

Immanuel van Santen

21 September 2023

1 Terms from affine algebraic geometry

- 1 Terms from affine algebraic geometry
- 2 Classical embedding theorems

- 1 Terms from affine algebraic geometry
- 2 Classical embedding theorems
- 3 Algebraic groups

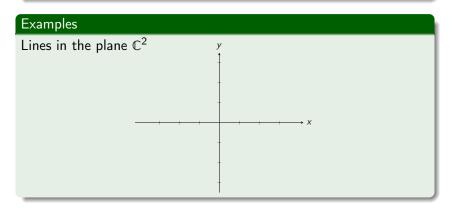
- 1 Terms from affine algebraic geometry
- 2 Classical embedding theorems
- 3 Algebraic groups
- 4 Embeddings into algebraic groups

Terms from affine algebraic geometry

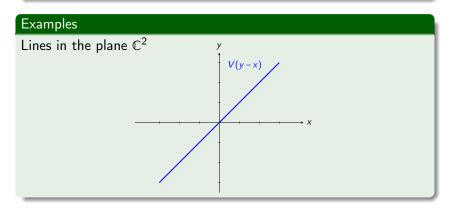
Affine varieties - the geometric objects

Definition

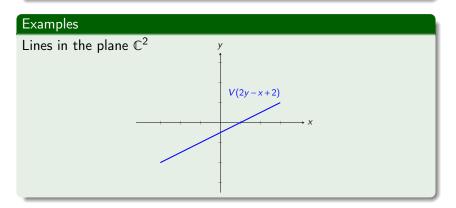
Definition



Definition



Definition

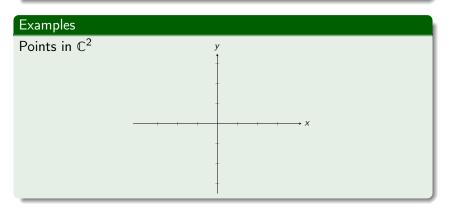


Definition

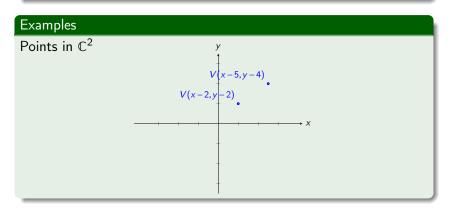
The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

Examples Lines in the plane \mathbb{C}^2 $V(y-x) \cup V(2y-x+2)$ = V((y-x)(2y-x+2))

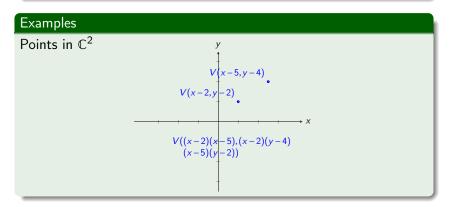
Definition



Definition

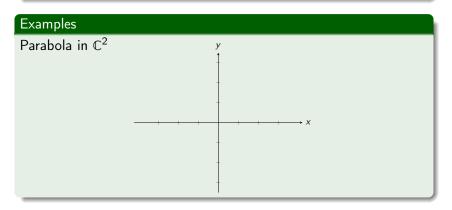


Definition



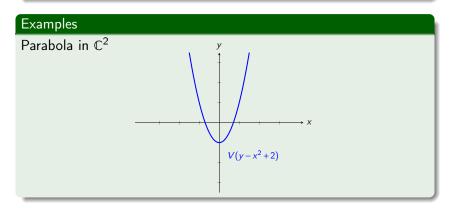
Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

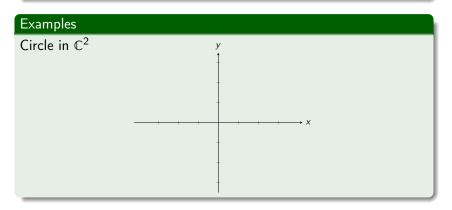


Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry

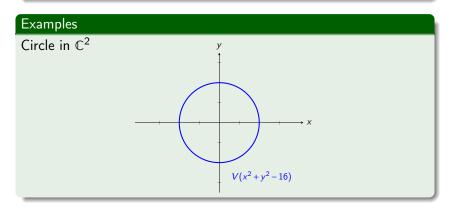
Definition



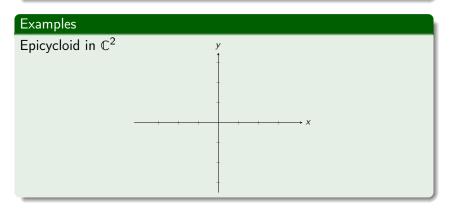
Definition



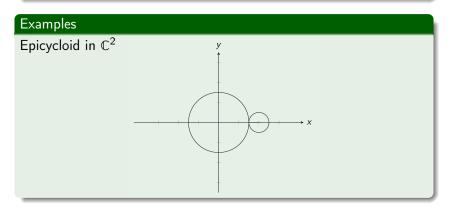
Definition



Definition



Definition



Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

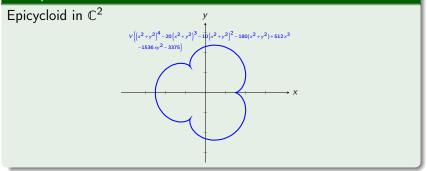
Examples

Epicycloid in \mathbb{C}^2

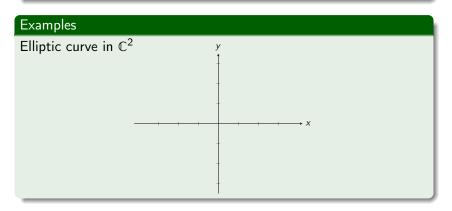
Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

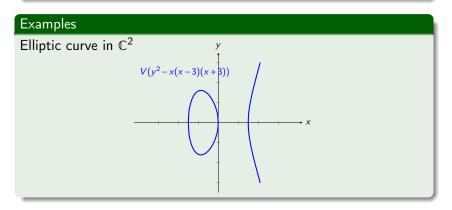
Examples



Definition



Definition



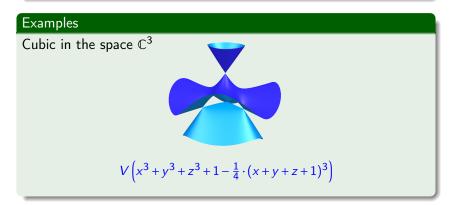
Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

Examples

Cubic in the space \mathbb{C}^3

Definition



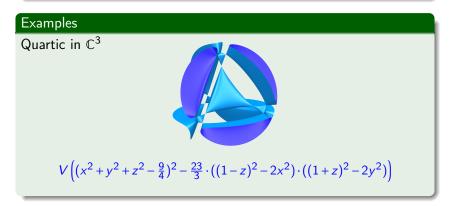
Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called affine varieties.

Examples

Quartic in \mathbb{C}^3

Definition



Definition

Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called **affine varieties**.

Intersections and unions of affine varieties are again affine varieties:

Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called **affine varieties**.

Intersections and unions of affine varieties are again affine varieties:

 $V(p_1,...,p_n) \cap V(q_1,...,q_m) = V(p_1,...,p_n,q_1,...,q_m)$

Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called **affine varieties**.

