Embeddings and Automorphisms in Affine

 Algebraic Geometry

Immanuel van Santen

21 September 2023

Outline

(1) Terms from affine algebraic geometry

Outline

(1) Terms from affine algebraic geometry
(2) Classical embedding theorems

Outline

(1) Terms from affine algebraic geometry
(2) Classical embedding theorems
(3) Algebraic groups

Outline

(1) Terms from affine algebraic geometry
(2) Classical embedding theorems
(3) Algebraic groups

4 Embeddings into algebraic groups

Affine varieties - the geometric objects

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Lines in the plane \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Lines in the plane \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Lines in the plane \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Lines in the plane \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Points in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Points in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Points in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Parabola in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Parabola in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Circle in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Circle in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Epicycloid in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Epicycloid in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Epicycloid in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Epicycloid in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Elliptic curve in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Elliptic curve in \mathbb{C}^{2}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Cubic in the space \mathbb{C}^{3}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Cubic in the space \mathbb{C}^{3}

$$
V\left(x^{3}+y^{3}+z^{3}+1-\frac{1}{4} \cdot(x+y+z+1)^{3}\right)
$$

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Quartic in \mathbb{C}^{3}

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Examples

Quartic in \mathbb{C}^{3}

$$
V\left(\left(x^{2}+y^{2}+z^{2}-\frac{9}{4}\right)^{2}-\frac{23}{3} \cdot\left((1-z)^{2}-2 x^{2}\right) \cdot\left((1+z)^{2}-2 y^{2}\right)\right)
$$

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:

$$
V\left(p_{1}, \ldots, p_{n}\right) \cap V\left(q_{1}, \ldots, q_{m}\right)=V\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right)
$$

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:

$$
\begin{array}{cc}
V\left(p_{1}, \ldots, p_{n}\right) \cap V\left(q_{1}, \ldots, q_{m}\right)= & V\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right) \\
V\left(p_{1}, \ldots, p_{n}\right) \cup V\left(q_{1}, \ldots, q_{m}\right)= & V\left(p_{1} q_{1}, p_{1} q_{2}, \ldots, p_{1} q_{m}, \ldots,\right. \\
& \left.p_{n} q_{1}, \ldots, p_{n} q_{m}\right) .
\end{array}
$$

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros $V\left(p_{1}, \ldots, p_{r}\right)$ in \mathbb{C}^{n} of some complex polynomials p_{1}, \ldots, p_{r}. These objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:

$$
\begin{array}{cc}
V\left(p_{1}, \ldots, p_{n}\right) \cap V\left(q_{1}, \ldots, q_{m}\right)= & V\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right) \\
V\left(p_{1}, \ldots, p_{n}\right) \cup V\left(q_{1}, \ldots, q_{m}\right)= & V\left(p_{1} q_{1}, p_{1} q_{2}, \ldots, p_{1} q_{m}, \ldots,\right. \\
& \left.p_{n} q_{1}, \ldots, p_{n} q_{m}\right) .
\end{array}
$$

Definition

The affine varieties in \mathbb{C}^{n} form the closed subsets of a topology in \mathbb{C}^{n}, called Zariski topology. All affine varieties are endowed with the topology induced by the Zariski topology on \mathbb{C}^{n}.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^{n} and Y be an affine variety in \mathbb{C}^{m}.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^{n} and Y be an affine variety in \mathbb{C}^{m}.
(1) A morphism is a map $f: X \rightarrow Y$ of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where p_{1}, \ldots, p_{m} are polynomials.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^{n} and Y be an affine variety in \mathbb{C}^{m}.
(1) A morphism is a map $f: X \rightarrow Y$ of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where p_{1}, \ldots, p_{m} are polynomials.
(2) An isomorphism is a bijection $\varphi: X \rightarrow Y$ such that φ and its inverse φ^{-1} are both morphisms.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^{n} and Y be an affine variety in \mathbb{C}^{m}.
(1) A morphism is a map $f: X \rightarrow Y$ of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where p_{1}, \ldots, p_{m} are polynomials.
(2) An isomorphism is a bijection $\varphi: X \rightarrow Y$ such that φ and its inverse φ^{-1} are both morphisms. If in addition X is equal to Y, then φ is called an automorphism of X.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^{n} and Y be an affine variety in \mathbb{C}^{m}.
(1) A morphism is a map $f: X \rightarrow Y$ of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where p_{1}, \ldots, p_{m} are polynomials.
(2) An isomorphism is a bijection $\varphi: X \rightarrow Y$ such that φ and its inverse φ^{-1} are both morphisms. If in addition X is equal to Y, then φ is called an automorphism of X.
(3) An embedding is a map $f: X \rightarrow Y$ such that the image $f(X)$ is an affine variety in \mathbb{C}^{m} (i.e. it is closed in Y) and the restriction $f: X \rightarrow f(X)$ is an isomorphism.

