y?. The equality hy = h;a>
yields that h; is independent of i, so writing h = h; gives the result. (I
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Lemma 3.1.4. Assume that char(k) > 0 and denote by ¢: P? — P? the Frobenius
endomorphism.

(1) For each A € PGLg, there exists v € P? such that Ap(v) = v.
(2) For each B € PGLg, there exists v € P? such that ¢(Bv) = v.

Proof. We denote by 6: PGL3; — PGL3 the endomorphism that sends a matrix C
to the matrix obtained from C by taking the p-th power of each entry.

We will only prove (1), as (2) follows from it by choosing A = 6(B). We then
have to show that

I'={A€PGL; | Ap(v) = v for some v € P? }
is equal to PGL3. We consider
M = {(A,v) € PGL3 xP? | Ag(v) =v }

and obtain I' = (M), where m1: M — PGLj3 is the first projection. As m
is proper, we get that I' is closed in PGL3 and thus we only have to show that
dim " = 8. We observe that the identity matrix I € PGL3 belongs to I'" and that
77 H(I) = P?(F,) is finite. By Chevalley’s Upper Semi-continuity Theorem for the
dimension of fibres [Gro66, Corollaire 13.1.5], the set { A € I' | dim7; ' ({A}) > 1}
is closed in I'. It then suffices to show that M is irreducible and of dimension 8.
To show this, we will prove that the second projection my: M — P? is a locally
trivial P-bundle, where P is the parabolic subgroup of PGLg3 that fixes [1: 0 : 0].
Note that mo: M — P? is PGLs-equivariant with respect to the natural action
on P? and the PGL3-action on M given by B - (A,v) = (BA#(B)~!, Bv). We
then only need to show that 7y is a trivial P-bundle over the open subset U =
{Ipo: p1 :p2] €P? | pg #0}. We consider the morphism h: U — PGL3 given by

po 0 0
po:piip2) = [P po O,
p2 0 po

which satisfies A(p)([1:0:0]) = p for each p € U. We get a V-isomorphism

PxV = ' (V)
(4,p) = (h(p)AO(h(p)~),p),
whose inverse sends (4, p) onto (h(p)~LA0(h(p)),p). O

3.2. Affine linear systems of affine spaces. It turns out that the following
definition is very useful for us:

Definition 3.2.1. Let fi,..., f, € k[z1,...,24]). We say that a morphism

Al — A"
(1, 2q) +— (fi(z1, - xd)y oy fulT1, o, 2d))

is an affine linear system of affine spaces if for each A\g € k and each (A1,...,\,) €
k™ \ {0} the polynomial Ao + A1f1 + ... + A, f, is not constant and the corre-
sponding hypersurface in A? is isomorphic to A?~!. This is equivalent to say
that the preimage of every affine linear hypersurface in A™ under the morphism
(fi,---s fn): A% — A" is isomorphic to A?~1,
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We call two affine linear systems of affine spaces (f1,..., fn), (91, .-, 9n): AY —
A™ equivalent if there exist affine automorphisms a € Aff(A?), 3 € Aff(A") such
that

(91»~~~,9n>:ﬁo(f1,...7fn)oo¢,

If the preimage of every linear hypersurface in A” under the morphism f =
(fi,---s fn): A% — A™ is isomorphic to A~ then we say that f is a linear system
of affine spaces. Hence, every affine linear system of affine spaces is a linear system
of affine spaces.

Remark 3.2.2. Every automorphism f: A™ — A™ is an affine linear system of affine
spaces and two automorphisms f,g: A™ — A" are equivalent, if they are the same
up to affine automorphisms at the source and target.

Remark 3.2.3. Note that the notions “affine linear hypersurface” and “affine linear
system of affine spaces” are not intrinsic notions of the affine space and of morphisms
between them. They depend on the choice of coordinate systems of the affine spaces
(up to affine automorphisms). Therefore, as mentioned in the introduction, we
always make a particular choice of the coordinates of the affine spaces involved.

Ezample 3.2.4. Let f1,...,fn € k[z1...,24]. If deg(fi) < 1 for each 4, then f =
(fi,--os fn): AY — A" is called an affine linear morphism. In case f is surjective,
it is an affine linear system of affine spaces.

Next, we list some basic properties of affine linear systems of affine spaces.

Lemma 3.2.5. Let f1,..., fn € k[x1,...,24] be polynomials and let f = (f1,..., fn)
be the corresponding morphism A¢ — A™.

(1) If f = (f1,---, [n) is an affine linear system of affine spaces and if f;1 de-
notes the homogeneous part of f; of degree 1 fori =1,...,n, then fi1,..., fn1
are linearly independent over k in klx1,...,xq]1. In particular, n < d.

(2) Assume that f is an affine linear system of affine spaces. Then for all
automorphisms ¢ € Aut(A?) and all « € AfF(A™), the composition ao f o
w: A? — A" is an affine linear system of affine spaces.

(3) Assume that deg(f) = maxi<i<pndeg(f;) = 1. Then f is an affine linear
system of affine spaces if and only if f: A® — A™ is surjective. In particular,
if d > n, then up to equivalence there is exactly one affine linear system of
affine spaces A® — A™ of degree 1.

(4) If f1,..., fn € K[z, y, 2] are of degree < 3, then (f1,..., fn): A®> — A" defines
a linear system of affine spaces if and only if it defines an affine linear system
of affine spaces.

(5) Let m: A™ — Al be a surjective affine linear morphism. If f is an affine
linear system of affine spaces, then the composition wo f: AT — Al as well.

(6) Let p: A” — A? be a surjective affine linear morphism. If f is an affine
linear system of affine spaces, then fop as well. If d < 3 and if fop is an
affine linear system of affine spaces, then [ as well.

(7) Assume thatd=n. If f = (f1,..., fn): A™ = A" is an affine linear system
of affine spaces, then the determinant of the Jacobian of f lies in k*.

Proof. (1): If there exists (A,...,A,) € k™ \ {0} such that > ;" X\;ifi1 = 0, we
write A\g = >_1; A fi(0) € k and obtain that the polynomial Y ;" A;f; — Ao is
either 0 or defines a singular hypersurface of A™. In both cases Y. | A f; — Ao does
not define an A4~ in A%
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(2): This follows directly from the definition.

(3): If f is surjective, then the statement is clear. If f is not surjective, then the
image of f is contained in an affine linear hypersurface in A™ and thus f is not an
affine linear system of affine spaces.

(4): This follows from Corollary 2.2.3.

(5): This follows, since the preimage of an affine linear hypersurface under  is
again an affine linear hypersurface.

(6): Let H C A™ be an affine linear hypersurface. Then the preimage (fop)~*(H)
is isomorphic to f~1(H) x A"~%. Hence, the first claim follows. On the other hand,
as f~1(H) has dimension d — 1 and since Zariski’s Cancellation Problem has an
affirmative answer for the affine line (see [AHET72, Corollary 2.8|) and the affine
plane (see [Fuj79, MS80] and [Rus81, Theorem 4]), the second claim follows.

(7): This follows from Lemma 3.2.6 below. O

The next Lemma is essentially due to Derksen, see [vdES97, Lemma 2.3]:

Lemma 3.2.6. Let f1,...,fn € klz1,...,2,) and let f = (f1,..., fn): A" — A™.
Then the determinant of the Jacobian of f lies in k* if and only if the preimage of
each affine linear hypersurface under f is a smooth hypersurface in A™.

Proof. The determinant of the Jacobian of f does not lie in k* if and only if there
exist A1,..., A\ € k, not all equal to zero, and there is a point a € A™ such that

Z)\iafi(a)zo foreach j=1,...,n.
par e

However, this last condition is equivalent to the existence of some Ay € k and some
(M, ..o, An) € K™\ {0} such that either A\g + A1 f1 + ...+ A\ fr is zero or defines a
singular hypersurface in A”. (I

In the next Proposition, we study affine linear systems of affine spaces A2 — A?
of degree < 3 up to affine automorphisms at the source and target.

Proposition 3.2.7. Let f1, fo € klx,y] of degree < 3 such that f = (f1, f2): A2 —
A? is a linear system of affine spaces. Then, up to affine coordinate changes at the
source and target, we get f = (v + q(y),y) where q € k[y].

Proof. By Corollary 2.3.2, we may assume after an affine coordinate change in (z, y)
that f; = o + q(y) for some ¢ € k[y] of degree < 3. Set ¢ = (x — q,y) € Aut(A?).
The determinant of the Jacobian of (z, fo(z — ¢,y)) = f o is a non-zero constant
(due to Lemma 3.2.5(7)) and it is equal to the y-derivative of fo(x — ¢,y). Hence,
fo(x — q,y) = ay + p(x) for some a € k™ and p € k[z], i.e. fo = ay + p(z + ).
After scaling fo we may assume a = 1. If deg(q) < 1, then ¢ € Aff(A?) and since
fov = (z,y+ p(x)), the result follows after conjugation with (z,y) — (y,z). If
deg(q) > 2, then deg(p) < 1, since otherwise deg(f2) = deg(p) deg(q) > 4. Thus
o = (z,y — p(x)) € Aff(A?) and since o f = (z + q(y), y), the result holds. O

3.3. Linear systems of affine spaces of degree 3 with a conic in the base
locus. In this subsection we study linear systems f: A3 — A™ of degree 3 such
that the rational map P3 --» P" which extends f contains a conic in the base locus.
In fact, this study will be important in order to prove that every automorphism of
degree 3 of A3 can be brought into standard form (Proposition 3.6.1 below). As
explained in the introduction, we say that an affine linear system of affine spaces
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f: A3 — A™isin standard form if f = (xp1+qu, ..., TPy +qn) for some polynomials
Pi> 4 € k[% Z]

Proposition 3.3.1. Let f1,..., fn € K[z, y, 2] be polynomials and assume that f =
(fi,---s fn): A3 — A" is a linear system of affine spaces of degree 3 such that there
is a homogeneous irreducible polynomial of degree 2 that divides the homogeneous
parts of degree 3 of f1,..., fn. Then f is equivalent to a linear system of affine
spaces in standard form.

Proof. For i =1,...,n, we write f; = Z?:o fi,; where f; ; € k[z,y,2];. Applying
an automorphism of A" we may assume that f; 3 # 0 for each i. By assumption,
there is an irreducible conic I' C P2 that is contained in the zero locus of fi3, for each
i€ {1,...,n}. Moreover, for each i, f; defines an A? inside A3, so the polynomial
fi3 defines in P2 the conic I' and a tangent line to that conic in a point ¢; and the
closure in P2 of the hypersurface given by f; is singular at ¢; (see Corollary 2.3.6).
If all the points ¢1,..., ¢, are the same, we can assume that these are [1: 0 : 0],
and obtain the result by Lemma 2.1.1. We thus assume that two of the ¢;’s are
distinct and derive a contradiction. We may assume that g; # ¢2 by applying a
permutation of A”. Applying automorphisms of A3, we may moreover assume that
fi = xy® + y(2% + az + b) + z for some a,b € k (see Proposition 2.3.5). Hence,
q1 =1[1:0:0], T is the conic 2y + 22 =0 and g2 € '\ {q1}, 50 g2 = [~&% : 1 : €] for
some £ € k. Replacing fo with fo\ for some A € k™, we obtain

fra=ylzy+2°), foz = (v —y+22)(ay+27).

For each y € k, the polynomial f>+ % f1 defines a hypersurface X,, C A® and its
homogeneous part of degree 3 is (z—&2y+u?y+2£2) (zy+22). By Corollary 2.3.6(1),
the line ¢, given by = — &2y + p?y + 2¢z is tangent to I'. Choosing p = ¢ when
& # 0 and choosing g = 1 when £ = 0 gives char(k) = 2. We may then replace f,
with fo + &2 f1 and assume that & = 0. The point of tangency of I and ¢,, is then
pu=[2 1l

Suppose first that fi 2 = fa.2 = 0. We obtain

fi=ylay+22) +by+z, fo=aley+2?)+az+By++22+0

for some «, 3, 7,3 € k. The polynomial fo +~%f; = (z +~%y)(zy + 22) +ax + (B +
by?)y+§ defines an A2, so the same holds when we replace z and z with z+~2y, z+
vy respectively, hence for the polynomial z(xy + 22) + azx + (8 + (b + a)y?)y + 9,
impossible by Proposition 2.2.2 (applied to the polynomial obtained by exchanging
x and y).

We now assume that f; o and f o are not both zero. There is an affine automor-
phism of A3 that sends fo+ p?f1 onto h = xy? +y(2%2 +cz +d) + z for some ¢,d € k
(Proposition 2.3.5). Thus, fo + u2f; is obtained by applying an element of GL3(k)
to h' = h(x + 1,y + €2,z + £3) for some 1,623,653 € k. As b/ = h{,+ b} + hly + h}
where b, € k[z,y,2]; and h} = y(xy + 22), hly = 1y + cyz +£222 are both singular
at [1:0:0], the homogeneous part of degree 2 of fs + u?f1 is singular at p,,.

As fi2 and fo o are not both zero and the set {p, | 1 € k} is not contained in a
line, there is no linear factor that divides both f; » and f 2. However, as f3 o +,u2f12
is divisible by a linear factor for each u € k, there exist s,t € k[z, y, z]; such that
f1.2, fo,2 € ks, t](Lemma 3.1.1). Remembering that fi 2 = ayz, we prove first that
a = 0. Indeed, otherwise k[s, t| = k[y, 2] and fa 2+ u?f12 € K[y, 2] is singular at p,
so is a multiple of (uy + 2)? = p2y? + 22, impossible as it contains yz for infinitely
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many p. Now that a = 0 is proven, the polynomial fa5 + p?f12 = fao is singular
at each point p,, so fa2 = 0, in contradiction with the above assumption. (I

3.4. Affine linear systems in characteristic 2 and 3. We call a morphism
f:Y = X an Al-fibration if each closed fiber is (schematically) isomorphic to Al.
We moreover say that the Al-fibration f is locally trivial in the Zariski (respectively
étale) topology if for each z € X there is an open neighbourhood U C X of =
(respectively an étale morphism U — U’ onto an open neighbourhood U’ of x in
X) such that the fiber product U x x Y — U is isomorphic to U x A! over U.

Recall from the introduction, that an Al-fibration f: Y — X is called trivial if
there exists an isomorphism ¢: X x A' — Y such that the composition foy: X x
Al — X is the projection onto the first factor.

An A'-bundle is then simply an A!-fibration that is locally trivial in the Zariski
topology.

We now give two examples of linear systems of affine spaces of degree 3 that are
not equivalent to linear systems in standard form.

Lemma 3.4.1. Assume that char(k) = 2 and let
f=z+2249y° and g=y+a°

Then, © = (f,g): A3 — A2 is an affine linear system of affine spaces, which is
not equivalent to an affine linear system in standard form. Moreover, 7 is an A'-
fibration that is not locally trivial in the étale topology.

Proof. Tt XA # 0, then A2 f +g = A2z +y+ (2 + X2)? 4+ A%y defines an A% in A3, since
the linear polynomials A2z + y,  + Az and y are linearly independent in k[z, y, z];.
On the other hand, both f and ¢ define an A? in A3 as well. This implies that
7 = (f,g): A> — A? is a linear system of affine spaces and thus an affine linear
system of affine spaces by Lemma 3.2.5(4).

Let X,Y C P2 be the closures of the hypersurfaces in A® which are given by f
and f + g, respectively. By Corollary 2.3.6(2) the singular locus of X is equal to
[0:1:0:0] and the singular locus of Y is equal to [0 : 1 : 0 : 1]. In particular,
X, Y have no common singularity and thus, 7 is not equivalent to an affine linear
system in standard form by Lemma 2.1.1.

It remains to see that all closed fibres of 7 are isomorphic to A! but that = is
not locally trivial in the étale topology. To simplify the situation, we apply some
non-affine automorphisms at the source and the target. We first apply (z,y +22, 2)
(at the source) to get (z+ 22+ (y+22)3,y). Applying (z+y3,y) at the target and
(x,y,z + 23 + xy) at the source gives

¢=(x+aty+ 22 y): A> = A%,
The fibre over a point (xg,%0) with yo = 0 is isomorphic to Al via its projection
onto z. The fibre over a point (xq,yo) € A? with g # 0 is isomorphic to Al as one
can apply z — z + \/yT)xQ to reduce to the previous case.

It remains to see that ¢ is not locally trivial in the étale topology. The fibre F' of
¢ over the (non-closed) generic point of {z = 0} is the scheme given by z +z%y + 22
inside Ai(y) = Spec(k(y)[z, 2]). By [Rus70, Corollary 2.3.1 and Lemma 1.2], F
is non-isomorphic to the affine line All((y) over k(y), however after extending the
scalars to k(,/y) we get

F Xspec(k(y)) Spec(k(v2)) ~ A11<(\/y) .
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By [Rus76, Lemma 1.1] there doesn’t exist any separable field extension k(y) C K
such that F' Xgpec(k(y)) Spec(K) ~ Al.. Hence, ¢ and thus 7 are not locally trivial
in the étale topology.

O

Lemma 3.4.2. Assume that char(k) =3 and let
f=a+224+9y> and g=z+2a°

Then, © = (f,g): A3 — A2 is an affine linear system of affine spaces, which is
not equivalent to an affine linear system in standard form. Moreover, 7 is an A'-
fibration that is not locally trivial in the étale topology.

Proof. For each )\ € k, the polynomial f + X3g = A3z + 2 + 22 + (y + Ax)? defines
an A% in A%: replacing y with y — Az and = with £ — A3z gives x + 22 +y3. On the
other hand, g also defines an A2 in A3. This implies that 7 = (f,g): A3 — A? is
a linear system of affine spaces and thus an affine linear system of affine spaces by
Lemma 3.2.5(4).

Let X,Y C P2 be the closures of the hypersurfaces of A3 which are given by f
and g, respectively. Then the singular locus of X is only the point [0:1:0: 0] and
the singular locus of Y is the line w = « = 0, by Corollary 2.3.6(2)). Hence, (f,g)
is not equivalent to an affine linear system in standard form (see Lemma 2.1.1).

It remains to see that all closed fibres of 7 are isomorphic to A but that =
is not a trivial Al-fibration. To simplify the situation, we apply some non-affine
automorphisms at the source and the target. We first apply (z,y — 22,2 — 23) (at
the source) to get (z + y> + 22 + 232, 2), then apply (z — 4%, y) at the target to
obtain

b= (x+y*+2%2,2): A3 - A%,
The fibre over a point (xg,%) with yo = 0 is isomorphic to Al, via its projection
onto y. The fibre over a point (g, yo) € A% with yo # 0 is isomorphic to A!, as one
can apply ¥ — y — 3oz to reduce to the previous case.

Now, the fibre F of ¢ over the generic point of {z = 0} is the scheme given by
o +y* + 2%z inside A{ ) = Spec(k(2)[z,y]). Using again [Rus70], we find the same
way as in the proof of Lemma 3.4.1, that there exists no separable field extension
k(z) € K such that F' Xgpec(k(z)) Spec(K) ~ Al however

F XSpec(k(z)) Spec(k(%)) ~ All{( ¥z) -
This implies again, that neither ¢ nor = is locally trivial in the étale topology. [

We now prove that these two examples of linear systems are unique in some
sense (see Lemma 3.4.4 and 3.4.5 below).

Lemma 3.4.3. Let £1,09,05 € klx,y,z]1 be three linear polynomials such that {s
and €3 are linearly independent. Then, 20 (¢;)" defines an A2 in A® if and only
if £1,05, €3 are linearly independent.

Proof. 1f £1,05,¢3 are linearly independent, we may apply an element of GL3(k)
and assume that ¢, = z, {5 = y, {3 = 2. Thus, Z?zl(&)i =z + 4% + 23 defines
an A% in A3. Otherwise, we may assume that ¢, = ax + by, €y = 2, {3 = vy, SO
the hypersurface of A% given by 2% | (¢;)* = 0 is isomorphic to I' x Al, where
I' ¢ A? is the curve given by azx + by + 22 + y> = 0. It remains to see that I is
not isomorphic to A! (by the positive answer to Zariski’s Cancellation Problem,
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see [AHET2, Corollary 2.8]). Indeed, the closure of T' in P? would otherwise be an
irreducible curve singular at infinity, which is here not the case. (I

Lemma 3.4.4. Assume that char(k) =2 and let f = (f1,..., fn): A3 — A" be an
affine linear system of affine spaces. Suppose that f; = Zj’:o fij € Kz,y,z] for
each i € {1,...,n}, where f; ; € klz,y,z]; and that

Spank(fl’?” T >fn,3) = kyg and Spank(f1,27 s 7fn,27 y2) = kﬂ?2 + ky2 + kZQ.

Then, n = 2 and f is equivalent to the linear system (z + 22 + y3,y + 22) of
Lemma 3.4.1.

Proof. As span(fi2,..., fn2,y?) = ka? + ky? + kz?, we have n > 2. Applying
a linear automorphism of A", we may assume that fi3 = y® and that fiz3 = 0
for i > 2. We may moreover assume that span(fi2, f22,y%) = ka? + ky? + kz?
by possibly adding multiples of f;, ¢ > 2 to f; and then permuting the f;, i > 2.
Hence, fi2 = 3 + ay? and foo = €3 + By?, where (1,05 € k[z,2]; are linearly
independent and «, 8 € k. Applying a linear automorphism at the source that fixes
y, we may reduce to the case where fi 2 = 22 and foo = 22. We may moreover
assume that f; o = 0 for each %, by applying a translation at the target.

We then choose a, b, c,d € k such that fi 1 = ax+bz mod ky and fo1 = cr+dz
mod ky. For each A € k, the polynomial

fi+ X fa=((a+ Xz + (b+ Nd)z + Cy) + (2 + Az)* +

defines an A% in A% (where ¢ € k depends on \). This implies that ((a + A\?c)x +
(b+ A2d)z + Cy), y and z + Az are linearly independent (Lemma 3.4.3), and thus
that (a + A?c) + (b + A2d)\ # 0. As this is true for all A\, we obtain a # 0 and
b=c=d=0,s0 fi = ax+ &y + 22+ 9> and fo = vy + 22 for some £, v € k. As f,
defines an A? in A3, we have v # 0. Applying = — /vx at the source and replacing
f2 by v f5, we may assume that v = 1. We then replace f; with f; + £f2 and 2
with z + /€x to assume & = 0. This gives (f1, fo) = (az + 22 + 43,y + 22). After
replacing x,y, z with pux, u?y, u3z at the source where u € k is chosen with u® = a
and after replacing fi, fo with f1/u8, fo/pu?, respectively, we may assume further
that a = 1. This achieves the proof if n = 2.

It remains to see that n > 3 leads to a contradiction. We add a multiple of f5 to f3
and may assume that f3 o is equal to 2y? +722% = (ey+72)? for some ¢, 7 € k. For
each \ € k, the polynomial A2 f1+ fo+ f3 = (\2o+y+ f31)+(z+ey+(A+7)2)2+A%y3
defines an A% in A3. Hence, for each A € k*, the polynomials Az + y + f31,
z 4+ ey + (A4 7)z and y are linearly independent (Lemma 3.4.3). Writing f3; =
ax + Bz + vy, with a, 8,7 € k, the polynomials

(N +a)z+Bzand x+ (A +7)z

are linearly independent, so 0 # (A2 + a)(A+7) + 8 = A3 + A7 + Aa + (aT + B),
for each A € k™. Hence, « = 7 = 8 = 0, which yields f3 € k[y]. As f3 defines an
A2, we obtain f3 = vy with v € k*. But then fo + v~ !f3 = 22 does not define an
A?, contradiction. O

Lemma 3.4.5. Assume that char(k) = 3, let f1,..., fn € k[z,y,2] of degree < 3
such that f = (f1,..., fa): A3 — A" is an affine linear system of affine spaces
and that the linear span of the homogeneous parts of degree 3 of the fi,..., fn is
a subspace of dimension > 2 of kx> @ ky® @ kz3. Then either f is equivalent to a
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linear system in standard form or n = 2 and f is equivalent to the linear system
(z+ 22+ 93 2+ 23) in Lemma 3.4.2.