Intersections and unions of affine varieties are again affine varieties:

$$V(p_1,...,p_n) \cap V(q_1,...,q_m) = V(p_1,...,p_n,q_1,...,q_m)$$

$$V(p_1,...,p_n) \cup V(q_1,...,q_m) = V(p_1q_1,p_1q_2,...,p_1q_m,...,p_nq_1,...,p_nq_m).$$

Definition

The geometric objects we consider here are sets of zeros $V(p_1,...,p_r)$ in \mathbb{C}^n of some complex polynomials $p_1,...,p_r$. These objects are called **affine varieties**.

Intersections and unions of affine varieties are again affine varieties:

$$V(p_1,...,p_n) \cap V(q_1,...,q_m) = V(p_1,...,p_n,q_1,...,q_m)$$

$$V(p_1,...,p_n) \cup V(q_1,...,q_m) = V(p_1q_1,p_1q_2,...,p_1q_m,...,p_nq_1,...,p_nq_m).$$

Definition

The affine varieties in \mathbb{C}^n form the closed subsets of a topology in \mathbb{C}^n , called Zariski topology. All affine varieties are endowed with the topology induced by the Zariski topology on \mathbb{C}^n .

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^n and Y be an affine variety in \mathbb{C}^m .

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^n and Y be an affine variety in \mathbb{C}^m .

1 A morphism is a map $f: X \to Y$ of the form

$$f(x_1,...,x_n) = (p_1(x_1,...,x_n),...,p_m(x_1,...,x_n))$$

where p_1, \ldots, p_m are polynomials.

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in \mathbb{C}^n and Y be an affine variety in \mathbb{C}^m .

1 A morphism is a map $f: X \to Y$ of the form

$$f(x_1,...,x_n) = (p_1(x_1,...,x_n),...,p_m(x_1,...,x_n))$$

where p_1, \ldots, p_m are polynomials.

Output An isomorphism is a bijection φ: X → Y such that φ and its inverse φ⁻¹ are both morphisms.

Definition

Let X be an affine variety in \mathbb{C}^n and Y be an affine variety in \mathbb{C}^m .

1 A morphism is a map $f: X \to Y$ of the form

$$f(x_1,...,x_n) = (p_1(x_1,...,x_n),...,p_m(x_1,...,x_n))$$

where p_1, \ldots, p_m are polynomials.

An isomorphism is a bijection φ: X → Y such that φ and its inverse φ⁻¹ are both morphisms. If in addition X is equal to Y, then φ is called an automorphism of X.

Definition

Let X be an affine variety in \mathbb{C}^n and Y be an affine variety in \mathbb{C}^m .

1 A morphism is a map $f: X \to Y$ of the form

$$f(x_1,...,x_n) = (p_1(x_1,...,x_n),...,p_m(x_1,...,x_n))$$

where p_1, \ldots, p_m are polynomials.

- An isomorphism is a bijection φ: X → Y such that φ and its inverse φ⁻¹ are both morphisms. If in addition X is equal to Y, then φ is called an automorphism of X.
- On embedding is a map f: X → Y such that the image f(X) is an affine variety in C^m (i.e. it is closed in Y) and the restriction f: X → f(X) is an isomorphism.

Morphisms, isomorphisms, automorphisms and embeddings

Examples

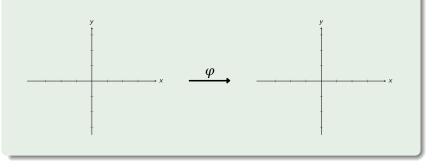
Morphisms, isomorphisms, automorphisms and embeddings

•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$$
 is an automorphism of \mathbb{C}^2

Morphisms, isomorphisms, automorphisms and embeddings

Examples

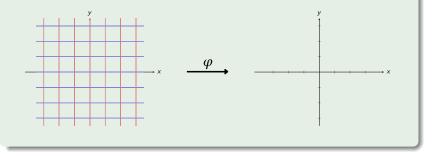
•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$$
 is an automorphism of \mathbb{C}^2



Morphisms, isomorphisms, automorphisms and embeddings

Examples

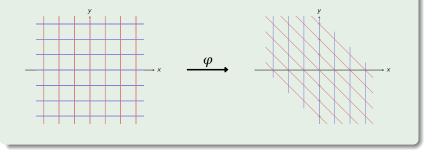
•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$$
 is an automorphism of \mathbb{C}^2



Morphisms, isomorphisms, automorphisms and embeddings

Examples

•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$$
 is an automorphism of \mathbb{C}^2

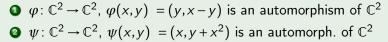


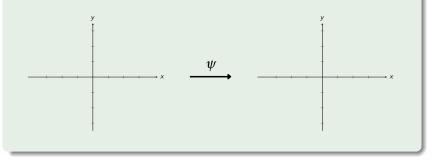
Morphisms, isomorphisms, automorphisms and embeddings

•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2$$
, $\varphi(x, y) = (y, x - y)$ is an automorphism of \mathbb{C}^2
• $\psi : \mathbb{C}^2 \to \mathbb{C}^2$, $\psi(x, y) = (x, y + x^2)$ is an automorph. of \mathbb{C}^2

Morphisms, isomorphisms, automorphisms and embeddings

Examples

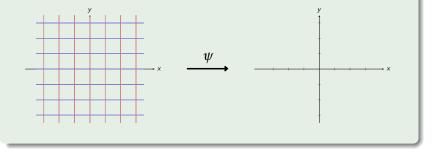




Morphisms, isomorphisms, automorphisms and embeddings

Examples

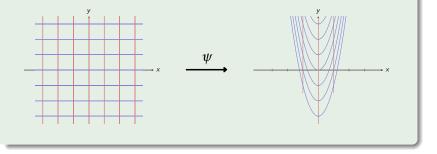
•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$$
 is an automorphism of \mathbb{C}^2
• $\psi : \mathbb{C}^2 \to \mathbb{C}^2, \ \psi(x, y) = (x, y + x^2)$ is an automorph. of \mathbb{C}^2



Morphisms, isomorphisms, automorphisms and embeddings

Examples

•
$$\varphi : \mathbb{C}^2 \to \mathbb{C}^2$$
, $\varphi(x, y) = (y, x - y)$ is an automorphism of \mathbb{C}^2
• $\psi : \mathbb{C}^2 \to \mathbb{C}^2$, $\psi(x, y) = (x, y + x^2)$ is an automorph. of \mathbb{C}^2

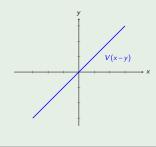


Examples

φ: C² → C², φ(x,y) = (y,x-y) is an automorphism of C²
 ψ: C² → C², ψ(x,y) = (x,y+x²) is an automorph. of C²
 C → C², t ↦ (t,t) is an embedding with image V(x-y)

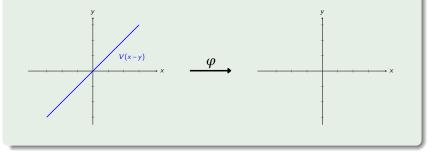
Examples

φ: C² → C², φ(x,y) = (y,x-y) is an automorphism of C²
 ψ: C² → C², ψ(x,y) = (x,y+x²) is an automorph. of C²
 C → C², t ↦ (t,t) is an embedding with image V(x-y)



