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Terms from affine algebraic geometry

Affine varieties - the geometric objects
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Lines in the plane €2 y

V(2y—-x+2)

-
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Lines in the plane €2 y

V(y-x)uV(2y—x+2)
=V((y-x)(2y-x+2))
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Points in C2 y

V(x-2,y]-2)
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Parabola in C? y

V(y-x2+2)
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Circle in C? y

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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V(x?+y?%-16)
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Epicycloid in C? y
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Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Epicycloid in C? y

(1N
NI

v

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Epicycloid in C? y

(1N
NI

v

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Epicycloid in C? y

\/([x2 +y2)4—2o(x2+y2]3 —1f (x2+y2)2—1eo(x2 +y2)+512x3

15362 - 3375
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Elliptic curve in C? y
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Elliptic curve in C? y

V(y?—x(x-3)(x+B))

() X
v
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Cubic in the space C3
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

\,

Cubic in the space C3 v

V(X3+y3+z3+1—%-(x+y+z+1)3)
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Quartic in C3
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

J

V((:+y2+22-§2 - -(1-2)2-2x2) - (1+2)2-2y?))

\,

Quartic in C3

V
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition
The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:
V(Pl;-'-,Pn)ﬁV(CIL«-«me) = V(plw-wpn»ql’-n»qm)
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros

V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:
V(p1,--ospn) N V(q1,...,qGm) V(P s Prr Qs Gm)
V(p1,....pn) U V(qL,...,Gm) V(p1q1,P192,--, P1qm) - -+

Pnqt--- Pndm)-
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Terms from affine algebraic geometry

Affine varieties - the geometric objects

Definition

The geometric objects we consider here are sets of zeros
V(p1,...,pr) in C" of some complex polynomials pj,...,p,. These
objects are called affine varieties.

Intersections and unions of affine varieties are again affine varieties:
V(p1,--ospn) N V(q1,...,qGm) V(P s Prr Qs Gm)
V(p1,....pn) U V(qL,...,Gm) V(p1q1,P192,--, P1qm) - -+

Pnqt--- Pndm)-

Definition

The affine varieties in C” form the closed subsets of a topology in
C", called Zariski topology. All affine varieties are endowed with
the topology induced by the Zariski topology on C".
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition

Let X be an affine variety in C" and Y be an affine variety in C".
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition
Let X be an affine variety in C" and Y be an affine variety in C".

@ A morphism is a map f: X — Y of the form

f(x1,.-exn) =(P1(X1,-sXn)s oy Pm(X1, -+, Xn))

where p1,..., pm are polynomials.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition
Let X be an affine variety in C" and Y be an affine variety in C".

@ A morphism is a map f: X — Y of the form

f(x1,.-exn) =(P1(X1,-sXn)s oy Pm(X1, -+, Xn))

where p1,..., pm are polynomials.

@ An isomorphism is a bijection ¢: X — Y such that ¢ and its
inverse ¢~ are both morphisms.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition
Let X be an affine variety in C" and Y be an affine variety in C".

@ A morphism is a map f: X — Y of the form

f(x1,.-exn) =(P1(X1,-sXn)s oy Pm(X1, -+, Xn))

where p1,...,pm are polynomials.

@ An isomorphism is a bijection ¢: X — Y such that ¢ and its
inverse @1 are both morphisms. If in addition X is equal to
Y, then ¢ is called an automorphism of X.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Definition
Let X be an affine variety in C" and Y be an affine variety in C".

@ A morphism is a map f: X — Y of the form

f(x1,.-exn) =(P1(X1,-sXn)s oy Pm(X1, -+, Xn))

where p1,..., pm are polynomials.

@ An isomorphism is a bijection ¢: X — Y such that ¢ and its
inverse @1 are both morphisms. If in addition X is equal to
Y, then ¢ is called an automorphism of X.

© An embedding is a map f: X — Y such that the image f(X)

is an affine variety in C™ (i.e. it is closed in Y') and the
restriction f: X — f(X) is an isomorphism.
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?