Morphisms, isomorphisms, automorphisms and embeddings

Examples

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$
(9) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto\left(t,-t^{2}\right)$ is an embedd. with image $V\left(y+x^{2}\right)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$
(9) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto\left(t,-t^{2}\right)$ is an embedd. with image $V\left(y+x^{2}\right)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$
(9) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto\left(t,-t^{2}\right)$ is an embedd. with image $V\left(y+x^{2}\right)$

Morphisms, isomorphisms, automorphisms and embeddings

Examples

(1) $\varphi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \varphi(x, y)=(y, x-y)$ is an automorphism of \mathbb{C}^{2}
(2) $\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, \psi(x, y)=\left(x, y+x^{2}\right)$ is an automorph. of \mathbb{C}^{2}
(3) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, t)$ is an embedding with image $V(x-y)$
(9) $\mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto\left(t,-t^{2}\right)$ is an embedd. with image $V\left(y+x^{2}\right)$

Terms from affine algebraic geometry

Equivalent embeddings

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, p(t))$ is an embedding.

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, p(t))$ is an embedding.

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, p(t))$ is an embedding.

$$
(x, y) \mapsto(x, y-p(x))
$$

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, t \mapsto(t, p(t))$ is an embedding.

$$
(x, y) \mapsto(x, y-p(x))
$$

\longrightarrow

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

$$
(x, y) \mapsto\left(x-6 \cdot(y+3)^{3}, y\right)
$$

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

$$
(x, y) \mapsto\left(\frac{1}{6} x, y-\left(\frac{1}{6} x\right)^{2}+3\right)
$$

Equivalent embeddings

Definition

Two embeddings $f: X \rightarrow Y$ and $g: X \rightarrow Y$ are called equivalent, if there exists an automorphism φ of Y such that $g=\varphi \circ f$.

Example

The map $f: \mathbb{C} \rightarrow \mathbb{C}^{2}, f(t)=\left(6 \cdot\left(t+t^{6}\right), t^{2}+6 \cdot\left(t+t^{6}\right)^{3}-3\right)$ is an embedding. In fact:

Two fundamental questions

Let X, Y be affine varieties.

Two fundamental questions

Let X, Y be affine varieties.
Question (Existence)
Does there exists an embedding $f: X \rightarrow Y$?

Two fundamental questions

Let X, Y be affine varieties.
Question (Existence)
Does there exists an embedding $f: X \rightarrow Y$?

Question (Uniqueness)

Let $f, g: X \rightarrow Y$ be two embeddings. Are f, g equivalent? I.e.

Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding $f: X \rightarrow Y$?

Question (Uniqueness)

Let $f, g: X \rightarrow Y$ be two embeddings. Are f, g equivalent? I.e.

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^{n}.

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^{n}.

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^{n}.

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \geq 0$. Then:

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^{n}.

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \geq 0$. Then:
(1) There exists an embedding $M \rightarrow \mathbb{R}^{2 d+1}$.

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^{n}.

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \geq 0$. Then:
(1) There exists an embedding $M \rightarrow \mathbb{R}^{2 d+1}$.
(2) Two embeddings $M \rightarrow \mathbb{R}^{2 d+2}$ are equivalent by a diffeomorphism of $\mathbb{R}^{2 d+2}$.

H. Whitney

Embeddings of \mathbb{C} into \mathbb{C}^{2}

Embeddings of \mathbb{C} into \mathbb{C}^{2}

S.S. Abhyankar

T.T. Moh

M. Suzuki

Embeddings of \mathbb{C} into \mathbb{C}^{2}

Theorem (Abhyankar-Moh, Suzuki, 74,75)

Two embeddings $\mathbb{C} \rightarrow \mathbb{C}^{2}$ are always equivalent.

S.S. Abhyankar

T.T. Moh

M. Suzuki

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

linear embedding

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

linear embedding

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

linear embedding $t \mapsto\left(t^{3}-3 t, t^{4}-4 t^{2}, t^{5}-10 t\right)$

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

linear embedding

$t \mapsto\left(t^{3}-3 t, t^{4}-4 t^{2}, t^{5}-10 t\right)$

Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples

linear embedding

$$
t \mapsto\left(t^{3}-3 t, t^{4}-4 t^{2}, t^{5}-10 t\right)
$$

Open question, Shastri, 92

Are these two embeddings equivalent?

