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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

x

y

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry

Lines in the plane C2



Terms from affine algebraic geometry
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Definition
The geometric objects we consider here are sets of zeros
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

V (y −x)∪V (2y −x +2)
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.
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Definition
The geometric objects we consider here are sets of zeros
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objects are called affine varieties.
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V (x −2,y −2)
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
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objects are called affine varieties.
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

V
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x2 +y2
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(
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

V (y2−x(x −3)(x +3))
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

V
(
x3+y3+z3+1− 1
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Examples

V
(
(x2+y2+z2− 9

4 )
2− 23
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros
V (p1, . . . ,pr ) in Cn of some complex polynomials p1, . . . ,pr . These
objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:

V (p1, . . . ,pn)∩V (q1, . . . ,qm) = V (p1, . . . ,pn,q1, . . . ,qm)

V (p1, . . . ,pn)∪V (q1, . . . ,qm) = V (p1q1,p1q2, . . . ,p1qm, . . . ,

pnq1, . . . ,pnqm) .

Definition
The affine varieties in Cn form the closed subsets of a topology in
Cn, called Zariski topology.

All affine varieties are endowed with
the topology induced by the Zariski topology on Cn.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition
Let X be an affine variety in Cn and Y be an affine variety in Cm.

1 A morphism is a map f : X →Y of the form

f (x1, . . . ,xn)= (p1(x1, . . . ,xn), . . . ,pm(x1, . . . ,xn))

where p1, . . . ,pm are polynomials.
2 An isomorphism is a bijection ϕ : X →Y such that ϕ and its

inverse ϕ−1 are both morphisms. If in addition X is equal to
Y , then ϕ is called an automorphism of X .

3 An embedding is a map f : X →Y such that the image f (X )
is an affine variety in Cm (i.e. it is closed in Y ) and the
restriction f : X → f (X ) is an isomorphism.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Examples

1 ϕ : C2 →C2, ϕ(x ,y) = (y ,x −y) is an automorphism of C2

2 ψ : C2 →C2, ψ(x ,y) = (x ,y +x2) is an automorph. of C2

3 C→C2, t 7→ (t,t) is an embedding with image V (x −y)

4 C→C2, t 7→ (t,−t2) is an embedd. with image V (y +x2)

x

y

x

y
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Terms from affine algebraic geometry

Equivalent embeddings

Definition
Two embeddings f : X →Y and g : X →Y are called equivalent, if
there exists an automorphism ϕ of Y such that g =ϕ◦ f .

Example
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Equivalent embeddings

Definition
Two embeddings f : X →Y and g : X →Y are called equivalent, if
there exists an automorphism ϕ of Y such that g =ϕ◦ f .

Example

The map f : C→C2, f (t)= (6 · (t+ t6),t2+6 · (t+ t6)3−3) is an
embedding. In fact:
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Terms from affine algebraic geometry

Two fundamental questions

Let X , Y be affine varieties.

Question (Existence)

Does there exists an embedding f : X →Y ?

Question (Uniqueness)

Let f ,g : X →Y be two embeddings. Are f ,g equivalent? I.e.

Y

∃ automorphism ϕ ?
��

X

f
33

g ++ Y
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Classical embedding theorems

Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to Rn.

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension
d ≥ 0. Then:

1 There exists an embedding M →R2d+1.
2 Two embeddings M →R2d+2 are

equivalent by a diffeomorphism of
R2d+2.
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Classical embedding theorems

Embeddings of C into C2

Theorem (Abhyankar-Moh, Suzuki, 74,75)

Two embeddings C→C2 are always equivalent.
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Classical embedding theorems

Embeddings of C into C3

Examples

linear embedding t 7→ (t3−3t,t4−4t2,t5−10t)

Open question, Shastri, 92
Are these two embeddings equivalent?
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Classical embedding theorems

Embeddings of C into Cn, n≥ 4

Proposition
All embeddings C→Cn are equivalent provided that n≥ 4.
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Classical embedding theorems

Embeddings of C into Cn, n≥ 4

Proposition
All embeddings C→Cn are equivalent provided that n≥ 4.