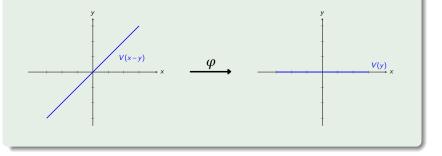
Examples

φ: C² → C², φ(x,y) = (y,x-y) is an automorphism of C²
 ψ: C² → C², ψ(x,y) = (x,y+x²) is an automorph. of C²
 C → C², t ↦ (t,t) is an embedding with image V(x-y)

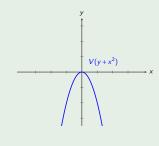


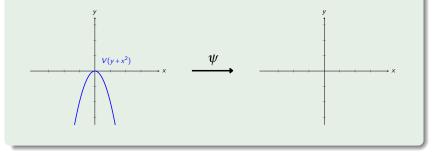
Examples

φ: C² → C², φ(x,y) = (y,x-y) is an automorphism of C²
ψ: C² → C², ψ(x,y) = (x,y+x²) is an automorph. of C²
C → C², t ↦ (t,t) is an embedding with image V(x-y)



0	$\varphi \colon \mathbb{C}^2 \to \mathbb{C}^2, \ \varphi(x, y) = (y, x - y)$ is an automorphism of \mathbb{C}^2
2	$\psi \colon \mathbb{C}^2 \to \mathbb{C}^2, \ \psi(x,y) = (x,y+x^2)$ is an automorph. of \mathbb{C}^2
3	$\mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, t)$ is an embedding with image $V(x-y)$
4	$\mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, -t^2)$ is an embedd. with image $V(y + x^2)$







Equivalent embeddings

Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Example

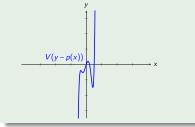
For any univariate polynomial p the map $f : \mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, p(t))$ is an embedding.

Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, p(t))$ is an embedding.

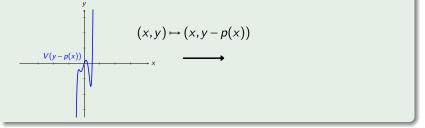


Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, p(t))$ is an embedding.

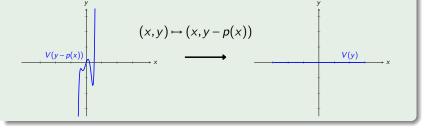


Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

Example

For any univariate polynomial p the map $f: \mathbb{C} \to \mathbb{C}^2$, $t \mapsto (t, p(t))$ is an embedding.



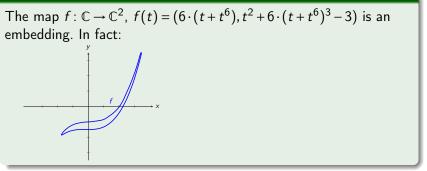
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.

The map
$$f: \mathbb{C} \to \mathbb{C}^2$$
, $f(t) = (6 \cdot (t + t^6), t^2 + 6 \cdot (t + t^6)^3 - 3)$ is an embedding. In fact:

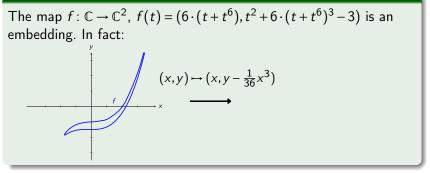
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



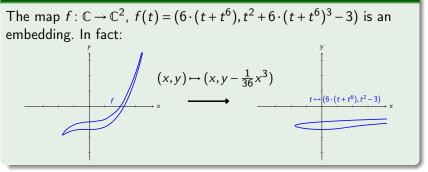
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



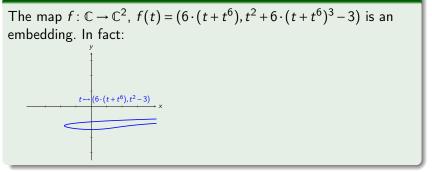
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



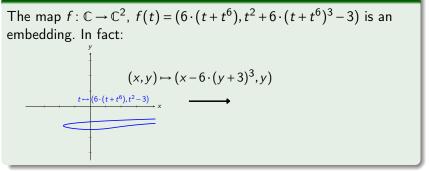
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



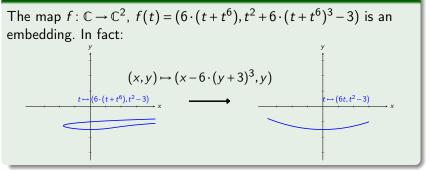
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



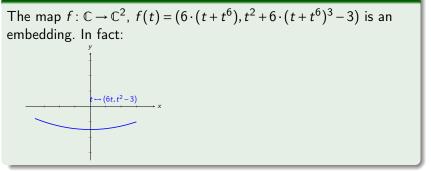
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



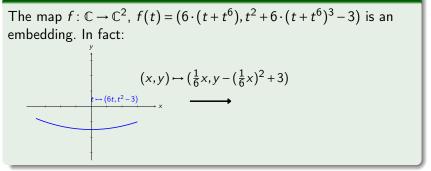
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



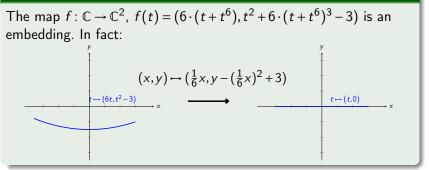
Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



Definition

Two embeddings $f: X \to Y$ and $g: X \to Y$ are called **equivalent**, if there exists an automorphism φ of Y such that $g = \varphi \circ f$.



Two fundamental questions

Let X, Y be affine varieties.

Terms from affine algebraic geometry

Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding $f: X \rightarrow Y$?

Terms from affine algebraic geometry

Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding $f: X \rightarrow Y$?

Question (Uniqueness)

Let $f,g: X \to Y$ be two embeddings. Are f,g equivalent? I.e.

Terms from affine algebraic geometry

Two fundamental questions

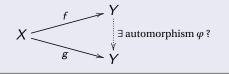
Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding $f: X \rightarrow Y$?

Question (Uniqueness)

Let $f,g: X \to Y$ be two embeddings. Are f,g equivalent? I.e.



Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^n .

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^n .

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^n .

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \ge 0$. Then:

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^n .

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \ge 0$. Then:

• There exists an embedding $M \to \mathbb{R}^{2d+1}$.

H. Whitney

Whitney embedding theorem

Classically these two questions are study in the context of differentiable manifolds where the target Y is equal to \mathbb{R}^n .

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension $d \ge 0$. Then:

- There exists an embedding $M \to \mathbb{R}^{2d+1}$.
- Orrect Two embeddings M → ℝ^{2d+2} are equivalent by a diffeomorphism of ℝ^{2d+2}.

H. Whitney

Embeddings of $\mathbb C$ into $\mathbb C^2$

Embeddings of $\mathbb C$ into $\mathbb C^2$

S.S. Abhyankar

M. Suzuki

T.T. Moh

Embeddings of \mathbb{C} into $\mathbb{C}^{2^{1}}$

Theorem (Abhyankar-Moh, Suzuki, 74,75)

Two embeddings $\mathbb{C} \to \mathbb{C}^2$ are always equivalent.