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.
Sketch of the proof:

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.
Sketch of the proof: Fix an embedding $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$.

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.
Sketch of the proof: Fix an embedding $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$.
The key statement: For a generic linear projection $\rho: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ the composition $\rho \circ f: \mathbb{C} \rightarrow \mathbb{C}^{n-1}$ is an embedding (here we use $n \geq 4$).

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.
Sketch of the proof: Fix an embedding $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$.
The key statement: For a generic linear projection $\rho: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ the composition $\rho \circ f: \mathbb{C} \rightarrow \mathbb{C}^{n-1}$ is an embedding (here we use $n \geq 4$). Hence, after a linear coordinate change of \mathbb{C}^{n} we may assume that $\pi \circ f: \mathbb{C} \rightarrow \mathbb{C}^{n-1}$ is an embedding,

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$

Proposition

All embeddings $\mathbb{C} \rightarrow \mathbb{C}^{n}$ are equivalent provided that $n \geq 4$.
Sketch of the proof: Fix an embedding $f: \mathbb{C} \rightarrow \mathbb{C}^{n}$.
The key statement: For a generic linear projection $\rho: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1}$ the composition $\rho \circ f: \mathbb{C} \rightarrow \mathbb{C}^{n-1}$ is an embedding (here we use $n \geq 4$). Hence, after a linear coordinate change of \mathbb{C}^{n} we may assume that $\pi \circ f: \mathbb{C} \rightarrow \mathbb{C}^{n-1}$ is an embedding, where $\pi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n-1},(x, y) \mapsto x$ is the projection to the first $n-1$ coordinates.

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

- f and $g: \mathbb{C} \rightarrow \mathbb{C}^{n}, t \mapsto(\pi(f(t)), t)$ are equivalent via $(x, y) \mapsto(x, y+h(x))$,

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

- f and $g: \mathbb{C} \rightarrow \mathbb{C}^{n}, t \mapsto(\pi(f(t)), t)$ are equivalent via $(x, y) \mapsto(x, y+h(x))$, where h is a polynomial in $n-1$ variables such that $(h \circ \pi \circ f)(t)=t-f_{n}(t)$.

Embeddings of \mathbb{C} into $\mathbb{C}^{n}, n \geq 4$, continued...

- f and $g: \mathbb{C} \rightarrow \mathbb{C}^{n}, t \mapsto(\pi(f(t)), t)$ are equivalent via $(x, y) \mapsto(x, y+h(x))$, where h is a polynomial in $n-1$ variables such that $(h \circ \pi \circ f)(t)=t-f_{n}(t)$.
- g is equivalent to $t \mapsto(0, t)$ via $(x, y) \mapsto(x-\pi(f(y)), y)$.

A general statement, when $Y=\mathbb{C}^{n}$

A. Holme

S. Kaliman

V. Srinivas

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

A. Holme

S. Kaliman

V. Srinivas

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.

A. Holme

S. Kaliman

V. Srinivas

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

A. Holme

S. Kaliman

V. Srinivas

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof:

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (1) There exists $n>2 d+1$ and an embedding:

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (1) There exists $n>2 d+1$ and an embedding:

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (1) There exists $n>2 d+1$ and an embedding:

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (1) There exists $n>2 d+1$ and an embedding:

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (2) Let $f, g: X \rightarrow \mathbb{C}^{2 d+2}$ be embeddings.

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (2) Let $f, g: X \rightarrow \mathbb{C}^{2 d+2}$ be embeddings. After a (generic) linear coordinate change of $\mathbb{C}^{2 d+2}$ the morphisms below are embeddings:

$$
X \xrightarrow{(f, g)} \mathbb{C}^{2 d+2} \times \mathbb{C}^{2 d+2} \xrightarrow{\text { any coordinate projection }} \mathbb{C}^{2 d+1}
$$

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (2) Let $f, g: X \rightarrow \mathbb{C}^{2 d+2}$ be embeddings. After a (generic) linear coordinate change of $\mathbb{C}^{2 d+2}$ the morphisms below are embeddings:

$$
X \xrightarrow{(f, g)} \mathbb{C}^{2 d+2} \times \mathbb{C}^{2 d+2} \xrightarrow{\text { any coordinate projection }} \mathbb{C}^{2 d+1}
$$