Proof. Let f; ; € k[z,y, z] be the homogeneous part of degree j of f; fori =1,...,n,
and let us define V; = spany (f1,5,. .., fn,;) C klz,y, 2]; for each j. By assumption,
Vs C ka? @ ky?® @ k23, so >_ N f; 3 is a third power for all (A1,...,\,) € k™. We
may moreover assume that Vo = 0 by applying a translation at the target.

It follows from Corollary 2.3.6(2) that for each (A1,...,\,) € k™ such that
> > Aifis # 0 (which is true for a general (A1,...,\,)), the polynomial Y A;f; 2 is
either zero or defines a conic in P? that is singular on a point of the triple line
defined by > X fis.

Suppose first that ged(V2) = 1, and thus that dim Vo > 2. Lemma 3.1.2 gives
two polynomials s,t € k[z,y, z]; such that V5 C k[s,¢]. Changing coordinates on
A3, we may assume that s = y and t = 2. For general (A1,...,\,) € k", the
hypersurface in P? given by the homogeneous polynomial Y A, fi o is only singular
at the point p = [1: 0: 0] € P? (as char(k) # 2), which is on the triple line defined
by Y Aifis. This implies that V3 C ky® & k23, so f is a linear system in standard
form.

We may now assume that a linear polynomial h € k[z,y, z]; divides each element
of V5. Applying an element of GL3 at the source, we may thus assume that h = z.
If a point p € P? is such that all elements of V5 and V3 vanish at p, we apply
an element of GL3 at the source to assume p = [1 : 0 : 0] and obtain that f is
in standard form. Hence, we may assume that the elements of V3 do not share a
common zero on the line z = 0.

We now prove that z? divides f;2 for each i € {1,...,n}. We suppose the
converse to derive a contradiction. Applying a general element of GL, at the
target, we obtain that f; o is not a multiple of 22 and that fi,3 and fa3 do not
share a common zero on the line z = 0. Choosing ¢1,¢> € k[z,y, 2]1 such that
fiz =03 and f13 = £3, the elements (1, (s, z are linearly independent. We may
thus apply an element of GL3 and assume that f1 3 = 2% and fa3 = y3. We write
fi2 = z(ax +by +cz) foo = zg for some a,b, c € k with a, b not both equal to zero
and g € k[z,vy,2];. For each A € k, the polynomial f; + A3f, defines an A? in A®
and as f13+ A3 fa3 = (z + \y)3, the hypersurface in P? given by the homogeneous
polynomial f1 2+ A3fa2 = z(az + by + cz + A3g) is singular at a point py of the
line in P? given by = + Ay = 0 (Corollary 2.3.6(2)). This yields py = [~ :1: 0],
and thus —Xa +b+ A3g(—\, 1,0) = 0. This being true for each A\, we get a = b = 0,
giving the desired contradiction.

We now show that dim(V3) = 2. If dim(V3) = 3, we may assume (f1,3, f2.3, f3.3) =
(23,93, 23). By Lemma 3.1.4, there exists (A1, A2, A3) # (0,0,0) and € # 0 such
that > A2 f;1 = efq, where 1 = Az + Aoy + A32. Hence, the polynomial > A3 f;
is equal to el + vz? + (51)3 for some v € k and does not define an A? in A3: it is
reducible if v = 0 or if z and #; are collinear, and otherwise does not define an A2
by Lemma 3.4.3.

Now that dim(V3) = 2 and that the elements of V5 do not share a common zero
point on z = 0, we may apply an element of GL3 that fixes z to get V3 = ka3 +ky3.
Moreover, Vo = kz? (as otherwise Vo = {0} would give a linear system in standard
form after exchanging x and z). We apply an element of GL,, at the target and
assume that fi 2 = 22 and fi,3 #0. We then add to f2 a linear combination of the
other f; and assume that f5 2 = 0 and that f5 3 is not a multiple of f; 3. Applying
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again at the source an element of GL3 that fixes z, we obtain fi 3 = ¢3, fo3 = 23,
We get a, 3,7,0,¢,( € k such that

fi=(az+By+72)+22+y>, fo=(Sz+ey+(2)+ad.

For each A € k, the polynomial f; + A3f; defines an A2 in A3. This implies
that (a + A\30)x + (B + A3e)y + (v + A3()z, 2z and y + Az are linearly independent
(Lemma 3.4.3). Hence, A(8 + A3) — (a + A38) # 0. This being true for each \, we
obtain =0 =e=0and a #0. Hence f; = ax +vz + 22 + 92, fo = (2 + 23, with
aC # 0. Replacing f; with f; —(7/¢)- f» and replacing y with y+ sz where x® = /¢,
we may assume that v = 0. It remains then to choose & € k* with o3¢ = £1°, to
replace z,y, z with £ /ax, €2y, €32 at the source and fi, fo with f1/£6, foa3 /€18 at
the target, to obtain

hi=z+22+y°, fa=z+2°.

Thus, f is the linear system of affine spaces in Lemma 3.4.2 if n = 2. It remains to
see that n > 3 yields a contradiction. Adding to f3 a linear combination of f;, fo
we obtain that f33 = 0. This gives f3 = ax + By + vz + 022 with «,3,7,0 € k.
Replacing f3 by a multiple, we may assume that o # —1 and € # —1. For each
A € k, the polynomial fi+ A3 fo+f3 = (1+a)z+By+(v+A3) 2+ (1+0)22 +(y+Az)?
defines an A% in A3, so y+ Az, 2, (1 +a)x + By + (v + A3)z are linearly independent
(Lemma 3.4.3). This implies that SA—(1+a) # 0. As this is true for each \, we get
B = 0. But then the linear parts of f1, fo, f3 are linearly dependent, contradicting
Lemma 3.2.5(1). O

3.5. Linear systems of affine spaces of degree 3 with a line in the base
locus. In the following lemma we give necessary conditions for a polynomial of
degree < 3 such that it defines an A2 in A3 and this hypersurface contains in its
closure in P? a specific line.

Lemma 3.5.1. Let F € kjw, z,y, 2] be a homogeneous polynomial of degree 3 such
that f = F(1,z,y, z) satisfies Spec(k[z,y, 2]/(f)) ~ A% and such that F(0,z,0,2) =
0. Write F' as

F= wag(x,z) + ybg(x7z) + wzcl(x7 Z) + ’U)ydl(l’72) + erl(x: Z) + FS(wvy)

where as, by € k[, z] are homogeneous of degree 2, ¢1,dy,e1 € klx, z] are homoge-
neous of degree 1 and F5 € klw,y] is homogeneous of degree 3. Then:
(1) The polynomial by € klz, 2] is a square;
(2) The polynomials as,bs € K[z, 2] have a common linear factor;
(3) If bo =0, then as,e; € k[x, z] have a common linear factor;
(4) If bg = e; =0 and as is a square, then the polynomials as,dy € K[z, z] have
a common linear factor;
(5) If ag = by =dy = e1 =0 and deg(f) > 2, then c1 # 0.
Under the additional assumption that deg(f) = 3, we have:
(6) If by =e1 =0, then the polynomial as € klx, 2] is a square;
(7) If bo = e1 = 0 and (aa,dy) # (0,0), then ged(ag,c1,dq) = 1;
(8) If ag is not a square, then by # 0 or ey # 0;

Proof. The fact that F(0,x,0,z) = 0 implies that F' can be written in the above
form. Note that F' = Fy + Fy + F3, where F1 = was(x,2) + yba(x,2), Fo =
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w?cy (x, 2) + wydy (2, 2) + y2e1 (x, 2) and F3 are homogeneous in w,y of degree 1, 2
and 3, respectively. It remains to see that the above eight assertions hold.

First, we assume that w divides F'. Then deg(f) < 3 and ba = e; =0, so (1), (2)
and (3) hold. If in addition as is a square and if as and d; would have no common
non-zero linear factor, then the homogeneous part of f of degree 2 would be f; =
as +y(dy + Ay) for some A € k. As as is a square, we may apply a linear coordinate
change in x,z and assume that as = z2. We then write d; = d1,0r + d1,12 with
dl’o, dl,l S k7 and obtain

fo= x? + dLoy%' + y()\y + dl,lz) .

Since dy 1 # 0, the polynomial fs € k[z,y, 2] is irreducible (e.g. by the Eisenstein
criterion) which contradicts Proposition 2.3.5 and therefore (4) holds. If ay = dy =
0 and deg(f) > 2, then ¢; # 0, since otherwise f € k[y] would not be irreducible.
Hence, (5) holds.

We may now assume that w does not divide F', which implies that deg(f) = 3.

We observe that the group of affine automorphisms G C Aff(A3) C Aut(P?)
which preserve the line L = { w:z:y:z]ePP |lw=y= 0} is generated by the
following two subgroups:

G, = Da.py,0 € Aut(P?) ‘ B g] € GLg(k)}

Ga = 3 Vermmscres € Aut(P?) ’ e€k’,m,7,73,61,83 € k}
where

Pa,B,~,6
]PS IP)B
[wiz:y:z] ———— [w:az+Pz:y:yx+ 2]
and
H:DS Ye,1,7m2,73,61,€3 PS
[w:z:y:z] [w:z+&y+nw:ey+nw: 2+ &y + T3w)] .

Indeed, this follows from the facts that the action of G on L gives a group homo-
morphism G — Aut(L) ~ PGL2(k) that is surjective on Gy, and that the kernel
is generated by G2 and the homotheties of G;. The fact that all assertions (1)-(8)
hold is preserved under elements of G; and G3. We may thus assume that f is
of the form given in Corollary 2.3.7 and we check that the assertions (1)-(8) are
satisfied.

In case a), (az, be,c1,dy,e1) = (M\22, uz?, x,e2,vz) for some A, u, v, e € k.

In case b), (ag, b, c1,d1,e1) = (0, pu22, 2, x,v2) for some p,v € k.

In case ¢), f = zz+yz(\y + pz) + y + 6z where A\, 4, § € k and (A, ) # (0,0),
so (ag, ba, c1,dy,e1) = (z2, 22, 62,0, \2).

In case d), f = zy?® +y(22 + az +b) + z for some a,b € k, s0 (az,b2,cy,dy, e1) =
(0,22, 2,0z, ).

In each case, by is a square, and there is a linear factor that divides as, bo and a
linear factor that divides ag, e;. Moreover, as is not a square only in case ¢) and
thus be or e; is non-zero. This shows that (1), (2), (3) and (8) are satisfied. The
equalities ag = by = d; = e; = 0 are only possible in case a), where ¢; = x # 0,
thus (5) is satisfied. The equalities by = e; = 0 are only possible in the cases a)
and b); and then as, di have a common non-zero linear factor, as is a square, and
if (ag,dq) # (0,0), then ged(ag,c1,d1) = 1. Thus (4), (6) and (7) are satisfied. O



26 JEREMY BLANC AND IMMANUEL VAN SANTEN

Proposition 3.5.2. Let fi1,...,fn € klx,y,z] be polynomials and assume that
f=(f1,-.., fn): A> — A" is an affine linear system of affine spaces of degree
3 such that y divides the homogeneous parts of degree 3 of fi,..., fn. Then, the
following hold:

(i) Either f is equivalent to a linear system of affine spaces in standard form,
or char(k) = 2 and f is equivalent to (z + 22 + 3%,y + 22): A3 — A2,

(ii) Writing the homogeneous part of degree 3 of fi as y(n;y* +ye; 1 +b;2) where
n; € k and e;1,b;,2 € klx,z] are homogeneous of degree 1 and 2, the polynomials
b1,2,...,bn2 are collinear.

Proof. For each ¢ we denote by F; € klw,x,y, 2] a homogeneous polynomial of
degree 3 such that f; = F;(1,z,y,2) and write it as

wai,2(z7 Z) + ybi,Z(xa Z) + w2ci,l(x7 Z) + wydi,l(xa Z) + y2€i71(1’7 Z) + Fi,3(w7 y)

where a; 2, b; 2 € k[z, z] are homogeneous of degree 2, ¢;1,d;1,€;1 € k[z, 2] are ho-
mogeneous of degree 1, F; 3 € k|w, y] is homogeneous of degree 3, and the following
hold for all (Aq,...,A,) € k™ (see Lemma 3.5.1):

(1) 3> Aibia(z, 2) is a square;

(2) d>Mai2(z,z) and > A;b; 2(x, z) have a common non-zero linear factor;

(3) If " Asbi2(x,z) =0, then > Na;2(x,2) and > Ae;1(x, z) have a common

non-zero linear factor;

(4) It S" Nbia(x,2) = D Nieia(x,z) = 0 and > Na;2(x,2) is a square, then

> Xiai2(z, 2), > Aidi1(z, z) have a common non-zero linear factor;
and if deg(>" A; f;) = 3, then:

(8) If > Aa;2(z, z) is not a square, then > A;b; o(z,2) #0or Y Ae;1(z,2) # 0.
We distinguish, whether all b; 5 are collinear (case (A)) or not (case (B)). It turns
out that in fact case (B) cannot occur, which proves (ii).

(A): Any two b; » are collinear: After applying an element of GLy(k) on z, z, we
may assume that 22 divides all b; 2 by assertion (1). If z divides each a; 2, the point
[0:1:0:0] will be a singular point of the hypersurface in P? given by F; for each
i, so f is in standard form. We may thus assume that there is j such that z does
not divide a@; 2. Assertion (2) then implies that b; 2 = 0 for each i.

If a linear factor divides all a; 2, we apply an element of GLs on z, z and assume
that z divides all a; 2, giving again that f is in a standard form. We then assume

that no linear factor divides all a; 2. In particular, dimspany (a2, ...,anz2) > 2.
We assume that each ) A\;a; 2 is a square, which implies that char(k) = 2 and
spany (a2, ... ,a,,2) = ka? @ k22, By assertion (3), we can apply Lemma 3.1.3 in
order to get ;1 = 0 for each 4 = 1,...,n. Then, by assertion (4) we can apply
Lemma 3.1.3 once again and get d;; = 0 for ¢ =1,...,n. Hence, the result follows
from Lemma 3.4.4.
We now assume that ) A;a;2 is not a square for general (A1,...,A\,) € k™.

Assertion (8) implies that > A;e;1 is a non-zero linear polynomial for general
(A1, ..., An) € k", which then needs to divide Y A\;a;2 by Assertion (3). As no
linear factor divides all a; 2, we may apply a general element of GL,, at the target
and may assume that a; 2 and as 2 have no common factor, and then the same holds
for e1,1 and ez (as e; 1 divides a; o for i = 1,2). We then apply GLs on z, z at the
source to get e;1 = = and ez = z. We get a12 = z(ax + B2), az2 = z(yx + 2)
for some «, 8,7,0 € k. For each A € k, the polynomial e; ; + Aea; = + Az divides
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a2 + Aazz = ax® + (B + My)zz + dA2?, so replacing z = X and z = —1 gives
0 = A2(aw — ) + (6 — B)A. This being true for all \, we obtain a = v and 8 = 6,
contradicting the fact that a; 2 and as 2 have no common factor.

(B): It remains to suppose that not all b;2, ¢ = 1,...,n are collinear and to
derive a contradiction. Since by assertion (1) each ) A\;b; 2 is a square, we get
char(k) = 2. After applying a linear automorphism at the target, we may assume
that by o = 2% and by 2 = 2. According to (2), we can apply Lemma 3.1.3 and get
a € k with a1 5 = az?, az2 = ax®. Replacing y with y + a at the source, we may
assume a = 0. This gives

fi=y2+azx+Bz+e and fo=yr?+yzx+0z+v

where a, 8,7, 6,¢,v € k[y] (the first four of degree < 2 and the last two of degree
< 3). For each ) € k, the polynomial f; + A2fy = y(z + Ax)? + (a + A\2y)z + (B +
A28)z + € + A defines an A? in A3. Replacing z with z + Az, the polynomial

Ry =y2® + (@ + A+ A2y + X30)z + (B+ \20)z + e + \v
defines an A2 in A3. Let us write py = a + A8 + A2y + \36 € k[y].

Let us write a@ = Zizo ayt, B = Zizo Biy', v = Zizo Yy, 6 = Zz‘zo 8,
where «;, 8;,7;,0; € k for each ¢ > 0. If there is some ¢ > 0 such that the coefficient
of y* of py is zero for a general (or equivalently for all) A € k, then a; +\B; + A2, +
Ad=0foreach A€k,soa; =i =~ =6 =0.

Suppose first that py € k[y] \ k for a general A € k. In this case, we may apply
Proposition 2.2.2: writing Ry = zpx(y) + ga(y, z) with g € k[y, 2], the polynomial
ax(yo, z) € Kk[z] is of degree 1 for each root yo € k of py. As the coefficient of 22 in
gx(y, z) is y, we find that 0 is the only possible root of py(y), and in fact is a root
for a general A, as we assumed py € k[y] \ k. Applying the above argument with
1 = 0 implies that ag = By = 70 = dg = 0, but then, for each A € k the polynomial
B+ A28 is zero at y = 0, so g (0, z) € k[z] is not of degree 1.

The last case is when py € k for each A € k. This implies (again by the above
argument) that a; = 8; = v; = 0; = 0 for each ¢ > 1, so a, 8,7, € k. We have
0 # 0, since otherwise fy € k[z,y| would define in Aﬁ,y a curve with two points
at infinity. There exists thus A € k such that py = 0, so Ry does not define an
AZ (it belongs to K[y, 2] and the curve that it defines in A2 _ has two points at
infinity). O

3.6. Reduction to affine linear systems of affine spaces in standard form.

Proposition 3.6.1. Let n > 1 and let fi1,...,fn € klz,y,z] be polynomials of
degree < 3 such that f = (f1,..., fn): A3 = A" is a linear system of affine spaces.
Then either f is equivalent to a linear system of affine spaces in standard form, or
f 1is equivalent to one of the following linear systems of affine spaces:

(1) (z+ 22493 y+2%): A3 — A? where char(k) = 2, or

(2) (w4 22+, 2 +23): A3 — A% where char(k) = 3.

Remark 3.6.2. The families of linear systems of affine spaces in (1) and (2) from
Proposition 3.6.1 are the linear systems of affine spaces from Lemmata 3.4.1 and 3.4.2.
In particular, the linear systems of affine spaces in (1) and (2) are all non-equivalent
to linear systems of affine spaces in standard form.

Proof of Proposition 3.6.1. If n = 1, the result follows from Corollary 2.1.2, so we
will assume that n > 2. By Lemma 3.2.5(1), we get n < 3.
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Let d = deg(f). Since the statement holds when d = 1, we assume d € {2, 3}.

Let f;; € k[z,y, 2] be the homogeneous part of degree j of f; for i = 1,...,n,
and let us define V; = spany (f1,..., fn,;) € kz,y, z]; for each j < d.

First, we consider the case d = 2. Due to Corollary 2.3.8, each element in V5 is
reducible and due to Lemma 3.1.2 one of the following cases occur:

o There exists h € k[, y, z]; which divides each element of Va;

o Vo C K[s,t] for linearly independent s,t € k[z,y, 2]1;

o char(k) = 2 and Vo = ka? @ ky? @ k22,

In the first case we may assume that h = y and in the second case we may assume
that (s,t) = (y,2), so f is in standard form in both cases. If we are in the last
case, then n = 3 and we may assume that f12 = 22, fas = y?, fz2 = 2z2. Due
to Lemma 3.1.4 there exists (A1, A2, A3) # (0,0,0) and € # 0 such that Y A2 f; 1 =
e(A12 + A2y + A3z) and hence we get a contradiction to the irreducibility of > A2 f;.

It remains to do the case where d = 3. If a linear factor or an irreducible poly-
nomial of degree 2 divides all elements of V3, the result follows respectively from
Proposition 3.5.2 (after applying an element of GL3 at the source) and Proposi-
tion 3.3.1. By Corollary 2.3.6, no element of V3 is irreducible, so we may assume
that ged(V3) = 1. In particular, dim V3 > 2.

If each element of V3 is a third power, then char(k) = 3 and the result follows
from Lemma 3.4.5. Thus we may assume that a general element in V5 is not
a third power. Now, Lemma 3.1.2 implies that there exist linearly independent
s,t € k[z,y, z]1 such that V5 C k[s,t]. We may assume that (s,t) = (y,2). As a
general element of V3 is not a third power, then by Corollary 2.3.6(3) the closure
of the cubic Y. \;f; = 0 in P3? has a singularity at [0 : 1 : 0 : 0] for general
(A,...,An) € k™ and thus f is in standard form. O

Corollary 3.6.3. Let 1 < n < 3 and let f1,..., fn € Klz,y, 2] be polynomials of
degree < 3 such that f = (f1,..., fa): A3 — A" is a trivial A3>~"-bundle. Then f
is equivalent to a linear system of affine spaces in standard form.

Proof. This follows directly from Proposition 3.6.1, since the linear systems of affine
spaces from Lemma 3.4.1 and Lemma 3.4.2 are not trivial A'-bundles. (I

3.7. Study of affine linear systems of affine spaces A? — A? in standard
form. Towards the description of the automorphisms of degree < 3, we study in
this subsection certain affine linear systems of affine spaces (fi, f2): A3 — A2 in
standard form, i.e. such that f; = xp; + ¢; for i = 1,2, with p;, ¢; € k[y, 2].

Lemma 3.7.1. Fori = 1,2, let p;,q; € kly, z] such that (xp1 + q1,xp2 + q2) s a
linear system of affine spaces. Then, klp1,p2] # kly, 2], i.e. (p1,p2): A2 — A? is
not an automorphism.

Proof. 1f k[p1, p2] = K[y, 2], then we apply a (possibly non-affine) automorphism of
k[y, z] and may assume that p; =y, po = z. We choose «, 3,7, 0, e, 7 € k such that

a1(y,2) = ay+PBz+e mod (v, yz,2%), @(y,2) =vy+dz+7 mod (y° yz,2%).

Proposition 2.2.2 implies that ¢1(0, z) € k[z] and ¢2(y,0) € k[y] have degree 1, so
B,7 € k*. For each A € k, the polynomial in (zy 4+ q1) — AM(zz + ¢2) = z(y — Az) +
(g1 — A\q2) € k[z,y, 2] defines an A% in A3. Replacing y with y + Az, the polynomial

Ry=zy+q(y+Xrz,2) — A2(y + Az, 2)
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defines an A% in A3. Proposition 2.2.2 implies that Ry(z,0,z) = R)(0,0,2) € k[z]
is of degree 1, for each A € k. However,

Rx(0,0,2) = q1(A\z,2) = A\ga(Mz,2) = adz + Bz + e — ANy z 4+ 6z +7) (mod 2?)

and as v # 0, there is A € k such that the coefficient of z of Rx(0,0, z) is zero,
contradiction. (I

Lemma 3.7.2. For i = 1,2, let p; € kly] and ¢; € K[y, z] and assume that [ =
(f1, f2) = (xp1 + q1, wp2 + q2): A® — A? is an affine linear system of affine spaces.
Then the following hold:

(1) If p1 and pa have a common root, then they are linearly dependent.
(2) If p1 € k and po = 0, then g2 € kly] and deg(g2) = 1.
3) If pr =y and ¢y = ay+z2r1+71g fora € Ky, z], r1 € K, ro € k and if p; = 1,
then a — gz € kly].
(4) If p1 = y? and q1 = ys(z) + z for some s € k[z] and deg(f) < 3, then:
(4) If po =1, then s € k and ¢z € kly].
(it) If ppo=y+1, thens=—z+b and gg = —z+ 7 for some b € k and
r € kly] with deg(r) < 3.
(5) Ifpr = y(y+1) and g = s(y)s+t(y) for s,t € kly) of degree < 1 and py = 1,
then s € k* and ¢2 € kly].