¢ .
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
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Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)

Vix-y) @
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C?>—C? ¢(x,y) =(y,x—y) is an automorphism of C?
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)

V(x-y)
P Viy)
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C2—C? ¢(x,y) =(y,x—y) is an automorphism of C2
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
Q@ C—C? t —(t,—t?) is an embedd. with image V/(y +x?)
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C2—C? ¢(x,y) =(y,x—y) is an automorphism of C2
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
Q@ C—C? t —(t,—t?) is an embedd. with image V/(y +x?)

y

V(y+x?)
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C2—C? ¢(x,y) =(y,x—y) is an automorphism of C2
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
Q@ C—C? t —(t,—t?) is an embedd. with image V/(y +x?)

y y

V(y+x%) v
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Terms from affine algebraic geometry

Morphisms, isomorphisms, automorphisms and embeddings

Q@ ¢:C2—C? ¢(x,y) =(y,x—y) is an automorphism of C2
Q@ v:C>—C? yw(x,y) =(x,y+x?) is an automorph. of C?
© C—C? t —(t,t) is an embedding with image V(x—y)
Q@ C—C? t —(t,—t?) is an embedd. with image V/(y +x?)

y y

V(y+x%) v V(y)
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Terms from affine algebraic geometry

Equivalent embedding
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

For any univariate polynomial p the map f: C — C?, t— (t,p(t)) is
an embedding.
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

For any univariate polynomial p the map f: C — C?, t— (t,p(t)) is
an embedding.
y

V(y-p(x)
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

For any univariate polynomial p the map f: C — C?, t— (t,p(t)) is
an embedding.
y

(xy) = (xy=p(x))

V(y-p(x)) _

! :
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

For any univariate polynomial p the map f: C — C?, t— (t,p(t)) is
an embedding.
y

y

(xy) = (xy=p(x))

V(y-p(x) D —— V(y)

! : :
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

f

~
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

~
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

y

f —_— t—|(6-(t+1t°),t2-3)
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

t—|(6-(t+1°),t2-3)

X

I

-  —
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

(xy) = (x=6-(y+3)3y)

t—|(6-(t+1°),t2-3) —_—

I

-  —
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

y

(xy)— (x=6-(y+3)3y)

t—|(6-(t+1°),t2-3) —_— t— (6t,t>-3)
X X

S ——— T~ —
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

t— (6t,t2-3)

\—/
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

(xy) = (gxy = (§x)°+3)

t— (6t,t2-3) —_—

\—/
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Terms from affine algebraic geometry
Equivalent embeddings

Definition

Two embeddings f: X — Y and g: X — Y are called equivalent, if
there exists an automorphism ¢ of Y such that g=¢of.

The map f: C—C?, f(t)=(6-(t+1t°),t2+6-(t+t°)3-3) is an
embedding. In fact:

y

(xy) = (gxy = (§x)°+3)

t— (6t,t>-3) —_— t— (t,0)

\_/
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Terms from affine algebraic geometry

Two fundamental questions

Let X, Y be affine varieties.

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Terms from affine algebraic geometry
Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding f: X — Y?
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Terms from affine algebraic geometry
Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding f: X — Y?

Question (Uniqueness)

Let f,g: X — Y be two embeddings. Are f,g equivalent? |.e.
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Terms from affine algebraic geometry
Two fundamental questions

Let X, Y be affine varieties.

Question (Existence)

Does there exists an embedding f: X — Y?

Question (Uniqueness)

Let f,g: X — Y be two embeddings. Are f,g equivalent? |.e.

f
X < 3 automorphism ¢ ?

v
S Y
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Classical embedding theorems
Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to R".
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Classical embedding theorems
Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to R".

H. Whitney
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Classical embedding theorems
Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to R".

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension
d=0. Then:

H. Whitney
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Classical embedding theorems
Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to R".

Theorem (Whitney, 36)

Let M be a smooth manifold of dimension
d=0. Then:

@ There exists an embedding M — R29+1,

H. Whitney
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Classical embedding theorems
Whitney embedding theorem

Classically these two questions are study in the context of differen-
tiable manifolds where the target Y is equal to R".

Theorem (Whitney, 36)
Let M be a smooth manifold of dimension
d=0. Then:
@ There exists an embedding M — R29+1,
@ Two embeddings M — R29*2 are

equivalent by a diffeomorphism of
R2d+2.

H. Whitney
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Classical embedding theorems

Embeddings of C into C?
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Classical embedding theorems

Embeddings of C into C?

?

S.S. Abhyankar

M. Suzuki
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Classical embedding theorems
Embeddings of C into C?

Theorem (Abhyankar-Moh, Suzuki, 74,75)

Two embeddings C — C? are always equivalent.