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Strategy of the proof: (2) Let $f, g: X \rightarrow \mathbb{C}^{2 d+2}$ be embeddings. After a (generic) linear coordinate change of $\mathbb{C}^{2 d+2}$ the morphisms below are embeddings:

$$
X \xrightarrow{(f, g)} \mathbb{C}^{2 d+2} \times \mathbb{C}^{2 d+2} \xrightarrow{\text { any coordinate projection }} \mathbb{C}^{2 d+1} .
$$

A general statement, when $Y=\mathbb{C}^{n}$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
(1) There exists an embedding of X into $\mathbb{C}^{2 d+1}$.
(2) Two embeddings $X \rightarrow \mathbb{C}^{2 d+2}$ are equivalent.

Open question

Assume $1 \leq d<n \leq 2 d+1$ are inetegers such that $(d, n) \neq(1,2)$. Are two embeddings $\mathbb{C}^{d} \rightarrow \mathbb{C}^{n}$ always equivalent?

Algebraic groups

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Examples

(1) The space \mathbb{C}^{n} with respect to addition, usually denoted by \mathbb{G}_{a}^{n}.

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Examples

(1) The space \mathbb{C}^{n} with respect to addition, usually denoted by \mathbb{G}_{a}^{n}.
(2) The special linear group

$$
\mathrm{SL}_{n}(\mathbb{C})=\{A \mid \operatorname{det}(A)=1\} \subseteq \operatorname{Mat}_{n \times n}(\mathbb{C})=\mathbb{C}^{n^{2}}
$$

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup;

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is an algebraic group, usually denoted by \mathbb{G}_{m}.

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is an algebraic group, usually denoted by \mathbb{G}_{m}. In fact:

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is an algebraic group, usually denoted by \mathbb{G}_{m}. In fact:

$$
\left\{\left.\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}) \right\rvert\, t \in \mathbb{C}\right\}=V\left(a_{12}, a_{21}, a_{11} a_{22}-1\right)
$$

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ is an algebraic group, usually denoted by \mathbb{G}_{m}. In fact:

$$
\begin{aligned}
\left\{\left.\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{C}) \right\rvert\, t \in \mathbb{C}\right\} & =V\left(a_{12}, a_{21}, a_{11} a_{22}-1\right) \\
& \subseteq V\left(a_{11} a_{22}-a_{21} a_{12}-1\right)=\mathrm{SL}_{2}(\mathbb{C})
\end{aligned}
$$

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

(1) $G L_{n}(\mathbb{C})$ is an algebraic group, as it can be identified with

$$
\left\{\left.\left(\begin{array}{l|l}
\operatorname{det}(A)^{-1} & \\
\hline & A
\end{array}\right) \in \mathrm{SL}_{n+1}(\mathbb{C}) \right\rvert\, A \in \mathrm{GL}_{n}(\mathbb{C})\right\}
$$

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

(1) $G L_{n}(\mathbb{C})$ is an algebraic group, as it can be identified with

$$
\left\{\left.\left(\begin{array}{c|c}
\operatorname{det}(A)^{-1} & \\
\hline & A
\end{array}\right) \in \mathrm{SL}_{n+1}(\mathbb{C}) \right\rvert\, A \in \mathrm{GL}_{n}(\mathbb{C})\right\}
$$

(2) $\mathrm{Sp}_{2 n}(\mathbb{C})$ and $\mathrm{SO}_{n}(\mathbb{C})$ are algebraic subgroups of $\mathrm{SL}_{n}(\mathbb{C})$.

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic,

Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G,(g, h) \mapsto g h^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic, e.g. \mathbb{G}_{m}^{n}.

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

仓The exponentional $\mathbb{G}_{a} \rightarrow \mathbb{G}_{m}, t \mapsto e^{t}$ is not a homomorphism!

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

仓The exponentional $\mathbb{G}_{a} \rightarrow \mathbb{G}_{m}, t \mapsto e^{t}$ is not a homomorphism!

Example

\mathbb{G}_{a} is characterless.

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

仓The exponentional $\mathbb{G}_{a} \rightarrow \mathbb{G}_{m}, t \mapsto e^{t}$ is not a homomorphism!

Example

\mathbb{G}_{a} is characterless.
As a consequence we get:

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

仓The exponentional $\mathbb{G}_{a} \rightarrow \mathbb{G}_{m}, t \mapsto e^{t}$ is not a homomorphism!

