Lineare Algebra I 04.10.2021

Übungsblatt 2

Abgabe: Am Montag den 11. Oktober 2021 in der Vorlesung oder bis 12.15 Uhr im Fächlein beim Eingang Spiegelgasse 1.

Aufgabe 1. Welche der folgenden Mengen sind \mathbb{R} -Untervektorräume von \mathbb{R}^3 ?

- (a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + y z = 1\}.$
- (b) $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + y z = 0 \text{ und } 2y = z\}.$
- (c) $W_3 = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + y^2 z = 0\}.$
- (d) $W_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot y = 0\}.$
- S Aufgabe 2. Wir betrachten den reellen Vektorraum $V = \text{Abb}(\mathbb{R}, \mathbb{R})$ der Abbildungen von \mathbb{R} nach \mathbb{R} zusammen mit den üblichen Verknüpfungen. Welche der folgenden Mengen sind \mathbb{R} -Unterräume von V?
 - (a) $W_1 = \{ f \in V \mid f(-x) = f(x) \text{ für alle } x \in \mathbb{R} \}.$
 - (b) $W_2 = \{ f \in V \mid f \text{ hat (mindestens) einen Fixpunkt} \}.$
 - (c) $W_3 = \{ f \in V \mid f \text{ ist beschränkt} \}.$
 - (d) $U_{\lambda} = \{ f \in V \mid f(0) = \lambda \}$, wobei $\lambda \in \mathbb{R}$ fest vorgegeben ist.
- [S] Aufgabe 3.
 - (a) Wir betrachten die drei Vektoren $v_1 = (2, 1, -1), v_2 = (-1, 1, 3)$ und w = (4, -1, 1) in \mathbb{R}^3 . Ist $w \in \text{span}(v_1, v_2)$?
 - (b) Ist die Menge $\{(2a-b, a+b, 3b-a) \mid a, b \in \mathbb{R}\}$ ein Unterraum von \mathbb{R}^3 ?

Aufgabe 4. Seien $v_1 = (1, 1, 1), v_2 = (2, -1, 3), w_1 = (3, 0, 4)$ und $w_2 = (0, 3, -1)$ in \mathbb{R}^3 . Zeigen Sie, dass span $(v_1, v_2) = \text{span}(w_1, w_2)$ ist.

E Aufgabe 5. Sei $n \geq 2$. Für jedes $i \in \{1, ..., n\}$ bezeichnen wir mit v_i den Vektor in \mathbb{R}^n , der durch $v_i = (1, ..., 1, 0, 1, ..., 1)$ definiert ist, wobei die 0 an der Stelle i steht. Zeigen Sie:

$$\mathrm{span}(v_1,\ldots,v_n)=\mathbb{R}^n.$$

Aufgabe 6. Sei V ein Vektorraum und seien W_1, W_2 Unterräume von V.

- (a) Beweisen Sie, dass $W_1 \cap W_2$ ein Unterraum von V ist.
- (b) Beweisen Sie, dass $W_1 \cup W_2$ kein Unterraum von V ist, ausser wenn $W_1 \subset W_2$ oder $W_2 \subset W_1$.