Sketch of the proof:

Fix an embedding f : C→Cn.

The key statement: For a generic linear projection ρ : Cn → Cn−1

the composition ρ◦f : C→Cn−1 is an embedding (here we use n≥ 4).

Hence, after a linear coordinate change of Cn we may assume that
π◦ f : C→Cn−1 is an embedding, where π : Cn →Cn−1, (x ,y) 7→ x is
the projection to the first n−1 coordinates.
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Classical embedding theorems

Embeddings of C into Cn, n≥ 4, continued...

C

Cn

C

f

>>

Cn−1

f and g : C→Cn, t 7→ (π(f (t)),t) are equivalent via
(x ,y) 7→ (x ,y +h(x)),

where h is a polynomial in n−1 variables
such that (h ◦π◦ f )(t)= t− fn(t).

g is equivalent to t 7→ (0,t) via (x ,y) 7→ (x −π(f (y)),y).
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Classical embedding theorems

A general statement, when Y =Cn

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d . Then:

1 There exists an embedding of X into C2d+1.

2 Two embeddings X →C2d+2 are equivalent.

Open question

Assume 1≤ d < n≤ 2d +1 are inetegers such that (d ,n) ̸= (1,2).

Are two embeddings Cd →Cn always equivalent?
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Algebraic groups

Algebraic groups

Definition
An algebraic group is an affine variety G that is also a group and
the map G ×G →G , (g ,h) 7→ gh−1 is a morphism.

Definition
A closed subgroup H of an algebraic group G is called an algebraic
subgroup;

H is then again an algebraic group.

Examples

1 GLn(C) is an algebraic group, as it can be identified with{(
det(A)−1

A

)
∈ SLn+1(C)

∣∣∣ A ∈GLn(C)
}
.

2 Sp2n(C) and SOn(C) are algebraic subgroups of SLn(C).

Products of algebraic groups are algebraic,

e.g. Gnm.
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Algebraic groups

Characterless algebraic groups

Definition
An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G →Gm is constant.

Example
Ga is characterless.

As a consequence we get:

Remark
Every algebraic group that is generated by subgroups isomorphic to
Ga is characterless.

E.g. Gna and SLn(C) are characterless.
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Ga is characterless.

E.g. Gna and SLn(C) are characterless.
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Algebraic groups

Motivation for characterless algebraic groups

Fact
Every connected algebraic group G can be written as a semi-direct
product Gu⋊Grm, where Gu is the subgroup of G generated by
subgroups isomorphic to Ga (and thus Gu is characterless) and
r ≥ 0.

Let X be any affine variety such that every morphism X →C∗ is
constant (e.g. Cn satisfies this) and let G be an algebraic group.

A bijective correspondence{
embeddings X →G

}
/∼ 1:1←→ {

embeddings X →Gu }
/∼
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings C→G are equivalent.

Remark

1 dim(G )= 1: G =Ga
2 dim(G )= 2: G =G2

a

3 dim(G )= 3: G =G3
a, G = SL2(C) or G =PSL2(C)

It is not known whether all embeddings C→G are equivalent.
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Embeddings into algebraic groups

Tool I: Moving embeddings

Assume:
1 G is an algebraic group

2 H is a characterless algebraic
subgroup of G .

3 X ,X ′ ⊆G are closed and
isomorphic to C such that

X
∼−−→
π|X

π(X )=π(X ′) ∼←−−−
π|X ′

X ′

Then there exists an automor-
phism ϕ of G with ϕ(X )=X ′.
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Embeddings into algebraic groups

Tool II: Generically projecting embeddings

Assume:

G is an almost simple algebraic group of dimension ≥ 4
(almost simple = every proper normal subgroup of G is finite).

E.g. G = SLn(C), SOn(C), Sp2n(C).

H is an algebraic subgroup of G , isomorphic to Ck for some k .
X is closed in G and isomorphic to C.

Then: There exists an automorphism ϕ of G such that for generic
g ∈G holds:

ϕ(X )

is an embedding →

%%

⊆ G

��
G/gHg−1
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings C→G are equivalent.

Sketch, when G is almost simple: Let C≃X ⊆G be closed.

Step ➊: It is enough to show that X is an algebraic subgroup of G
up to an automorphism.

Indeed: Let U1 ̸=U2 be algebraic subgroups of G , isomorphic to Ga.

U2

U1
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➋: It is enough to show that X is contained in a proper
characterless algebraic subgroup of G up to an automorphism.

Indeed: Let K ⊆G be a proper characterless algebraic subgroup such
that X ⊆K . Choose a closed subgroup Ga ≃U ⊆G with U∩K = {e}.
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➌: Move X into a special closed subset E of G .

Example

Let G = SL3(C)

and let

B :=
{( ∗ ∗ ∗

0 ∗ ∗
0 0 ∗

)}
⊆P :=

{( ∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

)}
, Ru(P

−) :=
{(

1 0 0
∗ 1 0
∗ 0 1

)}
.

Then
ρ : SL3(C)→P2 , (v1|v2|v3) 7→ [v1]

is the quotient of left P-cosets and

π : SL3(C)→Mat3×2(C)\W , (v1|v2|v3) 7→ (v2|v3)

is the quotient of left Ru(P
−)-cosets, where W is the affine variety

given by the cross-product of both columns.
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➌: Move X into a special closed subset E of G .

Example

The natural B-action on P2 = SL3(C)/P has a unique orbit of di-
mension 1. Its closure C are the elements with vanishing last entry.
Hence,

E :=

ρ−1(C )=
{( ∗ ∗ ∗

∗ ∗ ∗
0 ∗ ∗

)}
⊆ SL3(C) .

Upshot:

π|E : E →Mat3×2(C)\W = SL3(C)/Ru(P
−) , (v1|v2|v3) 7→ (v2|v3)

is a locally trivial C-bundle. Indeed: For (v2,v3) ∈Mat3×2(C)\W :

(π|E )−1(v2|v3)= {(v1|v2|v3) | a1v11−a2v12 = 1,v13 = 0 } ≃C ,

where a1,a2,a3 are the 2×2-minors of (v2|v3).
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➌: Move X into a special closed subset E of G .

General case: By Tool II, we may assume that there exists a g ∈
G such that G → G/gRu(P

−)g−1 restricts to an embedding X →
G/gRu(P

−)g−1. After replacing X by Xg , we may assume that
π : G →G/Ru(P

−) restricts to an embedding π|X : X →G/Ru(P
−).

Moreover, one can show that π(E ) is a big open subset of G/Ru(P
−)

(i.e. the complement has codimension ≥ 2) and that

π|E : E →π(E )

is a locally trivial C-bundle.
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➌: Move X into a special closed subset E of G .

X
X

π(X )
π(X )
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Embedding C into characterless algebraic groups
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Embeddings into algebraic groups

Embedding C into characterless algebraic groups

Step ➍: Move X into a proper characterless algebraic subgroup.

1 There exists an algebraic subgroup H in G such that E =H ·P .

For G = SL3(C):


∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

︸ ︷︷ ︸
E

=


∗ ∗ 0
∗ ∗ 0
0 0 ∗

︸ ︷︷ ︸
H

·


∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

︸ ︷︷ ︸
P

2 Technically hardest step: On can move X into P .
3 Write P =Pu⋊Grm for some r ≥ 0.
4 The projection P →Grm maps X ≃C onto a point.

After
multiplying X with an element of P , we may assume that this
point is 1 ∈Grm,

i.e. X ⊆Pu.
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Embeddings into algebraic groups

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth
affine variety with dimG > 2 dimX +1. Then there exists an
embedding X →G .
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Embeddings into algebraic groups

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth
affine variety with dimG > 2 dimX +1. Then there exists an
embedding X →G .

Remark (about the optimality)

For every d ≥ 1 there is a smooth affine variety Xd with dim(Xd )=
d such that Xd admits no embedding into an algebraic group G
with d ≥ dimG

2 .

Hence, if dimG is even, the result is optimal.
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Embeddings into algebraic groups

End

Thank you for your attention!
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