Example

\mathbb{G}_{a} is characterless.
As a consequence we get:

Remark

Every algebraic group that is generated by subgroups isomorphic to \mathbb{G}_{a} is characterless.

Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomorphism (i.e. morphism that is a group homo.) $G \rightarrow \mathbb{G}_{m}$ is constant.

仓The exponentional $\mathbb{G}_{a} \rightarrow \mathbb{G}_{m}, t \mapsto e^{t}$ is not a homomorphism!

Example

\mathbb{G}_{a} is characterless.
As a consequence we get:

Remark

Every algebraic group that is generated by subgroups isomorphic to \mathbb{G}_{a} is characterless. E.g. \mathbb{G}_{a}^{n} and $\mathrm{SL}_{n}(\mathbb{C})$ are characterless.

Motivation for characterless algebraic groups

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^{u} \rtimes \mathbb{G}_{m}^{r}$, where G^{u} is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_{a} (and thus G^{u} is characterless) and $r \geq 0$.

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^{u} \rtimes \mathbb{G}_{m}^{r}$, where G^{u} is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_{a} (and thus G^{u} is characterless) and $r \geq 0$.

Let X be any affine variety such that every morphism $X \rightarrow \mathbb{C}^{*}$ is constant (e.g. \mathbb{C}^{n} satisfies this) and let G be an algebraic group.

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^{u} \rtimes \mathbb{G}_{m}^{r}$, where G^{u} is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_{a} (and thus G^{u} is characterless) and $r \geq 0$.

Let X be any affine variety such that every morphism $X \rightarrow \mathbb{C}^{*}$ is constant (e.g. \mathbb{C}^{n} satisfies this) and let G be an algebraic group.

A bijective correspondence

$$
\{\text { embeddings } X \rightarrow G\} / \sim \stackrel{1: 1}{\longleftrightarrow}\left\{\text { embeddings } X \rightarrow G^{u}\right\} / \sim
$$

Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4. Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4. Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Remark

(1) $\operatorname{dim}(G)=1: G=\mathbb{G}_{a}$

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4. Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Remark

(1) $\operatorname{dim}(G)=1: G=\mathbb{G}_{a}$
(2) $\operatorname{dim}(G)=2: G=\mathbb{G}_{a}^{2}$

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4. Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Remark

(1) $\operatorname{dim}(G)=1: G=\mathbb{G}_{a}$
(2) $\operatorname{dim}(G)=2: G=\mathbb{G}_{a}^{2}$
(3) $\operatorname{dim}(G)=3: G=\mathbb{G}_{a}^{3}, G=\mathrm{SL}_{2}(\mathbb{C})$ or $G=\mathrm{PSL}_{2}(\mathbb{C})$

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Remark

(1) $\operatorname{dim}(G)=1: G=\mathbb{G}_{a}$
(2) $\operatorname{dim}(G)=2: G=\mathbb{G}_{a}^{2}$
(3) $\operatorname{dim}(G)=3: G=\mathbb{G}_{a}^{3}, G=\mathrm{SL}_{2}(\mathbb{C})$ or $G=\mathrm{PSL}_{2}(\mathbb{C})$

It is not known whether all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Tool I: Moving embeddings

Tool I: Moving embeddings

Assume:

Tool I: Moving embeddings

Assume:

(1) G is an algebraic group

Tool I: Moving embeddings

Assume:

(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G.

Tool I: Moving embeddings

Assume:

(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H :

Tool I: Moving embeddings

Assume:

(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H :

$$
G \rightarrow G / H \quad \text { or } \quad G \rightarrow H \backslash G
$$

Tool I: Moving embeddings

Assume:
(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H :

$$
G \rightarrow G / H \quad \text { or } \quad G \rightarrow H \backslash G
$$

(3) $X, X^{\prime} \subseteq G$ are closed and isomorphic to \mathbb{C} such that

Tool I: Moving embeddings

Assume:
(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H :

$$
G \rightarrow G / H \quad \text { or } \quad G \rightarrow H \backslash G
$$

(3) $X, X^{\prime} \subseteq G$ are closed and isomorphic to \mathbb{C} such that

$$
X \underset{\left.\pi\right|_{X}}{\sim} \pi(X)=\pi\left(X^{\prime}\right) \underset{\left.\pi\right|_{X^{\prime}}}{\sim} X^{\prime}
$$

Tool I: Moving embeddings

Assume:
(1) G is an algebraic group
(2) H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H :

$$
G \rightarrow G / H \quad \text { or } \quad G \rightarrow H \backslash G
$$

(3) $X, X^{\prime} \subseteq G$ are closed and isomorphic to \mathbb{C} such that

$$
X \underset{\left.\pi\right|_{X}}{\sim} \pi(X)=\pi\left(X^{\prime}\right) \underset{\left.\pi\right|_{X^{\prime}}}{\sim} X^{\prime}
$$

Then there exists an automorphism φ of G with $\varphi(X)=X^{\prime}$.