M. Suzuki

T.T. Moh

Embeddings of ${\mathbb C}$ into ${\mathbb C}^3$

Embeddings of $\mathbb C$ into $\mathbb C^3$

Examples

Embeddings of $\mathbb C$ into $\mathbb C^3$

Examples

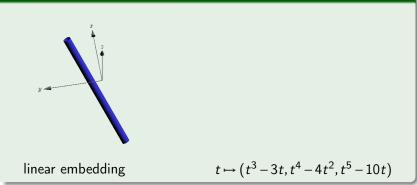
linear embedding

Embeddings of $\mathbb C$ into $\mathbb C^3$

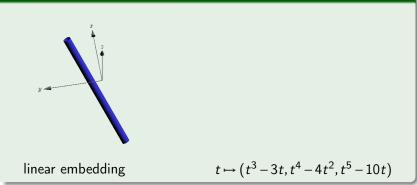
Examples

linear embedding

Embeddings of \mathbb{C} into \mathbb{C}^3

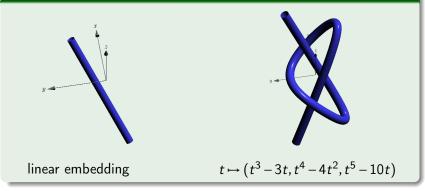


Embeddings of \mathbb{C} into \mathbb{C}^3



Embeddings of \mathbb{C} into \mathbb{C}^{3}

Examples



Open question, Shastri, 92

Are these two embeddings equivalent?

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Proposition

All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Proposition

All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

Sketch of the proof:

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Proposition

All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

Sketch of the proof: Fix an embedding $f : \mathbb{C} \to \mathbb{C}^n$.

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Proposition

All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

Sketch of the proof: Fix an embedding $f : \mathbb{C} \to \mathbb{C}^n$.

The **key statement:** For a generic linear projection $\rho : \mathbb{C}^n \to \mathbb{C}^{n-1}$ the composition $\rho \circ f : \mathbb{C} \to \mathbb{C}^{n-1}$ is an embedding (here we use $n \ge 4$).

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

Proposition

All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

Sketch of the proof: Fix an embedding $f : \mathbb{C} \to \mathbb{C}^n$.

The key statement: For a generic linear projection $\rho : \mathbb{C}^n \to \mathbb{C}^{n-1}$ the composition $\rho \circ f : \mathbb{C} \to \mathbb{C}^{n-1}$ is an embedding (here we use $n \ge 4$).

Hence, after a linear coordinate change of \mathbb{C}^n we may assume that $\pi\circ f\colon\mathbb{C}\to\mathbb{C}^{n-1}$ is an embedding,

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$

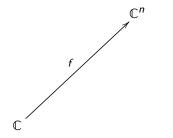
Proposition

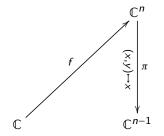
All embeddings $\mathbb{C} \to \mathbb{C}^n$ are equivalent provided that $n \ge 4$.

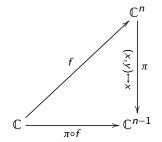
Sketch of the proof: Fix an embedding $f : \mathbb{C} \to \mathbb{C}^n$.

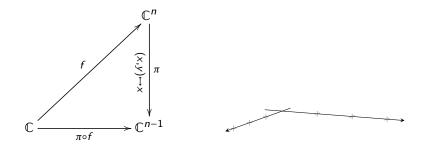
The key statement: For a generic linear projection $\rho : \mathbb{C}^n \to \mathbb{C}^{n-1}$ the composition $\rho \circ f : \mathbb{C} \to \mathbb{C}^{n-1}$ is an embedding (here we use $n \ge 4$).

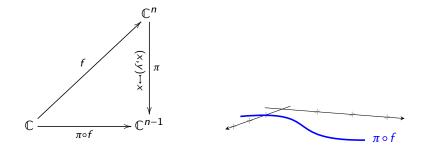
Hence, after a linear coordinate change of \mathbb{C}^n we may assume that $\pi \circ f : \mathbb{C} \to \mathbb{C}^{n-1}$ is an embedding, where $\pi : \mathbb{C}^n \to \mathbb{C}^{n-1}$, $(x, y) \mapsto x$ is the projection to the first n-1 coordinates.

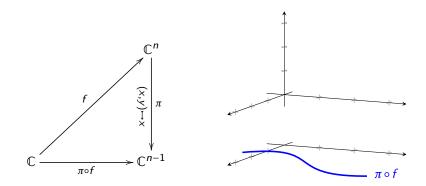


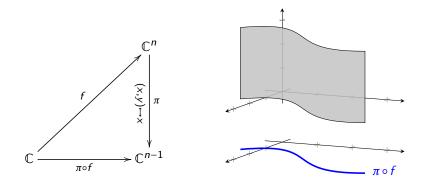


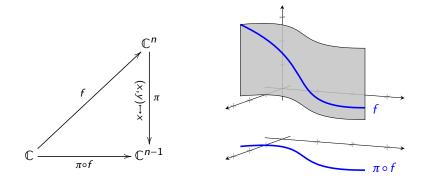


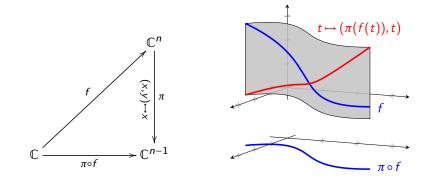


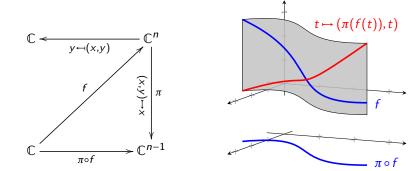




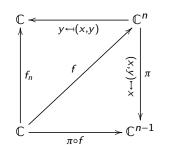


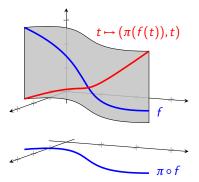




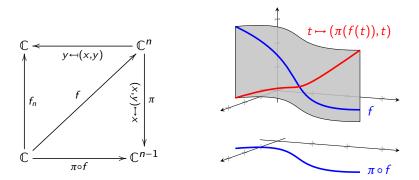


Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$, continued...



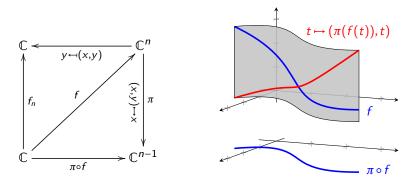


Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$, continued...



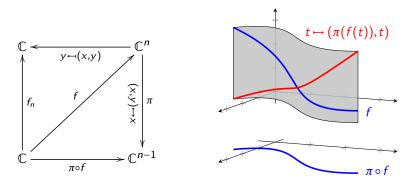
• f and $g: \mathbb{C} \to \mathbb{C}^n$, $t \mapsto (\pi(f(t)), t)$ are equivalent via $(x, y) \mapsto (x, y + h(x))$,

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$, continued...



 f and g: C→Cⁿ, t→ (π(f(t)), t) are equivalent via (x,y) → (x,y+h(x)), where h is a polynomial in n-1 variables such that (h ∘ π ∘ f)(t) = t − f_n(t).

Embeddings of \mathbb{C} into \mathbb{C}^n , $n \ge 4$, continued...



- f and $g: \mathbb{C} \to \mathbb{C}^n$, $t \mapsto (\pi(f(t)), t)$ are equivalent via $(x, y) \mapsto (x, y + h(x))$, where h is a polynomial in n-1 variables such that $(h \circ \pi \circ f)(t) = t f_n(t)$.
- g is equivalent to $t \mapsto (0, t)$ via $(x, y) \mapsto (x \pi(f(y)), y)$.