Proof. By assumption for each (A, u) # (0,0), the equation

A1+ pfo = x(Ap1 + pp2) + Aq1 + pg2 =0

defines an A? in A3. Hence, by Proposition 2.2.2, for each yg € k the following
holds:

(*) if Ap1(yo) + pp2(yo) = 0 and Apy + pp2 # 0,
then the degree of Aq1(yo, 2) + pg2(yo, 2) € k[z] is 1.

We will use this fact constantly, when we consider the cases (1)-(5).

(1): After an affine coordinate change in y, we may assume that y divides p; and
p2. By Proposition 2.2.2 it follows that ¢;(0, z) is a polynomial of degree 1 in z for
¢ = 1,2. Hence there exists p € k such that ¢1(0,z) — ug2(0, 2) is constant. This,
together with (x), implies that p; = ups.

(2): Since p1 ¢ k, there exists v € k with pi(y) = 0. After applying an
affine coordinate change in y, we may assume that v = 0. By (x), the degree of
q1(0, z) + pg2(0,z) € k[z] is 1 for each p € k, so ¢2(0,2) € k. Hence, y divides
q2 — q2(0,0) in k[y, z]. Since g2 — ¢2(0,0) = 0 defines an A2 in A3, the polynomial
g2 — q2(0,0) is irreducible and thus g = ay + ¢2(0,0) for some « € k*.

(3): Choosing (A, ) = (1, —n) for some n € k, we get Ap1 + up2 = y — n. Thus
by (x), the degree of the polynomial

na(n, z) +riz +ro — ng2(n, z) = r1z + ro +n(a(n, z) — g2(n, 2)) € k[z]

is 1 for each n € k. This implies that a(n, z) — ¢2(n, 2) € k[n].
(4)(i): Choosing (X, p1) = (1, —n?), we get Apy + pup2 = (y —n)(y +n). By (+) it
follows that for all n € k the degree of

ns(z) + 2 — nqa2(n, 2) € k[2]
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is 1, i.e. ns(2) + 2z — n%q2(n, 2) = az + B for some o € k* and 8 € k[n]. In order to
use
(%) 2k[z] @ k ® nk[z] © n’k[n, 2] = k[, 2],
we write 3 = B + 131 + n?B2 where By, 31 € k, B2 € k[n] and get
(Za Oa 775(2)7 _772%(77, Z)) = (O[Z, ﬁOv 77617 77252) )
so s = 1 € k and ¢2(n, 2) = —f2 € k[n).
(4)(44): We now choose (A, ) = (1 +n, —n?) for some 7 € k and obtain
A+ ppz = (L+0)y? = n?(y +1) = (y =) (L +n)y +n).
Due to (*), for all 5 € k the degree of the polynomial

(L+n)(ns(2) + 2) = n’a2(n, 2) = 2 +n(s(2) + 2) +1*(s(2) — @21, 2)) € k2]
is 1. Writing this polynomial as above as az + Sy + 181 + 7?82 with o € k*,
Bo, B1 € k, B2 € k[, the decomposition (xx) gives

(,0,9(s(2) + 2),7°(s(2) = q2(n, 2))) = (@z, Bo, np1,7*B2) |
s0 s(z)+ 2z =1 € k and s(z) — ¢g2(n, z) = B2 € k[n]. Choosing b = 3 and r € k[y]
such that 82 = b — r(n), we obtain s(z) = —z + b and ¢2(y,2) = s(z) —b+1r(y) =
—z+r(y). Since deg(g2) < 3 it follows that deg(r) < 3.
(5): Let (A, ) = (1,—n(n+1)). Then

Ap1 A ppz = y(y +1) =0 +1) = (y —n)(y+n+1)
Due to (x), for all n € k, the degree of

s(mz +t(n) —n(n+1)g(n, 2) € k2]
is 1. This implies that the polynomial

h'=s(n)z—=n(n+1)g2(n, z) € Kn, 2]
is of the form az + 8 for some « € k* and 8 € kn].
When we write g2 = >, ¢2,i(y)2" for go; € k[y|, we obtain g2 ; = 0 for each
i > 2 (as h has degree 1 in 2) and s(y) — y(y + 1)g2.1(y) € k*. As deg(s) < 1, this
yields g2 1 = 0, and then s(y) € k*. Moreover, g2 = ¢2.0(y) € k[y]. O

Lemma 3.7.3. Let p,q € kly, z] such that deg(p) < 1 and deg(q) < 3. Assume
that (z(y + 22) + z,xp + q): A3 — A? is an affine linear system of affine spaces.
Then

pek, qg=a-(y+2%) +bforsomeabck and (p,a)#(0,0).

Proof. Suppose first that p € k. When we write r = q(y— 22, z) € k[y, 2], we obtain
q=r7(y+ 2% z2). For each )\ € k, the polynomial
w(y+23)+z-Nap+q)=x(y+22 = p) +2— My + 2% 2)

defines an A2 in A3, so the same holds for zy+z—Ar(y+Ap, z). By Proposition 2.2.2,
the polynomial z — A\r(Ap,z) € k[z] is of degree 1 for each A € k. This implies
that the polynomial r(Ap,z) € k[A, 2] lies in k[A]. As p € k, either p # 0 and
r(y,z) € kly] or p=0 and r(y, 2) € k+ ykly, z]. The first case yields q € k[y + 2?],
so ¢ =a- (y+ 2?) + b for some a,b € k, since degq < 3. In the second case, we
write b = ¢(0,0) and obtain that ¢ — b is irreducible, as it defines the preimage of
the hyperplane y = b. Hence, r(y, z) — b € yk|y, 2] is irreducible, so equal to ay for
some a € k*. As before we get ¢ = a - (y + 2z2) + b. In both cases (p,a) # (0,0).
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It remains to see that p ¢ k is impossible. We write p = ay + bz + ¢ for some
(a,b) € k*\ {(0,0)} and ¢ € k. If a = 0, then b # 0 which yields k[y + 22,p] =
K[y + 22, z] = K[y, z], impossible by Lemma 3.7.1. We may thus assume that a = 1.
We write ¢ =7 + 2z + u, with p € k and r € K[y, z] such that r(0,0) = 0. For each
A € k, the polynomial

Mry+2)+2)+ (1 =N (ap+qg—p) =z(y+ A2+ (1 =N (bz+¢) +2z+ (1= N)r
defines an A2 in A3, so the same holds for xy+z+(1—\)-r(y—Az2+(A—1)(bz+c), 2).

We again apply Proposition 2.2.2, and find that z + (1 —\) - 7(=A22 + (A — 1) (bz +
¢),z) € k[z] is of degree 1 for each A € k, so the polynomial

R=7r(-2\22+ (A= 1)(bz +¢),2) € k), 2]

is an element of k[\] (independent of z). If r(y, 2) € k, then d := deg,(r) > 1 and
we may write r = r9(2) +r1(2)y + ...+ rq(2)y? where rq # 0. Thus we get

d
R=r(A(bz+c—2°) = (bz+c),2) = > Ng
1=0

where qo, ...,qq4 € k[2] and qq = (bz + ¢ — 2%)%r4(2) € k[2] \ k. This contradicts
R € k[\]. Hence r(y,z) € k, so r =r(0,0) = 0. This proves that ¢ = z + p. But
this is impossible, as the zero locus of the polynomial z(y + 22) + 2z — (xp+q —pu) =
x(2? — bz — ¢) is not isomorphic to A2 (it is reducible). O

3.8. Linear systems of affine spaces of degree < 3 in standard form. We
start with a lemma, which lists the possibilities for the polynomials py,...,p, in
case of a linear system of affine spaces A? — A" of degree < 3 in standard from
where the polynomials p1, ..., p, lie in k[y].

Lemma 3.8.1. Let n > 1 and let p; € kly], ¢; € kly,z] for i = 1,...,n such that
f=1 0 fn)=(@p1+q1, - 2pn + qn): A — A" is a linear system of affine
spaces of degree < 3. Let us assume that

V .= spang{p1,...,pn} C spany{l,y, y2} .

Then, up to affine coordinate changes in y at the source, one of the following cases
holds:

eln \%4

Y[20r3 [k(y+1)@ky?
)| 2o0r3 k® ky?
)y|2o0r3 ko ky(y+1)
)

)

)

2o0r3 kd ky
1,20r3 | k

1 or?2 kp where p € {0,y,y%,y(y+ 1)}

Proof. We first prove that ky @ ky? is not contained in V. Indeed, we could then
assume that p; = y and py = 3%, but then (f1, f2) is not a linear system of affine
spaces by Lemma 3.7.2(1). This proves in particular that dimV < 2.

Suppose now that dimV < 1. If n < 2, we are in case (5) or (6) up to an affine
coordinate change in y. If n = 3 and V' = k, we obtain case (5). We then prove that
n =3 and V # k is impossible. Indeed, otherwise, there is yo € k with p;(yo) =0
for ¢ = 1,2,3 and the Jacobian of f would be non-invertible in all points (z, yo, 2),
which contradicts Lemma 3.2.5(7).
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We may now assume that dimV = 2, so n € {2,3}. After a reordering of
fiseooy fn, we get Vo= kpy @ kpy. If deg(p;) < 1 for i = 1,2 we are in case
(4). After a possible exchange of fi, fo we may assume that deg(ps) = 2. After
adding a certain multiple of fo to fi we may assume that deg(p;) € {0,1}. If
deg(p1) = 0, then after an affine coordinate change in y at the source, we are in
case (2) or (3) depending on whether py is a square or not. If deg(p;) = 1, then
we may assume after an affine coordinate change in y at the source that p; = y
and py = a?y? + by + 2 for a,b,c € k with ac # 0 (indeed, 0 is not a common
root of p1,p2, as they are linearly independent, see Lemma 3.7.2(1)). After adding
—(2ac + b)f1 to fo we obtain p, = (ay — c)?. Thus after the coordinate change
Yy 2(y+1) we get py = A2, pL = £(y + 1) and thus we are in case (1). O

Remark 3.8.2. If char(k) # 2, then in case (2) of Lemma 3.8.1, one gets V =
k @ k(y + 3)?. Thus after the coordinate change y — y —  we are in case (3).

In the case of a linear system of affine spaces of degree 3 of A% in standard form
such that one component is of the form z(y + 22) + z, the remaining components
are almost determined, up to affine automorphisms at the target:

Lemma 3.8.3. Let n € {2,3} and let p;,q; € kly,z] for i = 1,...,n such that
f=1 o fn)=(xly+22)+2,2p2+q2, ..., Tpp +qn) is a linear system of affine
spaces of degree 3. Then, up to an affine coordinate change at the target we have:
(1) n=2 and f = (z(y + 2%) + z,a(y + 22) + bz) for (a,b) € K*\ {0} or
(2) n=3and f = (z(y + 2%) + 2,y + 2%, x).

Proof. For i =2,...,n, let p; 2, ¢ 3 € k[y, z] be the homogeneous parts of degree 2
and 3 of p; and g;, respectively.

We now prove that p; » is divisible by 22 for each i € {2,...,n}. If ¢; 3 = 0, this
follows from Proposition 3.5.2(i7), applied to the linear system (f1(y, z, 2), fi(y, x, 2)).
Now, assume ¢; 3 # 0 and that p; » is not a multiple of z? to derive a contradiction.
Since for each A € k the polynomial A\f; + f; = (A (y + 22) +p;) + (A2 + ¢;) defines
an A% in A3, we get that for general A € k the polynomial \(y + 22) + p; € k[y, 2]
defines a disjoint union of curves in A% which are isomorphic to Al (see Propo-
sition 2.2.1). In particular, for general (and thus for all) A € k, the polynomial
2% +p; 2 is a square. Since p; o is not a multiple of 22 we get that char(k) = 2 and
for general A € k, the polynomials A\z? + p; 2 and ¢; 3 in k[y, 2] have no common
non-zero linear factor (remember that g; 3 # 0). This implies that the homogeneous
part of degree 3 of Afi + fi, which is equal to x(A\z? + p; 2) + ¢;.3, is irreducible for
general A € k and thus Af; + f; does not define an A2 in A® (see Proposition 2.3.5),
contradiction.

For each i € {2,...,n}, we may now add multiples of f; to f; and assume that
deg(p;) < 1. Lemma 3.7.3 implies that p; € k and gives the existence of a;,b; € k
such that

fi=api+aily+22)+b; and (p;,a;) # (0,0).
After applying a translation at the target, we may assume that b; = 0. If n = 2,
then we are in case (1). Hence, we assume n = 3. Since fy and f3 are linearly
independent, it follows that poas — psas # 0; thus after a linear coordinate change
in y, z at the target, we may assume that

az p2\ _ (1 O
a3p3701'
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This proves the lemma. O

Lemma 3.8.4. Letn > 1. Fori e {1,...,n}, let f; = xp;+q; where p;,q; € kly, z]
and deg(p;) < 2, deg(q:) < 3. If f = (f1,--., fa): A3 — A" is a linear system of
affine spaces, then one may apply affine automorphisms at the target and source
and reduce to the case where p1,...,p, € kly] (and still have q1, ..., q, € K[y, z]).

Proof. Assume first that deg(p;) < 1 for all i. Lemma 3.7.1 implies that no two
of the linear parts of py,...,p, are linearly independent, so we reduce to the case
p; € k[y] for all ¢ by applying an automorphism on y, z.

Applying a permutation at the target we may now assume that deg(p;) = 2.

If py is irreducible, we apply an affine coordinate change at the source that fixes
[0:1:0:0] and obtain one of the cases of Proposition 2.3.4 for f;. The action of
this on p; corresponds to the action of an affine automorphism on y, z and thus does
not change the fact that p; is irreducible; it thus gives Case (2) of Proposition 2.3.4,
namely f; = x(y + 22) + z. We apply Lemma 3.8.3 and obtain two possible cases.
Exchanging = and y at the source gives the result.

We may now assume that for each (A\1,...,A,) € k™ \ {0}, the polynomial
A1p1+ ...+ Anpyp is reducible if it has degree 2. Indeed, otherwise we reduce to the
previous case by applying an affine automorphism at the target.

We may moreover assume that deg(p;) = 2 for each i € {1,...,n} by adding
multiples of p; to the p; for i > 2.

Let p;; € kly, 2] be the homogeneous part of degree j of p; for ¢ = 1,...,n,
j=0,1,2. Let V = spany(p1,2, ..., Pn,2). Applying Proposition 2.3.4 to each linear
combination Y A; f;, we see that each element of V is a square. If dim(V') = 1, then
applying a linear automorphism on y, z, we get p; 2 € ky? for each i € {1,...,n}.
For each i, the polynomial p; € k[y, z] is reducible, so p; € k[y] as desired.

It remains to see that dim(V') > 2 leads to a contradiction. As every element of
V is a square, we get char(k) = 2 and V = ky? + kz2. For each (A1,...,\,) € k",
the polynomial =Y A;p;2 + > Xigi3 is reducible as it is the homogeneous part
of degree 3 of >~ \;f; (Corollary 2.3.6), so Y A;p; 2 and Y A\;g; 3 have a common
linear factor. Hence, we may apply Lemma 3.1.3 to p1,2,...,pn,2 and ¢1,3,...,qn,3
and get h € k[y,z|; with ¢;3 = hp;o for ¢ = 1,...,n. After applying the linear
automorphism (xz — h,y, z) at the source, we reduce to the case where ¢; 3 = 0 for

i =1,...,n. The vector space generated by the homogeneous parts of degree 3 of
fis- -+, fn is then equal to kzy? + kxz2. This is impossible, as Proposition 3.5.2(i7)
applied to (fi(y,=,2),..., fa(y,z,2)) shows. O

3.9. The proof of Theorem 3. In this section, we give a description of all linear
systems A3 — A™ of degree < 3 up to composition of affine automorphisms at the
source and target and prove in particular Theorem 3.

Proposition 3.9.1. Let n > 2. Fori € {1,...,n}, let f; = xp; + q; where p;,q; €
k[y,z] and deg(p;) < 2, deg(q;) < 3. If f = (f1,---, fn): A3 — A" is a linear
system of affine spaces, then n < 3 and f is equivalent to (g1,...,gn): A3 — A"
with one of the following possibilities:

(i) (91,92,93) = (x +p(y, 2),y + q(2), 2) where p € kly, 2], q € k[z];

(ii) (91,92, 93) = (zy+yaly, 2)+z, x+aly, 2)+r(y),y) where a € kly, 2], r € klyl;
(iii) (g1, 92) = (xy +yaly, z) + z,y) where a € kly, 2|;

(iv) (g1,92) = (xy® + y(22 + az + b) + 2,y) where a,b € k.
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Proof. Using Lemma 3.8.4, we may assume that p; € k[y] for all i.
We then apply Lemma 3.8.1, and may assume that ps = 0 if n = 3 and that
(p1,p2) is in one of the following cases:

1) @y+1) @) (1)
(2) (%1 (5) (1,0)
(3) (wy+1),1) (6) (p,0)withp e {0,y,5*y(y+1)} and n=2

We now go through the different cases.

In Cases (1)-(4), if n = 3 then f3 = g3 is an element of k[y| of degree 1. This
follows from Lemma 3.7.2(2) applied to (f1, f3), as p3 = 0 and p; € k[y] \ k. One
can then, if one needs, replace f3 with af3 4+ g for some «, 8 € k, a # 0 and obtain
f3=y.

In Cases (1)-(2), p1 = y?. There is o € Aff(A?) that fixes [0:1:0: 0] such that
a*(f1) is one of the cases of Proposition 2.3.4. As a*(y?) is the coefficient of z in
a*(f1) up to non-zero scalars, we obtain that a*(f1) is the polynomial of Case (5)
in Proposition 2.3.4 and a*(y) € k[y], so we reduce to the case where p; = 32 and
@1 = ys(z) + z for some s € k[z] of degree < 2.

(1): Here po = y + 1, so Lemma 3.7.2(4) (i) shows that s(z) = —z + p and
ga = —z + r(y) where p € k and r € k[y] has degre < 3. After performing
(z,y,2) — (x,y,z + p) at the source and adding constants at the target we may
assume p = 0. Hence,

(fis f2) = (2 —zy + z,2(y + 1) — 2+ 7(y)) -
We apply (z,y,2) — (z,y + 1, —x) at the source and get

(fisfo)=(@y+yz(y+2) +z,o+2(y+2)+r(y+1)).

This gives case (i7) if n = 2. If n = 3, then f3 is still an element of k[y] of degree 1
and we can then assume f3 =y to obtain Case (it).

(2): Here ps =1, so fo =« + ¢2(y, 2) and if n = 3, then f3 € k[y] is of degree 1,
so we may assume f3 = y. Lemma 3.7.2(4)(7) gives ¢2 € k[y| and s € k, thus after
a permutation of z,y, z at the source we are in case (7).

(3): Here p1 = y(y+1),s0 ¢1 = a(y, z)y(y+1)+s(y)z+t(y) for polynomials a €
k[y, z],s,t € k[z] of degree < 1 with s(0)s(—1) # 0 (Proposition 2.2.2). Replacing
x with  — a(y, z), we may assume that @ = 0. Lemma 3.7.2(5) then implies that
s(y) € k* and ¢2(y, 2) € k[y]. Hence,

(f1, f2) = (zy(y + 1) + sz + t(y), v + q2(y))

and if n = 3, we may assume f3 = y. After a permutation of x,y, z at the source
and a rescaling of fi, we are in case (7).

(4): Here p; =y, so 1 = a(y, 2)y + az + B8 where a € kly, 2], « € k" and 8 € k
(Proposition 2.2.2). Replacing z with a~*(z — 8), we get f1 = zy +a(y, z)y + z for
some a € kly, z]. By Lemma 3.7.2(3) there is r(y) € k[y] with fo = z+a(y, z)+r(y).
Hence, we are in case (ii).

(5): If n = 2, then according to Lemma 2.3.2 we may apply an affine auto-
morphism in (y, z) at the source in order to get fo = g2 = y + ¢(z) and thus we
are in case (i). If n = 3, then f = (x + q1,q2,q3). Since A® — A2 (2,9,2) —
(g2(y, 2),q5(y, 2)) is an affine linear system of affine spaces, by Lemma 3.2.5(6) the
same holds for (g2, q3): A2 — A2. By Proposition 3.2.7, we get up to affine auto-
morphisms in y, z at the source and target that (¢2,93) = (y + q(2), 2) for some
q € k[z] and thus we are again in case (7).
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(6): Assume first that p = 0. Then by Proposition 3.2.7 we may assume that
f = (y+q(z),z) for some g € k[z]. After replacing y with x and z with y we are
in case (¢). In all other cases p € k[y] \ k and by Lemma 3.7.2(2) we get that fo
is a polynomial of degree 1 in k[y]. By Proposition 2.3.4 there is a € Aff(A?) that
fixes [0 : 1:0: 0] such that «*(f1) is one of the polynomials in the cases (1)-(6) of
Proposition 2.3.4. Since up to scalars, a*(p) is the factor of z in a*(f1) (when we
consider it as a polynomial in x over k[y, z]) and since p € {y, ¥, y(y+1)}, it follows
that a*(f1) belongs to one of the Cases (4)-(6) of Proposition 2.3.4 and a*(y) € k[y].
In particular, a*(f2) is a polynomial of degree 1 in y. Proposition 2.3.5 then gives
B € Aff(A3) such that 8*(y) € k[y] and such that 3*(f1) is one of the polynomials
in cases A), B) or C) of Proposition 2.3.5. As 8*(f2) is again a polynomial of degree
1 in k[y], we may replace it with y and get cases (i), (ii7) or (iv).
(I

As an immediate consequence we get

Corollary 3.9.2. Letn > 1 and let f: A3 — A™ be a linear system of affine spaces
of degree < 3. Then f is equivalent to a linear system of affine spaces in standard
form if and only if f is a trivial A3~ bundle. Moreover, the latter condition is

satisfied if char(k) & {2, 3}.