$H \backslash G$

Tool II: Generically projecting embeddings

Assume:

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite). E.g. $G=S L_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).
E.g. $G=\mathrm{SL}_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.
- H is an algebraic subgroup of G, isomorphic to \mathbb{C}^{k} for some k.

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).
E.g. $G=\mathrm{SL}_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.
- H is an algebraic subgroup of G, isomorphic to \mathbb{C}^{k} for some k.
- X is closed in G and isomorphic to \mathbb{C}.

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).
E.g. $G=\mathrm{SL}_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.
- H is an algebraic subgroup of G, isomorphic to \mathbb{C}^{k} for some k.
- X is closed in G and isomorphic to \mathbb{C}.

Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).
E.g. $G=\mathrm{SL}_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.
- H is an algebraic subgroup of G, isomorphic to \mathbb{C}^{k} for some k.
- X is closed in G and isomorphic to \mathbb{C}.

Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4
(almost simple $=$ every proper normal subgroup of G is finite).
E.g. $G=\mathrm{SL}_{n}(\mathbb{C}), \mathrm{SO}_{n}(\mathbb{C}), \mathrm{Sp}_{2 n}(\mathbb{C})$.
- H is an algebraic subgroup of G, isomorphic to \mathbb{C}^{k} for some k.
- X is closed in G and isomorphic to \mathbb{C}.

Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:

Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)
Let G be a characterless algebraic group of dimension ≥ 4. Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)
Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

$$
\begin{aligned}
& G \rightarrow U_{1} \backslash G \\
& \downarrow \\
& G / U_{2}
\end{aligned}
$$

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

$$
\begin{gathered}
{\stackrel{s}{G} \rightarrow U_{1} \backslash G}_{\downarrow}^{\downarrow} / U_{2}
\end{gathered}
$$

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

Embedding \mathbb{C} into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4.
Then all embeddings $\mathbb{C} \rightarrow G$ are equivalent.
Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.
Step (1) It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Indeed: Let $U_{1} \neq U_{2}$ be algebraic subgroups of G, isomorphic to \mathbb{G}_{a}.

Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$.

$$
G
$$

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

$$
G
$$

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$. Choose a closed subgroup $\mathbb{G}_{a} \simeq U \subseteq G$ with $U \cap K=\{e\}$.

Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

Let $G=S_{3}(\mathbb{C})$

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

Let $G=\mathrm{SL}_{3}(\mathbb{C})$ and let
$B:=\left\{\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)\right\} \subseteq P:=\left\{\left(\begin{array}{c|cc}* & * & * \\ \hline 0 & * & * \\ 0 & * & *\end{array}\right)\right\}, R_{u}\left(P^{-}\right):=\left\{\left(\begin{array}{c|cc}1 & 0 & 0 \\ \hline * & 1 & 0 \\ * & 0 & 1\end{array}\right)\right\}$.

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

Let $G=\mathrm{SL}_{3}(\mathbb{C})$ and let
$B:=\left\{\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)\right\} \subseteq P:=\left\{\left(\begin{array}{c|cc}* & * & * \\ \hline 0 & * & * \\ 0 & * & *\end{array}\right)\right\}, R_{u}\left(P^{-}\right):=\left\{\left(\begin{array}{c|cc}1 & 0 & 0 \\ \hline * & 1 & 0 \\ * & 0 & 1\end{array}\right)\right\}$.
Then

$$
\rho: \mathrm{SL}_{3}(\mathbb{C}) \rightarrow \mathbb{P}^{2}, \quad\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left[v_{1}\right]
$$

is the quotient of left P-cosets

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

Let $G=\mathrm{SL}_{3}(\mathbb{C})$ and let
$B:=\left\{\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)\right\} \subseteq P:=\left\{\left(\begin{array}{c|cc}* & * & * \\ \hline 0 & * & * \\ 0 & * & *\end{array}\right)\right\}, R_{u}\left(P^{-}\right):=\left\{\left(\begin{array}{c|cc}1 & 0 & 0 \\ \hline * & 1 & 0 \\ * & 0 & 1\end{array}\right)\right\}$.
Then