A general statement, when $Y = \mathbb{C}^n$

A general statement, when $Y = \mathbb{C}^n$

A. Holme S. Kaliman V. Srinivas

A general statement, when $Y = \mathbb{C}^n$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

A. Holme S. Kaliman V. Srinivas

A general statement, when $Y = \mathbb{C}^n$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

• There exists an embedding of X into \mathbb{C}^{2d+1} .

A. Holme S. Kaliman V. Srinivas Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry

A general statement, when $Y = \mathbb{C}^n$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

A. Holme S. Kaliman V. Srinivas

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Strategy of the proof:

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

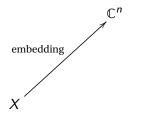
Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

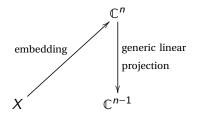
- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.



Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

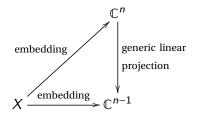
- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.



Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.



Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Strategy of the proof: Q Let $f, g: X \to \mathbb{C}^{2d+2}$ be embeddings.

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Strategy of the proof: 2 Let $f, g: X \to \mathbb{C}^{2d+2}$ be embeddings. After a (generic) linear coordinate change of \mathbb{C}^{2d+2} the morphisms below are embeddings:

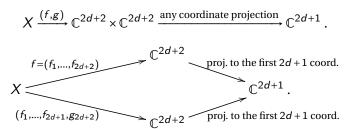
$$X \xrightarrow{(f,g)} \mathbb{C}^{2d+2} \times \mathbb{C}^{2d+2} \xrightarrow{\text{any coordinate projection}} \mathbb{C}^{2d+1}$$

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Strategy of the proof: 2 Let $f, g: X \to \mathbb{C}^{2d+2}$ be embeddings. After a (generic) linear coordinate change of \mathbb{C}^{2d+2} the morphisms below are embeddings:



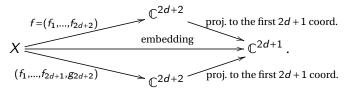
Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Strategy of the proof: 2 Let $f, g: X \to \mathbb{C}^{2d+2}$ be embeddings. After a (generic) linear coordinate change of \mathbb{C}^{2d+2} the morphisms below are embeddings:

$$X \xrightarrow{(f,g)} \mathbb{C}^{2d+2} \times \mathbb{C}^{2d+2} \xrightarrow{\text{any coordinate projection}} \mathbb{C}^{2d+1}$$



Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

- There exists an embedding of X into \mathbb{C}^{2d+1} .
- 2 Two embeddings $X \to \mathbb{C}^{2d+2}$ are equivalent.

Open question

Assume $1 \le d < n \le 2d + 1$ are inetegers such that $(d, n) \ne (1, 2)$. Are two embeddings $\mathbb{C}^d \to \mathbb{C}^n$ always equivalent?

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Examples

① The space \mathbb{C}^n with respect to addition, usually denoted by \mathbb{G}_a^n .

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Examples

- **①** The space \mathbb{C}^n with respect to addition, usually denoted by \mathbb{G}_a^n .
- The special linear group $SL_n(\mathbb{C}) = \{A \mid \det(A) = 1\} \subseteq Mat_{n \times n}(\mathbb{C}) = \mathbb{C}^{n^2}.$

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup;

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is an algebraic group, usually denoted by \mathbb{G}_m .

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is an algebraic group, usually denoted by \mathbb{G}_m . In fact:

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is an algebraic group, usually denoted by \mathbb{G}_m . In fact:

$$\left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in \mathsf{SL}_2(\mathbb{C}) \mid t \in \mathbb{C} \right\} = V(a_{12}, a_{21}, a_{11}a_{22} - 1)$$

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Example

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ is an algebraic group, usually denoted by \mathbb{G}_m . In fact:

$$\begin{cases} \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in SL_2(\mathbb{C}) \mid t \in \mathbb{C} \\ &= V(a_{12}, a_{21}, a_{11}a_{22} - 1) \\ &\subseteq V(a_{11}a_{22} - a_{21}a_{12} - 1) = SL_2(\mathbb{C}) \end{cases}$$

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \rightarrow G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

• $\operatorname{GL}_n(\mathbb{C})$ is an algebraic group, as it can be identified with $\left\{ \left(\begin{array}{c|c} \det(A)^{-1} & \\ \hline & A \end{array} \right) \in \operatorname{SL}_{n+1}(\mathbb{C}) \mid A \in \operatorname{GL}_n(\mathbb{C}) \right\}.$

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Examples

• $\operatorname{GL}_n(\mathbb{C})$ is an algebraic group, as it can be identified with $\left\{ \left(\begin{array}{c|c} \det(A)^{-1} & \\ \hline & A \end{array} \right) \in \operatorname{SL}_{n+1}(\mathbb{C}) \mid A \in \operatorname{GL}_n(\mathbb{C}) \right\}.$

2 $\operatorname{Sp}_{2n}(\mathbb{C})$ and $\operatorname{SO}_n(\mathbb{C})$ are algebraic subgroups of $\operatorname{SL}_n(\mathbb{C})$.

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic,

Definition

An algebraic group is an affine variety G that is also a group and the map $G \times G \to G$, $(g, h) \mapsto gh^{-1}$ is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic, e.g. \mathbb{G}_m^n .

Characterless algebraic groups

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

Characterless algebraic groups

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

<u>∧</u>The exponentional $\mathbb{G}_a \to \mathbb{G}_m$, $t \mapsto e^t$ is not a homomorphism!

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

<u>∧</u>The exponentional $\mathbb{G}_a \to \mathbb{G}_m$, $t \mapsto e^t$ is not a homomorphism!

Example

 \mathbb{G}_a is characterless.

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

 $\underline{\wedge}$ The exponentional $\mathbb{G}_a \to \mathbb{G}_m$, $t \mapsto e^t$ is not a homomorphism!

Example

 \mathbb{G}_a is characterless.

As a consequence we get:

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

 $\underline{\wedge}$ The exponentional $\mathbb{G}_a \to \mathbb{G}_m$, $t \mapsto e^t$ is not a homomorphism!

Example

 \mathbb{G}_a is characterless.

As a consequence we get:

Remark

Every algebraic group that is generated by subgroups isomorphic to \mathbb{G}_a is characterless.

Definition

An algebraic group G is called **characterless** if every homomorphism (i.e. morphism that is a group homo.) $G \to \mathbb{G}_m$ is constant.

 $\underline{\wedge}$ The exponentional $\mathbb{G}_a \to \mathbb{G}_m$, $t \mapsto e^t$ is not a homomorphism!

Example

 \mathbb{G}_a is characterless.

As a consequence we get:

Remark

Every algebraic group that is generated by subgroups isomorphic to \mathbb{G}_a is characterless. E.g. \mathbb{G}_a^n and $SL_n(\mathbb{C})$ are characterless.

Algebraic groups

Motivation for characterless algebraic groups

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^u \rtimes \mathbb{G}_m^r$, where G^u is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_a (and thus G^u is characterless) and $r \ge 0$.

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^u \rtimes \mathbb{G}_m^r$, where G^u is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_a (and thus G^u is characterless) and $r \ge 0$.