M. Suzuki

S.S. Abhyankar
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Classical embedding theorems

Embeddings of C into C3
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Embeddings of C into C3
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Classical embedding theorems

Embeddings of C into C3

linear embedding
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Classical embedding theorems

Embeddings of C into C3

linear embedding
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Classical embedding theorems
Embeddings of C into C3

linear embedding t— (£3-3t,t* - 4t%,t° - 10t)

v
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Classical embedding theorems
Embeddings of C into C3

linear embedding t— (£3-3t,t* - 4t%,t° - 10t)
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Classical embedding theorems
Embeddings of C into C3

linear embedding t— (£3-3t,t* - 4t%,t° - 10t)

v

Open question, Shastri, 92

Are these two embeddings equivalent?
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Classical embedding theorems

Embeddings of C into C", n=4
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Classical embedding theorems
Embeddings of C into C", n=4

Proposition

All embeddings C — C" are equivalent provided that n=4.
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Classical embedding theorems
Embeddings of C into C", n=4
Proposition
All embeddings C — C" are equivalent provided that n=4.

Sketch of the proof:
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Classical embedding theorems
Embeddings of C into C", n=4
Proposition
All embeddings C — C" are equivalent provided that n=4.

Sketch of the proof: Fix an embedding f: C— C".
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Classical embedding theorems
Embeddings of C into C", n=4

Proposition

—

All embeddings C — C" are equivalent provided that n=4.

Sketch of the proof: Fix an embedding f: C— C".

The key statement: For a generic linear projection p: C" — C"!
the composition pof: € — C""! is an embedding (here we use n > 4).
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Classical embedding theorems
Embeddings of C into C", n=4

Proposition

—

All embeddings C — C" are equivalent provided that n=4.

Sketch of the proof: Fix an embedding f: C— C".

The key statement: For a generic linear projection p: C" — C"!
the composition pof: € — C""! is an embedding (here we use n > 4).

Hence, after a linear coordinate change of C” we may assume that
mof:C—C"!is an embedding,
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Classical embedding theorems
Embeddings of C into C", n=4

Proposition

—

All embeddings C — C" are equivalent provided that n=4.

Sketch of the proof: Fix an embedding f: C— C".

The key statement: For a generic linear projection p: C" — C"!
the composition pof: € — C""! is an embedding (here we use n > 4).

Hence, after a linear coordinate change of C” we may assume that
mof:C—C"!is an embedding, where n: C" —C" 1, (x,y)— x is
the projection to the first n—1 coordinates.
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

Cn
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

Cn
x
f S .
I
X
c— . ¢gnt
mof
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

-
X—(AX)
3

C——— Cn_l

mof
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

-
X—(AX)
3

C—— > @
mof
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

-
X—(AX)
3

C—— > @
mof
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

-
X—(AX)
3
-

C—— > @
mof

mof
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

mof mof

e fand g: C—C", t— (m(f(t)),t) are equivalent via
(x,y) = (xy +h(x)),
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

e fand g: C—C", t— (m(f(t)),t) are equivalent via
(x,y)— (x,y + h(x)), where h is a polynomial in n—1 variables
such that (homof)(t) =t—fy(t).
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Classical embedding theorems

Embeddings of C into C”, n=4, continued...

mof mof

e fand g: C—C", t— (m(f(t)),t) are equivalent via
(x,y)— (x,y + h(x)), where h is a polynomial in n—1 variables
such that (homof)(t) =t—fy(t).

@ g is equivalent to t— (0,t) via (x,y)— (x—=n(f(y)),y).
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Classical embedding theorems

A general statement, when Y =C"
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Classical embedding theorems

A general statement, when Y =C"

A. Holme S. Kaliman V. Srinivas
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

A. Holme S. Kaliman V. Srinivas
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.

A. Holme S. Kaliman V. Srinivas
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.
@ Two embeddings X — C29+2 are equivalent.

A. Holme S. Kaliman V. Srinivas
Embeddings and Automorphisms in Affine Alg. Geometry
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.
Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof:
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.
Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ There exists n>2d+1 and an
embedding:
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.
Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ There exists n>2d+1 and an
embedding:

Cn

embedding
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ There exists n>2d+1 and an

embedding:
C n
embedding generic linear
projection
X cn- 1
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ There exists n>2d+1 and an
embedding:

Cn

embedding generic linear

projection

% embedding Cn_l
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.
Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ Let f,g: X — C29*2 be embeddings.
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ Let f,g: X — C29*2 be embeddings.
After a (generic) linear coordinate change of €29*2 the morphisms
below are embeddings:

X (f.g) C2d+2 9 C2d+2 any coordinate projection C2d+1
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:
@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ Let f,g: X — C29*2 be embeddings.
After a (generic) linear coordinate change of €29*2 the morphisms
below are embeddings:

X (f.g) C2d+2 9 C2d+2 any coordinate projection C2d+1

C2d+2

f=(f1,..,f2d+2) w:he first 2d +1 coord.
X CZG’+1
(fm mythe first 2d + 1 coord.
CZd+2
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Classical embedding theorems
A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)

Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent.