$$
\rho: \mathrm{SL}_{3}(\mathbb{C}) \rightarrow \mathbb{P}^{2}, \quad\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left[v_{1}\right]
$$

is the quotient of left P-cosets and

$$
\pi: \mathrm{SL}_{3}(\mathbb{C}) \rightarrow \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W, \quad\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left(v_{2} \mid v_{3}\right)
$$

is the quotient of left $R_{u}\left(P^{-}\right)$-cosets,

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

Let $G=\mathrm{SL}_{3}(\mathbb{C})$ and let
$B:=\left\{\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)\right\} \subseteq P:=\left\{\left(\begin{array}{c|cc}* & * & * \\ \hline 0 & * & * \\ 0 & * & *\end{array}\right)\right\}, R_{u}\left(P^{-}\right):=\left\{\left(\begin{array}{c|cc}1 & 0 & 0 \\ \hline * & 1 & 0 \\ * & 0 & 1\end{array}\right)\right\}$.
Then

$$
\rho: \mathrm{SL}_{3}(\mathbb{C}) \rightarrow \mathbb{P}^{2}, \quad\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left[v_{1}\right]
$$

is the quotient of left P-cosets and

$$
\pi: \mathrm{SL}_{3}(\mathbb{C}) \rightarrow \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W, \quad\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left(v_{2} \mid v_{3}\right)
$$

is the quotient of left $R_{u}\left(P^{-}\right)$-cosets, where W is the affine variety given by the cross-product of both columns.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) .
$$

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
E:=\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) \text {. }
$$

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
E:=\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) \text {. }
$$

Upshot:

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
E:=\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) \text {. }
$$

Upshot:

$$
\left.\pi\right|_{E}: E \rightarrow \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W=\mathrm{SL}_{3}(\mathbb{C}) / R_{u}\left(P^{-}\right),\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left(v_{2} \mid v_{3}\right)
$$

is a locally trivial \mathbb{C}-bundle.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
E:=\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) \text {. }
$$

Upshot:

$$
\left.\pi\right|_{E}: E \rightarrow \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W=\mathrm{SL}_{3}(\mathbb{C}) / R_{u}\left(P^{-}\right),\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left(v_{2} \mid v_{3}\right)
$$

is a locally trivial \mathbb{C}-bundle. Indeed: For $\left(v_{2}, v_{3}\right) \in \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W$:

$$
\left(\left.\pi\right|_{E}\right)^{-1}\left(v_{2} \mid v_{3}\right)=\left\{\left(v_{1}\left|v_{2}\right| v_{3}\right) \mid a_{1} v_{11}-a_{2} v_{12}=1, v_{13}=0\right\} \simeq \mathbb{C},
$$

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Example

The natural B-action on $\mathbb{P}^{2}=\mathrm{SL}_{3}(\mathbb{C}) / P$ has a unique orbit of dimension 1. Its closure C are the elements with vanishing last entry. Hence,

$$
E:=\rho^{-1}(C)=\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\} \subseteq \mathrm{SL}_{3}(\mathbb{C}) \text {. }
$$

Upshot:

$$
\left.\pi\right|_{E}: E \rightarrow \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W=\mathrm{SL}_{3}(\mathbb{C}) / R_{u}\left(P^{-}\right),\left(v_{1}\left|v_{2}\right| v_{3}\right) \mapsto\left(v_{2} \mid v_{3}\right)
$$

is a locally trivial \mathbb{C}-bundle. Indeed: For $\left(v_{2}, v_{3}\right) \in \operatorname{Mat}_{3 \times 2}(\mathbb{C}) \backslash W$:

$$
\left(\left.\pi\right|_{E}\right)^{-1}\left(v_{2} \mid v_{3}\right)=\left\{\left(v_{1}\left|v_{2}\right| v_{3}\right) \mid a_{1} v_{11}-a_{2} v_{12}=1, v_{13}=0\right\} \simeq \mathbb{C},
$$

where a_{1}, a_{2}, a_{3} are the 2×2-minors of $\left(v_{2} \mid v_{3}\right)$.