Proof. If f: A3 — A" is a trivial A3 "-bundle, then f is equivalent to a linear
system of affine spaces in standard form by Corollary 3.6.3. Conversely, we assume
that f is a linear system of affine spaces in standard form and prove that f is a trivial
A3~"_bundle. If n = 1, then f is a variable of k[z, y, 2] (Corollary 2.2.3), so it defines
a trivial A%2-bundle. If n > 2, we go through the four cases of Proposition 3.9.1. In
case (i) and (44), the morphism (g1, g2, g3): A% — A? defines an automorphism and
in case (it1) and (iv), Proposition 2.2.2(2) gives the existence of g3 € k[, y, z] such
that (g1, 92,93) € Aut(A3). The second claim follows from Proposition 3.6.1. [

We now come to the proof of our description of linear systems of affine spaces
A3 — A" of degree < 3:

Proof of Theorem 3. Let f1,..., fn € k[x,y,2] such that f = (f1,...,fn): A3 —
A" is a linear system of affine spaces of degree < 3. If f: A3 — A" is not a trivial
A3~"_bundle, then by Corollary 3.9.2 and Proposition 3.6.1, we are in cases (8)
or (9). Thus we may assume that f: A3 — A" is a trivial A3>~"-bundle. If n = 1,
this means that f = f; is a variable, and the description of f follows from Propo-
sition 2.3.5. We may then assume that n > 2, that f is in standard form (applying
again Corollary 3.9.2) and then go through the different cases of Proposition 3.9.1:

(0): (f1, f2) = (@+p(y, 2),y+q(2)) with p € k[y, 2] and g € k[z], and f3 = zif n =
3. Since deg(f) < 3, we may write p = Zf:o pi(y, z) and ¢(2) = Zf:o ¢i%* where
p;i € K[y, 2] is homogeneous of degree i and ¢; € k. After applying a translation at
the target we may assume that pp = 0 and go = 0. After composing f with the
automorphism (z —p1(y — ¢12,2),y — g1z, 2) at the source we are either in case (4)
or (10).

(77) and (i79): There exist a € k[y, z] of degree < 2 and r € k[y] of degree < 3
such that g = (zy+ya(y, z) + 2z, z+a(y, z) +7(y), y) satisfies: f is either equal to g,
or f is equal to mog where 7: A% — A? is one of the projections (z,y, z) + (, z) or
(x,9,2) — (2,y). Write 7(y) = ro+r1y+r2y? +r3y3 and a = ag+a1(y, 2) +az(y, 2)
where 7; € k and a; € K[y, z] is homogeneous of degree i. After adding constants
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at the target, we may assume ro = 0. After applying (x — ag — a1(y, 2),y, 2) at
the source, we may further assume that a = as is homogeneous of degree 2. After
applying the permutation of the coordinates (z,y,z) — (y, z,x) at the source, we
have replaced g with g = (yz + zaz(2,z) + 2,y + az(z,2) + 112 + r92% + 1323, 2).

If as(z,2) € k[z] and f3 # z, then after applying (x,y —r1z, z) at the source we
are in case (4) or case (10). If as(z, z) € k[z] and fo = z, then after exchanging y and
z at the source we are again in case (4). Thus we may assume that as(z, x) € k[z].
If n = 2, then we are in case (5) or (6) and if n = 3, then we are in case (11) after
applying (x,y — r12, z) at the target.

(iv): This is case (7). O

Next, we will show that the cases in Theorem 3 are all pairwise non-equivalent.
For this we need the following lemma.

Lemma 3.9.3. For each ro € kly,z] \ kl[y], homogeneous of degree 2, it is not
possible to find p € kly, z], A € k and o € Aff(A3) such that

o (xy +yra(y, z) + 2) = Az + p(y, 2) .

Proof. Suppose for contradiction that p, A\, @ exist. We may assume that o € GL3,
as a translation sends Az + p(y, z) onto Az + p(y, z) for some p € K[y, z]. Hence,
the homogeneous part of degree 2 of a*(zy +yra(y, z) + 2) is a*(xy) € K[y, z]. This
implies that a*(x), a*(y) are linearly independent elements of ky + kz, as k[y, 2] is
factorially closed in k[z,y,z]. Replacing « by its composition with an element of
GL3 acting on y, z (which simply replaces p with another polynomial in k[y, z]), we
may assume that o*(z) = z and a*(y) = y. Hence, a*(2) = ax + by + ¢z for some
a,b,c € k, a # 0. This gives

Ax + ply, 2) = o (zy + yra(y, 2) + 2) = yz + yra(y, ax + by + ¢2) + ax + by + ¢z,

impossible as 72 € K[y, 2] \ k[y] and a # 0, so the coefficient of x of the right hand
side is not constant. ]

Proposition 3.9.4. The eleven families in Theorem 3 define disjoint sets of equiv-
alence classes of affine linear systems of affine spaces, i.e. if (k), (1) € {(1), (2),
., (DY, and f,g: A® — A™ are equivalent affine linear systems of affine spaces
as in family (k) and (1) of Theorem 3, respectively, then (k) = (1).

Proof. If f or g is a non-trivial A'-fibration, then both are. As char(k) = 2 in (8)
and char(k) = 3 in (9), we obtain (k) = (I) =(8) or k = [ =(9). We may now
assume that (k) and (1) are both contained in one of the sets {(1), (2), (3)}, {(4),
(5), (6), (1)} or (9), (10), (11)}.

We write f = (f1,...,fn) and g = (g1, .-, 9n)-

Assume that f; = 2y? +y(2%2 +az+b)+z for some a,b € k, i.e. (k) € {(3), (7)}.
Then for general (A1,..., A, ), the homogeneous part of degree 3 of >_ \; f; does not
factor into linear polynomials. This has to be the same for the homogeneous part
of degree 3 of > Aigi, so (k) = (I) € {(3), (7)} by inspecting the cases that are
different from (3), (7). The same holds when (1) € {(3), (7)}, so we may exclude
these two cases.

Assume now that f; = z + ra(y, 2) + r3(y,2z) for homogeneous polynomials
ro,73 € K[y, z] of degree 2 and 3, respectively, i.e. (k) € {(1), (4), (10)}. For
each (A1,...,A,), the polynomial Y \; f; is equal to Az + p(y, z) for some A € k
and p € k[y, z]. Lemma 3.9.3 implies that g1 is not equivalent to zy + yas(y, 2) + 2
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for some as € k[y, z] \ k[y], homogeneous of degree 2, so () ¢ {(2), (5), (6), (11)}.
This yields (k) = (1) € {(1), (4), (10)}. As before, we may now exclude the cases
(1), (4) and (10).

It remains to see that (k) =(5) and (I) =(6) are not equivalent. We take ho-
mogeneous polynomials as, by € k[z, 2] \ k[z } of degree 2 and r1,79,73 € k such
that

f=(f1,f2) = (yz + zag(x, 2) + x,y + as(x, 2) + r12 + o2 4+ 132°)
g="(91,92) = (yz + zba(x,2) + x,2) .

and prove that f, g are not equivalent. For ¢ = 1,2, denote by f; 3,0:3 € k[z,y, 2]
the homogeneous part of degree 3 of f; and g;, respectively. If 73 # 0, then f; 3, fo3
are linearly independent as as ¢ k[z], but g13,92,3 are not, so f and g are not
equivalent. If 73 = 0, as a2 & k[z], we get that deg(A1 f1 + A2 f2) € {2,3} for each
(A1, A2) #(0,0). As deg(g2) =1, f and g are not equivalent. O

Corollary 3.9.5. Every automorphism of degree <3 of A? is tame.
Proof. As for each a € k[z, 2] and each r € k[z] we have the decomposition
(x+yz+za(x,2),y +a(z,2) + 7(2),2) =hyotohgot

where hy = (z+yz,y+7(2),2) € Triang, (A®), ha = (z+a(y, 2),y, 2) € Triang, (A?%)
and ¢ = (y,x,2) € Affi (A3), it follows from Theorem 3 that all automorphisms of
degree < 3 of A% are tame. O

4. DYNAMICAL DEGREES OF AUTOMORPHISMS OF A% OF DEGREE AT MOST 3

As an application of our description of automorphisms of A% of degree < 3
(see Theorem 3), we list in this section all possible dynamical degrees of these
automorphisms. Recall that the dynamical degree satisfies A(f) < deg(f) and that
A(f) = Ag) if f,g are conjugated automorphisms in Aut(A™) and more generally
if f, g are only conjugated in the bigger group Bir(A™) of birational maps of A™.

4.1. Affine-triangular automorphisms. We say that an element f € Aut(A™)
is affine-triangular if f = o 7, where o € Aff(A"™) is an affine automorphism and
7 € Triang, (A"™) is a triangular automorphism. Note that an element g € Aut(A™)
is equivalent to a triangular automorphism if and only if it is conjugate to an affine-
triangular automorphism by an affine automorphism. The dynamical degrees of
affine-triangular automorphisms of A3 can be computed, using a simple algorithm
described in [BvS19al. In particular, one has the following result.

Theorem 4.1.1. [BvS19a, Theorem 1] For each field k and each integer d > 2, the
set of dynamical degrees of all affine-triangular automorphisms of A3 of degree < d
is equal to

{a+\/a2+4bc
2

(a,b,c)ENg,a+b§d,C§d}\{0}-

Moreover, for all a,b,c € N such that A = ¢+va +ibe ”‘;H‘bc # 0, the dynamical degree of
the automorphism

(z+ 2%’y +2°, z)

is equal to \.
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Corollary 4.1.2. For each d > 1 and each field k, let us denote by Aqx C R the
set of dynamical degrees of all automorphisms of A} of degree d. We then have

A = {1}
AQ,k - {17 \/év (1 + \/5)/27 2}
A3,k 2 {17\/57 1+T\/57 \/3727 HT\/Ev 1+\/§7 \/67 HT\/ﬁv 1+\/§: 3}

Moreover, if f € Aut(A}) is conjugated in Aut(A%) to an affine triangular auto-

morphism of degree < 3 (where k is a fived algebraic closure of k), then
M) €{1,v2, (14V5)/2, V3,2, (1+V13)/2, 1+V2, V6, (14+V17)/2, 1+V/3, 3}.

Proof. Let us write

I {a+\/a2+4bc
A=y
2

(a,b,c) eNg,a+b§d7c§d}\{O} for each d > 1.

This gives then

Ly = {1}
L2 = {13\/53(1+\/5)/272}
Ly = {1a\/§a 1+2\/57 \/§7Qa Hgﬂ7 1+\/§7 \/67 HT\/ﬁv 1+\/§7 3}

For each d € {1,2,3} holds: If f € Aut(A}) is conjugated in Aut(A%) to an affine
triangular automorphism of degree < d, then Theorem 4.1.1 implies that A\(f) € Lg.
In particular, Ay x € Ly and Ay x C Lo, as every element of Aut(Ai) of degree < 2
is equivalent to a triangular automorphism and is thus conjugate in Aut(Ag) to an
affine triangular automorphism (Theorem 3).

It remains to see that Ly C A; x for d = 1,2, 3, by giving explicit examples. For
d = 1, we simply take the identity. For d € {2,3}, we use elements of the form

fape=(z+ x4y + x¢,x) € Aut(Aii)

whose dynamical degrees are equal to A(fapc) = (@ + va? +4bc)/2 when this
number is not zero (Theorem 4.1.1).

For d = 2, we use fi02, fo,1,2, fi,1,1 and fi1 1,2, which all have degree 2 and
dynamical degrees 1,+/2, (1 + v/5)/2, 2 respectively.

For d = 3, we first use f1,0,3, fo,1,3, f2,0,3, f1,1,3, f2,1,1, fo,2,3, f1,2,2, fo,1,2 and
fo.3.3 which all have degree 3 and dynamical degrees 1, v/3, 2, (1++/13)/2, 1 ++/2,
V6, (1++/17)/2, 1 ++/3 and 3, respectively. In order to obtain the values /2 and
(14++/5)/2, we conjugate fo12 = (2 +y,y+2% x) and f111 = (z+2y,y +z,2) by
(x,y+22,2) and (x,y+22, 2), respectively, to get two automorphisms of A2 of degree
3 having dynamical degree equal to to A(fo.12) = v2 and A(f11.1) = (1 +/5)/2,
respectively. (I

4.2. List of dynamical degrees of all automorphisms of degree 3. An au-
tomorphism f € Aut(A"™) is called algebraically stable, if deg(f") = deg(f)" for all
r > 0. In this case, A(f) = deg(f). Now, let ¢: A™ — P™ be the standard embed-
ding, i.e. t(z1,...,2n) = [1: @1 : -+ : x,]. Note that f is algebraically stable, if
and only if the extension of f to a birational map f: P* --» P™ via ¢ satisfies the
following: f7 maps the hyperplane at infinity H,, = P \ t(A™) not into the base
locus of f for each r > 0 (follows for instance from [Sib99, Proposition 1.4.3] or
[Blal6, Lemma 2.14]).
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The computation of the dynamical degrees in Theorem 2 is heavily based on the
results of [BvS19al. Let us recall the notations and results that we need here.

Definition 4.2.1. Let pt = (pt1,..., 4n) € (R>0)™ and r € R>q. For a polynomial
p = pi.. i, xin € K[z, ..., x,] (Where p;, ;. € k) its u-homogeneous
part of degree r is the polynomial

i1 7
Z Piy,..in Ty Xy ek[xlw"vx’n]'
P U1ty =T

For each p € k[v1,...,2,] \ {0}, we define deg,(p) to be the maximum of the real
numbers r € R>( such that the p-homogeneous part of degree r of p is non-zero.
We then set deg,(0) = —o0.

Definition 4.2.2. Let f = (f1,...,fn) € Aut(A") and let p = (u1,...,4n) €
(R>0)™. We define the p-degree of f by

deg,(f) =inf { § € R>o | deg,(f;) < Op; for each i € {1,...,n} } .

In particular, deg,,(f) = oo if the above set is empty. If § = deg,(f) < oo, then for
each i € {1,...,n}, let g; € k[z1,...,x,] be the y-homogeneous part of degree p;
of f;. Then g = (g1,...,9n) € End(A"™) is called the u-leading part of f.

The following result from [BvS19a] will serve as the main technique to compute
dynamical degrees.

Proposition 4.2.3. [BvS19a, Proposition A| Let f € Aut(A™) and let p = (p1, ..., tn) €
(R>0)™ be such that 0 = deg,,(f) € Rx1. If the p-leading part g: A" — A" of f
satisfies g" # 0 for each r > 0, then the dynamical degree A(f) is equal to 6.

Proposition 4.2.4. Let f = (f1, fo, f3) = a0 g € Aut(A3), where o € Aff(A3),
9= (z+yz+za(x,2)+ &y +alz, 2) +7(2),2),

E €k, a(z,z) = agx? + a122 + as2? + azx + asz € K[z, 2], ag,...,a4 € k, v € K[2]
has degree < 3 and (ag,a1) # (0,0).

If a*(2) € K[z], then A(f) = deg,(a) € {1,2}. Otherwise, either f is algebraically
stable (in which case \(f) = 3) or f is conjugate by an element of Aut(A3) to an
affine-triangular automorphism of degree < 3, or we can conjugate f by an affine
automorphism and reduce to one of the following cases:

(1) deg(r) = 3, a*(z) € k2] and the coefficient of 23 in f3 is zero;

(2) deg(r) <2, a*(y) € k[z] and a*(z) € K[y, 2];

(3) deg(r) <2, a*(y) € k[z], a*(x) € Kly, z] and az = 0;

(4) deg(r) <2, a*(x) € k[z], a*(y) € kly, 2], a1 # 0 and az = 0.

Proof. (A) Suppose first that a*(z) € k[z]. Since the dynamical degree of the
automorphism z — a*(2) of Al is 1, by [BvS19a, Lemma 2.3.1] the dynamical degree
of f is given by A(f) = lim, 00 degzﬁy(f’")%. If deg,(a) = 1, then deg, ,(f") =1
for each 7 > 1, so A(f) = 1. We then suppose that deg,(a) = 2 and prove
that A(f) = 2. Choosing = (1,1,0), we find deg, ,(p) = deg,(p) for each p €
k[r,y,2]. As za(z,2) and a(z, 2) are k-linearly independent, one finds deg,(f1) =
deg,(f2) = 2 and deg,(f3) = 0. Hence, deg,(f) = 2 and the p-leading part of
fis g = (g1,92,93), where g3 = f3 € k"2 + k and g1,9» € (ka?z + ka?) \ {0}.
This implies by induction on r that no component of g" is zero, for each r > 1,
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which implies that lim,_ deg”(fT)% = 2 [BvS19a, Lemma 2.6.1(5)]. This gives
A(f) =2. -

We may thus assume that a* (z) € k[z] in the sequel. We denote by f,g € Bir(P?)
and @,7 € Aut(P?) the extensions of f,g and «,7, via the standard embedding
A3 — P3 (z,y,2) = [1 : 2 : y : z] and denote as usual by H,, the hyperplane
P3\ A2 given by w = 0 where w, z,y, z denote the homogeneous coordinates of P3.
Denoting by f; ; the homogeneous part of f; of degree j, the restriction of f to Hu
isgivenby [0:2:y: 2] —=[0: fis(z,y,2): fas(z,y,2): f33(z,y,2)].

(B) Suppose now that deg(r) = 3. This implies that spany(fi,3, f2,3, f3,3) C
k[z, 2]3 has dimension 2. Hence, the image by f of Hy is a line £ C Hy (as
(ap,a1) # (0,0)) and the base-locus of f is the line ¢, C Ho, given by z = 0.
As g(Hwo) is the line £, and as a*(z) ¢ k[z], the line £ = @(¢,) C Hs satisfies
¢ # 0, If f restricts to a dominant rational map ¢ --» ¢, then f is algebraically
stable, and the same holds if f(£\£.) is a point of £\ £,. We may thus assume that
f(\NL) =€N{, € Hy. The fact that f(£\ £,) and thus also g(¢ \ £.) is a point
implies that ¢ = @(¢,) passes through the point [0 : 0 : 1 : 0] and thus ¢ is given
by x = uz for some p € k. We may conjugate f with k = (z — pz,y, 2) € Aff(A3)
(this replaces o with x o @ and g with g o k=1 so does not change the form of g)
and assume that p = 0.

Since f(£\£,) = €N, =[0:0:1:0], the coefficient of z3 of f3 (and of f;)
is equal to zero. As @((,) is the line x = 0, we get a*(x) € k[z]. We are thus in
Case (1).

(C): We may now assume that deg(r) < 3 (and still a*(z) € k[z]). We write

a = (a112 + a2y + a132 + B1, ao1& + a2y + a3z + Po, a312 + sy + aszz + F3)

where «;; € k and §; € k for all 4,5 € {1,2,3}. As deg(r) < 3 the vector space
spany (f1.3, f2.3, f3.3) C K[z, 2]3 has dimension 1. The image of Hy, by f is the point
g =1[0: a1 : as : as1] € Hy and the base-locus of f is the union of three lines
(maybe with multiplicity). If ¢ is not in the base-locus, then f is algebraic stable.
We may thus assume that f; 3(¢) = 0 for each i. We distinguish the possible cases,
depending on whether 17 and as; are zero or not.

(C1): Assume first that @11 = ag1 = 0. As a*(z) € k[z], we get asy # 0.
Conjugating by £ = (z — a12/a322,y, 2) (this replaces o with x o @ and g with
go Kk~ so does not change the form of g), we may assume that oy, = 0.

Asg=(z+yz+&z,y+r(2),2)o(z,y+a(z,z2),2), we find

h = (hi,ho,h3) = (x,y+a(z,2) +1(2),2) 0 fo(x,y—alx,z)—r(z),2)
= (r,y+a(z,2)+7r(z),2)oao0(x+ (y—r(2)z+E&2,y,2)

with
hi = awz+ 3
hy = azy+asz+ 63
he = ao(x+ (y—7r(2)z+&£2) + @y + assz + B2 + a(hy, hg) + r(hs)

We see that h is affine-triangular of degree < 3 and thus f is conjugate to an affine
triangular automorphism of degree < 3.

(C2): Assume now that a1 # 0 and agy = 0. The equality as; = 0 corresponds
to a*(z) € k[y, z]. As a*(z) & k]z], we have age # 0. Conjugating by k = (z,y —
a1 /a1, z) we may assume that ap; = 0 (as before, this replaces g with go s~}
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and thus does not change the form of g). We then conjugate by (z,y — aaa/as22, 2)
and may assume that asg =0, so a*(y) € k[z]. We are thus in Case (2).

(C3): Assume now that az; # 0. Conjugating by k = (z — a11/az12,y —
Q21 /as12,2), we may assume that a1; = ag1 = 0, so o*(z),a*(y) € kly, 2] and
gq=100:0:0:1]. As f33(q) = 0 and as the coefficient of z in a*(z) is non-zero,
we get ag = 0. If aya # 0, we conjugate by (x,y — asa/a12, z) and may assume
that ase = 0, so a*(y) € k[z], giving Case (3). If ayo = 0 and a1 # 0, we get
Case (4). We may thus assume that a3 = @12 = as; = 0 and a3 = as = 0. This
gives o*(z) € k2], a*(y) € k[y, 2] and a(x,z) = apz? + azx + asz, with ag # 0.
Then,

h = (hi,h2,h3) = (z,y + azx + apx?,2) o f o (z,y — azx — apz?, 2)
= (z,y+azr+agr? z)oao (v +yz+asz?+ 2,9+ asz +1(2),2)
is such that hy € k[z], ha € Ky, 2] and hs € K[z, y, 2] are of degree < 2. Hence,

f is conjugate by an element of Aut(A®) to an affine-triangular automorphism of
degree < 2. O

Proposition 4.2.5. The dynamical degree of any f = awog as in the four Cases (1)-
(2)-(3)-(4) of Proposition 4.2.4, is given as follows:
[ 1+v2 if a1 # 0;
(1) M) = { (1++13)/2  ifa; =0.
1++V3  ifag #0;
@ ) = { oo 7

14+v2 ifag=0.
(3) Writing the coefficient of 2% in fi as €, we obtain
1++3 ifap #0 and ¢ #0;

Af) = (3++5)/2  ifar #0 and e=0;
) +VIT)/2 ifar=0 and e#0;
2 ifap=0 and e=0.

(4) A(f) =1+ V2.

Proof. (1): We have deg(r) = 3, a*(z) € k[z] and the coefficient of 22 in f3 is zero.
This gives f1 = f1.0 + fi1.1 € k[2] and implies that the coefficient of 2% in f, is not
zero. Let 6 be in the open intervall (2, 3) and choose 1 = (1,3,6). The u-degree of
23 is bigger than any other monomial that occurs in fi, fo or f3, as § > 2. We get
deg, (f1) = 0, deg,(f2) = 30, with p-leading parts equal to (12 and (2> for some
¢1,¢ € k¥, respectively. As the coefficient of 23 in f3 is zero, the monomial yz
occurs in f3. Hence, the y-leading part of f3 belongs to (kyz +kz22)\ {0}. Indeed,
as deg,(y) > deg,(2) > deg,(z), deg,(yz) = 3 + 0 is the biggest p-degree of the
monomials of degree < 2 appearing in f; moreover deg,,(yz) > degu(xzz) =2+0.

If a; # 0, the coefficient of 22 in f3 is not zero, so t € kxz? (since § > 2). We
choose # = 1++/2 and observe that #? = 26+ 1. Thus we obtain deg,(f) = 0, with
p-leading part g = ((12, (223, (3222), where (3 € k*.

If a; = 0, then ¢ € kyz. We choose § = (1++/13)/2 and observe that 62 = 6 + 3.
Thus we obtain deg,(f) = 0, with p-leading part g = (C12,(223, (3y2), where
(3 € k™.

As g is monomial, we have g" # 0 for each » > 1, so A(f) is equal to 8 in both
cases (Proposition 4.2.3).
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(2): We have deg(r) < 2, a*(y) € k[z] and a*(z) € k[y, z]. This gives

fi = fio+ fir+ fiz+ Gzlagr? + a12z + az2?),
fo = foo+ oz,
f3 = fso0+ f31+ Clagr? + arzz) + €322,

where (q,(2,(3 € k*7 es € k.