Let X be any affine variety such that every morphism $X \to \mathbb{C}^*$ is constant (e.g. \mathbb{C}^n satisfies this) and let G be an algebraic group.

Motivation for characterless algebraic groups

Fact

Every connected algebraic group G can be written as a semi-direct product $G^u \rtimes \mathbb{G}_m^r$, where G^u is the subgroup of G generated by subgroups isomorphic to \mathbb{G}_a (and thus G^u is characterless) and $r \ge 0$.

Let X be any affine variety such that every morphism $X \to \mathbb{C}^*$ is constant (e.g. \mathbb{C}^n satisfies this) and let G be an algebraic group.

A bijective correspondence

 $\left\{ \text{embeddings } X \to G \right\} / \sim \quad \stackrel{1:1}{\longleftrightarrow} \quad \left\{ \text{embeddings } X \to G^u \right\} / \sim$

Embedding \mathbb{C} into characterless algebraic groups

Embedding $\mathbb C$ into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 .

Embedding $\mathbb C$ into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Remark

$$Im(G) = 1: G = \mathbb{G}_a$$

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Remark

$$I im(G) = 1: G = \mathbb{G}_{a}$$

2 dim(G) = 2:
$$G = \mathbb{G}_a^2$$

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Remark

 $Im(G) = 1: G = \mathbb{G}_a$

$$im(G) = 2: G = \mathbb{G}_a^2$$

3 dim
$$(G)$$
 = 3: $G = \mathbb{G}_a^3$, $G = SL_2(\mathbb{C})$ or $G = PSL_2(\mathbb{C})$

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Remark

 $Im(G) = 1: G = \mathbb{G}_a$

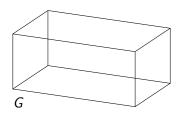
$$im(G) = 2: G = \mathbb{G}_a^2$$

dim(G) = 3: G = G_a³, G = SL₂(C) or G = PSL₂(C)
 It is not known whether all embeddings C → G are equivalent.

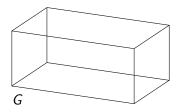
Tool I: Moving embeddings

Tool I: Moving embeddings

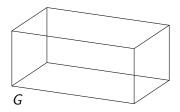
Tool I: Moving embeddings



- H is a characterless algebraic subgroup of G.

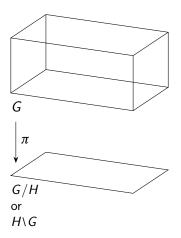


- G is an algebraic group
- H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H:



- G is an algebraic group
- H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H:

$$G \to G/H$$
 or $G \to H \backslash G$

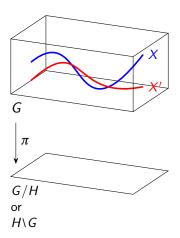


Assume:

- G is an algebraic group
- H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H:

 $G \to G/H$ or $G \to H \backslash G$

3 X, X' ⊆ G are closed and isomorphic to C such that



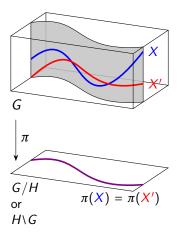
Assume:

- G is an algebraic group
- H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H:

 $G \to G/H \quad \text{or} \quad G \to H \backslash G$

Some state is a state of the state of th

$$X \xrightarrow[\pi]{\times} \pi(X) = \pi(X') \xleftarrow[\pi]{\times} X'$$



Assume:

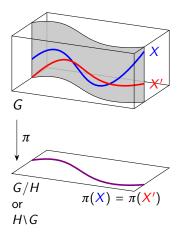
- G is an algebraic group
- H is a characterless algebraic subgroup of G. Let π be the quotient by left or right multiplication by H:

 $G \to G/H$ or $G \to H \backslash G$

3 X, X' ⊆ G are closed and isomorphic to C such that

$$X \xrightarrow[\pi]_{X} \pi(X) = \pi(X') \xrightarrow[\pi]_{X'} X'$$

Then there exists an automorphism φ of G with $\varphi(X) = X'$.



Tool II: Generically projecting embeddings

Tool II: Generically projecting embeddings

Assume:

 G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).

Tool II: Generically projecting embeddings

Assume:

 G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).

Tool II: Generically projecting embeddings

- G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).
- *H* is an algebraic subgroup of *G*, isomorphic to \mathbb{C}^k for some *k*.

Tool II: Generically projecting embeddings

- G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).
- *H* is an algebraic subgroup of *G*, isomorphic to \mathbb{C}^k for some *k*.
- X is closed in G and isomorphic to \mathbb{C} .

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).
- *H* is an algebraic subgroup of *G*, isomorphic to \mathbb{C}^k for some *k*.
- X is closed in G and isomorphic to \mathbb{C} .

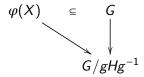
Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:

Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).
- *H* is an algebraic subgroup of *G*, isomorphic to \mathbb{C}^k for some *k*.
- X is closed in G and isomorphic to \mathbb{C} .

Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:

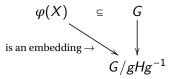


Tool II: Generically projecting embeddings

Assume:

- G is an almost simple algebraic group of dimension ≥ 4 (almost simple = every proper normal subgroup of G is finite).
 E.g. G = SL_n(ℂ), SO_n(ℂ), Sp_{2n}(ℂ).
- *H* is an algebraic subgroup of *G*, isomorphic to \mathbb{C}^k for some *k*.
- X is closed in G and isomorphic to \mathbb{C} .

Then: There exists an automorphism φ of G such that for generic $g \in G$ holds:



Embedding \mathbb{C} into characterless algebraic groups

Embedding $\mathbb C$ into characterless algebraic groups

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when G is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

$$\begin{array}{c|c} \mathcal{Y}_1 \cdot \mathcal{U}_2 \end{array} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

$$\begin{array}{c|c} U_1 & & U_1 \\ & & U_2 & & U_1 \\ & & & & & U_1 \\ & & & & & & & U_1 \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$$

Theorem (Feller, v.S., 16)

Let G be a characterless algebraic group of dimension ≥ 4 . Then all embeddings $\mathbb{C} \to G$ are equivalent.

Sketch, when *G* is almost simple: Let $\mathbb{C} \simeq X \subseteq G$ be closed.

Step 0: It is enough to show that X is an algebraic subgroup of G up to an automorphism.

Embedding \mathbb{C} into characterless algebraic groups

Embedding C into characterless algebraic groups

Step @: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Embedding C into characterless algebraic groups

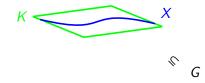
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$.

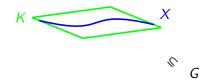
Embedding C into characterless algebraic groups

Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.

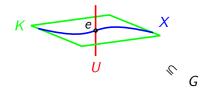
Indeed: Let $K \subseteq G$ be a proper characterless algebraic subgroup such that $X \subseteq K$.