Strategy of the proof: @ Let f,g: X — C29*2 be embeddings.
After a (generic) linear coordinate change of €29*2 the morphisms
below are embeddings:

X (f.g) C2d+2 9 C2d+2 any coordinate projection C2d+1

C2d+2

f=(f1,..,f2d+2) w:he first 2d +1 coord.

X /mbedding C2d+1
1r--12d+1,82d+2 proj. to the first 2d + 1 coord.
(fx C2d+2 /h first 2d + 1 coord
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Classical embedding theorems

A general statement, when Y =C"

Theorem (Holme, Kaliman, Srinivas, 75, 91, 91)
Let X be a smooth affine variety of dimension d. Then:

@ There exists an embedding of X into C?9+1.

Q@ Two embeddings X — C29*2 are equivalent. )

Open question
Assume 1< d <n<2d+1 are inetegers such that (d,n) #(1,2).
Are two embeddings C? — C" always equivalent? )
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Algebraic groups
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

© The space C” with respect to addition, usually denoted by GJ.

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

© The space C” with respect to addition, usually denoted by GJ.

@ The special linear group
SL,(C)={A | det(A) =1} S Mat,(C)=C™.
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic
subgroup;

Immanuel van Santen Embeddings and Automorphisms in Affine Alg. Geometry



Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

v

C* =C\{0} is an algebraic group, usually denoted by G,.

v
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

v

C* =C\{0} is an algebraic group, usually denoted by G,. In fact:

v
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

v

C* =C\{0} is an algebraic group, usually denoted by G,. In fact:

{(é t91)€5|_2(<[:) | teC} = V(a2 a1, 311222 - 1)

v
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

v

C* =C\{0} is an algebraic group, usually denoted by G,. In fact:

V(a12,a21,a11a22 - 1)
= V(311322 —agi1aip — 1) = SLQ(C)
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Algebraic groups
Algebraic groups

Definition
An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

v
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Algebraic groups

Algebraic groups

Definition
An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

@ GL,(C) is an algebraic group, as it can be identified with
il
{ det(A) i )ESL,,+1(C) ’ AeGLn(C)}.
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Algebraic groups

Algebraic groups

Definition
An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

@ GL,(C) is an algebraic group, as it can be identified with
il
{( det(A) i )ESL,,+1(C) ’ AeGLn(C)}.
@ Sp,,(C) and SO,(C) are algebraic subgroups of SL,(C).

A\,
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic,
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Algebraic groups
Algebraic groups

Definition

An algebraic group is an affine variety G that is also a group and
the map G x G — G, (g,h) — gh™! is a morphism.

Definition

A closed subgroup H of an algebraic group G is called an algebraic
subgroup; H is then again an algebraic group.

Products of algebraic groups are algebraic, e.g. GJ,.
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Algebraic groups
Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.
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Algebraic groups
Characterless algebraic groups

Definition

An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.

A\The exponentional G, — G, t— e is not a homomorphism!
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Algebraic groups
Characterless algebraic groups

Definition
An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.

A\The exponentional G, — G, t— e is not a homomorphism!

G, is characterless.
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Algebraic groups
Characterless algebraic groups

Definition
An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.

A\The exponentional G, — G, t— e is not a homomorphism!

G, is characterless.

As a consequence we get:
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Algebraic groups
Characterless algebraic groups

Definition
An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.

A\The exponentional G, — G, t— e is not a homomorphism!

G, is characterless.

As a consequence we get:

Every algebraic group that is generated by subgroups isomorphic to
G, is characterless.
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Algebraic groups
Characterless algebraic groups

Definition
An algebraic group G is called characterless if every homomor-
phism (i.e. morphism that is a group homo.) G — G, is constant.

A\The exponentional G, — G, t— e is not a homomorphism!

G, is characterless.

As a consequence we get:

Every algebraic group that is generated by subgroups isomorphic to
G, is characterless. E.g. G} and SL,(C) are characterless.
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Algebraic groups

Motivation for characterless algebraic groups
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Algebraic groups

Motivation for characterless algebraic groups

Every connected algebraic group G can be written as a semi-direct
product GY x G,,, where G" is the subgroup of G generated by
subgroups isomorphic to G, (and thus G" is characterless) and
r=0.
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Algebraic groups

Motivation for characterless algebraic groups

Every connected algebraic group G can be written as a semi-direct
product GY x G,,, where G" is the subgroup o