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3: Move X into a special closed subset E of G.
General case:

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.
General case: By Tool II, we may assume that there exists a $g \in$ G such that $G \rightarrow G / g R_{u}\left(P^{-}\right) g^{-1}$ restricts to an embedding $X \rightarrow$ $G / g R_{u}\left(P^{-}\right) g^{-1}$.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.
General case: By Tool II, we may assume that there exists a $g \in$ G such that $G \rightarrow G / g R_{u}\left(P^{-}\right) g^{-1}$ restricts to an embedding $X \rightarrow$ $G / g R_{u}\left(P^{-}\right) g^{-1}$. After replacing X by $X g$, we may assume that $\pi: G \rightarrow G / R_{u}\left(P^{-}\right)$restricts to an embedding $\left.\pi\right|_{X}: X \rightarrow G / R_{u}\left(P^{-}\right)$.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.
General case: By Tool II, we may assume that there exists a $g \in$ G such that $G \rightarrow G / g R_{u}\left(P^{-}\right) g^{-1}$ restricts to an embedding $X \rightarrow$ $G / g R_{u}\left(P^{-}\right) g^{-1}$. After replacing X by $X g$, we may assume that $\pi: G \rightarrow G / R_{u}\left(P^{-}\right)$restricts to an embedding $\left.\pi\right|_{X}: X \rightarrow G / R_{u}\left(P^{-}\right)$. Moreover, one can show that $\pi(E)$ is a big open subset of $G / R_{u}\left(P^{-}\right)$ (i.e. the complement has codimension ≥ 2) and that

$$
\left.\pi\right|_{E}: E \rightarrow \pi(E)
$$

is a locally trivial \mathbb{C}-bundle.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3) Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3) Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step 3: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3) Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step (3) Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step © : Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step © : Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

For $G=\mathrm{SL}_{3}(\mathbb{C})$:

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\operatorname{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\mathrm{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

(2) Technically hardest step: On can move X into P.

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\mathrm{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

(2) Technically hardest step: On can move X into P.
(3) Write $P=P^{u} \rtimes \mathbb{G}_{m}^{r}$ for some $r \geq 0$.

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\mathrm{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

(2) Technically hardest step: On can move X into P.
(3) Write $P=P^{u} \rtimes \mathbb{G}_{m}^{r}$ for some $r \geq 0$.
(9) The projection $P \rightarrow \mathbb{G}_{m}^{r}$ maps $X \simeq \mathbb{C}$ onto a point.

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\mathrm{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \cdot \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

(2) Technically hardest step: On can move X into P.
(3) Write $P=P^{u} \rtimes \mathbb{G}_{m}^{r}$ for some $r \geq 0$.
(9) The projection $P \rightarrow \mathbb{G}_{m}^{r}$ maps $X \simeq \mathbb{C}$ onto a point. After multiplying X with an element of P, we may assume that this point is $1 \in \mathbb{G}_{m}^{r}$,

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.
(1) There exists an algebraic subgroup H in G such that $E=H \cdot P$.

$$
\text { For } G=\mathrm{SL}_{3}(\mathbb{C}): \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
0 & * & *
\end{array}\right)\right\}}_{E}=\underbrace{\left\{\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right)\right\}}_{H} \cdot \underbrace{\left\{\left(\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)\right\}}_{P}
$$

(2) Technically hardest step: On can move X into P.
(3) Write $P=P^{u} \rtimes \mathbb{G}_{m}^{r}$ for some $r \geq 0$.
(9) The projection $P \rightarrow \mathbb{G}_{m}^{r}$ maps $X \simeq \mathbb{C}$ onto a point. After multiplying X with an element of P, we may assume that this point is $1 \in \mathbb{G}_{m}^{r}$, i.e. $X \subseteq P^{u}$.

Existence of embeddings into algebraic groups

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with $\operatorname{dim} G>2 \operatorname{dim} X+1$. Then there exists an embedding $X \rightarrow G$.

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with $\operatorname{dim} G>2 \operatorname{dim} X+1$. Then there exists an embedding $X \rightarrow G$.

Remark (about the optimality)

For every $d \geq 1$ there is a smooth affine variety X_{d} with $\operatorname{dim}\left(X_{d}\right)=$ d such that X_{d} admits no embedding into an algebraic group G with $d \geq \frac{\operatorname{dim} G}{2}$.

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with $\operatorname{dim} G>2 \operatorname{dim} X+1$. Then there exists an embedding $X \rightarrow G$.

Remark (about the optimality)

For every $d \geq 1$ there is a smooth affine variety X_{d} with $\operatorname{dim}\left(X_{d}\right)=$ d such that X_{d} admits no embedding into an algebraic group G with $d \geq \frac{\operatorname{dim} G}{2}$. Hence, if $\operatorname{dim} G$ is even, the result is optimal.

Thank you for your attention!