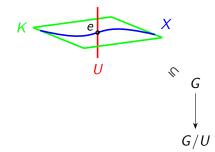
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



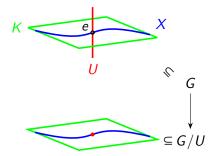
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



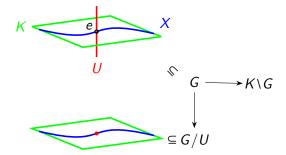
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



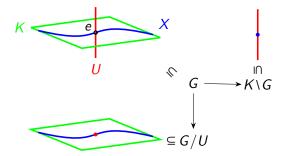
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



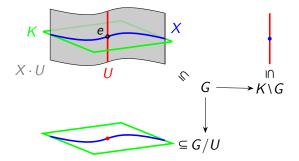
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



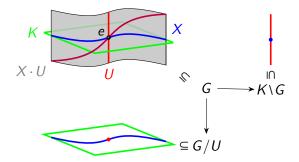
Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



Step 2: It is enough to show that X is contained in a proper characterless algebraic subgroup of G up to an automorphism.



Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Embedding \mathbb{C} into characterless algebraic groups

Step \textcircled{G}: Move X into a special closed subset E of G.

Example

Let $G = SL_3(\mathbb{C})$

Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

Let $G = SL_3(\mathbb{C})$ and let $B := \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq P := \left\{ \begin{pmatrix} \frac{*}{2} & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\}, R_u(P^-) := \left\{ \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & * & 1 & 0 \\ 0 & * & 0 & 1 \end{pmatrix} \right\}.$

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

Let $G = SL_3(\mathbb{C})$ and let

$$B := \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq P := \left\{ \begin{pmatrix} \frac{*}{0} & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\}, R_u(P^-) := \left\{ \begin{pmatrix} \frac{1}{0} & 0 \\ \frac{*}{1} & 0 \\ \frac{*}{0} & 1 \end{pmatrix} \right\}.$$

Then

$$\rho: \operatorname{SL}_3(\mathbb{C}) \to \mathbb{P}^2, \quad (v_1|v_2|v_3) \mapsto [v_1]$$

is the quotient of left P-cosets

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

Let $G = SL_3(\mathbb{C})$ and let

$$B := \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq P := \left\{ \begin{pmatrix} \frac{*}{0} & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\}, R_u(P^-) := \left\{ \begin{pmatrix} \frac{1}{0} & 0 \\ \frac{*}{1} & 0 \\ \frac{*}{0} & 1 \end{pmatrix} \right\}.$$

Then

$$\rho: \operatorname{SL}_3(\mathbb{C}) \to \mathbb{P}^2, \quad (v_1|v_2|v_3) \mapsto [v_1]$$

is the quotient of left P-cosets and

 $\pi\colon \mathsf{SL}_3(\mathbb{C})\to\mathsf{Mat}_{3\times 2}(\mathbb{C})\setminus W, \quad \big(v_1|v_2|v_3\big)\mapsto \big(v_2|v_3\big)$

is the quotient of left $R_u(P^-)$ -cosets,

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

Let $G = SL_3(\mathbb{C})$ and let

$$B := \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \right\} \subseteq P := \left\{ \begin{pmatrix} \frac{*}{0} & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\}, R_u(P^-) := \left\{ \begin{pmatrix} \frac{1}{0} & 0 \\ \frac{*}{1} & 0 \\ \frac{*}{0} & 1 \end{pmatrix} \right\}.$$

Then

$$\rho: \operatorname{SL}_3(\mathbb{C}) \to \mathbb{P}^2, \quad (v_1|v_2|v_3) \mapsto [v_1]$$

is the quotient of left P-cosets and

$$\pi\colon \mathsf{SL}_3(\mathbb{C})\to\mathsf{Mat}_{3\times 2}(\mathbb{C})\setminus W, \quad \big(v_1|v_2|v_3\big)\mapsto \big(v_2|v_3\big)$$

is the quotient of left $R_u(P^-)$ -cosets, where W is the affine variety given by the cross-product of both columns.

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1.

Embedding $\mathbb C$ into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry.

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$\rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq \operatorname{SL}_3(\mathbb{C}).$$

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$E := \rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq SL_3(\mathbb{C}).$$

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$E := \rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq \operatorname{SL}_3(\mathbb{C}).$$

Upshot:

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$E := \rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq \operatorname{SL}_3(\mathbb{C}).$$

Upshot:

 $\pi|_E \colon E \to \mathsf{Mat}_{3\times 2}(\mathbb{C}) \setminus W = \mathsf{SL}_3(\mathbb{C})/R_u(P^-), \ (v_1|v_2|v_3) \mapsto (v_2|v_3)$

is a locally trivial \mathbb{C} -bundle.

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$E := \rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq SL_3(\mathbb{C}).$$

Upshot:

$$\pi|_E \colon E \to \mathsf{Mat}_{3\times 2}(\mathbb{C}) \setminus W = \mathsf{SL}_3(\mathbb{C})/R_u(P^-), \ (v_1|v_2|v_3) \mapsto (v_2|v_3)$$

is a locally trivial \mathbb{C} -bundle. Indeed: For $(v_2, v_3) \in Mat_{3 \times 2}(\mathbb{C}) \setminus W$:

$$(\pi|_E)^{-1}(v_2|v_3) = \{(v_1|v_2|v_3) \mid a_1v_{11} - a_2v_{12} = 1, v_{13} = 0\} \simeq \mathbb{C},$$

Step O: Move X into a special closed subset E of G.

Example

The natural *B*-action on $\mathbb{P}^2 = SL_3(\mathbb{C})/P$ has a unique orbit of dimension 1. Its closure *C* are the elements with vanishing last entry. Hence,

$$E := \rho^{-1}(C) = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq SL_3(\mathbb{C}).$$

Upshot:

$$\pi|_E \colon E \to \mathsf{Mat}_{3\times 2}(\mathbb{C}) \setminus W = \mathsf{SL}_3(\mathbb{C})/R_u(P^-), \ (v_1|v_2|v_3) \mapsto (v_2|v_3)$$

is a locally trivial \mathbb{C} -bundle. Indeed: For $(v_2, v_3) \in Mat_{3 \times 2}(\mathbb{C}) \setminus W$:

$$(\pi|_E)^{-1}(v_2|v_3) = \{(v_1|v_2|v_3) \mid a_1v_{11} - a_2v_{12} = 1, v_{13} = 0\} \simeq \mathbb{C},$$

where a_1, a_2, a_3 are the 2 × 2-minors of $(v_2|v_3)$.

Embedding C into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

Step \textcircled{G}: Move X into a special closed subset E of G.

General case:

Step 6: Move X into a special closed subset E of G.

General case: By Tool II, we may assume that there exists a $g \in G$ such that $G \to G/gR_u(P^-)g^{-1}$ restricts to an embedding $X \to G/gR_u(P^-)g^{-1}$.

Step 6: Move X into a special closed subset E of G.

General case: By Tool II, we may assume that there exists a $g \in G$ such that $G \to G/gR_u(P^-)g^{-1}$ restricts to an embedding $X \to G/gR_u(P^-)g^{-1}$. After replacing X by Xg, we may assume that $\pi: G \to G/R_u(P^-)$ restricts to an embedding $\pi|_X: X \to G/R_u(P^-)$.

Step 6: Move X into a special closed subset E of G.

General case: By Tool II, we may assume that there exists a $g \in G$ such that $G \to G/gR_u(P^-)g^{-1}$ restricts to an embedding $X \to G/gR_u(P^-)g^{-1}$. After replacing X by Xg, we may assume that $\pi: G \to G/R_u(P^-)$ restricts to an embedding $\pi|_X: X \to G/R_u(P^-)$.