If ag # 0, we choose 6§ = 14+ /3, p = (6 +1,1,6) and observe that 62 = 26 + 2.
Then, deg,,(f) = 0, with p-leading part (Ciaoz?z, {22, (3aox?®). This gives A(f) = 0
by Proposition 4.2.3.

If ag = 0, then a; # 0. We choose # = 1+ +/2, = (#+1,1,6) and observe that
6?2 = 20 + 1. Then, deg,(f) = 0, with p-leading part (Cra1x22, (22, (za1xz). This
gives A\(f) = 6 by Proposition 4.2.3.

(3): We have deg(r) <2, a*(y) € k[z], a*(z) € k[y, 2] and as = 0. This gives

fi = fio+ fin+ G(aoz? + ar1zz) + €322,
fo = foo+(oz,
fs = fso+ fa1+ fa2+ (3z(apa? + ar132),

where (1, (2,(3 € k*7 e3 € k.

If a; # 0 and £3 # 0, then we choose § = 1 ++/3, u = (2,1,6) and observe that
0> = 20 + 2. Then, deg,(f) = 6, with p-leading part (e32%, (22, (3a122%). This
gives A(f) = 0 by Proposition 4.2.3.

If a; # 0 and e3 = 0, then we choose § = (3++/5)/2, u = (1,6 —2,0 —1) and ob-
serve that §* = 30—1. Then deg,,(f) = 0, with p-leading part (¢1a122, (22, (3a1227).
This gives A(f) = 6 by Proposition 4.2.3.

If a; = 0 and e3 # 0, then ap # 0 and we choose § = (1 ++/17)/2, u = (2,1,0).
Observe that #2 = #4-4. Then deg, (f) = 0, with p-leading part (€322, (a2, (3agx?2).
This gives A(f) = 0 by Proposition 4.2.3.

Ifa; = e3 = 0, then ag # 0 and we choose 6 = 2, u = (1,1,0). Then deg,,(f) =0,
with p-leading part ¢ = (Crapz? + €12, (22, (3aox?z + £322) for some &, &3 € k.
Let §: A2 — A2 (2,2) = (Claor® + &2, (agr?z + £32%) and observe that § is
dominant (as (yao and (3a¢ are both non-zero). As Toq = §or for m: A% — A2,
(z,y,2) — (z,2), it follows that ¢" # 0 for each » > 1. This gives A(f) = 0 by
Proposition 4.2.3.

(4): We have deg(r) < 2, a*(z) € k[z], a*(y) € k[y, 2], a1 # 0 and ay = 0. This
gives

fi = fio+GQz,
fo = foo+ for1+ G(aoz® + a1zz) + €222,
fs = fso+ fa1+ fa2+ (3z(apr? + a132),

where (1, (o, (3 € k¥, e2 € k. We choose = 1+v/2, u = (1,2,1+1/2) and observe
that 62 = 260 + 1. Then deg,(f) = ¢ with p-leading part (C12,6222, (3a102?). As
ay # 0 and (3,3 # 0, this gives A(f) = 6 by Proposition 4.2.3. O

Ezample 4.2.6. We illustrate the different cases (1)-(4) of Proposition 4.2.4 and
Proposition 4.2.5, by giving a simple example in each possible case and we give
examples for the two cases where a*(z) = z and the case where f is algebraically
stable. All of them are of the form « o g, where o € Aff(A3), g = (z +yz +
za(z, 2),y+a(z, 2)+1(2),2), a = apx® + a1z2+ax2? € k[z, 2]\ k[2] is homogeneous
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of degree 2 and r € k[z] is of degree < 3.

Case | a | r f € Aut(A?) A(f)

zz | 0 (v +yz+ a2y +22,2) 1

22| 0 (r+yz+ 222,y + 2%, 2) 2

vz | 22 | (v +yz+ 222 2,y + 22+ 23) 3
(1) |zz | 23| (z,y + 22+ 23, 2+ yz + 22?) 1++2
(1) | 22| 22| (z,y+ 22+ 22,2 +yz+2%2) | (14+V13)/2
(2) |22] 0 (x +yz + 222, 2,y + 2?) 1+V3
(2) |xzz| 0 (x +yz + 322 2,y + 22) 1+V2
(3) |xz | 22| (y+az+2% 2,2+ yz + x2?) 1+/3
(3) |zz| 0 (y +x2, 2,0 +yz + x2?) (34 /5)/2
(3) |22 | 22| (y+22+ 2%z, 2 +yz+2%2) | 1+ V17)/2
(3) |22] 0 (y+ a2, 2,2 + yz + 222) 2
(4) |zz| 0 (z,y +xz,2 +yz + x2?) 1++2

Proof of Theorem 2. Corollary 4.1.2 gives the values of Ajx and Asy, proves that

A3 contains Lz = {1,1/2, 1+2‘/5, V3,2, HT‘/E, 1+v2, V6, H%m, 1++/3, 3} and

that for each f € Aut(A}) which is conjugated in Aut(A?) to an affine triangular

automorphism of degree < 3 (where k is a fixed algebraic closure of k), we have
)\(f) € Ls.

Moreover, the element (y+ 2,2, 2+ 2(y+x2)) € Aut(A}) has dynamical degree
(3 + v/5)/2 (follows from Proposition 4.2.5 as it belongs to Case (3) with a; # 0
and ¢ = 0, see also Example 4.2.6).

It remains then to see that each element f € Aut(A}) of degree 3 has a dynamical
degree which is either equal to (3 4+ v/5)/2 or belongs to L. By Theorem 3, f
is conjugate in Aut(A%) either to an affine-triangular automorphism or to f =
ao(yz+za(z, z) +x,y+a(z, z) +7(z), z) where a € k[z, z] \ k[z] is homogeneous of
degree 2 and r € k|z] is of degree < 3. In the first case, A(f) € L3 by Corollary 4.1.2.
In the second case, Propositions 4.2.4 and 4.2.5 show that either A\(f) = (3++/5)/2
or A(f) € L. This achieves the proof. O
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Apstract. — Let G be a connected reductive algebraic group. We prove that for a quasi-affine
G-spherical variety the weight monoid is determined by the weights of its non-trivial Gg-
actions that are homogeneous with respect to a Borel subgroup of G. As an application we
get that a smooth affine spherical variety that is non-isomorphic to a torus is determined
by its automorphism group (considered as an ind-group) inside the category of smooth affine
irreducible varieties.

Rissumi; (Caractérisation des variétés sphériques affines lisses par le groupe des automorphismes)
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1. INnTRODUCTION

In this article, we work over an algebraically closed field k of characteristic zero if
it is not specified otherwise.

In [Kral7, Th.1.1], Kraft proved that A™ is determined by its automorphism group
Aut(A™) seen as an ind-group inside the category of connected affine varieties (see [FK]
for a reference of ind-groups) and in [KRvS19, Main Th.], this result was partially
generalized (over the complex numbers) in case Aut(A™) is seen only as an abstract
group. In [CRX19, Th. A], the last results are widely generalized in the following
sense: A™ is completely characterized through the abstract group Aut(A™) inside the
category of connected affine varieties. The result of Kraft was partially generalized
(over the complex numbers) to other affine varieties than the affine space in [Regl7]
and [LRU19]. More precisely, there is the following statement (formulated over the
complex numbers, but valid with the same proof over k):

Tueorem 1 ([LRU19, Th.1.4]). — Let X be an affine toric variety different from the
torus and let Y be an irreducible normal affine variety. If Aut(X) and Aut(Y') are
isomorphic as ind-groups, then X and Y are isomorphic as varieties.

Remark 2. — In fact, in both [Kral7] and [LRU19, Th.1.4], the authors prove the
statements under the slightly weaker assumption that there is a group isomorphism
Aut(X) ~ Aut(Y) that preserves algebraic subgroups (see Section 5 for the defini-
tion).

A natural generalization of toric varieties are the so-called spherical varieties. Let G
be a connected reductive algebraic group. Recall that a normal variety X endowed
with a faithful G-action is called G-spherical if some (and hence every) Borel subgroup
in G acts on X with an open dense orbit, see e.g. [Bril0] for a survey and [Tim11]
for a reference of the topic. If G is a torus, then a G-spherical variety is the same
thing as a G-toric variety. If X is G-spherical, then X has an open G-orbit which is
isomorphic to G/H for some subgroup H C G. The family of G-spherical varieties is,
in a sense, the widest family of G-varieties which is well-studied: in fact, G-equivariant
open embeddings of G-homogeneous G-spherical varieties are classified by certain
combinatorial data (analogous to the classical case of toric varieties) by Luna-Vust
[LV83] (see also the work of Knop [Kno91]) and homogeneous G-spherical varieties are
classified for k equal to the complex numbers by Luna, Bravi, Cupit-Foutou, Losev
and Pezzini [Lun01, BP05, Bra07, Lun07, Los09b, BCF10, CF14].

In this paper, we generalize partially Theorem 1 to quasi-affine G-spherical vari-
eties. In order to state our main results, let us introduce some notation. Let X be an
irreducible G-variety for a connected algebraic group G with a fixed Borel subgroup
B C G. We denote by X(B) the character group of B, i.e., the group of regular group
homomorphisms B — G,,,. The weight monoid of X is defined by

AT (X)={rex(B) | 0(X){P #0},

JEP. — M., 20921, tome 8
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where 0(X )E\B) C 0(X) denotes the subspace of B-semi-invariants of weight A of the
coordinate ring (X) of X, i.e.,

0(X)\®) ={feO(X)|b-f=A0b)f forall b B}.

Our main result in this article is the following:

Main Tueorem A. — Let X, Y be irreducible normal quasi-affine varieties, let
0: Aut(X) ~ Aut(Y) be a group isomorphism that preserves algebraic subgroups
(see Section 5 for the definition) and let G be a connected reductive algebraic group.
Moreover, we fix a Borel subgroup B C G. If X is G-spherical and not isomorphic to
a torus, then the following holds:

(1) Y is G-spherical for the induced G-action via 0;
(2) the weight monoids AT (X) and AT (Y) inside X(B) are the same;
(3) if one of the following assumptions holds

(i) X, Y are smooth and affine or
(ii) X, Y are affine and G is a torus,

then X andY are isomorphic as G-varieties.

We prove Main Theorem A(1) in Proposition 7.7, Main Theorem A(2) in Corol-
lary 8.6 and Main Theorem A(3) in Theorem 8.7.

In case X is isomorphic to a torus and X is G-spherical, it follows that G is in
fact a torus of dimension dim X. Indeed, as each unipotent closed subgroup of G acts
trivially on X ~ (k*)¥mX and since G acts faithfully on X, it follows that G has no
unipotent elements; hence G is a torus [Hum75, Prop. B, §21.4]. Thus X ~ G. Then
[LRU19, Exam. 6.17] gives an example of an affine variety ¥ such that there is a group
isomorphism 6: Aut(X) — Aut(Y) that preserves algebraic subgroups, but Y is not
G-toric. Thus the assumption that X is not isomorphic to a torus in Main Theorem A
is essential.

Moreover, in general, we cannot drop the normality condition in Main Theorem A:
We provide an example in Proposition 9.1 where the weight monoids of X and Y are
different, see Section 9.

OurLiNg oF THE PROOF OF MaIN Tueorem A(1). — We introduce generalized root sub-
groups of Aut(X) and study these subgroups and their weights for a G-variety X (see
Section 7 for details). We show that if G is not a torus, then an irreducible normal
quasi-affine variety with a faithful G-action is G-spherical if and only if the dimension
of all generalized root subgroups of Aut(X) with respect to B is bounded (see Def-
inition 7.1, Proposition 7.3 and Lemma 7.6). This characterization of the sphericity
is stable under group isomorphisms of automorphism groups that preserve algebraic
groups and thus we get Main Theorem A(1).
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OutLINE OF THE PROOF OF MaIN TaeEOREM A(2). — We show that the weight monoid
AT(X) of a quasi-affine G-spherical variety X is encoded in the following set:

D(X) = { A€ X(B) there exists a non-trivial B-homogeneous}

Gg-action on X of weight A

(see Section 4.2 for the definition of a B-homogeneous G,-action). We call D(X) the
set of B-homogeneous G,-weights of X. To D(X) C X(B) we may associate its asymp-
totic cone D(X)o inside X(B)®zR and consider the convex cone Conv(D(X)s,) of it
(see Section 2 for the definitions). We prove then the following “closed formula” for
the weight monoid:

MaiN Tueorem B. — Let G be a connected reductive algebraic group, B C G a Borel
subgroup, and X a quasi-affine G-spherical variety that is non-isomorphic to a torus.
If neither G is a torus nor Spec(0(X)) ¢ Al x (Al ~ {0})d™(X) =1 then

AT (X) = Conv(D(X)s) N Spany (D(X)),
where the asymptotic cones and linear spans are taken inside X(B) ®z R.

Main Theorem B is proved in Theorem 8.2. As a consequence of this result, we
get that the set of B-homogeneous G,-weights determines the weight monoid, see
Corollary 8.4:

MaiNx Tueorem C. — Let G be a connected reductive algebraic group and let X,Y be
quasi-affine G-spherical varieties with D(X) = D(Y). Then AT(X) = AT(Y).

Using this last result, we get then Theorem A(2), as the existence of a group
isomorphism Aut(X) — Aut(Y") that preserves algebraic groups implies that D(X) =
D(Y), see Lemma 5.1.

OUTLINE OF THE PROOF OF MAIN THEOREM A(3). Note that the statement of Main
Theorem A(3ii) is the same as Theorem 1 together with Remark 2. We mentioned
it here as it is a direct consequence of Main Theorem A(2). Again using Main The-
orem A(2), the statement of Main Theorem A(3i) is a direct consequence of the
following beautiful result of Losev that proves Knop’s Conjecture:

Tueorewm 3 ([Los09a, Th.1.3]). — If X and Y are smooth affine G-spherical varieties
with AT(X) = AT(Y), then X and Y are isomorphic as G-varieties.

OUTLINE OF THE STRUCTURE OF THE PAPER. — In Section 2 we introduce the concept
of the asymptotic cone D, associated to a given set D in a Euclidean vector space.
One can think of D, as the set one receives if one looks at D from “infinitely far
away”. We provide in this Section several properties of (asymptotic) cones used for
our study of homogeneous G,-actions on toric varieties in Section 6 and also for the
proof of our “closed formula” of the weight monoid in terms of the set of homogeneous
Ga-weights, i.e., Main Theorem B.
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In Sections 3, 4, 5 we gather general results about quasi-affine varieties, vector
fields, automorphism groups of varieties and root subgroups. This material is con-
stantly used in the rest of the article. For several results we don’t have an appropriate
reference to the literature and thus we provide full proofs.

In Section 6 we study homogeneous G,-actions on quasi-affine toric varieties. Let us
highlight the two main results. For this, let X be a quasi-affine toric variety described
by some fan ¥ of convex cones. Then the associated affine variety X,g := Spec(0(X))
is again toric (see Lemma 3.4) and thus can be described by some convex cone o.
Our first main result in this section (Corollary 6.7) provides a full description of
the homogeneous G,-actions on X in terms of the fan ¥. In our second main result
(Corollary 6.9) we describe the asymptotic cone of the set D(X) of homogeneous
G,-weights of X in terms of the convex cone o.

In Section 7 we show that the automorphism group determines the sphericity, i.e.,
we prove Main Theorem A(1). As already mentioned, the idea is to characterize the
sphericity in terms of so-called generalized root subgroups, see Proposition 7.3.

In Section 8 we prove Theorem 8.2 which gives the closed formula in Main Theo-
rem B. Note that for a quasi-affine G-spherical variety X the following fact holds: the
algebraic quotient X,g /U is an affine toric variety, where U denotes the unipotent
radical of a Borel subgroup of G. Using this fact and our study of the homogeneous
Ga-actions presented in Section 6, we prove Theorem 8.2. We then get Main The-
orem C as a consequence, see Corollary 8.4. At the end of this Section we prove
Theorem 8.7 which is the statement of Main Theorem A(3).

In Section 9 we provide an example that shows that the normality condition in
Main Theorem A is essential.

Acknowledgements. The authors would like to thank Michel Brion for giving them
the idea to study asymptotic cones, which eventually led to a proof of the main
results. The authors also thank the anonymous referees for very helpful suggestions
and comments.

2. CONES AND ASYMPTOTIC CONES

In the following section we introduce some basic facts about cones and asymptotic
cones. As a reference for cones we take [Ful93, §1.2] and as a reference for asymptotic
cones we take [AT03, Chap. 2].

Throughout this section V' denotes a non-zero Euclidean vector space, i.e., a finite
dimensional R-vector space V # {0} together with a scalar product

VxV—R, (u,v)— (u,v).

The induced norm on V' we denote by ||-|| : V — R.
A subset C C V is a cone if for all A € Ry and for all ¢ € C we have A-c € C.
The asymptotic cone Do, of a subset D C V is defined as follows:

there exists a sequence (z;); in D with ||z;]] = oo

D :{ Vv 0
v €V~ {0} such that x;/||z;|| — =/||=|

}U {0}.
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The asymptotic cone satisfies the following basic properties, see e.g. [AT03,
Prop. 2.1.1, Prop. 2.1.9].

Lemwa 2.1 (Properties of asymptotic cones)
(1) If D C V, then Do CV is a closed cone.
(2) If C CV is a closed cone, then C, = C.
(3) If Dc D' CV, then Do C (D)oo
(4) IfDCV andv eV, then (v+ D) = Do
(5) If D1,...,Dy, CV, then (D1 U+ U Dg)oo = (D1)oc U+ U (Dg)oo- O

In order to illustrate the definition of the asymptotic cone, we draw the picture of
two sets D in R? and their asymptotic cones D, in R2. In the first case, D is given
by zy =1, x > 0 and in the second case, D is the union of two translated copies of a
cone in the plane.

D
D D and Doo

Levmma 2.2 (Asymptotic cone of a d-neighbourhood). — Let D C V and let § € R
with 6 > 0. Then the §-neighbourhood of D

D° = {x €V | there is y € D with ||z — y|| <&}
satisfies (D)oo = Do

Proof of Lemma 2.2. — We only have to show that (D?)s, C Duo. Let 0 # 2 € (D)4
and let (z;); be a sequence in D’ such that ||z;]] — oo and z;/ ||z — z/|z].
By definition, there is a sequence (y;); in D such that ||z; — y;|| < J. In particular,
we get ||y;|| — oco. Let m; = min{||z;|, ||y:||}- Then m; — oo and for sufficiently big i

og‘ Ti yilgxi_ying(s.
sl gl mi m;
As 6/m; — 0, the above inequality implies z/||z|| =lm;_, o0 zi /|| Z:|| =limi oo yi /|| ¥il|-

O

For a subset D C V we denote by int(D) the topological interior of D inside the
linear span of D.

Lemma 2.3 (Intersection of a cone with an affine hyperplane.) Let C C V be a
cone and let Hy be an affine hyperplane in V' such that 0 ¢ Hy. If C N Hy # &, then
ll’lt(C) n H1 75 .

Proof. — Let m: V — R be a linear map such that H; = 7~ 1(1). By assumption,
there is ¢ € C N H;. We may assume that ¢ lies in the topological boundary of C'
inside the linear span of C' (otherwise we are finished). By the continuity of 7, there
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is ¢ € int(C') such that |w(c) — n(d)] < 1. As w(c) = 1, we get mw(¢') > 0. Then
A =1/m(c") € Ryp and thus Ad' € int(C) N H;. O

A subset C C V is called convex if for all z,y € C and all « € [0,1], we have
ar+ (1 —a)y € C. A convex cone C' C V is called strongly convex if it contains no
linear subspace of V' except the zero subspace. For a subset D C V, we denote by
Conv(D) the convex cone generated by D in V, i.e.,

Conv(D) = {\v1+ -+ Xvp €V |v1,...,u5 € Dand Aq,..., A\ € Ry}

LLemma 2.4 (Asymptotic cone of the intersection of a closed convex cone with an affine
hyperplane)

Let C C 'V be a closed convex cone and let H C'V be a hyperplane. Then for each
v eV such that CN(v+ H) # @, we have

Cnw+H)),=CnH.

Proof. — Wedenote D .= CN(v+H) CV.AsD # @ wecantakex € D.Ify € CNH,
thenz+y € C and z+y € v+ H, thus x +y € D. This shows that « +(CNH) C D
and by Lemma 2.1, we get C N H C Dy. Now, from Lemma 2.1 we get also the
reverse inclusion (here we use that C' is a closed cone):

Do =(CNW+H))oo CCcN(W+H)oo =CocNHw =CNH. O
A subset C' CV is a convex polyhedral cone if there is a finite subset F'C V such that
C = Conv F.
For a convex polyhedral cone C' in V', set
CY={zeV]|{cz)>0forall ceC}.

By [Ful93, Propty (1), p.9] we have C' = (C")". In particular C' is closed in V.

A hyperplane H C V passing through the origin is called a supporting hyperplane
of a convex polyhedral cone C' C V if C' is contained in one of the closed half spaces
in V delimited by H, i.e., there is a normal vector v € V' to H such that

Cc{xeV]| (ux) >0}

A face of a convex polyhedral cone C' C V is the intersection of C' with a supporting
hyperplane of C' in V. A face of dimension one of C' is called an extremal ray of C.

For a fixed lattice A C V (i.e., a finitely generated subgroup of (V,+) of rank
dim V'), a convex polyhedral cone C' C V is called rational (with respect to A) if there
is a finite subset F' C A such that C' = Conv(F). In case C is strongly convex, then C
is rational if and only if each extremal ray of C' is generated by some element from
CNA, see [Ful93, p. 14]. Note that a face of a rational convex polyhedral cone is again
a rational convex polyhedral cone, see [Ful93, Prop. 2].

Lemma 2.5, — Let A C V be a lattice.
(1) If C C V is a rational convex polyhedral cone, then C = (C N A)w.
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(2) If vg € V, S C V denotes the unit sphere with center 0 and p: V {0} — S
denotes the map given by v v/|v||, then p((vo + A) \ {0}) is dense in S.

Proof
(1) Let v1,...,v, € CN A such that C = Conv(vy,...,v,). Then

K={3_tweV|0o<t;<lfori=1,...,r}

is a compact subset of C. In particular, there is a real number § > 0 such that
lv| < 6 for all v € K. Now, let ¢ € C. Then there exist my,...,m, € Zxo and
0<t,...,t, <1 such that

c= Z m;v; + (Z tﬂ}i> .
i=1 i=1
—_———
ecnA €K
This shows that c is contained in the d-neighbourhood (C'NA)°. In summary, we get
CNAcCCc(CNA) and by using Lemmas 2.1 and 2.2 the statement follows.

(2) By (1) applied to C = V and Lemma 2.1 we get V = A = (vo + A)oo-
By definition of the asymptotic cone, thus for every v # 0 in V there exists a sequence
(Ai); in A such that ||vg + N\;|| = oo and p(v) = lim; o p(vo + A;). This shows that
p((vo + A) ~ {0}) is dense in S = p(V ~ {0}). O

Prorosition 2.6. — Let A C V be a lattice, let C C V be a convex polyhedral cone,
let H CV be a hyperplane, and let H' :== v+ H for some ye A\ H.
(1) If CNH' # @, dim CNH = dim H and H is rational, then int(C)NH'NA # @.
(2) Ifint(C)NH' NA # @ and CN H is a rational convex polyhedral cone, then
CNH=(int(C)NH NA)s.

The pictures below illustrate the setups of Proposition 2.6 in the two cases.

Proof

(1) fdimV =1, then H = {0}. Thus CNH' # & gives CNH' = {y} C A~ {0}
and the statement follows. Hence, we assume dim V' > 2.

As v & H, we get 0 ¢ H'. Since C N H' # & there is thus z € int(C) N H’
by Lemma 2.3. As dim(C' N H) = dim H, the linear span of C' N H is H and we get
that int(C' N H) is a non-empty open subset of H. Set

D=z + (int(CN H) \ {0}) C (int(C)N H") \ {z}.
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Denote by S the unit sphere in H with center 0 and consider

m: H' {2} — S, wi—s 2L

lw — =]

For all h € int(C'N H) we have Rxoh C int(C' N H) and thus
71 (r(D)) = D.

As dim H > 1 (note that dimV > 2), we get that D is a non-empty open subset of
H' \ {z}, and thus the same is true for 7(D) in S (because 7 is open). As v € A
and H' = v+ H, it follows that H' N A = v+ (H N A). Using that H is rational,
we get that 7((H' N A) \ {z}) is dense in S by Lemma 2.5(2) applied to the point
v —x € H and the lattice H N A in H. By the openness of m(D) in S, there is
A€ (H' NA) N {z} C A with 7(\) € n(D). In particular, A\ € 7= 1(7(D)) = D and
thus A € DNA Cint(C)NH NA.

(2) By assumption, there is y € int(C) N H' N A. Thus we get

y+(CNHNA) Cint(C)nH NA.

This implies by Lemma 2.1
(a) (CNHNA)o C(int(C)NH NA)oo C(CNH)wo.
By Lemma 2.4 we get
(b) (CNH ) =CNH.

By Lemma 2.5(1) applied to the rational convex polyhedral cone C N H C V we get

(c) CNH=(CNHNA)w.
Combining (a), (b) and (c¢) yields the result. O
Prorosition 2.7. — Let A C V be a lattice, C C V a convex polyhedral cone and

Hy C V a hyperplane such that C' N Hy is a rational convex polyhedral cone. Let
H, C V be an affine hyperplane parallel to Hy and set H_1 = —H,. If CNH; # @
for each i € {1}, then

CNH. NA£@ <= CNHNA#O.

The picture below illustrates the setup of Proposition 2.7.
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Proof. — If Hy = Hy, then Hy = H_; and the statement is trivial. Thus we assume
that Hy # Hy, whence Hg # H_y and Hy # H_;.

Since C N Hyy # & and since Hy, H; and H_; are pairwise disjoint, there exist
cy1 € int(C) N Hyy by Lemma 2.3. As C' is convex, the line segment in V' that
connects ¢; and c¢_1 lies in int(C) and thus int(C) N Hy # @. Let B C C be the union
of the proper faces of C, i.e., B is the topological boundary of C inside the linear span
of C, see [Ful93, Propty (7), p. 10]. If CN HyN A C B, then by Lemma 2.5(1) applied
to the rational convex polyhedral cone CNHy in V we get CNHy = (CNHyNA)o C
B, = B, a contradiction to int(C) N Hy # @. In particular, we may choose

WOE(COH()QA)\B.

By exchanging H; and H_q, it is enough to prove “=" of the statement. For this,
let v—1 € CN H_1NA. Since C is a convex polyhedral cone in V' (and thus in the
linear span Spang(C)), there is a finite set E C Spang(C') \ {0} with

C = 1 {v € Spang(C) | (u,v) = 0},

uek

see [Ful93, Propty (8), p. 11]. Since 7o € C \ B, we get (u,7y) > 0 for all v € E.
In particular, we may choose an integer m > 0 big enough so that

<U,m’}/0 - ’771> = m<ua ’YO> - <U,’7,1> > 0
forallu € E, ie., myy—v_1 € C. Asyg € HyNA, we get my—7v-1 € CNHNA. O

3. (QUASI-AFFINE VARIETIES
To any variety X, we can naturally associate an affine scheme
Xagt = Spec O(X).
Moreover this scheme comes equipped with the so-called canonical morphism
v: X — Xog
which is induced by the natural isomorphism &(X) = 0(X.g).

Remark 3.1. — For any variety X, the canonical morphism ¢: X — X,g is dominant.
Indeed, let X' := +(X) C Xag be the closure of the image of ¢ (endowed with the
induced reduced subscheme structure). Since the composition

O(X)=0Xag) — OX') — O(X)

is the identity on €(X), it follows that the surjection 0(X) = 0(Xag) — O(X') is
injective and thus X' = X.

Lemva 3.2 ([Gro61, §5, Prop.5.1.2]). — Let X be a variety. Then X is quasi-affine
if and only if the canonical morphism v: X — Xag is an open immersion. |

If X is quasi-affine and endowed with an algebraic group action, then this action
uniquely extends to an algebraic group action on X,g:
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Lemma 3.3. — Let X be a quasi-affine H-variety for some algebraic group H. Then
Xag is an affine scheme that has a unique H-action that extends the H-action on X
via the canonical open immersion X — X.g.

Proof. — By Lemma 3.2, the canonical morphism X — X,g is an open immersion of
schemes and there is a unique action of H on X,g that extends the H-action on X,
see e.g. [KRvS19, Lem. 5]. O

Now, we compare the G-sphericity of X and X,g.

Lemwva 3.4, Let G be a connected reductive algebraic group and let X be a quasi-
affine G-variety. Then

X is G-spherical <=  X.g is an affine G-spherical variety.

Proof. — If X.g is an affine G-spherical variety, then X is G-spherical by Lemma 3.2.

For the other implication, assume that X is G-spherical. It follows that €/(X) is a
finitely generated algebra over the ground field by [Kno93] and thus X,g = Spec (X))
is an affine variety. Since X is irreducible, X, is irreducible by Remark 3.1. Moreover,
for each z € X, the local ring Ox , is integrally closed and thus 0(X) =, cx Ox .z
is integrally closed, i.e., X,g is normal. Since X is an open subset of X,g, and since
a Borel subgroup of G acts with an open orbit on X, the same is true for X,g. O

For the rest in this section, we recall two classical facts from invariant theory.

Prorosition 3.5 (see [Sha94, Lem. 1.4, part IT] and [Kra84, §2.4 Lem.])

Let X be any variety endowed with an H-action for some algebraic group H. The
natural action of H on O(X) satisfies the following: If f € O(X), then Spang(H f)
is a finite dimensional H-invariant subspace of O(X) and H acts reqularly on it. O

Prorosition 3.6 (see [Sha94, Th. 3.3, part IT}). Let H be a connected solvable alge-
braic group and let X be an irreducible quasi-affine H-variety. Then, for every H-inva-
riant rational map f: X --» k there exist H-semi-invariants f1, fo € O(X) such that

f="Hhf2 0

4. VECTOR FIELDS

4.1. GENERALITIES ON VECTOR FIELDS. Let X be any variety. We denote by Vec(X)
the vector space of all algebraic vector fields on X, i.e., all algebraic sections of the
tangent bundle TX — X. Note that Vec(X) is in a natural way an ¢'(X)-module.

Now, assume X is endowed with a regular action of an algebraic group H. Then,
Vec(X) is an H-module, via the following action: Let h € H and £ € Vec(X), then
h - € is defined via

(h-&)(z) = den(&(pp-1(z))) for each z € X,

where ¢y, denotes the automorphism of X given by multiplication with h and dpp
denotes the differential of . For a fixed character \: H — G,,, we say that a vector
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field ¢ € Vec(X) is normalized by H with weight A if £ is a H-semi-invariant of
weight A, i.e., for all h € H the following diagram commutes

dep,
TX ———TX

4 o TA(h)ﬁ

X——X

We denote by Vec(X), i the subspace in Vec(X) of all vector fields which are normal-
ized by H with weight A. If it is clear which action on X is meant, we drop the index H
and simply write Vec(X)x. Note that Vec(X), is in a natural way an (X)”-module,
where 0(X)H denotes the H-invariant regular functions on X. We denote by Vec™ (X)
the subspace of all H-invariant vector fields in Vec(X), i.e., Vec” (X) = Vec(X)o,
where 0 denotes the trivial character of H.

Now, assume that X is affine. There is a k-linear map

Vec(X) — Derg(0(X)), &+ De,

where D¢: 0(X) — O(X) is given by D¢(f)(z) = &(x)(f) (here we identify the
tangent space of X at x with the k-derivations 0x , — k in x). In fact, Vec(X) —
Derg(0'(X)) is an isomorphism: Indeed, as X is affine, we have

Vee(X) = {n: X — TX n is a set-theoretical s§ct10n and for all.f € 0(X) ’

the map « — n(z)(f) is a regular function on X

see [FK, §3.2].

4.2. HomoGENEOUS G, -ACTIONS AND VECTOR FIELDS. The material of this small sub-
section is contained in [FK, §6.5], however formulated for all varieties.

Let P be an algebraic group that acts regularly on a variety X. Then we get a
k-linear map Lie P — Vec(X), A — &4, where the vector field {4 is given by

(9) i X —TX, z+— (de,ux)A

and p,: P — X, p — px denotes the orbit morphism in z: Indeed (&) is a morphism
as it is the composition of the morphisms

X — T.PxTX, v+ (A,0,) and du|rpxrx: T.Px TX — TX,

where 0, € TX denotes the zero vector inside T, X and pu: P x X — X denotes the
P-action.

Lemva 4.1. — If P is an algebraic group that acts faithfully on a variety X, then the
k-linear map Lie P — Vec(X), A — &4 is injective.

Proof. For each x € X, the kernel of the differential d.p,: LieP — T,X of
the orbit morphism p,: P — X, p — pzx is equal to Lie P,, where P, denotes the
stabilizer of z in P. If A € Lie P satisfies {4 = 0, then (d.p,)A = 0 for each = € X,
ie., A € Lie P, for each x € X. As P acts faithfully on X, we get {e} = (\,cx P

rzeX T

and thus {0} = Lie((,c x Pr) = (Nyex Lie(Pr) which implies A = 0. O
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Let H be an algebraic group. A G,-action on an H-variety X is called H-homo-
geneous of weight A € X(H) if

hoe(tyoh™ =e(A(h)-t) forallh€ H and all t € G,,

where ¢: G, — Aut(X) is the group homomorphism induced by the G,-action.

Lemva 4.2, — Let H be an algebraic group, X an H-variety and p an H-homogeneous
Ga-action on X of weight X € X(H). Then the image of the previously introduced
k-linear map Lie G, — Vec(X), A+ €4 associated to p lies in Vec(X)x .

Proof. — As pis H-homogeneous, we get for each € X and each h € H the following
commutative diagram

t— A(h)t
Gy, — G,

Mml J(,UJhac
Ph

X—X
where ¢p: X — X denotes multiplication by h. Taking differentials in the neutral
element e € G, gives dyppdepty = A(h)depn, for each A € Lie G,. This implies that
h-&a(x) = A(h)€a(x) for each A € LieG, and thus the statement follows. O

Lemma 4.3 Let H be an algebraic group and let N C H be a normal subgroup such

that the character group X(N) is trivial. If X is an irreducible H-variety, then

Dp(X) = {)\ € X(H) there is a non-trivial H—homogeneous}

Ga-action on X of weight A

is contained in the set of H-weights of non-zero vector fields in VecN(X) that are
normalized by H.

Proof. — Let p: G, x X — X be a non-trivial G,-action on X. By Lemmas 4.1
and 4.2 there is a non-zero £ € Vec(X) such that for each h € H we have h-& = A(h)E.
Moreover, since X(N) = 0, £ is N-invariant. Thus Dy (X) is contained in the set of
H-weights of non-zero vector fields in Vec™ (X) that are normalized by H. g

Now, assume that X is an affine variety and fix some non-zero element Ay €
Lie G,. Moreover, denote by LNDg (€0 (X)) C Derg(€(X)) the cone of locally nilpotent
derivations on &(X), i.e., the cone in Derg(0(X)) of k-derivations D of &(X) such
that for all f € (X)) thereis an = n(f) > 1 such that D™(f) = 0, where D™ denotes
the n-fold composition of D. There is a map

{G,-actions on X'} JEEN LNDy(0(X)), p+— Dg,,,

where €4, is defined as in (©) with respect to the G,-action p. As for each f € 0(X)
we have that D¢, (f) is the morphism x — Ao(f o p;) (we interpret Ay as a k-
derivation of Og, . — k in e), it follows from [Frel7, §1.5] that the above map is in
fact a bijection.
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4.3. FINITENESS RESULTS ON MODULES OF VECTOR FIELDS. — Let G be an algebraic
group. For this subsection, let X be a G-variety. Note that Vec(X) is an 0(X)-
G-module via the 0(X)- and G-module structures given in §4.1, i.e., Vec(X) is a
G-module, it is an €(X)-module, and both structures are compatible in the sense
that

g-(f-8=(-f)(g-§ forallge G, fe O(X)and { € Vec(X).

Lemmya 4.4. —  Assume that X is a quasi-affine G-variety and that O(X) is finitely
generated as a k-algebra. Then the O(X)-G-module Vec(X) is finitely generated
and rational, i.e., Vec(X) is finitely generated as an O(X)-module and the G-repre-
sentation Vec(X) is a sum of finite dimensional rational G-subrepresentations.

Proof. — Since 0(X) is finitely generated, X,g = Spec €(X) is an affine variety that
is endowed with a natural G-action, see Lemma 3.3. By [Kra84, Satz 2, I1.2.S] there
is a rational G-representation V and a G-equivariant closed embedding X.g C V.
We denote by

t: X —V

the composition of the canonical open immersion X C X,g with X,g C V. Note that
the image of ¢ is locally closed in V' and that ¢ induces an isomorphism of X onto that
locally closed subset of V. Thus, dv: TX — TV|x is a G-equivariant closed embedding
over X which is linear on each fiber of TX — X. Thus we get an €(X)-G-module
embedding

Vec(X) —T(TV|x), &r—diok,

where T'(TV|x) denotes the &(X)-G-module of sections of TV |x — X. However,
since the vector bundle TV|x — X is trivial, there is a €(X)-G-module isomorphism

I(TV]x) ~ Mor(X, V),

where G acts on Mor(X,V) via g - = (z — gn(g~'z)). Now, the &(X)-G-module
Mor(X,V) ~ 0(X) ® V is finitely generated and rational (see Proposition 3.5), and
thus the statement follows. O

For the next result we recall the following definition.

Derinition 4.5. — Let G be an algebraic group. A closed subgroup H C G is called
a Grosshans subgroup if G/H is quasi-affine and 0(G/H) = O(G)" is a finitely
generated k-algebra.

Let G be a connected reductive algebraic group. Examples of Grosshans subgroups
of G are unipotent radicals of parabolic subgroups of G, see [Gro97, Th. 16.4]. In par-
ticular, the unipotent radical U of a Borel subgroup B C G is a Grosshans subgroup
in G (see also [Gro97, Th.9.4]). A very important property of Grosshans subgroups
is the following:

JEP. — M., 20921, tome 8



CHARACTERIZING SMOOTH AFFINE SPHERICAL VARIETIES ‘3()‘%

Prorosirion 4.6 ([Gro97, Th.9.3]). — Let A be a finitely generated k-algebra and
let G be a connected reductive algebraic group that acts via k-algebra automorphisms
on A such that A becomes a rational G-module. If H C G is a Grosshans subgroup,
then the ring of H-invariants

A" ={ac A|ha=a forallh € H}
s a finitely generated k-subalgebra of A. O

Prorosition 4.7. Let R be a finitely generated k-algebra and assume that a con-
nected reductive algebraic group G acts via k-algebra automorphisms on R such that R
becomes a rational G-module. Let H C G be a Grosshans subgroup. If M is a finitely
generated rational R-G-module, then MM is a finitely generated R™ -module.

Proof. — We consider the k-algebra A = R @& eM, where the multiplication on A is
defined via

(r4+em)-(q+en)=rqg+e(rn+qm).
Since R is a finitely generated k-algebra and since M is a finitely generated R-module,
A is a finitely generated k-algebra. Moreover, since R and M are rational G-modules,
A is a rational G-module. Moreover, G acts via k-algebra automorphisms on A.
Since H is a Grosshans subgroup of G, it now follows by Proposition 4.6 that
A" = R" g eM¥

is a finitely generated k-algebra. Thus one can choose finitely many elements

ma,...,mi € M such that em,...,em;, generate A¥ as an R¥-algebra. However,
since €2 = 0, it follows that my, ..., my generate M as an R¥-module.
As M is a rational G-module, it follows that M is a rational H-module. O

As an application of Lemma 4.4 and Proposition 4.7 we get the following finiteness
result of Vec (X) for a Grosshans subgroup H of a connected reductive algebraic

group.

CoroLrARY 4.8. Let H be a Grosshans subgroup of a connected reductive algebraic
group G. If X is a quasi-affine G-variety such that O(X) is finitely generated as a
k-algebra, then Vec™ (X) is a finitely generated 0(X)™ -module. a

4.4, VECTOR FIELDS NORMALIZED BY A GROUP ACTION WITH AN OPEN ORBIT. For this
subsection, let H be an algebraic group and let X be an irreducible H-variety which
contains an open H-orbit. Moreover, fix a character A of H. We provide an upper
bound on the dimension of Vec(X )y = Vec(X)x .

Lemwma 4.9, — Fiz xg € X that lies in the open H-orbit and let Hy, be the stabilizer
of ©g in H. Then, there exists an injection of Vec(X)y into the Hy, -eigenspace of the
tangent space Ty, X of weight )‘|Hwo given by

§ — &(wo)-
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In particular, the dimension of Vec(X)y is smaller than or equal to the dimension of
the H, -eigenspace of weight )\‘Hzo of Ty X.

Proof. — Let € € Vec(X). By definition we have for all h € H
(@) A(h)E(hao) = den&(wo),

where ¢, : X — X denotes the automorphism given by multiplication with h. Since zq
lies in the open H-orbit and X is irreducible, £ is uniquely determined by &(xo).
Moreover, (©) implies that {(zo) is an Hy,-eigenvector of weight A|p, —of T, X. O

5. AUTOMORPHISM GROUP OF A VARIETY AND ROOT SUBGROUPS

Let X be a variety and denote by Aut(X) its automorphism group. A subgroup
H C Aut(X) is called an algebraic subgroup of Aut(X) if H has the structure of an
algebraic group such that the action H x X — X is a regular action of the algebraic
group H on X. It follows from [Ram64] (see also [KRvS19, Th. 2.9]) that this algebraic
group structure on H is unique in the following sense: if Hq, Hy are algebraic groups
with group isomorphisms ¢;: H; — H for i = 1,2 such that the induced actions
H; x X — X are morphisms for ¢ = 1,2, then L2_1 ot1: Hi — Hs is an isomorphism
of algebraic groups.

Let X, Y be varieties. We say that a group homomorphism 6: Aut(X) — Aut(Y)
preserves algebraic subgroups if for each algebraic subgroup H C Aut(X) its image
6(H) is an algebraic subgroup of Aut(Y) and if the restriction 0|p: H — 6(H) is a
homomorphism of algebraic groups. We say that a group isomorphism 0: Aut(X) —
Aut(Y) preserves algebraic subgroups if both homomorphisms 6 and #~! preserve
algebraic subgroups.

Assume now that X is an H-variety for some algebraic group H and that Uy C
Aut(X) is a one-parameter unipotent subgroup, i.e., an algebraic subgroup of Aut(X)
that is isomorphic to G,. If for some isomorphism G, >~ Uy of algebraic groups the
induced G,-action on X is H-homogeneous of weight A € X(H), then we call Uj a
root subgroup with respect to H of weight X\ (see §4.2). Note that this definition does
not depend on the choice of the isomorphism G, ~ Uy. This notion goes back to
Demazure [Dem70].

Lemma 5.1, — Let X, Y be H-varieties for some algebraic group H. If 6: Aut(X) —
Aut(Y') is a group homomorphism that preserves algebraic subgroups and if 6 is com-
patible with the H-actions in the way that

H

Aut(X) L Aut(Y)

commutes, then for any root subgroup Uy C Aut(X) with respect to H, the image
0(Uy) is either the trivial group or a root subgroup with respect to H of the same
weight as Up.
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Proof. — We can assume that 0(Uy) is not the trivial group. Hence, (Up) is a one-
parameter unipotent group.

Let e: G, ~ Uy C Aut(X) be an isomorphism and let A\: H — G,,, be the weight
of Uy. Then we have for each t € G,

hof(e(t))oh ™ =0(hoe(t)oh™') = 0(s(\(h) - t)).

Since 0|y, : Up — 6(Up) is a surjective homomorphism of algebraic groups that are
both isomorphic to G, (and since the ground field is of characteristic zero), 0|y, is
in fact an isomorphism. Thus #oe: G, ~ 6(Up) C Aut(X) is an isomorphism and
hence A is the weight of 8(Uy) with respect to H. O

6. HomoGENEOUS G4-ACTIONS ON QUASI-AFFINE TORIC VARIETIES

In this section, we provide a description of the homogeneous G,-actions on a quasi-
affine toric variety. Throughout this section, we denote by T" an algebraic torus. Recall
that a T-toric variety is a T-spherical variety. A G,-action is called homogeneous if it
is T-homogeneous of some weight A € X(7T'), see §4.2.

Let X be a toric variety. In case X is affine, Liendo [Liel0] gave a full description
of all homogeneous G,-actions. In case X is quasi-affine, X,g = Spec(€ (X)) is an
affine T-toric variety by Lemma 3.4. Moreover, every homogeneous G,-action on X
extends uniquely to a homogeneous G,-action on X,g by Lemma 3.3. Thus we are
led to the problem of describing the homogeneous G,-actions on X,g that preserve
the open subvariety X.

This requires some preparation. First, we provide a description of X,g in case X is
toric and provide a characterization, when X is quasi-affine. For this, let us introduce
some basic terms from toric geometry. As a reference we take [Ful93] and [CLS11].

Note that M = X(T) = Homgy(N,Z), where N denotes the free abelian group
of rank dimT" of the regular group homomorphisms G,, — T and denote by Mr =
M ®7 R, Ng = N ®z R the extensions to R. Moreover, let

Mg x Ng — R, (u,v) — (u,v)

be the canonical R-bilinear form. Denote by k[M] the k-algebra with basis x™ for all
m € M and multiplication x™ - Xm/ = Xerm/. Note that there is an identification

T = Spec k[M].

Let o C Ng be a strongly convex rational polyhedral cone in Ny, i.e., it is a convex
rational polyhedral cone with respect to the lattice N C Nr and ¢ contains no non-
zero linear subspace of Ng. Then its dual

0" ={ue Mg | (u,v) 20 forallveos}

is a convex rational polyhedral cone in Mg. Denote by oy, the intersection of o
with M inside Mg. We can associate to o a toric variety

X, = Speckloy;], where k[oy,]= @ kx™ C k[M].

Vv
meoy,
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The torus T acts on X, with an open orbit where this action is induced by the coaction
k[o};] = ko) ]@kk[M], x* — x"®x". Note that we have an order-reversing bijection
between the faces of o and the faces of its dual oV:

{faces of o} LN {faces of ¢V}, T+— 0" N7,

where 7+ consists of those u € Mg that satisfy (u,v) = 0 for all v € 7, see [Ful93,
Propty (10), p.12]. Moreover, each face 7 C o determines an orbit of dimension
n — dim(7) of the T-action on X, (see [Ful93, §3.1]). We denote its closure in X,
by V(7). In particular, V(7) is an irreducible closed T-invariant subset of X,,.

More generally, for a fan ¥ of strongly convex rational polyhedral cones in Ng we
denote by Xs; its associated toric variety, which is covered by the open affine toric
subvarieties X, where ¢ runs through the cones in X.

Lemma 6.1. Let X = Xx, be a toric variety for a fan X3 of strongly convex rational
polyhedral cones in Nr. Denote by o1,...,0, C Nr the maximal cones in ¥ and set
o = Conv Lrj o; C Ng.
i=1

Then:

(1) We have X.g = X, and the canonical morphism ¢: X — Xag is induced by the
embeddings o; C o fori=1,...,r.()

(2) The toric variety X is quasi-affine if and only if each o; is a face of o. Moreover,
if X is quasi-affine, then o is strongly convez.

(3) If X is quasi-affine, then the irreducible components of X ~\ X are the closed
sets of the form V (1), where 7 is a minimal face of o with T € ¥.

(4) If X is quasi-affine, then each face T of o with T € X has dimension at least 2.
In particular, Xag ~ X s a closed subset of codimension at least 2 in X.g.

Below we draw a picture where the fan ¥ with maximal cones o1, ...,04 defines a
. . . . . . 4
3-dimensional quasi-affine variety with associated cone o = Conv J;_, 0;:

Proof of Lemma 6.1
(1) Since the affine toric varieties X,, , ..., X, cover X, we get inside 0'(T) =k[M]:

O(X) = Dl O(X,,) = irjlk[(o—i)m - ka a;> mM].

=1

(DNote that we defined X only for strongly convex rational polyhedral cones o. However, the
definition X, makes sense for every convex rational polyhedral cone o. In this case, the torus T' may
act non-faithfully on X,.
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Since

T N T
oV = <Conv U 0'7;) ={ue Mg | (u,v) >0 forall v €o; and all i} = ) o/,
i=1 i=1
we get 0(X) = 0(X,) which implies the first claim.
For the second claim, denote by ¢;: Xy, = (X,,)agt the canonical morphism of X,
(which is in fact an isomorphism). Then we have for each i = 1,...,r the commutative
diagram

X —* 5 Xog

U
th — (Xai)aff

X

where 7 is induced by the inclusion k[oy,] C k[(0:)%]- Asnov: Xy = Xag = X, IS
induced by the inclusion ¢; C o, the second claim follows.

(2) If 0; C 0 is a face, then the induced morphism X,, — X, is an open immersion
(see [Ful93, §1.3 Lem.]). Now, if each o; is a face of o, then by (1) the canonical
morphism ¢: X — X, is an open immersion, i.e., X is quasi-affine (see Lemma 3.2).

On the other hand, if X is quasi-affine, then ¢: X — X, is an open immersion
(again by Lemma 3.2) and by (1), the morphism X,,, — X,, induced by o; C o is also
an open immersion. It now follows from [Ful93, §1.3 Exer. p. 18] that o; is a face of o.

If X is quasi-affine, then X,g = X, is a toric variety by Lemma 3.4 and thus o is
strongly convex.

(3) We claim that X, ~\ X is the union of all V(7), where 7 C o is a face with
TEX.

Let 7 C o be a face such that 7 € ¥. In particular we have for all 7 that 7 ¢ o;.
Since X is quasi-affine, o; is a face of ¢ by (2). Hence, there is a u; € oy, with
ui No =o; and

Xo, = Xo N Zx, (X")

by [Ful93, §1.3 Lem.], where Zx_(x"?) denotes the zero set of x*i € 0(X,) inside X,.
AsT Co,but 7 ¢ 04, we get 7 ¢ u; and thus u; € oy, ~ 7. By [Ful93, §3.1], the
closed embedding V(1) C X, corresponds to the surjective k-algebra homomorphism

x™ ifmert,

kloy;] — Kkloj,n7Y], x"+—
0 ifmeoy, N7

In particular, x* vanishes on V(7) and thus V(7) and X,, are disjoint for all ¢ =
1,...,7, ie, V(r) C Xag ~ X. On the other hand, if n C o is a face with n € 3,
then there is a i € {1,...,7} such that n is a face of ;. Then by [Ful93, §3.1, p. 53],
it follows that V(n) and X,, do intersect. In particular, V(n) ¢ Xa.g ~ X. Since
Xag N X is a closed T-invariant subset, it is the union of some V' (¢) for some faces ¢
of o. This implies then the claim.

Statement (3) now follows from the claim, since the minimal faces 7 C o with
T ¢ ¥ correspond to the maximal V(7) in X.g \ X.
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(4) Since X is quasi-affine it follows from (2) that each o; is a face of o. Since o is
the convex hull of the o;, we get thus that the extremal rays of o are the same as the
extremal rays of all the o;. Hence the extremal rays of ¢ are the same as the cones
of dimension one in . In particular, each face 7 of o with 7 ¢ ¥ has dimension at
least 2. O

For the description of the homogeneous G,-actions, let us set up the following
notation. Let ¢ C Ng be a strongly convex rational polyhedral cone. If p C o is an
extremal ray and 7 C o a face, we denote

7, = Conv(extremal rays in 7 except p) C Ng.

In the picture below, we draw a picture of 7 and 7,:

In particular, if p is not an extremal ray of 7, then 7, = 7. Let us mention the
following easy observations of this construction for future use:

Lemma 6.2. — Let 0 C Ng be a strongly conver rational polyhedral cone, T C o a face
and p C o an extremal ray. Then

(1) 7, is a face of op;

(2) If dimT, < dim 7, then 7, is a face of T.
Proof

(1) By definition, there is u € ¢¥ with 7 = o Nuw*. Hence 7, C o, Nu* C 7. Since
u € (0p)Y, opNu* is a face of 0,. If p ¢ 7, then 7, = 7 and thus 7, = g, Nu" is a
face of o,. If p C 7, then 0, Nu* is the convex cone generated by the extremal rays
in 7, except p, i.e., 7, = 0, Nu*. Thus 7, is a face of o,.

(2) As dimT, < dimT, we get p C 7 and
(@) Spang(7) = Rp & Spang(7,).

Hence, there is u € M such that Spang(7,) = u*NSpang (7). After possibly replacing u
by —u, we may assume (u,v,) > 0, where v, € p denotes the unique primitive
generator. As 7, C u*, we get now u € 7. Moreover,

ut N7 = (u" N Spang(7)) N7 = Spang(7,) N7 = 7,

where the third equality follows from (@) as one may write each element in 7 as
A, 4 pw for w € 7, and A, pu > 0. Thus 7, is a face of 7. |

For each extremal ray p in a strongly convex rational polyhedral cone o, let

S, ={w e (0,)" | (w,v,) = -1} N M,
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where v, € p denotes the unique primitive generator. In [Liel0, after Def. 2.3] there is
an illuminating picture that shows the situation. We provide below our own picture
of the situation. In the first picture we draw (o,)" in light gray whereas in the second
picture we draw ¢V in light gray.

Cfwe (0,)" | (w,v,) = —1)

Remark 6.3 (see also [Liel0, Rem. 2.5]). — The set S, is non-empty. Indeed, apply
Proposition 2.6(1) to the convex polyhedral cone C' = o, and the hyperplanes H = p*,
H' ={ue Mg | (u,v,) = —1} inside V = Mp.

Now, we come to the promised description of the homogeneous G,-actions on toric
varieties due to Liendo:

Prorosition 6.4 ([Liel0O, Lem.2.6, Th.2.7]). — Let 0 C Ng be a strongly convex
rational polyhedral cone. Then for any extremal ray p in o and any e € S,, the

k-linear map
e+m

Ope: kloy) — kloy], X" — (m,v,)x

is a homogeneous locally nilpotent derivation of degree e, and every homogeneous
locally nilpotent derivation of kl[o),] is a constant multiple of some 0, . |

Remark 6.5. — The weight of the homogeneous G,-action induced by d, . is e € M.
The kernel of the locally nilpotent derivation 9, . is k[oy, N p*].

The following lemma is the key for the description of the homogeneous G,-actions
on a quasi-affine toric variety.

Prorosition 6.6. — Let 0 C Ng be a strongly convex rational polyhedral cone, T C o
a face, p € o an extremal ray and e € S,. Then the G,-action on X, corresponding
to the locally nilpotent derivation 0, . leaves V (T) invariant if and only if

pLT or egT,.
Proof. — Asin the proof of Lemma 6.1 (3), the embedding ¢: V() C X, corresponds

to the surjective k-algebra homomorphism

x™ ifmert

Ui kloy] — kloy Nt X e
0 itmeoy, N1

Thus the G,-action on X, corresponding to 0, . preserves V(7) if and only if

Op,e(ker™) C ker o™,
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1

see [Frel7, §1.5]. Since (m,v,) = 0 for all m € p* and since e + m € oy, for all
m € oy, \ p*, this last condition is equivalent to

(©) meaoy~(T"Upt) = e+mdgr .
We now distinguish two cases:

(1) Assume p ¢ 7. Then 7 C 0,,. In particular, we get (e,v) > 0 for all v € 7. Let
m € oy, ~7". Then we get (m,v) > 0 for some v € 7 and hence

(e + m,v) >0 for some v € T,

which in turn implies e +m ¢ 7. Thus (©®) is satisfied.
(2) Assume p C 7. In particular, we have 7+ C p*. We distinguish two cases:

e ¢ ¢ 7,: Then there exists an extremal ray p’ C 7 with p’ # p such that

e & (p')* and the unique primitive generator v, € p’ satisfies
(e+m,vy) = (e,vy) + (m,vy) >0 forall meoy,.
>0 >0

In particular e +m ¢ 7+ for all m € oy, and thus (®) is satisfied.

« € € 7,;: Now, we want to apply Proposition 2.7. For this we fix the lattice
A = M N7, inside V. = 7. Since 7, is a face of o, (see Lemma 6.2(1)),
C = (0,)" N7, is a rational convex polyhedral cone in Mg and thus also in V.
Moreover, we set Hy = p* NV =7" and Hy1 = {u € V | (u,v,) = £1}. Since
e € (S,N7, )\ Ho, Ho is a hyperplane in V and CNH_1NA = S,N7, # @. Since
Hy C V we get thus dim7, < dim7. Now, by Lemma 6.2(2), 7, is a face of 7
and therefore 0¥ N7, 2 0¥ N7+ by the order-reversing bijection between faces
of o and oV. Hence, there is u € (0¥ N 7,) \ 7+ and in particular u € C' \ Hy.
As (u,v,) > 0, after scaling v with a real number > 0, we may assume v € CNH;
and hence C N Hy # &. Now, as C N Hy = oY N7+ is rational in Mk and thus
also in V', we may apply Proposition 2.7 and get an element

my € (0,)" N7, N{m € M | (m,v,) = 1}.
Hence, m; € o), ~\ p*. Since e,m; € T,j, we get e +mq € T,j. Since
(e+m1,v,) = (e,v,) + (my,v,) = =14+ 1=0,

we get thus e +my € 7+. This implies that (®) is not satisfied. O
We can use this lemma to provide a full description of all homogeneous G,-actions
on a quasi-affine toric variety X = Xy. Recall that X, = X,, where o is the cone
in Nr generated by all maximal cones in X, see Lemma 6.1. Moreover, X g \ X is the
union of the sets of the form V(7), where 7 C ¢ runs through the minimal faces with

the property that 7 & 3 (again by Lemma 6.1). In the next corollaries (Corollary 6.7-
Corollary 6.10), we use this notation freely.

Cororrary 6.7. — Let X = Xy be a quasi-affine toric variety, let X.qg = X, and
let 71,...,7s C o be the minimal faces of o which do not belong to 3. Then, the
homogeneous G,-actions on X are the restricted homogeneous G,-actions on Xag
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that are induced by the constant multiples of 0, € LNDg(0(X)) such that for all
1=1,...,s we have

(®) pgTi or e (m),.

Proof. — Assume that d, . is a locally nilpotent derivation of &'(X) such that (®) is
satisfied for all4 = 1,...,s. Then by Proposition 6.6, the sets V(11), ...,V (7s) C Xag
are left invariant by the homogeneous G,-action €,.: G. X Xag — X,g which is
induced by 0, . In particular, X = X.g ~ (V(71)U... V(7)) (see Lemma 6.1) is left
invariant by €.

On the other hand, let €: G, x X — X be a homogeneous G,-action on X. By
Lemma 3.3 and Proposition 6.4 this G,-action extends to a homogeneous G,-action
€pe: Ga X Xag — Xag which is induced by some locally nilpotent derivation A-0,. €
LNDg(0(X)) for some constant A € k, some extremal ray p in ¢ and some e € S,,.
Since €, extends e, the subset V() U - U V(1,) = Xag \ X is left invariant
by €. Since the V(1),...,V(7s) are the irreducible components of X,g ~ X and
since G, is an irreducible algebraic group, it follows that €, . preserves each V(7).
By Proposition 6.6 we get that for each ¢ = 1,..., s the condition (®) is satisfied. O

For the next consequences of Corollary 6.7 we recall the following notation from
Section 2: For a subset E C Mg we denote by int(E) the topological interior of F
inside the linear span of E. In these consequences we provide a closer description of
the weights in M arising from homogeneous G,-actions on quasi-affine toric varieties
and compute the asymptotic cone of these weights.

Cororrary 6.8. — Let X = X5 be a quasi-affine toric variety, let X.g = X, let
p C o be an extremal ray and let D,(X) be the set of weights e € S, such that the
locally nilpotent derivation 0, of O(X) induces a homogeneous G,-action on X.
Then

S, Nint(o,) C Dy(X) C S,.

Proof. — Let e € S, C M such that e is contained in int(o)) C Mg. Let 71,...,7s be
the minimal faces of ¢ which are not contained in . According to Corollary 6.7 it is
enough to show that for each 7; with p C 7; we have e ¢ (Ti)g. By Lemma 6.1 (4) we
get that dim7; > 2 for every 4. Hence, dim(7;), > 1 and thus (7;); N o, is a proper
face of 0. As e € int(0, ), we get e & (), No, and thus e & (7;),. O

CororLrary 6.9. — Let X = Xy, be a quasi-affine toric variety. Let X.g = X, and
let D(X) be the set of homogeneous G,-weights on X. Then the asymptotic cone of
D(X) C Mg satisfies

D(X)oo = 0¥ N\ int(c").

By Corollary 6.8, the set D(X) is contained in the set
S= U Awel(o)’ [{w,v,)=~-1}.

p is an extr.
ray of o
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Below, we illustrate the dual cone of ¢ in light gray and the set .S associated to ¢ in
dark gray:

g

il

Intuitively (and rigorously with Lemma 2.4 applied to the convex polyhedral cone
(0,)” and the hyperplane p* for each p) it follows that the asymptotic cone of D(X)
is contained in |J,{w € (0,)" | (w,v,) = 0}. This last set is equal to o* ~ int(c").
Now, we provide a detailed proof.

Proof. — By [Ful93, Propty (7), p. 10] we have

oV Nint(eV) = U o'np-.
p is an extr.
ray of o

Since D(X) is the union of the D,(X) for the extremal rays p C o (with the definition
of D,(X) from Corollary 6.8), we get by Lemma 2.1 that

p is an extr.
ray of o

Hence, it is enough to show that ¢¥ N p* = D,(X) for every extremal ray p of o.

In order to do this, we want to apply Proposition 2.6. For this we fix the lattice
A = M inside V' = Mp and consider the convex polyhedral cone C' = o, inside V'
and the hyperplane H = p~ C V. Note that C N H = ¢¥ N p* is a rational convex
polyhedral cone in V' of dimension dim H and that H is rational. Moreover, setting
H' = {u € Mg | (u,v,) = —1}, where v, € p denotes the unique primitive generator,
there exists m_; € M ~ H such that H' = m_; + H (as the coordinates of v, are
coprime after identifying N with Z*3"k V) Since p is an extremal ray of o, it follows
that o, C o and thus o) 2 0¥ = 0, N{u € Mg | (u,v,) > 0}. This implies that there
is u € C' with (u,v,) < 0. Since C is a cone, we get that C'N H' is non-empty. Now,
Proposition 2.6 applied to A,C, H, H' C V implies that

(d) o' Np- =0, Np"=(5,Nint(c,))oc-

By Corollary 6.8, Lemma 2.1 and Lemma 2.4 we get

(e)  (SpNint(c,))ee € Dp(X)oo C (Sp)oc C (0, N (M1 +p))oc Co,Np~.
Combining (d) and (e) yields 0¥ N p* = D,(X)s which implies the result. O

Cororrary 6.10. — Let X be a quasi-affine toric variety and let D(X) be the set of
homogeneous G,-weights. If X 2 T, then D(X) generates M as a group.
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Proof. — Let X.g = X,. Since X is quasi-affine and X % T, the cone o is strongly
convex and non-zero by Lemma 6.1(2). In particular it has an extremal ray p. Corol-
lary 6.10 follows thus from the next lemma, since S, Nint(c,) C D(X) (see Corol-
lary 6.8). O

Lemva 6.11. — Let o C Nr be a strongly convex rational polyhedral cone. Then for
every extremal ray p C o, the set S, N int(o;) generates M as a group.

Proof. Denote by v, € p the unique primitive generator. By Remark 6.3, S, is
non-empty. Thus by Proposition 2.6(1) applied to the convex polyhedral cone C' = o
and the hypersurfaces H = p*, H = {u € V | (y,v,) = —1} in V = My we get

S, Nint(oy) # . Let A =S, Nint(o,) and choose a € A. By definition of S,

a+ (oy;Np*) C A

Since v, € N is primitive, we may choose a basis of N = Z" (where n = rank N) such
that v, = (1,0,...,0). We then identify M = Homgz(N,Z) with Z" by choosing the
dual basis of N = Z™. Since ¢¥ N p* is a convex rational polyhedral cone of dimension
dim p* in p*, there is m € o}, N p* such that the closed ball of radius 1 and center m
in p* is contained in 0¥ N p*. In particular, m +e; € oy, Np* for i = 2,...,n, where
e; =(0,...,0,1,0,...,0) and 1 is at position i. In particular,

ei=(a+m+e;) — (a+m) € Spany(A) fori=2,...,n.

Since v, = (1,0,...,0) and (a,v,) = —1, it follows that a = (—1,as,...,a,) for
certain as,...,a, € Z. In particular, (1,0,...,0) = —a + >_._,ae; € Spang(A).
Thus, Spany(A) = M. O

7. THE AUTOMORPHISM GROUP DETERMINES SPHERICITY

Our first goal in this section is to provide a criterion for a solvable algebraic group B
to act with an open orbit on a quasi-affine B-variety. For this, we introduce the notion
of generalized root subgroups:

Derinition 7.1. — Let H be an algebraic group and let X be an H-variety. We call
an algebraic subgroup Uy C Aut(X) of dimension m which is isomorphic to (G,)™
a generalized root subgroup (with respect to H ) if there exists a character A € X(H),
called the weight of Uy such that

hoe(t)yoh™ =e(\(h)-t) forallh€ H and all t € (G,)™,

where e: (G,)™ = Up is a fixed isomorphism.

Using that a group automorphism of (G,)™ is k-linear, we see that the weight of

a generalized root subgroup Uy does not depend on the choice of an isomorphism
e: (Ga)m ~ Uo.
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Remark 7.2. — Let H be an algebraic group and let X be an H-variety. Using again
that algebraic group automorphisms of (G,)™ are k-linear, one can see the following:
An algebraic subgroup Uy C Aut(X) which is isomorphic to (G,)™ for some m > 1
is a generalized root subgroup with respect to H if and only if each one-dimensional
closed subgroup of Uy is a root subgroup of Aut(X) with respect to H. In particular,
root subgroups are generalized root subgroups of dimension one.

Prorosition 7.3. Let B be a connected solvable algebraic group that contains non-
trivial unipotent elements and let X be an irreducible quasi-affine variety with a faith-
ful B-action. Then, the following statements are equivalent:

(1) The variety X has an open B-orbit;

(2) There is a constant C such that dim Vec(X)x < C for all weights A € X(B);

(3) There exists a constant C such that dim Uy < C' for each Uy C Aut(X) that is
a generalized root subgroup with respect to B.

Proof

(1) = (2) By Lemma 4.9 we get dim Vec(X)» < dimT,,X, where 29 € X is a
fixed element of the open B-orbit.

(2) = (3) Let Uy C Aut(X) be a generalized root subgroup of weight A € X(B).
By Lemma 4.1, the k-linear map Lie(Up) — Vec(X), A — £4 is injective. Now, take
A € Lie(Up) which is non-zero. Then there is a one-parameter unipotent subgroup
Up,a C Uy such that Lie(Uy 4) is generated by A. By definition, Uy, 4 is a root subgroup
with respect to B of weight A\. By Lemma 4.2, it follows that £4 lies in Vec(X),.
Thus the whole image of Lie(Uy) — Vec(X) lies in Vec(X)x and we get dim Uy <
dim Vec(X) .

(3) = (1) Assume that X admits no open B-orbit. This implies by Rosen-
licht’s Theorem [Ros56, Th.2] that there is a B-invariant non-constant rational
map f: X --» k. By Proposition 3.6, there exist B-semi-invariant regular functions
fi,fo: X — k such that f = f1/f2 and since f is B-invariant, the weights of f;
and fy under B are the same, say Ao € X(B).

Moreover, there exists no non-zero homogeneous polynomial p in two variables with
p(f1, f2) = 0. Indeed, otherwise there exist m > 0 and a non-zero tuple (ag, . .., a;,) €
k™ such that 357 ai(f1)(f2)™ " = 0 and hence 1" a;f’ = 0. Since f is non-
constant, we get a contradiction, as k is algebraically closed.

Since B contains non-trivial unipotent elements, the center of the unipotent radical
in B is non-trivial. Since this center is normalized by B, there exists a one-dimensional
closed subgroup U of this center that is normalized by B. Let p: G, x X — X be
the G,-action on X corresponding to U. Hence p is B-homogeneous for some weight
A1 € X(B). Thus for any m > 0, we get a faithful (G,)™*!-action on X given by

G XX X, (o) o ot 0. ).
1=0
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since Y7t f1- = 2 0 for all non-zero (to, . . ., t,y, ). The corresponding subgroup Uy
in Aut(X) is then a generalized root subgroup of dimension m + 1 with respect to B
of weight A\; + mAg € X(B). As m was arbitrary, (3) is not satisfied. O

ExamprLe 7.4. — If the connected solvable algebraic group B does not contain unipo-
tent elements, then Proposition 7.3 is in general false: Let B = G,,, act on the product
X =G, x Cviat-(s,c) = (ts,c), where C' is any affine curve of genus > 1. Then X
has no open B-orbit.

On the other hand, X admits no non-trivial G,-action and thus property (3) of
Proposition 7.3 is satisfied. Indeed, if there is a G,-action on X with a non-trivial
orbit G, ~ O C X, then one of the restrictions of the projections

prilo: O — Gy, (s,¢)—s or prylo: O — C, (s,¢) —> ¢

is non-constant, contradiction.

Lemma 7.5. — Let T be an algebraic torus and let X be a quasi-affine T-toric variety
such that X £ T. Then there exists a non-trivial T-homogeneous G,-action on X and
a subtorus T' C T of codimension one such that the induced G, x T’ -action on X has
an open orbit.

Proof. — Since X # T, there is a non-trivial T-homogeneous G,-action on X by
Corollary 6.10. Denote by U C Aut(X) the corresponding root subgroup.

Let g € X such that Txg C X is open in X and let S be the connected component
of the stabilizer in U x T of 5. As dimU x T = dim X + 1, we get dimS = 1. If §
would be contained in U, then S = U and thus uxg = zq for all u € U. From this we
would get for all t € T', uw € U that

(tut™1) - (tzg) = tag

and hence U would fix each element of the open orbit Txg, contradiction. Hence,
S ¢ U, which implies that there is a codimension one subtorus 7" C T with S ¢ U xT".
This implies that (U x T") N S is finite and thus (U x T")z is dense in X. As orbits
are locally closed, we get that (U x T")z is open in X. |

For the sake of completeness let us recall the following well-known fact from the
theory of algebraic groups:

Lemvma 7.6. — Let G be a connected reductive algebraic group and let B C G be a
Borel subgroup. If G is not a torus, then B contains non-trivial unipotent elements.

Proof. — If B contains no non-trivial unipotent elements, then B is a torus and it
follows from [Hum?75, Prop. 21.4B] that G = B, contradiction. |

Now, we prove that one can recognize the sphericity of an irreducible quasi-affine
normal G-variety from its automorphism group.
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Prorosition 7.7. — Let G be a connected reductive algebraic group and let X, Y be
irreducible quasi-affine normal varieties. Assume that there is a group isomorphism
0: Aut(X) — Aut(Y) that preserves algebraic subgroups. If X is non-isomorphic to
a torus and G-spherical, then' Y is G-spherical for the induced G-action via 6.

Proof. We denote by B C G a Borel subgroup and by 7" C G a maximal torus.
We distinguish two cases:

e G # T: By Lemma 7.6 the Borel subgroup B contains unipotent elements and
thus we may apply Proposition 7.3 in order to get a bound on the dimension of every
generalized root subgroup with respect to B of Aut(X). Since the generalized root
subgroups of Aut(X) (with respect to B) correspond bijectively to the generalized root
subgroups of Aut(Y) (with respect to 6(B)) via 6 (see Remark 7.2 and Lemma 5.1),
it follows by Proposition 7.3 that Y is 8(G)-spherical.

e G = T: In this case X is T-toric. Since X is not isomorphic to a torus, we
may apply Lemma 7.5 in order to get a codimension one subtorus 7/ C T and a
root subgroup V' C Aut(X) with respect to T such that V - T” acts with an open
orbit on X. As before, it follows from Proposition 7.3 that 8(V') - (T") acts with an
open orbit on Y. This implies that dim(Y) < dim(V) + dim(7”) = dim(T). On the
other hand, since 6(T') acts faithfully on Y, we get dim(7") < dim(Y’). In summary,
dim(Y) = dim(7") and thus Y is 6(T)-toric. O

8. RELATION BETWEEN THE SET OF HOMOGENEOUS Ga-VVEIGIITS AND
THE WEIGHT MONOID

Throughout the whole section we fix the following
Norarion. We denote by G a connected reductive algebraic group, by B C G
a Borel subgroup and by T C B a maximal torus. By convention G is non-trivial.
We denote by U C B the unipotent radical of B. Moreover, we denote X(B)r =

X(B) ®z R, where X(B) is the character group of B. For a G-variety X let us recall
the definition of the set of B-homogeneous G,-weights:

D(X) = { Nex(B) there exists a non-trivial B—homogeneous}

Ga-action on X of weight A
(see Section 4.2 for the definition of a B-homogeneous G,-action).

In this section we provide for a quasi-affine G-spherical variety X a description of
the weight monoid A*(X) in terms of D(X), see Theorem 8.2 below.

Prorosition 8.1. — Let X be an irreducible quasi-affine variety with a faithful
G-action such that O(X) is a finitely generated k-algebra. If G # T, then there is a
A € D(X) with

A+ ATX)c D(X) and AT (X)s = D(X)uo,

where the asymptotic cones are taken inside X(B)g.
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Proof. — We denote D = D(X). By Lemma 4.3 we have

Dc {)\ € x(B) there is a non-zero vector field in Vec% (X) } i

that is normalized by B of weight A

By Corollary 4.8 we know that Vch(X) is finitely generated as an ¢(X)Y-module.
Hence, there are finitely many non-zero B-homogeneous 1, ..., &, € VecV (X) such
that the B-module homomorphism

k
T @ﬁ(X)U&—)VeCU(X), (ri€1, .o reée) — & + -+ e

is surjective. Let A € D’ and let n € Vec!(X) be a non-zero vector field that is
normalized by B of weight . Thus M = 7~ !(kn) is a rational B-submodule of
@le O(X)Y¢; (see Proposition 3.5). As each element in M can be written as a sum
of T-semi-invariants, as U acts trivially on M and as X(U) is trivial, it follows that
each element in M can be written as a sum of B-semi-invariants. Hence, there is a non-
zero B-semi-invariant £ € M such that 7(£) = 7. As a consequence, the weight of £

is A. Thus we proved that D’ is contained in the weights of non-zero B-semi-invariants
of Eszl O(X)V¢;, ie.,
k
D'c U N+ATX)),
i=1
where \; € X(B) denotes the weight of &;.
Since G # T', we get by Lemma 7.6 that U # {e}. Since G (and therefore U) acts
faithfully on X, there is a non-trivial B-homogeneous G,-action p: G, x X — X of

a certain weight A € D associated to a root subgroup with respect to B in the center
of U. Now, we claim that

A+ AT(X) CD.

Indeed, this follows since for every non-zero B-semi-invariant r € ¢'(X)Y of weight
X € X(B), the G,-action

Gax X — X, (t,z)— p(r(z)t,x)

is non-trivial and B-homogeneous of weight A + X' € X(B).
In summary, we have proved

k
M ATX)cDcD c U (N+AT(X)) CX(B)r.
i=1
From Lemma 2.1 it now follows that AT (X)e C Do C DL = AT (X) 0. O

Turorem 8.2. — Let X be a quasi-affine G-spherical variety which is non-isomorphic
to a torus. If G # T or Xag ¢ A' x (A {0})3™(X)=1 then D(X) is non-empty and

(@) AT (X) = Conv(D(X)so) N Spany (D(X)),
where the asymptotic cones and linear spans are taken inside X(B)r. Moreover,

dim Conv(D(X)) = dim Spang (D(X)).
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In case X is isomorphic to a torus, D(X) is empty and thus Spany(D(X)) = {0}.
In particular, (©) is not satisfied (as G is non-trivial). In case G = T and X5 ~
Al x (A' ~ {0})dm(X)=1 Remark 8.5 below implies that (©) is not satisfied.

Proofof Theorem 8.2. — As in the last proof, we set D = D(X). We get D # @.
Indeed: if G # T, this follows from Lemma 7.6 and if G = T, this follows from
Corollary 6.10 (as X is not a torus).

Since X is a quasi-affine G-spherical variety, it follows from Lemma 3.4 that X, =
Spec (X)) is an affine G-spherical variety. In particular, &(X) is an integrally closed
domain, that is finitely generated as a k-algebra. Hence &(X)V is integrally closed
and it is finitely generated as a k-algebra (by Proposition 4.6). Since B acts with an
open orbit on X,g, the algebraic quotient X,g /U = Spec 0(X)Y is an affine T'-toric
variety, where T" is a quotient torus of T'. Thus we get a natural inclusion of character
groups

X(T") ¢ X(T) = X(B),
where we identify X(B) with X(T') via the restriction homomorphism. Using the above
inclusion, AT(X) is contained inside X(7”) and it is equal to the set of T’-weights
of non-zero T'-semi-invariants of &(X)Y. As X.g U is T'-toric, A*(X) is a finitely
generated semi-group and Conv(A*(X)) is a convex rational polyhedral cone inside
X(T")r C X(B)gr. Moreover, AT(X) generates X(T") as a group inside X(B) and
AT (X) is saturated in X(77), i.e.,

AT (X) = Conv(AT (X)) NX(T")
(see [CLS11, Ex.1.3.4(a)]). Using the inclusion X(T") C X(T') = X(B) again, we get
D c X(T"), since each B-homogeneous G,-action on X induces a T'-homogeneous
Ga-action on X,g/U. We distinguish two cases:

o G # T. By Proposition 8.1, we get inside X(B)r
AT (X)oo = Deo
and there is a A € D with A+ AT(X) € D C X(T"). Since AT (X) generates the

group X(T"), we get thus Spany(D) = X(T"). As Conv(AT(X)) is a rational convex
polyhedral cone, we get Conv(AT (X)) = Conv(A"(X)e). In summary, we have

AT(X) = Conv(AT (X)) NX(T") = Conv(AT(X)oo) N X(T")
= Conv(Dy ) N Spany (D)
and thus (@) holds. The second statement now follows from
dim Spang (D) = dim 7’ = rank A" (X) < dim Conv(Ds.) < dim7".

e G =T. In particular, T acts faithfully with an open orbit on X. Thus 77 = T
and both varieties X, Xag = Xag /U are T-toric.

Denote by o C Homz(X(T'),R) the strongly convex rational polyhedral cone that
describes X,g and let 0¥ C X(T)g be the dual of . By Corollary 6.9

(N) Dy =0V N int(c"),
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where int(c¥) denotes the interior of o¥ inside X(T)g. By assumption,
Xt ;é Al % (Al ~ {0})dim(X)—1.

This implies that dimo > 1 and we may write ¥ = C x W, where C C X(T)g
is a strongly convex polyhedral cone of dimension > 1 and W C X(T)g is a linear
subspace. Hence, C' is the convex hull of its codimension one faces and thus the same
holds for oV. Using (A), we get

Conv(Dy) = 0¥ = Conv(A1(X)).
Since AT (X) is saturated in X(T'), the above equality implies that
AT (X) = Conv(AT (X)) N X(T) = Conv(Dyo) N X(T).
It follows from Corollary 6.10 that X(T") = Spany (D) (here we use that X % T') and
thus (@) holds. The second statement now follows from

dim Spang (D) = dim T' = rank A" (X) < dim Conv(Dy,) < dim T O

Remark 8.3. Assume that G = T and that X is a T-toric quasi-affine variety. Then
one could recover the extremal rays of the strongly convex rational polyhedral cone
that describes X,g from D(X) in a similar way as in [LRU19, Lem. 6.11] by using
Corollary 6.8. In particular, one could then recover A*(X) from D(X). However,
we wrote Theorem 8.2 in order to have a nice “closed formula” of AT (X) in terms of
D(X) for almost all quasi-affine G-spherical varieties.

Cororrary 8.4. — For a quasi-affine G-spherical variety X, exactly one of the fol-
lowing cases holds (the linear spans and asymptotic cones are taken inside X(B)r):

(1) dim Conv(D(X)e) = dim Spang (D(X)), D(X) is non-empty and
AT (X) = Conv(D(X)s) N Spany (D(X));
(2) dim Conv(D(X)e) < dimSpang(D(X)), D(X) is non-empty, D(X)s is a
hyperplane in Spang (D(X)) and
A*(X) = H' 0 Spany(D(X)),
where HY C Spang (D(X)) is the closed half space with boundary D(X)s that does

not intersect D(X);
(3) D(X) is empty and AT (X) = X(T).

In particular, the following holds: If Y is another quasi-affine G-spherical variety with
D(Y) = D(X), then AT(Y) = AT (X).

Proof. — If X is a torus, then D(X) is empty. In particular, G = T by Lemma 7.6
and thus X ~ T. Hence, A" (X) = X(T) and we are in case (3). Thus we may assume
that X is not a torus.

If G # T or Xog 2 A x (AT~ {0})3™(X)=1 then Theorem 8.2 implies that we are
in case (1).

Thus we may assume that G = T and X,z ~ A x (A'~{0})3™(X)~1 In particular,
D(X) is non-empty and by Corollary 6.10 we get ¥(7T) = Spany(D(X)). Denote
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by o C Homy(X(T),R) the closed strongly convex rational polyhedral cone that
describes X,¢. In this case o is a single ray and thus oV is a closed half space in X(7")g.
As D(X)oo = oV \int(o") (see Corollary 6.9), it follows that D(X ) is a hyperplane in
Spang (D(X)). By definition A*(X) = ¢¥ NSpany (D (X)) and ¢V is in fact the closed
half space with boundary D(X ) that does not intersect D(X) (see Corollary 6.8).
In particular, dim Conv(D(X)s) < dimT = dim Spang (D(X)) and thus we are in
case (2). O

Remark 8.5. — The proof of Corollary 8.4 shows that in case G = T and X,g ~
Al x (A' < {0})3m() =1 we are in case 2. In particular,

AT (X) # Conv(D(X)s) N Spany (D(X)).

As a consequence of Corollary 8.4 we prove that for a G-spherical variety X the
weight monoid AT(X) C X(B) is determined by its automorphism group.

Cororrary 8.6. — Let X,Y be irreducible quasi-affine normal varieties. Assume
that X is G-spherical, X is different from an algebraic torus and that there exists
an isomorphism of groups 0: Aut(X) ~ Aut(Y) that preserves algebraic subgroups.
Then'Y is G-spherical for the G-action induced by 6 and A*(X) = AT (Y).

Proof. — The first claim follows from Proposition 7.7. To show that AT (X) = AT(Y)
let us denote by D(X),D(Y) C X(B) the set of B-weights of non-trivial B-homo-
geneous G,-actions on X and Y, respectively. We get D(X) = D(Y") from Lemma 5.1.
Now, Corollary 8.4 implies AT(X) = AT(Y). O

Trrorem 8.7. Let X and Y be irreducible normal affine varieties. Assume that X is
G-spherical and that X is not isomorphic to a torus. Moreover, we assume that there
is an isomorphism of groups 0: Aut(X) ~ Aut(Y) that preserves algebraic subgroups.
We consider Y as a G-variety by the induced action via 0. Then X, Y are isomorphic
as G-varieties, provided one of the following statements holds

(a) X and Y are smooth or
(b) G =T is a torus.

Proof. — By Corollary 8.6, Y is G-spherical and the weight monoids AT (X) and
AT (Y) coincide. In case X and Y are smooth, the statement now follows from Losev’s
result, i.e., Theorem 3. In case G is a torus, it is classical, that from the weight monoid

AT(X) one can reconstruct the toric variety X up to G-equivariant isomorphisms, see
e.g. [Ful93, §1.3]. O

We end this Section with the following natural question concerning Theorem 8.7:

Question 8.8. — Does the conclusion of Theorem 8.7 also hold without the extra
assumptions (a) and (b)?
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9. A COUNTEREXAMPLE

For the rest of this article, we give an example which shows that we cannot drop
the normality condition in Main Theorem A. The example is borrowed from [Regl7].
Let pg C k™ be the finite cyclic subgroup of order d and let it act on A™ via
t-(z1,...,x,) = (tx1,...tx,). The algebraic quotient A™/u4 has the coordinate ring

OA"ug) = @ klz1,...,zp]ka C k[z1, ..., 24],
k>0
where k[z1,...,z,); C k[z1,...,z,] denotes the subspace of homogeneous polynomi-
als of degree i. For each s > 2, let

— Spec<k€9 @ k9317--~,1'n]kd>~

k>s

Prorosirion 9.1. — Forn,s > 2, d > 1 and the algebraic quotient w: A™ — A™ /g
holds:

(1) The variety A™/uq is SLy(k)-spherical for the induced SLy(k)-action on A™
and A" /g is smooth outside w(0,...,0);

(2) There is an SLy(k)-action on Ag ,, such that the morphism n: A" /uq — A3,
which is induced by the natural inclusion O(A% ) C O(A™/pnq) is SLy (k)-equivariant.
Moreover, n is the normalization morphism and it is bijective;

(3) The natural group homomorphism Aut(Aj, ) — Aut(A™/uq) is a group iso-
morphism that preserves algebraic subgroups;

(4) The variety Ay, is not normal;

(5) The weight monoids A* (A3 ,) and A*(A"/pq) inside X(B) are distinct when
we fix a Borel subgroup B C SLy, (k).

Proof

(1) As the natural SL,,(k)-action on A™ commutes with the pg4-action, we get an
induced SL, (k)-action on A™/ug such that 7 is SL,(k)-equivariant and A™/ug is
SL,,(k)-spherical. As SL,, (k) acts transitively on A™ ~\ {0}, the projection m induces
a finite étale morphism A” ~ {(0,...,0)} = (A" /uqg) ~{x(0,...,0)}. This shows that
(A™/pg) ~ {m(0,...,0)} is smooth.

(2) As SLy(k) acts linearly on A", we get an SL,(k)-action on Aj, such that
n: A" /ug — A3, is SL,(k)-equivariant.

As A" is normal, the algebraic quotient A™/uq is normal. As O(Aj ) has finite
codimension in &(A"/p,), the ring extension O(Aj7,) C O(A™/pq) is integral. More-
over, for each monomial f € k[z1,...,z,] of degree sd, we get an equality by local-
izing, namely O(Aj,); = O(A"/pa)s, and thus 7 is birational. This shows that 7
is the normalization morphism. Moreover, as 7 is SLy, (k)-equivariant and as SL,, (k)
acts transitively on (A?/pug) ~ {7(0,...,0)}, we get that Ag N An(w(0,...,0))} is
smooth and as 7 is the normalization, 1t is an isomorphism over the complement of
n(w(0,...,0)). Moreover, n~(n(r(0,...,0))) = {m(0,...,0)} and thus 7 is bijective.
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(3) Each automorphism e of Ay, lifts uniquely to an automorphism & of A™/puy
via the normalization morphism A™/ug — A, and therefore

0: Aut(Ag,,) — Aut(A"/pg), e——&

is an injective group homomorphism.

Now we prove that € is surjective. For this, let ¢ € Aut(A™/uq). As n > 2, the
algebraic quotient A" — A™/u4 is in fact the Cox realization of the toric variety
A" /g (see [AG10, Th.3.1]). By [Ber03, Cor. 2.5, Lem. 4.2], ¢ lifts via A™ — A™/ugy
to an automorphism 1 of A™ and there is an integer ¢ > 1 which is coprime to d such
that for each ¢ € g and each (aq,...,a,) € A™ we have

Pltar,... tan) = t%(ar, . . ).

This implies that for each i € {1,...,n},
w*(xz) S @ k[l‘l, ... ;xn]kd—&-c-

k>0

As 1 is an automorphism of A", we get ¢ = 1 and thus 1) is pg-equivariant (see also
[Regl7, Prop.4]). Hence, ¢*: k[z1,...,2,] — k[x1,...,7,] maps O(A ) onto itself
and by construction restricts to ¢* on &(A™/ug). Therefore, there is an endomor-
phism ¢: A3, — A7, that induces ¢ € Aut(A"/puq4) via the normalization morphism
n: A"/ug — Aj,. As n and ¢ are bijective, ¢ is bijective as well; hence ¢ is an
automorphism of Ag , by [Kal05, Lem. 1] and thus ¢ is surjective.

Since 0: Aut(A4g,) — Aut(A"/ug) is a group isomorphism and as it is induced
by the normalization morphism A"/ug — A ,, it follows that 6 is an isomorphism
of ind-groups, see [FK, Prop.12.1.1]. In particular, 6 is a group isomorphism that
preserves algebraic subgroups.

(4) The normalization morphism A"/pq — Aj,, is not an isomorphism, since the
inclusion O(Aj,) C O(A"/paq) is proper (note that s > 2).

(5) We may assume that B C SL, (k) is the Borel subgroup of upper triangular
matrices. Denote by U C B the unipotent radical, i.e., the upper triangular ma-
trices with 1 on the diagonal. Then the subrings of U-invariant functions satisfy
OA"/ug)V = Di>o kzkd and 0/( é,n)U =ka®;>, kz*d. Denote by x,.: B — G,
the character which is the projection to the entry (n,n). Then we get

AT(A" Jpa) = {xz" [ k> 0} and  AT(A7,) = {xp? [k =0o0r k> s}

inside X(B) and as s > 2, these monoids are distinct. O
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In this note we study the problem of characterizing the complex affine space A" via its
automorphism group. We prove the following. Let X be an irreducible quasi-projective
n-dimensional variety such that Aut(X) and Aut(A") are isomorphic as abstract groups.
If X is either quasi-affine and toric or X is smooth with Euler characteristic x(X) # 0
and finite Picard group Pic(X), then X is isomorphic to A”.

The main ingredient is the following result. Let X be a smooth irreducible quasi-
projective variety of dimension n with finite Pic(X). If X admits a faithful (Z/pZ)"-
action for a prime p and yx(X) is not divisible by p, then the identity component of the

centralizer Centyy,x,((Z/pZ)") is a torus.

1 Introduction

In 1872, Felix Klein suggested as part of his Erlangen Programm to study geometrical
objects through their symmetries. In the spirit of this program it is natural to ask to
which extent a geometrical object is determined by its automorphism group. This is the
case for compact and locally Euclidean manifolds as shown by Whittaker [30]. It also
holds for differentiable manifolds, for symplectic manifolds, and for contact manifolds;
see [30], [6], [27], and [28].
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Is the Affine Space Determined by Its Automorphism Group? 4281

We will study this question in the algebraic setting, that is, for complex
algebraic varieties. For such a variety X we denote by Aut(X) the group of regular
automorphisms of X. As this automorphism group is usually quite small, it almost never
determines the variety. However, if Aut(X) is large, like for affine n-space A", n > 2, this

might be true. Our guiding question is the following.

Question. Let X be a variety. Assume that Aut(X) is isomorphic to the group Aut(A").
Does this imply that X is isomorphic to A™?

This question cannot have a positive answer for all varieties X. For example,
Aut(A™) and Aut(A"™ x Z) are isomorphic for any complete variety Z with a trivial
automorphism group. Similarly, Aut(A”) and Aut(A™UY) are isomorphic for any variety
Y with a trivial automorphism group. Thus, we have to impose certain assumptions
on X.

In case X is affine, the group Aut(X) has the structure of a so-called ind-group.
Using this extra structure one has the following result; see [17]. If X is a connected
affine variety, then every isomorphism of ind-groups between Aut(X) and Aut(A") is
induced by an isomorphism X — A" of varieties. For some generalizations of this result
we refer to [25].

In dimension 2, it is shown in [22] that if X is an irreducible normal surface
and Y is an affine toric surface, then X is isomorphic to Y if the automorphism groups
Aut(X) and Aut(Y) are isomorphic.

Our main result in this paper is the following.

Main Theorem. Let X be a complex irreducible quasi-projective variety of dimension
n such that Aut(X) >~ Aut(A™). Then X >~ A" if one of the following conditions holds.

1. X is smooth, the Euler characteristic x (X) is nonzero and the Picard group
Pic(X) is finite.

2. X is toric and quasi-affine.
As an immediate application we get the following result.

Corollary. If S Cc A" is a closed subvariety such that x(S) # 1, then Aut(A" \ S) %
Aut(A™).

In fact, X := A" \ S is smooth and quasi-projective, x(X) = x(A™) — x(S) # 0
(Lemma 2.14(1)), and Pic(X) is trivial.
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Outline of Proof

Let 6: Aut(A") = Aut(X) be an isomorphism. First we show that if a torus of Aut(A")
of maximal dimension n is mapped onto an algebraic subgroup of Aut(X) and if X is
quasi-affine, then X ~ A™ (Proposi