Moreover, one can show that $\pi(E)$ is a **big open** subset of $G/R_u(P^-)$ (i.e. the complement has codimension ≥ 2) and that

$$\pi|_E \colon E \to \pi(E)$$

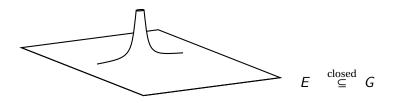
is a locally trivial \mathbb{C} -bundle.

Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.

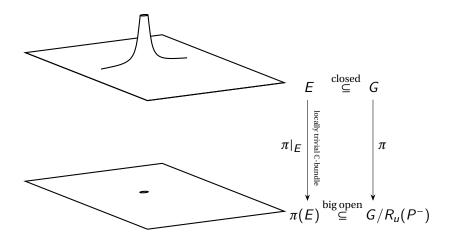
Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.



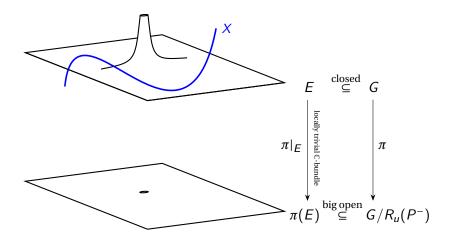
Embedding \mathbb{C} into characterless algebraic groups

Step \textcircled{G}: Move X into a special closed subset E of G.



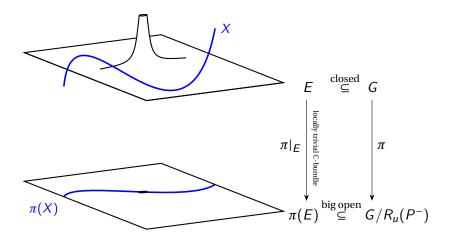
Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.



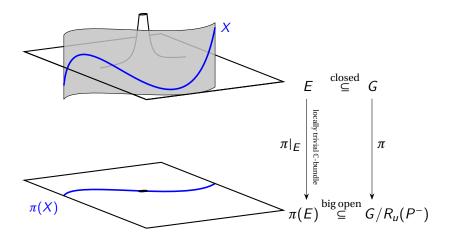
Embedding \mathbb{C} into characterless algebraic groups

Step \textcircled{G}: Move X into a special closed subset E of G.



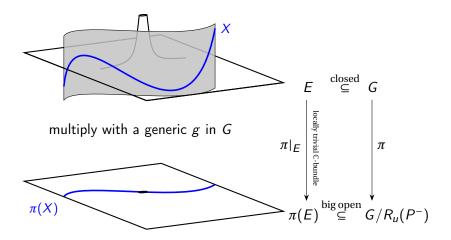
Embedding \mathbb{C} into characterless algebraic groups

Step \textcircled{G}: Move X into a special closed subset E of G.



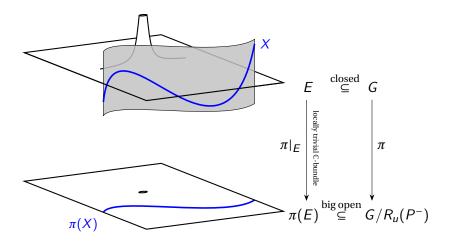
Embedding \mathbb{C} into characterless algebraic groups

Step \Theta: Move X into a special closed subset E of G.



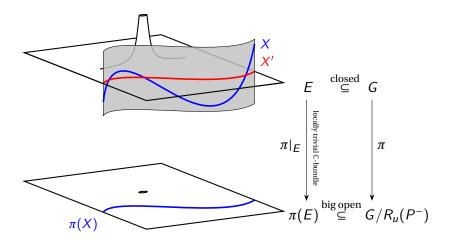
Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.



Embedding \mathbb{C} into characterless algebraic groups

Step O: Move X into a special closed subset E of G.



Embedding \mathbb{C} into characterless algebraic groups

Embedding \mathbb{C} into characterless algebraic groups

Step 4: Move X into a proper characterless algebraic subgroup.

Step @: Move X into a proper characterless algebraic subgroup.

Step @: Move X into a proper characterless algebraic subgroup.

• There exists an algebraic subgroup H in G such that $E = H \cdot P$.

For $G = SL_3(\mathbb{C})$:

Step 4: Move X into a proper characterless algebraic subgroup.

For
$$G = SL_3(\mathbb{C})$$
:
$$\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$$

Step 4: Move X into a proper characterless algebraic subgroup.

• There exists an algebraic subgroup H in G such that $E = H \cdot P$.

For
$$G = SL_3(\mathbb{C})$$
: $\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$

2 Technically hardest step: On can move X into P.

Step 4: Move X into a proper characterless algebraic subgroup.

For
$$G = SL_3(\mathbb{C})$$
: $\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$

- **2** Technically hardest step: On can move X into P.
- **③** Write $P = P^u \rtimes \mathbb{G}_m^r$ for some $r \ge 0$.

Step 4: Move X into a proper characterless algebraic subgroup.

For
$$G = SL_3(\mathbb{C})$$
: $\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$

- **2** Technically hardest step: On can move X into P.
- **()** Write $P = P^u \rtimes \mathbb{G}_m^r$ for some $r \ge 0$.
- **(3)** The projection $P \to \mathbb{G}_m^r$ maps $X \simeq \mathbb{C}$ onto a point.

Step 4: Move X into a proper characterless algebraic subgroup.

For
$$G = SL_3(\mathbb{C})$$
: $\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$

- **2** Technically hardest step: On can move X into P.
- **③** Write $P = P^u \rtimes \mathbb{G}_m^r$ for some $r \ge 0$.
- The projection P→G^r_m maps X ≃ C onto a point. After multiplying X with an element of P, we may assume that this point is 1 ∈ G^r_m,

Step 4: Move X into a proper characterless algebraic subgroup.

For
$$G = SL_3(\mathbb{C})$$
: $\underbrace{\left\{\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{E} = \underbrace{\left\{\begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & * \end{pmatrix}\right\}}_{H} \cdot \underbrace{\left\{\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}\right\}}_{P}$

- **2** Technically hardest step: On can move X into P.
- **③** Write $P = P^u \rtimes \mathbb{G}_m^r$ for some $r \ge 0$.
- The projection P→G^r_m maps X ≃ C onto a point. After multiplying X with an element of P, we may assume that this point is 1 ∈ G^r_m, i.e. X ⊆ P^u.

Existence of embeddings into algebraic groups

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with dim G > 2 dim X + 1. Then there exists an embedding $X \rightarrow G$.

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with dim G > 2 dim X + 1. Then there exists an embedding $X \rightarrow G$.

Remark (about the optimality)

For every $d \ge 1$ there is a smooth affine variety X_d with $\dim(X_d) = d$ such that X_d admits no embedding into an algebraic group G with $d \ge \frac{\dim G}{2}$.

Existence of embeddings into algebraic groups

Theorem (Feller, v.S., 20)

Let G be an almost simple algebraic group and let X be a smooth affine variety with dim G > 2 dim X + 1. Then there exists an embedding $X \rightarrow G$.

Remark (about the optimality)

For every $d \ge 1$ there is a smooth affine variety X_d with dim $(X_d) = d$ such that X_d admits no embedding into an algebraic group G with $d \ge \frac{\dim G}{2}$. Hence, if dim G is even, the result is optimal.

Thank you for your attention!

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry