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Abstract: We describe the real forms of Gizatullin surfaces of the form zy = p(z) and
of Koras—Russell threefolds of the first kind. The former admit zero, two, three, four,
or six isomorphism classes of real forms, depending on the degree and the symmetries
of the polynomial p. The latter, which are threefolds given by an equation of the
form x%y 4+ 2% + x 4 t¢ = 0, all admit exactly one real form up to isomorphism.
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1. Introduction

Given a complex algebraic variety X, a real form of X is a real al-
gebraic variety Y whose complexification is isomorphic to X. It is then
natural to ask whether X has one, only one, finitely many or infinitely
many isomorphism classes of real forms. Here we study the case where
X is affine. The most natural examples to look at in this context are the
affine spaces. For any n > 1, an obvious real form of A is Ag. Forn < 2,
it turns out to be the only one up to isomorphism. This is a nice exercise
for n =1, and for n = 2 it is a result of Kambayashi in [16, Theorem 3|
based on the amalgamated free product structure of Aut(A2). Forn > 3,
it is still unknown whether A admits any nontrivial real form.

In this article, we investigate some affine surfaces and threefolds which
are close to the affine plane and space.

Recall that a Gizatullin surface is a normal complex affine surface
completable by a zigzag, that is, by a simple normal crossing divisor with
rational components and a linear dual graph; for more details see [12].
These surfaces are classical generalisations of the affine plane. For in-
stance, a smooth affine surface is quasihomogeneous (that is, its auto-
morphism group admits an open orbit with finite complement) if and
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only if it is a Gizatullin surface or isomorphic to (Af \ {0})?; see [14].
Moreover, by [7, Theorem], a normal complex affine surface admits two
(C, +)-actions with different general fibres if and only if it is a Gizatullin
surface not isomorphic to AL x (AL\{0}). In the latter case, the zigzag can
be chosen to have a sequence of self-intersections (0, —1, —ay, ..., —a,),
with ai,...,a, > 2 (see for instance [2]).

The case r = 0 is the affine plane A(QC. The case r = 1 corresponds to
the surfaces D,, = Spec(C[z, vy, 2]/ (zy—p(z))), where p € C[z] is of degree
at least 2, called Danielewski surfaces by some authors. For r = 2, there
are Gizatullin surfaces with uncountably many nonisomorphic real forms,
as the second author recently proved in [4]. In this text, we compute the
number of isomorphism classes of real forms of all surfaces D), and show
in particular that this number is finite for all of them.

We first establish in Proposition 3.11 that D, admits a real form if
and only if there exist a, A\ € C*, b € C, such that A\p(az +b) € R[z].
In this case, we can assume that p € R[z], and moreover that p is in
reduced form as defined in Definition 3.3, i.e., that p(z) = 2% + s(z) for
some integer d and some polynomial s € R[z] with deg(s) < d — 2. We
then obtain the full list of isomorphism classes of real forms for any such
surface in Propositions 3.19, 3.20, and 3.21, summarised as follows:

Theorem A. Let p € R[z] be a polynomial of degree d > 2 in reduced
form. Write p(z) = 2™q(z"™), wherem >0, n > 1, ¢ € R[z], ¢(0)#0, and
where q, n are chosen such that n is mazximal if ¢ # 1. For all a,b,c €

{0,1}, the surface
Sue = Spec(Rlz, y, /(@ + (~1)% + (~1)="g((~1)°")))

is a real form of the Gizatullin surface D, = Spec(Clz, y, z]/(xy —p(2))).
Moreover, the number i of isomorphism classes of real forms of D, and
the representatives are related as follows.

i | Representatives Conditions on q, n, d

2 S(]()(),Su(] qzl,dZQ q=17d230dd

3 | Sooo, So10, S110 q=1,d >4 even q#1,n odd

4| Sapp, a,b € 40,1} q#1,neven,d odd | g#1, (n,d) =(2,2)
6 | Sooc, Sate, a,¢ € {0,1} | ¢ # 1, n, d both even, (n,d) # (2,2)

Just as for the affine plane, the automorphism group of a surface D,
has the structure of a free product of two subgroups amalgamated over
their intersection (see Theorem 3.6 below, or [2, Theorem 5.4.5]). The
situation is, however, more complicated than for A%, since the cohomol-
ogy pointed sets of the two factors are not trivial.
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In the particular case of the affine quadric Spec(R[z,y, z]/(xy — 2% +
1)), Theorem A provides exactly four isomorphism classes of real forms,
given by Spec(R[z,y, 2]/(z* £y? + 22 £ 1)). This rectifies a similar claim
in the introduction of [9], where only three of the four real forms were
given.

To complete our study of real forms of affine surfaces, we consider in
Section 4 the surfaces (A{ \ {0})? and Al x (A{ \ {0}) mentioned above.
We prove that they admit six and four isomorphism classes of real forms,
respectively.

Following the examination in dimension two, we move to the study
of three-dimensional affine varieties. We investigate the Koras—Russell
threefolds of the first kind in Section 5. We recall that they are defined
as the hypersurfaces

Xd7k7g = {xdy + Zk +x +te = O} C Aé,

where d > 2 and 2 < k < / are integers with k& and ¢ relatively prime,
and that they are all smooth affine contractible, and hence diffeomorphic
to RS when equipped with the Euclidean topology [5]. They are further-
more Al-contractible in the A{-homotopy sense [8]. Nevertheless, none
of them is isomorphic to A% as an algebraic variety [19, 15]. We also
recall that two important questions about them are still wide open for
all d, k, ¢: it is not known whether Xy ¢ is biholomorphic to A%, nor
whether its cylinder Xg ¢ X Aé is isomorphic to Aé (algebraically or
analytically).

We prove in Subsection 5.2 that no Koras—Russell threefold of the
first kind admits nontrivial real forms.

Theorem B. For all integers d, k, ¢ with d > 2 and 2 < k < { with k
and ¢ relatively prime, every real form of the Koras—Russell threefold

Xane = Spec(Cla,y, 2,11/ (% + 2" + x +1))
is isomorphic to the real surface Spec(R[z,vy, z,t]/(z%y + 2 + x + t%)).

To achieve this result, we use the structure of the automorphism group
of the threefold X 1 ¢ as a subnormal series as computed in [10, 20] (see
Proposition 5.8). The factor groups being isomorphic to C*, (C[z, 2], +),
or {f € Autc(Clz,2,t]) | f =id mod (z%)}, the key step in the proof
of Theorem B is then to show that the first cohomology pointed set of
this latter group is trivial for any d > 0. Note that the triviality of this
group for d = 0 also implies that every real structure of A% compatible
with the projection along one coordinate is equivalent to the standard
real structure of A2; see Proposition 5.4.
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2. Notation, definitions, and reminders

2.1. Polynomial maps and variables.

Notation 2.1. Let n > 1 be an integer and R be a commutative alge-
bra over a field k. We denote by End(A%) = Endr(A%) the monoid of
algebraic endomorphisms of A% = Al Xgpec(k) Spec(R). These are the
morphisms of the form

f: (mla"'axn)’—) (fl(xlw~'»xn)ﬂ"'afn(x17"'7xn))7

where f1,..., fn € R[z1,...,2,]. As usual, we shall denote such a mor-
phism simply by f=(f1,..., fn) and often replace the variables x1, z2, x3
by z,y, zif n < 3.

Given f=(f1,..., fn) € End(A%), we denote by f* the corresponding
R-algebra endomorphism of R[z1, ... ,x,] defined by f*(P)=P(f1,...,fn)
for all P € R[z1,...,z,]. In particular, f*(z;) = f; fori=1,...,n.

Notation 2.2. We denote by Aut(A%) = Autr(A%) the group of alge-
braic automorphisms of A%, over Spec(R), by

Aff,,(R) = {f € Aut(AR) | deg(f*(z;)) =1 forall 1 <4 <n}
the subgroup of affine automorphisms, and by
BA,(R) ={f € Aut(A%) | f*(«;) € R[z1,...,2;] for all 1 <i < n}

the subgroup of triangular automorphisms.
Another common notation is GA, (R) = Autr(A%}).

We recall that, in dimension two, affine and triangular automorphisms
generate all automorphisms of A for any field k. Moreover, Aut(AZ)
then has the structure of an amalgamated product.

Theorem 2.3 (Jung—van der Kulk theorem [16, Theorem 2]). Let k be
a field. Then, the group Aut(A2) is the free product

Aut(A2) = Aff2(k) % BAo (k)

of its affine and triangular subgroups amalgamated over their intersec-
tion.
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Notation 2.4. We denote by

o ... 9N
] T
Jac(f)=| i .. i |€Rlo,....m)
Ofn ... Ofn
x1 Tn

the determinant of the Jacobian matrix of any f=(f1,..., f,) €End(A%).
We recall that Jac(f) € R* if f € Aut(A%).

Definition 2.5. A polynomial P € R[x1,...,x,] is called a variable if
there exists an automorphism f in Aut(A%) such that f*(z1) = P.

The following result is a consequence of [13]. We recall the proof here,
as the statement is not explicitly stated in [13].

Lemma 2.6. Let P € Clz,y,z| be a polynomial. Suppose that P is a
variable, when viewed as an element of C(2)[x,y], i.e., suppose that there
exists an automorphism f € Aut(A%(Z)) such that f*(x)=P. Then, there

exists for each g€ Al a variable vE€Clz,y] such that P(x,y,q)€Clv].

Proof: First we recall briefly how the ind-topology of Clx,y] is defined
n [13]. For each integer d > 0, the set Clz,y]<q = {f € Clz,y] |
deg(f) < d} is a vector subspace of C[z, y] of finite dimension and thus
it can be equipped with a natural Zariski topology, in which we identify
the coefficients of the polynomials with the coordinates of an affine space.
We then have a sequence of closed embeddings

Clz,yl<o — Clz,yl<1 — -+ — Clz,yl<q — Clz,yl<ay1 — -

This allows us to define a natural topology associated to these em-
beddings by saying that a subset F' of C[z,y] is closed if and only if
F NClz,y|<q is closed for each d > 0.

In [13], the set of variables (see Definition 2.5) of C[z,y] is denoted
by V. Moreover, for each integer k, denote by V=F C V the set of variables
that are components of an automorphism of AZ of length < k, where
the length is here defined using the amalgamated free product structure
given by the Jung—van der Kulk theorem (Theorem 2.3).

Setting W? = Cand W* = |J  C[v] for each k > 1, we then have

veEY=k—1
the following result (see [13, Theorem 4]): for each k& > 0, the closure
of V=F in C[z,y] is equal to V<F U Wk,

We now prove the lemma. Let P € Clx,y,z] and f € Aut(A?C(Z)) be
such that f*(z) = P. Note that the map

v: A' — Clz,y], ¢+~ P(z,y,q)
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is continuous, since it corresponds to a morphism of algebraic vari-
eties Al — C[x,y]<q for some d. By the Jung-van der Kulk theorem,
we can write f = aj o--- o g for some k > 1 and some aq,...,a €
Aff5(C(z)) UBA2(C(z)). Noting that Jac(a;) € C(2) \ {0} for each 1 <
1 < k, we define
k
U= m{u € AL | Jac(ag)(u) € C*}.
i=1
Then, P(z,y,u) € V=F for each u € U. Moreover, since U is a dense open
subset of A} and since the map v is continuous, this implies that the
polynomial v(q) = P(x,y,q) belongs to the closure of V=¥ for each ¢ €
Al, ie., to VSFUWPF C WrFL This achieves the proof. O

We will apply the next result with S = {1} and k = C in Lemma 5.2.

Lemma 2.7. Let k be a field, and let S C k* be a subgroup. Then, the
normal subgroup N = {f € Aut(A) | Jac(f) € S} C Aut(A) is the
free product

N = (N N Affz(k)) k(N NBAz(k))

of its affine and triangular subgroups amalgamated over their intersec-
tion.

Proof: We prove that N is generated by N N Affp(k) and N N BAs(k).
The structural description then follows from [26, Proposition 2]. We can
write any g € N as g = a1 0--- 0, for some n > 1 and ayg,...,a, €
Affo(k)UBAs (k) by the Jung—van der Kulk theorem (Theorem 2.3). For
all 1 <i<n-—1, we set u; = Jac(a;) € k* and h; = (1 i, y) €
Affa(k) N BAg(k). We may replace aq,...,q, with aj o hfl, hyoaso

hy's ... hp_10au_10h;t hyoay,, and assume that Jac(a;) = 1 for
1 <i<n-1and Jac(ay,) = Jac(g) € S. Hence, a1, ..., a, belong to
N N (Affy(k) UBAg(k)) as desired. O

2.2. Group cohomology, real structures, and real forms.

Definition 2.8. For each group (G,o) on which Gal(C/R) acts, we
denote by a — @ the action of the nontrivial element of Gal(C/R) and
by Z1(G) == Z*(Gal(C/R),G) = {v € G | vov = 1} the set of 1-cocycles.
We say that two 1-cocycles v, T are equivalent if there exists o € G such
that 7 = ™! ovo@. The cohomology set H'(G) := H'(Gal(C/R),G)
is the set of equivalence classes of 1-cocycles. It is a pointed set, with
a distinguished trivial element, denoted by 1, which is the class of the
identity.
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Since we will need them later in the text, we collect here the coho-
mology sets of some classical groups.

Lemma 2.9. Let n > 1 be an integer. We consider the standard action
of Gal(C/R) on C™, on polynomials, and on matrices via the complex
conjugation of their coefficients.

(1) The cohomology pointed sets
HY(C™), HY(C*), H (C[z1, ..., 2,])

of the groups (C™,+), (C*,-), (Clx1,...,x,],+) are trivial.

(2) Let py, = {c € C | ™ = 1} be the group of n-th roots of unity.
The cohomology set H'(j1,,) is trivial if n is odd and contains two
elements if n is even. These two elements are the class of squares,
that is, the class of 1, and the class of nonsquare elements, namely,
the class of any generator of fi,.

(3) The cohomology set H*(PGL2(C)) contains eractly two elements.
The first one is the set of classes of elements of PGLy(C) given by
matrices A € SLa(C) with A- A= (}9). The second one is the set
of classes of all A € SLy(C) with A- A= ("§_Y).

Proof: (1) An element of Z1((C™, +)) is of the form v € C", with v+7 =
0. Choosing a = %, we obtain @ = —a. Whence, —a +v +a = 0. This

shows v ~ 0. The same argument applies to (Clzy, ..., z,], +).
An element of Z!((C*,-)) is of the form v € C* with v-7 = 1. Hence,
|v| = 1. Choosing o with a? = v, we obtain |o| = 1. This implies

a~!-v.@=1 and shows that v ~ 1.

(2) As every element v € p, satisfies |u,| = 1, we have Z' (i) = fin.
Moreover, two elements v,7 € u, are equivalent if and only if there
exists o € p,, such that 7 = a~'va = va~2, i.e., if and only if v~ is a
square in i,,. This implies that H'(p,,) is trivial if n is odd and contains
exactly two classes if n is even: the class containing the squares and the
one consisting of nonsquare elements.

(3) Every element 7 € Z!(PGL2(C)) is the class of a matrix A € GLy(C)
with A-A = (§9) for some € € C. Replacing A with pA for some p € C*,
we may assume that A € SLy(C). Moreover, € = £1, as €2 = det(A-A) =
1. First we prove that 7 is equivalent to the class of (9§). For this,
choose a 2 x 1 vector v such that Av, v are linearly independent. To
see that such a vector exists, observe that if A is not diagonal, then we
can choose v = (§) or v = (9). If A is diagonal, then we can choose
v = (1) if 7 € PGLy(C) is the identity and v = (}) otherwise. Then,
taking the matrix R = (v 43) € GL2(C) whose columns are v and Av
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respectively, one checks that 7 is equivalent to the class of R~'- A-R =
R (avazn) =(§) € GLy(C).

Now, consider two matrices A, Ay € SLy(C) with A; - A; = (‘0 2),
€; € {£1}, and suppose that their classes are equivalent 1l-cocycles
71,7 € Z1(PGLy(C)). To conclude the proof, it remains to show that

€1 = €9. Since 71, T are equivalerit, there exist B € GLg((C)jﬂd
1 € C* such tEt Ay = uB~' - A, - B. This gives (602 602) =Ay- Ay =
|uPB=1 - Ay - Ay - B =|u* (¢ ), which implies €; = €. O

Definition 2.10. If R is a C-algebra, a real structure on R is an action of
Gal(C/R) on R such that the nontrivial element acts by p: C — C,a
@ on C. This corresponds to giving a ring homomorphism p: R — R
such that pop = idg and p(a - f) = @ p(f) for each a« € C and
each f € R. For each such structure, we obtain an action of Gal(C/R)
on the group Autc(R) of C-automorphisms by defining f = po f o p, for
each f € Autc(R).

Definition 2.11. If X is a complex algebraic variety, a real structure
is an action of Gal(C/R) on X such that the action of the nontrivial
element is an anti-regular morphism p: X — X, that is, a morphism of
schemes such that the following diagram commutes:

X —>r X

l l

Spec(C) —2=2— Spec(C)

For each such real structure, the group (p) ~Gal(C/R) acts on Autc(X)
by defining f = po f o p, for each f € Autc(X).

Fixing a real structure p — if at least one exists — we have a bi-
jection between the set of equivalence classes of real structures on X
and H'(Autc(X)): each real structure is of the form vop with v €
ZY(Autc(X)) and two real structures vop, Top are equivalent if and only
if the classes of v and 7 in H'(Autc (X)) are equal, which means that vop,
Top are conjugate with respect to some automorphism a € Aute(X), i.e.,
rop=a-lo(vep)oa.

Remark 2.12. Giving a real structure on an affine complex variety X
is the same as giving a real structure on the C-algebra C[X] of reg-
ular functions. Fixing such a real structure, the group Gal(C/R) acts
on C[X] via ring-automorphisms, and the natural C-anti-isomorphism
between Autc(X) and Autc(C[X]) induces an isomorphism of pointed
sets

H' (Aute(X)) =5 H (Aute(C[X])),

i.e., a bijection sending the identity to the identity.
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Definition 2.13. A real form of a complex algebraic variety X is a real
algebraic variety X together with a C-isomorphism

@: Xo X Spec(R) Spec((C) - X.

Real forms and real structures of a quasiprojective complex algebraic
variety X correspond to one another: for any real structure p on X, the
variety X/(p) is a real form of X, and, given a real form (X, ¢) of X, the
map o (id x Spec(z — Z)) oo~ ! defines a real structure on X. We refer
to [1] for a description of the equivalence of categories between quasipro-
jective complex varieties with a real structure and quasiprojective real
varieties.

Example 2.14. It is an easy exercise to check that H'(Aut(A})) is
trivial, and hence that A} is the only real form of Al up to isomorphism.
However, the affine curve AL\{0} has three different isomorphism classes
of real forms; see Proposition 4.2.

Notation 2.15 (Usual complex conjugation). For the rest of the text,
we shall always denote the standard action of Gal(C/R) on the affine
space Ag ~ C" by p: z = (21,...,2n) — Z = (Z1,...,%n), Where, in a
slight abuse of notation, we write p for any n > 1. This provides the
standard real structures on A and C[AZ] = Clz1,...,z,).

Accordingly, we denote by p = popopand f = pofop=(fi,..., fn)
the conjugate of a polynomial p € C[A{] and of an endomorphism f =
(fi,-ooofn) € End(AR). Ifp = 30, & S0@i,.0,27 - -2y, then we

: m — F .« i
simply have p=3_, . S0@; 27 - ap.

Notation 2.16. If X is a quasiprojective real variety, its real locus is
the set X (R), which is a topological space for the Euclidean topology. If
X is smooth, then X (R) is a manifold.

3. The surfaces D,
3.1. Reduced form.

Notation 3.1. Given a nonconstant polynomial p € k[z], we denote
by D, the hypersurface in A} = Spec(k[z,y, 2]) defined by the equa-

tion zy = p(z).
Theorem 3.2 ([6, Lemma 2.10] and [2, Theorem 5.4.5(1)]). Let k be a

field and let p,q € k[z]. The surfaces D, and D, are isomorphic over k
if and only if there exist a, A € k* and b € k such that p(az+0b) = Aq(z).
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Definition 3.3. A nonconstant polynomial p € k[z] is called in reduced
form if p(z) = 29 + s(z) for some integer d > 1 and some polynomial s €
k[z] with deg(s) < d — 2.

Lemma 3.4. Ifk is a field of characteristic zero, then every surface D,
defined over k is isomorphic to a surface D, with q in reduced form.

Proof: For every p € k[z], there exist A € k* and pu € k such that
the polynomial ¢(z) = Ap(z + p) is in reduced form. Then, the affine
map ¢ = (m, %y7 z+ /L) € Affs(k) induces an isomorphism between the
hypersurfaces D, and D, as ¢*(zy — p(2)) = 1 (zy — q(2)). O

3.2. Automorphisms. A list of generators for the automorphism
groups of the surfaces D, was first given in [18]. Note that in his
article Makar-Limanov assumes that the ground field is algebraically
closed (of any characteristic). At the end of the paper he gives: “Re-
mark. (1) Though we assumed that [the ground field] is algebraically
closed it is not really essential. It is not difficult to show that all roots
necessary in Lemma 9 belong to the field itself.”

Theorem 3.5 ([18]). Let k be a field and let p € k[z] be a polynomial
of degree at least 2. Then, every automorphism of the surface D, C A]
extends to an automorphism of Ay. Moreover, the group Autyx(D,) is
generated by the following subgroups:

o {(oy + PEEIEE 2t ar(a) | () € Kla]} ~ (Kla], +);

i {(x’ y? Z)’ (y7 x? Z)} = Z/QZ;

o {(azx,by,cz+d)|a,b,cek* dek,plcz+d) = abp(z)}.

Furthermore, it is a folklore result that Auty(D,) is equal to the free
product of two subgroups, amalgamated over their intersection; see for
instance [12]. As we did not find the precise statement we need in the

literature, we re-prove it here. Theorem 3.6 below essentially follows
from [2, Theorem 5.4.5] (see also [17], for a slightly weaker statement).

Theorem 3.6. Let k be a field and p € k[z] be a polynomial of degree at
least 2. Let D,, = Spec(k[z,y, z]/(zy — p(2))) and define the subgroups

Ax(p) = {f € Autw(D,) | 3g € Aff3(k): f =g[p,}
and
Bk (p) = {¢apcdr | abcek”, dek,reklx], abp(z) = p(cz+ d)},

where

Posodr = (ax by+p(cz+d+:1cr(m)) — abp(z)

axr

yez+d+ :L"I“(I)) .
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Then, the automorphism group of D, is the free product
Auty(Dyp) = Ax(p) *n Bk(p)

of Ax(p) and Bx(p) amalgamated over their intersection Ax(p) N Bk(p),
which is the set of all elements g p c.a,r, with a,b,c € k*, d € k, such
that abp(z) = p(cz + d), and r € k such that r = 0 if deg(p) > 3.

Remark 3.7. One can check, using the birational morphism D, — Ai,
(x,y,2) — (x,2), that By(p) consists of all automorphisms of D,, that
preserve the fibration (z,y, z) — x.

Proof: First, we check that the set By(p) is indeed a subgroup of
Auty(Dp). For this, it suffices to remark that g ¢ q, defines an en-
domorphism of A} satisfying Vo bear(@y —p(2)) = ab(zy — p(2)), and
to compute 1/}171717070 = ldA?( and

ql)a,b,c,d,r o 1pa’,b’,c’,d’,r’ = 1paa/,bb’,cc/,cd’—‘—d,cr’(m)+a’r(a’z)
for all wa,b,c,d,ra 1/}a’,b’,c’,d’,r/ € Bk(p)-

Let us consider the open embedding A — P}, (z,y,2) — [1: 2 :y: 2]
and denote by X,, the closure of D, in Pj. Writing s = deg(p) and
p(z) = Y7 opiz" with po,...,ps € k and ps # 0, we obtain that X, is
the hypersurface in Py given by the equation w®2zy = Y7_ p;w® 2"
So, Cp, = X, \ D, is either the conic defined by {w = 0, zy = p22?}
in the case where s = 2, or the line given by {w = z = 0} in the case
where s > 3. In both cases, C), is a curve isomorphic to P, that contains
the point ¢ =[0:0:1:0].

We will prove the two following statements.

(1) The birational map B of X, induced by any 8 € Bx(p) \ Ax(p)
contracts C), \ {¢} onto g.

(2) The birational map & of X, induced by any a € Ax(p) preserves
the curve C,, and if it fixes the point ¢, then o € Ax(p) N Bk (p).

Before proving them, let us show that Auty(D,) = Ax(p) *k~ Bk(p)
follows from these two claims. Recall that, by Theorem 3.5, Autk (D)) is
generated by Ak (p) and Bx(p). Letting m > 1, aq,...,am—1 € Ax(p) \
Bg(p) and B4, ..., Bm € Bk(p) \ Ak(p), it then suffices to prove that

¢=Pmoap-10--0aiof & Ak(p).
For this, we prove by induction on m that the extension of ¢ € Auty (D))
to a birational map ¢ € Birk(X,,) contracts C), \ {¢} onto ¢. For m =1,
this is given by (1). For m > 2, write ¢ = B, © a—1 0 ’. The result
follows, since the extensions By, Gm_1, ¢’ are elements of Birk (X)) such
that ¢'(Cp\{q}) = {¢} (by the induction hypothesis), &,,—1(q) € Cp\{q}

(by (2)), and B (Cy \ {a}) = {a} (by (1)).
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We now prove (1). First, note that an automorphism g pcqdr is
in Ax(p) if =0, or if deg(r) = 0 and deg(p) = 2. Therefore, we con-
sider an automorphism ¢ = ¥4 p.c.q, With either deg(r) > 1, or with
deg(r) = 0 and deg(p) > 3.

In both cases, the second component of the birational map 1& €
Birk(X,) induced by v is of degree D = deg(p) - (deg(r) +1) — 1 >
deg(r) + 1, strictly greater than the degree of any other component of
the map, and its leading term is £z for some & € k*.

Extending 1 to a rational map 1/;: Pi -— Pi by homogenising its
components, we obtain ¢([0: 2z :y: 2])=[0:0: &P : 0] for any [0 : z :
y : z] € Cy. As every point of C, \ {¢} satisfies z # 0, the equality @(Cp\
{q}) = {q} follows. This proves (1).

We remark that we have proved above that no map &a,b,a,d,rE Birk (Xp)
is an automorphism if deg(r) > 1 or if deg(r) = 0 and deg(p) > 3. In
particular, it is not an element of Ay (p) in these cases. Hence, we get
the desired description of Ay (p) N Bk (p).

Finally, it remains to prove (2). Let a € Ax(p). As it is the restriction
of an element of Aff3(k), which itself is the restriction of an element & €
Aut(P}) that preserves the curve C,, the automorphism « induces a
map & € Birg(X,) that preserves C,. Suppose that &(¢) = ¢. Then,
the birational morphism x: D, — A% (x,y,z) — (z,z) conjugates «
to an affine automorphism o’ € Aut(A}), because this morphism is the
restriction of the projection P§ --» PE, [w :z 1y : 2] = [w: z : 2]
from the point q. For each (z,z) € A, the fibre ~1(z,2) consists of
one single point if and only if z # 0. Hence, &’ is of the form (z,z) —
(ax,cz + d + rox) for some a,c € k* and some d,ry € k. This gives
a = (azx,by + h(z, z),cz + d+ rox) for some b € k* and some h € k[z, 2]
of degree 1. As a*(zy — p(z)) = abxy + axh(z, z) — p(cz + d + rox) lies
in the ideal generated by xy — p(z), it must be equal to ab(zy — p(z)).
This implies, by setting = 0, that abp(z) = p(cz + d), and then that
h(z, z) = pleztddron)=abp(z) . honce o € By(p). O

ax

The aim of the next three results is to give a precise description of
the subgroup Ax(p) of “affine” automorphisms of a surface D,. We start
with the case where deg(p) > 3.

Lemma 3.8. Let k be a field and p € k[z] with deg(p) > 3. Then,
Ax(p) = (Ax(p) N Bi(p)) x ((y,z, 2)),

where

Ax(p)NBx(p) = {(ax, by, cz+d) | a,b,c € k*, d € k, abp(z) = p(cz+d)}.
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Proof: Theorem 3.6 gives the explicit description of the intersection
of Ax(p) and By(p).

As the involution (y,x,z) is an element of Ax(p) \ Bk(p) that nor-
malises Ak (p)NBx(p), the subgroup of A (p) generated by Ay (p)NBx(p)
and (y,z, z) is isomorphic to (Ax(p) N Bk(p)) x {(y,x, 2)). It remains to
see that every element o € Ay(p) is in that subgroup, i.e., is of the
form a = (az,by,cz + d) or a = (ay,bzx,cz + d) for some a,b,c € k*
and d € k.

Write o = ({1,02,03), where {1,03,05 € k[x,y,z] are of degree 1.
Then,

tily = p(ls) = a*(zy — p(2)) = pzy — p(2))
for some p € k*. Since deg(p) > 3 and deg(f1¢2) = 2, we obtain that
{3 = cz + d for some c € k*,d € k, and we have that
Ul = pxy + plez + d) — pp(z).

Observe that the right-hand side of the above equality is an irreducible
polynomial, unless p(cz + d) — up(z) = 0. Thus, p(cz + d) = up(z) and
{105 = pzy. In turn, the latter equality implies that either /1 = ax and
ly = by or {1 = ay and {5 = bx for some a,b € k* with ab = pu. O

We now investigate the case where deg(p) = 2.

Lemma 3.9. Let k be a field of characteristic not equal to 2, and let

p=22—1=(2—1)(2+1) € k[z]. The surface D, = Spec(k[z,y,z]/(zy—

p(2))) is isomorphic to (P x PL)\ A, where A denotes the diagonal, via
(PL xPL)\A — D,

(la: Bl e d)) — (G225, 24, adtie)

Moreover, Ax(p) is isomorphic to PGLa(k)x(0), where 0 =(—x,—y,—z) €
Auty(D,) acts on P x PL via the exchange of the two factors and where
PGLa(k) acts diagonally on (PL x PL)\ A and via

PGLy(k) x D, — D,

252 2ap T

aﬁ) (Z),_>1<a2 2 )( )
) — ) 26 Y

<76 z ad—py ay B8 ad+By ?

Proof: As char(k) # 2, we may consider A] embedded into P}, via the
open embedding (z,y,z) — [z : y : 2+ 1 : z — 1], and obtain that
D, = Q\ H, where Q,H C P} are given respectively by oz = zox3
and xo = x3.

on D,.
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We then use the classical isomorphism PL x Pt — Q, ([a : b],]c :
d]) v [ac : bd : ad : bc], which restricts to the isomorphism (P x PL) \
A = Q\ H = D, described in the statement.

By definition, Ax(p) = {f € Autx(D,) | 3g € Aff3(k) : f = g|p,}
corresponds to the group of automorphisms of P3 which preserve H
and @, and thus to the group of automorphisms of ) that preserve QNH;
it is conjugate via the above isomorphism to the group of automorphisms
of PL x PL that preserve the diagonal.

As Aut(PLxPyL) = (PGL2(k)xPGLa (k) )x(c), where o is the exchange of
the two factors, which corresponds to (—z,—y,—z) € Autk(D,), we obtain
that Ay (p) corresponds, via the isomorphism, to the group PGLy(k) X
(o), where PGL2 (k) acts diagonally on PL x PL. Conjugating the action
gives the explicit description of the action of PGL2(k) on D,,. O

Lemma 3.10. Let k be a field of characteristic not equal to 2, and let
p = 22 € k[2]. The group Ax(p) is isomorphic to PGLa(k) x k*, and the
action of this latter group on the surface D, = Spec(k[z,y, z]/(zy — 2?%))
is
(PGL2(k) x k*) x D, — D,
o x o® [52 2ap x
() (D)=t (25 2 ) ()

Proof: As observed in Lemma 3.9, the above formula gives an embed-
ding PGLy(k) < GL3(k) whose action on A} preserves zy — 2% — 1, and
thus also zy — 2z2. Its image moreover lies in SL3(k). The action of k*
on A} by homotheties gives another embedding k* < GL3(k). Since
both groups commute and have a trivial intersection, we get an embed-
ding ¢: PGLy(k) x k* — Ak(p).

It remains to see that every element f € Ayx(p) lies in the image of .
As it is the only singular point of D,, the point (0,0,0) € D, C A}
is fixed by any f € Ax(p). Hence, f = g|p, for some g € GL3(k)
whose action on P preserves the conic I' given by zy = 22, isomorphic
to PL via [u : v] — [u? : v?* : wv]. The induced action of g on P

is of the form [u : v] — [au + Bv : yu + dv] for some R = (3?)

in PGL2(k). Hence, the action of g on PL coincides with that of the
image of R in PGLy(k) C SL3(k), i.e., with that of ¢((R,1)). Hence,
the map f o ¢((R,1))~! € Ax(p) acts trivially on I' and thus on Pi (a
nontrivial automorphism of Py only fixes points and lines), and is then
a homothety. O
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3.3. Existence of real forms.

Proposition 3.11. Let p € C[z] \ C be a nonconstant polynomial. The
following conditions are equivalent:
(1) The complex affine surface D, = Spec(Clz,y, z]/(zy — p(2))) ad-
mits a real structure.
(2) There exist a, A € C*, b € C, such that A\p(az + b) € R[z].
(3) There exists g € R[z] such that the complex affine surfaces D, =
Spec(Clz, y, z]/(xzy — p(2))) and Dy = Spec(Clx, y, z]/(zy — q(2)))
are isomorphic.

Proof: The equivalence between (2) and (3) follows from Theorem 3.2.

The implication (3) = (1) follows from the fact that (x,y,z) —
(Z,7,%) is a real structure on D, = Spec(Clz,y, z]/(zy — ¢(2))), since
q € R[z].

It remains to prove (1) = (2). Applying a suitable affine automor-
phism of the form (Az,y,az + b) we can assume that p is in reduced
form. Let d = deg(p) > 1. Since (2) is satisfied when p = z¢, we may
further assume that p is not a monomial.

We take a real structure on D, which is of the form

(!E,y,Z) — (fl(m,y7z),f2(x7y,z)7f3(x,y,z)),

for some polynomials f1, fo, f3 € C[z, vy, z]. This provides an isomorphism
of complex affine surfaces

Dp — Dﬁ
(xv Y, Z) — (fl(xa Y, 2)7 f2(x7 Y, Z)? fd(xv Y, Z))
Hence, by Theorem 3.2, there exist a,A\ € C* and b € C such that
P(z) = Ap(az +b). Since p is in reduced form and is not a monomial, we
have b =0, A = a~ ¢, and |a| = 1. Let a € C* be such that a? = a. We
now conclude the proof by showing that the polynomial ¢(z) = a~%p(az)
lies in R[z].
Indeed, since |a|=|a]= 1, we get

7(z) = a~4 - p(@z) = a’Mp(a@z) = a’a”plaa'2) = o~ p(az) = q(2),
as desired. O

By Proposition 3.11, we may assume a surface D, to have no real
forms or its defining polynomial p to lie in R[z]. We shall classify the
number of real forms for the latter case. First we prove that if p €
R[z], then both subgroups Ac(p) and Bc(p) of Autc(D,) defined in
Theorem 3.6 are invariant under the action of p: (z,y, 2) — (Z,7, 2).
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Lemma 3.12. Assume that p € R[z]. Then, the subgroups Ac(p) and
Be(p) of Aute(Dy) given in Theorem 3.6 are invariant under the action
of Gal(C/R).

Proof: Since p is real, we have p(D,) = D,, and thus f(D,) = po
fop(Dy,) = D, for all f € Aut(A?) satisfying f(D,) = D,. Since any
element of Ac(p) comes from the restriction of an element of Aff5(C), this
implies that Ac(p) is invariant under the action of Gal(C/R). Similarly,
as Yapedr = Vapedr for all Yapedr € Be(p), the group Be(p) is also
invariant under the action of Gal(C/R). O

The next result shows that it will actually be sufficient to compute
the cohomology set H'(Ac(p)) to determine all real forms of D,,.

Lemma 3.13. Let p € C[z] be a polynomial with deg(p) > 2. The
homomorphisms of pointed sets

H'(Ac(p) N Be(p)) — H'(Be(p))
H'(Ac(p)) — H'(Autc(D,))

given by the inclusions Ac(p) N Be(p) — Be(p) and Ac(p) — Autc(Dp)
are isomorphisms of pointed sets.

Proof: Recall that by definition every element ¢ of Bc¢(p) is of the
form ¢ = g p.c.a,r for some a,b,c € C*, d € C, and r € C[z] such that
p(cz + d) = abp(z). Moreover, for all ¥ b c.d.rs Yar et a7 I Be(p), we
have
wa,b,c,d,r o wa’,b’,c’,d’,r’ = ¢aa',bb’,cc’,cd’+d,cr’(w)+a’r(a’w)

and

qpa,b,c,d,r :¢a’,b/,c/,d’,r’ if and only if a:a/, b= b/, Cc = C/7 d= d/, T = T’/.
The latter claim can be proved using the birational morphism D, —
A%, (z,y,2) — (z,2), or by saying that if the two maps are equal,
then g p.c.dr and Vg 1/ s a7, have the same components modulo zy —
p(z). Note also that any element of B¢ (p) of the form 14 p 4,0 belongs
to Ac(p>.

By [16, Theorem 1], the fact that Autc(D,) is the free product
of Ac(p) and Be(p) amalgamated over their intersection as in Theo-
rem 3.6 implies that we have the following co-Cartesian diagram of mor-
phisms of pointed sets.

H'(Ac(p) N Be(p)) —— H'(Ac(p))

l l

H'(Be(p)) — H'(Aute(Dy))



GIZATULLIN SURFACES AND KORAS—RUSSELL THREEFOLDS 867

Therefore, it suffices to prove that H'(Ac(p) N Be(p)) — HY(Bce(p)) is
a bijection to obtain that H!(Ac(p)) — H'(Autc(D,)) is a bijection.

For this, we will show that:

(1) Each element of Z!(Bc(p)) is equivalent to an element v of the
form ¢ = 1 p.c.a0 in Z(Ac(p) N Be(p)).

(2) Two such elements ¥y p a0, Y1.5.cr.a00.0 of Z1(Ac(p) N Be(p)) are
equivalent in Be(p) if and only if they are equivalent in Ac(p) N
Be(p).

Let T = ¥4 p.car be a 1-cocycle in Z1(Bg(p)). This implies aa = 1,
as 7 o7 = idp,. Therefore, we can find e € C* with €2 = a and define
0= 7vzjz-:,e*l,l,O,O = (g‘r,Eilya Z) € A(C(p) N B(C(p) Thena

F=0"lor00
=Ye-121,00 © Ya,b,e,dyr © Ve1,6,1,00
= w5*2a,62b,c,d,5*1r(6*11)
= wl,ab,c,d,sflr(sflx)
is a 1-cocycle in Z1(Bc(p)) equivalent to 7.

Denote s(z) = r(e~1x) € C[z]. Computing the third component of 7o
7 =1idp,, we see that ¢5(z) + s(z) = 0. Define ¢ = ¢y ;1 1,. Then,
7' =19t oForisa l-cocycle in Z'(Bc(p)) equivalent to 7. Moreover,
one checks that

=y ooy
= 7/’1,1,1,0,7%5@) © Y1 ab,c,d,s(z) © 1/’1,1,1,0,5(1)
= w17ab,c7d,%s(w) © '(/}1,171707%§(a:)
= ¢1,ab,c,d,c%§($)+%s(a@)
= 7/’1,ab,c,d,0~
This proves (1).
Now, let 7=11 p.c,a,0 and o = 91 pr v a0 be two elements in Z* (Bc(p))
and suppose that ¢~ o7 0% = o for some ¢ = n g.+.6 in Be(p). It

is then straightforward to check that 1)~ o 7 09 = o, where 9 is the
element of Ac(p) N Be(p) defined by ¥ = 1q,8,4,6,0. This proves (2). O

3.4. Cohomology set of the group Ac(p). First we deal with the
case where deg(p) = 2. In view of Lemma 3.9 and Lemma 3.10, we
proceed in two distinct cases.

Lemma 3.14. If p = 22 — 1, then H'(Ac(p)) contains evactly four
elements, namely the classes of (z,y,2), (—z,—y,—z), (y,x,—2),
(_ya —J,‘,Z)-
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Proof: Lemma 3.9 provides an explicit isomorphism PGLy(C) x (o) —
Ac(p), where o is an involution, the action of Gal(C/R) on (o) ~Z/2 is
trivial and the one on PGL(C) is the standard one. As by Lemma 2.9(3),
H'(PGL2(C)) consists of two elements, which are the class of the identity
and that of M = (| 7(), we find that H'(Ac(p)) consists of exactly
four elements, which are the classes of the images of (id,id), (id,o),
(M,id), and (M, o) under the above isomorphism. It moreover follows
from the explicit action of PGL2(C) x (o) on D, given in Lemma 3.9
that these four images are equal to (z,v, 2), (—z, —y, —2), (y,z, —z), and
(—y, —x, z), respectively. O

Lemma 3.15. Ifp = 22, then H*(Ac(p)) contains exactly two elements,
which are the classes of (x,y,z) and of (y,x,—2).

Proof: Lemma 3.10 provides an explicit isomorphism PGLy(C) x C* —
Ac(p). As HY(PGL2(C)) consists of two elements, which are the class
of the identity and that of M = (§ 7§) — see Lemma 2.9(3)) — and as
H(C*) = {1}, the pointed set H!(Ac(p)) contains exactly two elements,
which are the classes of the identity and that of the image of (M, 1) under
the above isomorphism. This latter is equal to the class of (y,z, —z);
compare with Lemma 3.10. O

To describe H'(Ac(p)) when deg(p) > 3, we will need the group H,, C
Aut(A}) associated to p. It corresponds to the group of symmetries of
the polynomial.

Definition 3.16. Let p € C[z] be a polynomial. We denote by H, C
Aut(Al) = Autc(Spec(C[z])) the subgroup

H,={(cz+d)|ceC*,deC,INeC":plcz+d) = Ip(2)}.

As the following lemma shows, the shape of H,, is particularly simple
for polynomials in reduced form. A similar statement can be obtained
for all polynomials of C[z] and even for other Galois field extensions.

Lemma 3.17. Let p € C[z] be in reduced form.

(1) Ifp has a unique root, then p = z% is a monomial and H, = {(cz) |

c € C*}. In particular, Hy, is then isomorphic to C* and H'(H,)
contains only one element, namely the class of (z).

(2) If p has at least two roots, then Hy, = {(cz) | c € C*, ¢™ = 1} s
cyclic of finite order n > 1. In particular, H'(H,) contains either
a single element when n is odd or two elements when n is even,
namely the classes of (z) and (cz) where ¢ denotes any primitive
n-th root of unity. Moreover, p is of the form p(z) = z™q(z"™) for
some integer m > 0 and some polynomial g € C[t] with q(0) # 0.
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Proof: (1) Recall that H!(C*) is trivial by Lemma 2.9.

(2) Let p(z) = Zf:o pizt € C[z] with p, = 1 and p;_; = 0 and suppose
that p is not a monomial. Suppose that ¢, A € C* and d € C are such
that p(cz + d) = Ap(z). Then, d = 0 because p,_; = 0. Moreover, for
any i, j with p;,p; # 0, we find ¢ = X\ = ¢/. This implies that c is
of finite order, say n > 1, and that i = j (mod n). Hence, p is of the
form p(z) = 2™¢q(z"), as claimed in the statement. In turn, H, = {(cz) |
c € C*, ¢" = 1} is cyclic of order n. Finally, the claims about H'(H,)
follow from Lemma 2.9. O

Lemma 3.18. Let p € R[z] be a polynomial of degree at least 3 in reduced
form. Then, the following holds:

(1) If H, is infinite and deg(p) is odd, then H*(Ac(p)) contains exactly
two elements, namely the classes of

(x,9,2), (y, 2, 2).
(2) If Hy, is infinite and deg(p) is even, or H, is finite of odd order,
then H(Ac(p)) contains exactly three elements, namely the classes

of
(-'L', Y, Z), (ya z, Z)7 (_y7 -, Z)
(3) If Hy, is of even order n > 2 and deg(p) is odd, then H'(Ac(p))
contains exactly four elements, namely the classes of

(:177 y7 Z)7 (ax7 a’y’ CZ)7 (y’ ‘/1:5 Z)’ (ay’ CLLZ}, CZ)’

for any ¢ € C* of order n, and any a € C* such that a® = ¢38(®)

(4) If H, is of even order n > 2 and deg(p) is even, then H'(Ac(p))
contains exactly six elements, namely the classes of

("Tv Y, Z)? (CLLC, ay, CZ)7 (yv z, Z)a (_yv -, Z)a (ayv ax, CZ)a (_ayv —azx, CZ),
for any c € C* of order n, and any a € C* such that a® = c38()

Proof: As p is in reduced form, every element of H), is of the form (cz)
for some ¢ € C* thanks to Lemma 3.17. Since deg(p) > 3, we have by
Lemma 3.8 Ac(p) = (Ac(p) N Be(p)) x ((y; @, 2)), with Ac(p) N Be(p) =
{(az,by,cz) | a,b,c € C*, abp(z) = p(cz)}. Thus, we can define a sur-
jective group homomorphism ¢: Ac(p) - H, x ((y,z, %)) by sending
(az, by, cz) onto (cz,id) and (y,z, z) onto (id, (y, , 2)).
There are two cases to distinguish, both following from Lemma 3.17:
(i) If H, is infinite or finite of odd order, then H'(H,) = {1}.
(ii) If H, is finite of even order n > 2, then H'(H,) contains exactly
two classes, namely the class of the identity and a second class that
contains (cz) for each ¢ € C* of order n.

In case (ii), we fix ¢ € C* of order n.
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For each l-cocycle 7 € Z'(Ac(p)), we may assume that o = o(7)
belongs to {id} x ((y,x, 2)) in case (i) and to {id, (cz)} x {(y,z,2)) in
case (ii). This gives two or four possibilities for o, respectively. Moreover,
two 1-cocycles that get mapped to different elements in H,, x ((y, z, 2))
cannot be equivalent. So, we may study the different possibilities for o
separately.

First we consider the case where 7 € Z!'(Ac(p)) with o = ¢(1) =
(id,id). Then, T = (am, %y,z) for some a € C* with aa = 1. Choosing
A € C with A\ = a and defining § = ()\x, %y,z) € Ac(p), we obtain
0~ loTol = (%, %y,z) = (z,y, 2), since A\ = 1.

Now, consider the case where 7 € Z'(Ac(p)) with o = ((cz),id).
Then, 7 = (ax, by, cz) for some a,b € C* with aa = bb = 1 and abp(z) =
plez) = cd8P)p(z). Let A € C with A\ = 1 and define 6 = (\z, 1y, 2).
Then, §~'orof = (%, \2by, cz). Choosing A with A* = ¢, we may thus
assume that b = a, i.e., that 7 = (ax, ay, cz) with a® = cde2(P)  Repeating
the same argument with A = i, we see that the two 1-cocycles (az, ay, cz)
and (—ax, —ay, cz) are equivalent. Hence, there is only one class of 1-
cocycles associated to o = ((cz),id).

Finally, we consider the case where 7€ Z1(Ac(p)) with o= (id,(y, z, 2))
oro = ((cz), (y,,z)). Then, T = (ay, 2z, uz) for some a € C* satisfying
L = yde8(P) where =1 or = c. Choosing A € R~ with A2 = |q
and defining 6 = ()\x, %y, z), we obtain 7 lo1060 = ()\%y, %x, ,uz). So,
we may assume that |a| = 1, and hence that 7 = (ay, ax, uz).

As p(pz) = a’p(z), we get pdee®) = g2 In particular, a = +1 if
1 = 1. To conclude the proof, it only remains to prove that the 1-co-
cycles (ay,ax, pz) and (—ay, —ax, pz) are equivalent if and only if the
following holds:

a

(%)  deg(p) is odd and H, is either infinite or finite of even order.

First suppose that (&) holds. In this case, (—z) € H,,, and p(—z) =
(_1)dcg(p)p(z) = —p(Z). Hence, 0= (ZC, -Y _Z) € AC(p) N B(C(p)v and
0~ o (ay,ax, uz) o 0 = (—ay, —ax, uz).

Suppose now that (&) does not hold, and suppose, by contradiction,
that =1 o (ay, ax, uz) o § = (—ay, —ax, puz) for some 0 € Ac(p).

If 0 € Ac(p) N Be(p), then 8 = (ax, By,vz) for some «, 5,7 € C*
such that afBp(z) = p(yz). This implies that 0~ o (ay,az,puz) o 0 =
(gay, %az, z,uz) Hence, 8 = —@ and v € R. In particular, we have that
aff = —a@ € R. Since afp(z) = p(yz) = v18@)p(2), we also have
aff =~ This implies that deg(p) is odd and v < 0. As we assumed
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that (&) does not hold, H,, is finite of odd order. But then, (yz) ¢ Hp,
a contradiction.

If § € Ac(p) \ Be(p), then write 8 = (y,x,2) o 8’ with §' € Ac(p) N
Be(p). Since (y, x, z) commutes with 7 = (ay, ax, uz), the equality 6~ 1o

700 =260"1o706 holds and we get a contradiction as above.

O

3.5. Real forms.

Proposition 3.19. Let p = 22 — 1. The complex surface
D, = Spec(C[z,y, 2]/ (vy — 2° + 1))

has exactly four nonisomorphic classes of real forms, which are those of
the four real surfaces

S1 = Spec(R[z, y, 2]/ (2® +y* + 2% + 1)),
Sz = Spec(R[z, y, 2]/ (2® + y* + 2% — 1)),
S3 = Spec(R[z, y, 2] /(2 — y* + 22 — 1)),
Sy = Spec(R[z,y, 2] /(x* — y* + 2% + 1)).
All four are pairwise nonhomeomorphic: their real loci are diffeomorphic
to
S1(R) = @, S5(R) ~ S%, S3(R) ~R?\ {(0,0)}, S4(R) ~ R? II R%.
Proof: By Lemma 3.13 and Lemma 3.14, H!(Autc(D,)) contains exactly
four elements, namely the classes of 73 = (z,y,2), 4 = (—z, -y, —2),

71 = (y,x,—2), 72 = (—y, —x, z). Therefore, there are exactly four non-
isomorphic real forms of D,,.

To see that they correspond to the real surfaces Si,...,Sy, we pro-
duce, for every i = 1,2,3,4, an element 6; € GL3(C) C Aut(A})
such that 7, 0p = 6, 0po 9;1, where p is the standard real form

(z,y,2) — (Z,7,%) on A}, and such that 0;1(Dp) is the complexification
of S, i.e., is S; Xgpec(r) Spec(C).

i T; 0; with r,0p00;, =6;0p 07 (zy — 22 + 1)
1 (y,x, _z) (x+iy,x—iy,iz) x2+y2+22+1
2| (~y,—x,2) (v + iy, —x + iy, 2) (@22 422 1)
3 (z,9,2) (x+y,y—2x,2) —(z® =2+ 22— 1)
4] (=2, —y.—2) | ((=z+y)i(z+y)iz) 22—y 2241

From the equations of S and S5, we see that S;(R) = @ and S3(R) =
S2. The map (z,y, z) — (y, ﬁ, ﬁ) provides an explicit diffeo-
morphism from S3(R) to the cylinder R x S, which is diffeomorphic to
the punctured plane R?\ {(0,0)}. For S4(R), note that 22 + 22 = y* — 1
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implies that y # 0. Then, S4(R) = {(z,y,2) | y > 0} I {(x,y,2) | y < 0}
is diffeomorphic to the disjoint union of two copies of R2. O

Proposition 3.20. Let p = 2>

D, = Spec(Cla, y, 2]/ (wy — 2%))

has exactly two nonisomorphic classes of real forms, which are those of
the two real surfaces

Ty = Spec(R[z,y, 2]/ (2* + y* + 2%)),
Ty = Spec(R[z,y, 2]/ (2* — y* — 2%)).

Both are pairwise nonhomeomorphic: Ti(R) consists of only one point,
while To(R) is infinite; it is a cone over S.

Proof: By Lemma 3.13 and Lemma 3.15, H'(Autc(D,)) contains ex-
actly two elements, namely the classes of 7o = (2,¥,2), 11 = (y,x,—2).
Therefore, there are exactly two nonisomorphic real forms of D,,.

To see that they correspond to the real surfaces 17, Ts, we give, for
every i = 1,2, an element 6; € GL3(C) C Aut(A2) such that 7; 0 p =
0;0po0; ", where p is the standard real form (z,y, 2) — (Z,7,%) on A},
and such that 9;1(Dp) is the complexification of Tj, i.e., is T; Xgpec(r)
Spec(C).

. The complex surface

) T 0; with 7, 0po0; =0;0p | 0F(xy — 22)
1| (y,z,—2) (x + iy, z — iy, iz) 2?2 4+ y? + 22
(l’,y,Z) (z—y,x+y,z) $2*y2*22
The equation of T; directly gives T1(R) = {(0,0,0)}, whereas To(R) is

a cone over the conic z? — y* = 2? in P2 whose set of real points is

diffeomorphic to S'. O

Proposition 3.21. Let p € R[z] be a polynomial of degree d > 3 in
reduced form and define D, = Spec(C[z,y, z]/(zy — p(2))).
(1) If H, is infinite, then p = z% and there are two cases:
(1) If d is odd, then D, has exactly two isomorphism classes of
real forms, namely those of

Spec(R[z,y, 2]/ (2* £y — 2%)).

(i) If d is even, then D, has exactly three isomorphism classes of
real forms, namely those of

Spec(R[z,y, 2]/ (2 +y* + 27)),
and  Spec(R[z,y,2]/(z* + 4% — 2%)).



GIZATULLIN SURFACES AND KORAS—RUSSELL THREEFOLDS 873

(2) If Hp is cyclic of order n, then p = 2™q(2™) for some integer m > 0
and some monic polynomial g € R[z] \ R with ¢(0) # 0, and there
are three cases:

(1) If n is odd, then D, has exactly three isomorphism classes of
real forms, namely those of

Spec(R[z,y, 2]/ (® +y* + 2" q(2"))),
and  Spec(R[z,y, 2]/ (2* £ y* — 2Mq(z™))).

(ii) If n is even and deg(p) — and thus m - is odd, then D, has
exactly four isomorphism classes of real forms, namely those

of
Spec(R[z, y, 2]/ (2* £ y* — 2™ q(£z"))).
(i) If n is even and deg(p) — and thus m — is even, then D, has
exactly six isomorphism classes of real forms, namely those of
Spec(R[z, y, 2]/ (a* +y* + 2" q(£2"))),
and  Spec(R[z,y, 2]/(x? £ y* — 2" q(£2"))).
Proof: Define
71 = (z,y,2), T = (az,ay,cz), T3 = (y,2,2),
T4 = (—y,—x,2), 5= (ay,ax,cz), 76 = (—ay,—ax,cz),

which are the 1-cocycles appearing in Lemma 3.18.

(1) Suppose that H,, is infinite. Then, D, is the surface of equation xy =
24, and by Lemma 3.18(1)-(2) we only need to consider 71, 73, and
74. In the table below, we produce, for every i € {1,3,4}, an element
0; € GL3(C) C Aut(A2) such that 7, 0 p = 6; 0 po ;' where p is
the standard real form (z,y,z) — (7,7,z) on A, and compute the
equation of the hypersurface 6, 1(Dp) C A}. Combining Lemma 3.13
with Lemma 3.18, this proves (1).

1 T 0; with T, 0po06; =0;0p 0; (vy — 2¢9)
1 (z,9,2) (+y,2—y,2) a? —y? = 2
3 (y,z,2) (z + iy, z — iy, 2) 22 % — 24
4| (~y,—z,2) (x + iy, —z + iy, 2) —(2% + % + 29

(2) Suppose that H, is cyclic of finite order n > 1. Then, D, is given by
an equation of the form xy = 2™q(2™) with m > 0 and deg(g) > 1 such
that ¢(0) # 0. Let ¢ = e2™/™ be a primitive n-th root of unity and set
a = e2™m/2n which satisfies a? = ¢™ = ¢deg(®)
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Fix a = €*™/2" and = e2™/4"_ for which a® = ¢ and o™ = —1,
and 82 = a = a™, respectively. In the table below, we produce, for
every i € {1,...,6}, an element 6; € GL3(C) C Aut(A?) such that
Tiop=20; Opoefl, where p is the standard real form (z,y, 2) — (,7, 2)
on A} and compute the equation of the hypersurface 6; 1(Dp) C Al
Combining Lemma 3.13 with Lemma 3.18, this proves (2).

i T 0; with 7, 0po080; =6;0p 0F (xy — z2™q(=z"))

1 (2,9, 2) (z+y,z—y,2) a? —y? — 2"q(2")

2 (az,ay, cz) Bz +vy), Bz —y),az) Bz — y? — 2mq(—2"))
3 (y,x, 2) (z + iy, z — iy, 2) 22 4+ 9% — 2mg (2"

4| (~y,—z,2) (z +1y, —z + iy, 2) —(@® +y* +2"q(z")

5 (ay,az, cz) (B(z +iy), Bz — iy), az) Bz +y? — 2™q(—2"))
6 | (—ay, —azx,c2) | Bz +iy), (== +1iy),az) | —=F°(2* +y* + 2"q(=2"))

O

We finalise this section by proving Theorem A, which summarises
Propositions 3.19, 3.20, and 3.21.

Proof of Theorem A: We recall that p € R[z] is a polynomial in reduced
form of degree d > 2, p(z) = z™q(z"), where m > 0, n > 1, ¢ € R]z],
q(0) # 0, and where ¢ and n are chosen such that n is maximal if ¢ # 1.
In particular, ¢, n, and m are uniquely determined by p.

First we remark that Sgp. is a real form of D), for all a,b,c € {0, 1}.
Indeed, the linear map (z + i* ly,z — %'y, z) € Aut(A) sends the
hypersurface 22 + (—1)%y? + (=1)°2™q((—1)¢2") = 0 onto that of equa-
tion zy + (—1)?2™g((—1)¢2") = 0, which is isomorphic to D, by Theo-
rem 3.2. Propositions 3.19, 3.20, and 3.21 then give the number 2 <4 < 6
of isomorphism classes together with a list of representatives.

First suppose that ¢ = 1. Then p(z) = 2% = 2™ and H, is thus
infinite. If d = 2, then Proposition 3.20 gives ¢ = 2 together with the
representatives Sgop and Si19. If d > 3, Proposition 3.21(1) gives ¢ = 2
when d is odd and ¢ = 3 when d is even. In the case where d is odd,
Proposition 3.21(1)(i) gives the two representatives Spec(R[z, y, 2] /(2% +
y? — 2z%)) = So1o and Spec(R[z,y, 2]/(z% — y? — 2%)) = Si10. Using the
isomorphism (z,y, —z): Sooo = So10, we obtain the two representatives
given in the statement of Theorem A. In the case where d is even, the
three representatives of Proposition 3.21(1)(ii) are precisely Sooo, So10,
and 5110.

Suppose now that ¢ # 1. Hence, deg(q) > 1, and as n was chosen
maximal, the group

H, = {A € C* | p(Az) = Ap(z)} = {(A2) | A € C*, A" = 1}
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is cyclic of order n by Lemma 3.17. If d = 2, then p = 22+, for some p €
R*. So (m,n) = (0,2) and the surface D, is isomorphic to D, with p’ =
22 —1 by Theorem 3.2. Hence, Proposition 3.19 gives i = 4 and provides
the four representatives Spec(R[z, y, z]/(2? £ y? + 22+ 1)). We now need
to check that these surfaces are isomorphic to the four surfaces Sy,
a,b € {0,1} that are given in the statement of Theorem A. Since these
latter are defined by Spec(R[z,y, 2]/(2® £y*+ 22+ pu)), it actually suffices
to apply the linear automorphism (£z,&y,£z) € Aut(A3), where £ =
|l

\/;d > 3, Proposition 3.21(2) specifies three different cases.

If n is odd, then ¢ = 3 and the representatives in Proposition 3.21(2)(i)
are precisely the surfaces Sygg, So10, and St1¢-

If n is even and d is odd, then i = 4 and the representatives given
by Proposition 3.21(2)(ii) are the surfaces S,1. with a,c € {0,1}. As the
map (z,y,—2) € Aut(A2) sends Su1. t0 Saoe, We obtain Su1e =~ Saoc,
and in particular S;1. >~ Sgce. This gives the result.

The remaining case is when n and d are both even. Here, ¢ = 6 and
the real forms are Sgoc, Saic, @, ¢ € {0,1} by Proposition 3.21(2)(iii). O

In Proposition 3.19, of the given complex surface, there is only one real
form whose real locus is compact and nondegenerate in the sense that
the dimension of the real locus as a manifold is equal to 2. The following
examples illustrate that we can also construct complex surfaces with
two nonisomorphic real forms having compact and nondegenerate loci.
In the first example, the corresponding manifolds are diffeomorphic. In
the second example, they are not.

Example 3.22. Choose p(z) = (22 —1)(22+4) = q(2?) with ¢(z) = (2 —

1)(z +4). By Theorem A, the surface D, = Spec(Clx, y, z]/(zy — p(2)))

admits six isomorphism classes of real forms. In particular, the surfaces
Sooo = Spec(R[z, y, 2]/ (2? + y* + ¢(2%)))

= Spec(R[z,y, 2]/ (a* +y* + (2* = 1)(2* + 4))),

Soo1 = Spec(Rlz, y, 2]/ (a? + y* + q(—2%)))

= Spec(R[z, y, 2]/ (2? + 1y + (z* +1)(2* — 4)))

are two nonisomorphic real forms of D,. As D, is smooth, their real loci
are the manifolds Spop(R) and Spo1(R). Both are diffeomorphic to the
sphere §? = {(z,y, 2) € R3 | 2% + y* + 22 = 1}, via the diffeomorphisms
S2 iSOOO(R)’ (Iayaz)}—)(IV22+47yV22+472)7
S? =5 S001(R),  (z,y,2) — (22V422 +1,2yV/422 +1,22).
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Example 3.23. Choose p(z) = (22 — 1)(2? + 1)(2% + 4) = ¢(2?) with
q(z) = (2= 1)(2+1)(#+2). By Theorem A, D,, = Spec(C|z, vy, 2|/ (zy —
p(z))) admits six isomorphism classes of real forms. In particular, the
surfaces

Sooo = Spec(Rlz, y, 2]/ (2* + y* + (%))
= Spec(Rlz,y, 2]/ («? + y + (2 = D+ D22 +4))),
Sonn = Spec(Rlz, y, 2]/ (« —q(=2%))
= Spec(R [xvy,Z]/(l’ +yP+ (2 1) - 1)(2° - 4)))
are two nonisomorphic real forms of D,,. Similarly as in Example 3.22,
Sooo(R) is diffeomorphic to the sphere S2. However, Spi;1(R) has two
connected components Uy = {(z,y,2) € Sp11(R) | 2 > 0} and U_ =
{(z,y, 2) € So11(R) | z < 0}. Hence, the two compact manifolds Spgo(R)
and Sp11(R) are not diffeomorphic. One can check that U} and U_ are

both diffeomorphic to S?, and thus that Sp;1(R) is diffeomorphic to the
union of two spheres.

4. The surfaces (A} \ {0})% and AL x (A} \ {0})

In this section, we compute the real forms of the two affine sur-
faces (AL \ {0})? and Al x (Al \ {0}). In Propositions 4.2 and 4.3,
we prove that these surfaces have respectively six and four isomorphism
classes of real forms. In the case of (A} \ {0})?, a partial result, together
with a sketch of the proof, is given in [21, Lemma 1.5 and Remark 1.6].
Our proof follows essentially the same lines.

The following well-known result is an easy exercise. We give the proof
for the sake of completeness.

Lemma 4.1. There are exactly three conjugacy classes of elements of
order 2 in GLo(Z), namely those of o1 = (é _?), o9 = (_é _(1)), and
o3 = (1)

Proof: First we prove that the involutions o1, 09, 03 are pairwise non-
conjugate. As det(oz) = 1 and det(oy) = det(o3) = —1, we only need
to prove that o; and o3 are not conjugate. If they were, we would have
a matrix M = (2%) € GLy(Z) such that (%) and (%) are eigenvectors
of o3 of eigenvalue 1 and —1 respectively. This would imply ¢ = a and
d = —b, which is impossible, as det(M) = ad — bc = —2ab ¢ {£1}.

It remains to prove that every element M € GLy(Z) of order 2 is
conjugate to o1, o9, or o3. If M # o9, then the eigenvalues of M are 1
and —1. Consider an eigenvector of M with integer entries prime to
each other and complete it to a matrix of GLy(Z) that conjugates M
to M’ = ((1)2) for some b,d € Z. Note that d = —1, since M has
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eigenvalues 1 and —1. Conjugating M’ by ((1) ’f) with p € Z, we get the

matrix ((1) b:21" ) If b is even, then M is conjugate to o;. If b is odd, then
M is conjugate to (¢ _j ), which is conjugate to o3 by (1§). O

Proposition 4.2.

(1) The affine complex curve AL\ {0} has ezactly three equivalence
classes of real structures, namely those of
p1:T—— T, p2: x»—>ffl, pP3: T —> —z L
The corresponding real forms of A{ \ {0} are the three affine con-
ics T'1,T2, T3 C A2 given by

xy—1=0,224+y>—1=0, and 2> +¢y> +1=0,

whose real loci are diffeomorphic to T'1(R) ~ R*, T'y(R) ~ S!, and
T'3(R) = @, respectively.

(2) The affine complex surface (AL\{0})? has ezactly siz isomorphism
classes of real forms, namely those of

Iy xTy, Ty x Ty, Ty x T, Ty x Ty, T's x I's, and A3\ {2 +y2 = 0}.
Moreover, the real form I's x I's is isomorphic to I's x I's.

Proof: We recall that for n > 1, the invertible regular functions on (Aé\
{0})™ are the Laurent monomials pz{* - - 2%, with u € C*, ay,...,a, €
Z. This implies that Aut((A} \ {0})™) ~ (C*)" x GL,(Z), and gives in
particular

Aut(AE\ {0}) = {X2® | A € C*, a = +1},
Aut((Ag \ {0})%) = {(az™1y™2 ba™m2ym22)
| a,be (C*v (%; m;;) € GLQ(Z)}'

We prove (1). As the complexification of T'; is a smooth affine conic
with two points at infinity, it is isomorphic to A{ \ {0}, and thus T; is
a real form of Al \ {0}. Since I'y, I'z, and I's have nonhomeomorphic
real loci, we get three pairwise nonisomorphic real forms. We now prove
that these are the only ones. We fix the standard real structure p; that
corresponds to the real form A} \ {0}, isomorphic to I'y. The description
of Aut(A}\{0}) implies that every element of Z'(Aut(A{\{0})) is either
of the form v = (ux) with u € C*, g = 1, or of the form v = (uz™1)
with € R*. In the first case, we reduce to u = 1, as H(C*) = {1}
(Lemma 2.9), and obtain the trivial real form I'y. In the second case, we
choose @ = (Ax) with A € R, A\? = ||, and obtain a lovoa = (£x71).
This gives the two real structures ps and ps, which then necessarily
correspond to I'y and T's. As I'3(R) = @ and as no x € C* satisfies
x = p3(x) = —T !, we find that p; corresponds to I'; for i = 1,2, 3.
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It remains to prove (2). We fix the standard real form p; x p; and
compute H'(Aut((AL\ {0})?)). Let v € Z'(Aut((AL\ {0})?)) be a 1-co-
cycle. As Aut((AL\ {0})?) ~ (C* x C*) x GLy(Z), the 1-cocycle v gives
rise to an involution o € GLy(Z). Up to conjugation, o is equal to pre-
cisely o of 0y = (49, o1 = (5 _2), 72 = (30, or 33 = (93)
see Lemma 4.1. These four being pairwise nonconjugate in GL2(Z), two
1-cocycles arising from two different o;, 0; are not equivalent, so we can
study each o; separately. For og, 01, and o2, we can, on each component
of the map v, apply the same reduction as we did above for Aut(AX\{0}).

If 0 = 09, then v = (A\z, puy), where A, u € C* have modulus 1. As
H'(C*) = {1}, we can reduce to the case A = p = 1, and get the real
structure p; x p1, and thus the real form I'; x I'; ~ (AL \ {0})%

If 0 = 01, then v = (A, uy~'), where A € C* has modulus 1 and u €
R*. We reduce to A = 1 and p = £1, get two real structures p; X po
and p; X ps, and thus the real forms I'y x I's and T’y x I's. These real
forms are not isomorphic, as the second one has no real points, whereas
the first has.

If 0 = o9, then v = Az~ L, uy™1), where \,u € R*. We reduce
to A, pu € {£1}, get the four real structures p; X p;, where i,j = 2,3,
and hence four real forms I'; x T';. With o = (2, zy), we obtain a~! o

-1

(—z~ ',y Yoa = (—z~',—y '), and hence an isomorphism I'y x I's —»

I's x I's. Similarly, @ = (y,z) provides an isomorphism I'y x I's —
I's x I's. As I'y x I'y has real points and I'y x I's does not, we obtain
exactly two isomorphism classes of real forms in this case.

If 0 = 03, then v = (%y,Xm), for some A € C*. With a = (%x,y), we
obtain a~! ov o@ = (y, ), resulting in the real structure p': (z,y) —
(7, 7). We use the isomorphism (AL \ {0})? = A2\ {zy = 0} — A2\
{2%+y? =0}, (z,y) = (z+y,i(z—y)). It conjugates the real structure p’
to the standard real structure (z,y) — (Z,7). The real form induced is
then isomorphic to A% \ {22 + y* = 0}. O

Proposition 4.3. The affine complex surface Af x (AE\{0}) has ezactly
four isomorphism classes of real forms, namely those of

Ag x Ty, A x Tg, Af x T3, and P} \ {z* + y* = 0},

where Ty, T'a, and T3 are the real forms of AL \ {0}, given in Proposi-
tion 4.2(1).

Proof: First, recall that Aut(AlL x (A} \ {0})) is equal to

{Oay™ + c(y), py™) | \,p € C*, m € Z, c € Cly,y ] C C(y)}.
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To obtain this, we can use the fact that every morphism AL — AL\ {0}
is constant, so any automorphism ¢ of A{ x (A} \{0}) sends a fibre of the
first projection to another fibre. Thus, ¢ is of the form (a(z,y),b(y)),
where  — a(z,y) is an automorphism of A} for every y, and where
y — b(y) is an automorphism of A{ \ {0}, since the inverse of ¢ is of the
same form.

We fix the standard real structure (z,y) — (Z,7) on A{ x (A{ \
{0}), corresponding to the real form AL x (A% \ {0}) ~ Af x I'q, see
Proposition 4.2(1), and compute H!(Aut(A{ x (AL \{0}))). We consider
the group homomorphism 6: Aut(A{ x (A{\{0})) — GL2(Z) that sends
(Azy™ + ely), py™") onto (§ 14 )-

Let v € Z ' (Aut(A{ x (AL\{0}))) be a 1-cocycle. Then, the matrix 6(v)
is an involution in the group H = {(§ £3) | m € Z} C GLy(Z). This
involution is either oo = (§9), o1 = (§_Y), o2 = (§ 1), or more
generally (§ ™) for any m € Z. Conjugating the latter by (§¢) gives
the matrix ((1) m:f“), so we may reduce to the cases of oy, o1, or os.
Since (§{) is conjugate to o2, using (? j), Lemma 4.1 implies that
the involutions o1, oo are not conjugate in GL2(Z), and thus also not
conjugate in H. We then obtain three disjoint families of real forms, up
to isomorphism, and may consider the three cases separately.

First consider the case where 6(v) = og. Thus, v = (Azx + ¢(y), py)
for some A, € C* of modulus 1 and ¢ € C[y,y~!]. Considering a~! o
voa with a = (&2,&y) where 2 = )\, €2 = pu, we may reduce to the
case where A = p = 1. Then, the 1-cocycle condition v o7 = 1 gives
c(y) +¢(y) = 0. Considering a~! ovo@ with a = (z + ¢(y)/2,y), we
further reduce to the trivial real structure, corresponding to the real
form AL x (A% \ {0}) ~ A x T'y.

We now consider the case where 6(v) = o1. Thus, v = (Az+c(y), uy~*)
for some A € C* with [A\| = 1, u € R*, and ¢ € C[y,y!]. Considering
a~tovoa with a = (&12,6y), & € C, & € R, & = ), & = |yl
we reduce to the case where A\ = 1, u € {%1}. Then, the 1-cocycle
condition v o ¥ = 1 gives ¢(y) + c(uy~!) = 0. Considering a1 ovoa
with a = (z—¢(y)/2, y), we reduce to ¢ = 0. This gives the two real struc-
tures (z,y) — (Z,77') and (z,y) — (T, —y ') and the real forms A, x 'y
and A]}g x I's. The first one has real points and the second does not, so
these are not isomorphic.

We now study the case where 0(v) = oy. Thus, v = (Azy~! +
c(y),py1) for some A\, € C*. As vo¥ = 1, we obtain \\/z = 1
and u = 7, whence p € Rsg. Considering a~! ovo@a with a = (z,£y),
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where ¢ € R*, €2 = i, we may reduce to the case where p = 1, and con-
sequently |[A|= 1. Considering a~!ovo@ with a = (ez,y), where ¢ € C*
and €2 = ), we may further assume that A = 1. Then, the 1-cocycle
condition implies ¢(y)y + c(y~!) = 0. With a = (x —¢(y)y/2,y), we get
a lovoa = (zy~t,y'). Taking the morphism A} x (A{ \ {0}) — P2,
(z,y) — [z : y : 1], we obtain the real structure p': [z : y : 2] —

[ :Z:7] on PZ\ {yz = 0}. It remains to apply the automorphism
[ :y:2] = [y+2z:ily—2) : x| of PZ which gives an isomor-
phism P2\ {yz = 0} — P2\ {22 + y? = 0}, and conjugate the real
structure p’ to the standard one. The corresponding real form is then
isomorphic to P2 \ {z2 + y? = 0}. O

5. Koras—Russell threefolds of the first kind

5.1. Automorphisms of the three-space fixing the last coordi-
nate. Throughout this section, k is a field and we denote by z, y, z the
coordinates of the affine three-space A3 = Spec(k[z,y, 2]).

Notation 5.1. Let m: A} — Al be the projection (z,y, z) — 2. Then,
denote by G, . the subgroup

Gi.: = {f € Aut(AR) | 7o f =}
= {f € Aut(A}) | f*(2) = 2}
={f € Awt(AY) | f = (Pi(z,y, 2), Po(2,y, 2), 2)
with Py, P> € k[z,y, 2|}
of all automorphisms of A] that fix the last coordinate. Note that we

have a natural isomorphism GAjy(k[z]) = Autyy, (Ai[z}) ~ G,z

We recall that the Jung—van der Kulk theorem applies to Autk(z)(Ai(z))
but not to Autyy, (Ai[z]), as shown by Nagata [22, Theorem 1.4].

Let k C K be a field extension and let f € G .. Then, for each g € K,
we can define an automorphism f|q of A% = Spec(K|xz,y]) by setting

f|q: (x,y) — (Pl(mvy’ q)?PQ(xa y?Q))'
We remark that (f|g)~ = f~!|q and Jac(f|q) = Jac(f) € k*.
Lemma 5.2. Let ¢ € C\ R. Then, the map
\IJqZ G]R,z — Aut(A%)
fr—Ffla

18 a group homomorphism whose image consists of all elements of
Aut(A2) that have a real Jacobian determinant.
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Proof: By construction, ¥, is a group homomorphism and Jac(¥4(f)) =
Jac(f) € R* for all f € Ggr. So, we only need to prove that every
element f in Aut(A?) with a real Jacobian determinant is indeed in the
image of ¥,.

(a) We prove that any element f € Aut(AZ) of Jacobian determinant 1
is in U (Gr,q). By Lemma 2.7, it suffices to consider the case where
f € Affo(C) UBA5(C).

First suppose that f is an elementary triangular map of the form f =
(z,y 4+ x™) for some integer n > 0 and some constant £ € C. Since ¢
is not real, there exist s,t € R such that sq +¢ = £ and we then have
f=U,(g) where g € Gr,, is defined by g = (z,y + (sz +t)2", z). Since
V¥, is a group homomorphism, this implies that all triangular maps of
the form (z,y + p(z)) with p € C[z] also belong to ¥,(Gr,q4)-

We now consider affine maps. We have already proved that (x,y +
Az) € U, (Gr,q) for each A € C. Let us write 0 =(—y, z) =Y, ((—y, z, 2)).
As SLy(C) is generated by (§ 7§) and by {(19) | € C}, we can in-
fer that every element (az + by, cz + dy) with (2Y) € SLy(C) belongs
to Uy(GRr,q). As the translations are generated by ¢ and by (z,y + v)
with v € C, every element of Aff3(C) of Jacobian determinant 1 lies
in U, (Gr,q). With the above, we can deduce that any element of BA,(C)
of Jacobian determinant 1 is also in Wy(Gr,q), as it is of the form (az +
b, %y +p(x)) with a € C*, b € C, and p € C|z]. This shows the claim.

(b) Let f € Aut(A2) be such that Jac(f) € R*. We consider the map v =
(va,y) = U,((ve,y,2)), where v = Jac(f). As v~ ' o f € Aut(AZ) has
Jacobian 1 and f =y o (y~! o f), we conclude with (a). O

Lemma 5.3. The following propositions hold true.

(1) Let v € Clz,y] be a variable and let ¢ € C\ R. Then, there exists
f=(Pi(z,y,2), Po(x,y, 2), 2) € Gr,, such that v = Pi(z,y,q).
(2) Let v € R[z,y] C Clz,y] be a variable of Clx,y] and let ¢ € R.
Then, there exists f = (P1(z,vy, 2), P2(x,y, 2), 2) € Gr» such that
U= Pl(xvy7q)'
Proof: (1) Suppose that v € Cx, y] is a variable. Let w € C[z, y] be such
that ¢ = (v, w) is an automorphism of A(Qc. Replacing w with éw for
some £ € C*, we may assume that Jac(p) = 1. Then, for any ¢ € C\ R,

there exist by Lemma 5.2 polynomials P;, P, € R|x,y, 2] such that the
automorphism

f = (P1($7 Y, Z)7 PQ(xa Y, Z)a Z) € GR7Z
satisfies f|g = ¢. In particular, v = Py(x,y,q) as desired.
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(2) It is a well-known fact that a polynomial v € R[z,y] is a variable
of R[x,y] if and only if it is a variable of Clx,y]. For instance, this
is an immediate consequence of [25, Theorem 3.2]. Hence, there exists
w € Rz, y] such that (v,w) € Aut(A%) and the result follows. Indeed,
the map f = (Pi(z,y,2), P2(z,y,2),2) € Gr,, with Py(z,y,2) = v(z,y)
and Py(z,y,2) = w(z,y) satisfies v = Py (z,vy, q) for any ¢ € R. O

Proposition 5.4. Consider the standard real structure p: (z,y,z) —
(7,9,Z) on A. Then, the first Galois cohomology set of Gc,. =~
Autcp) (AZy,)) = GAz(C[2]) is trivial:

H'(Autc (AZ) = {1}.

Consequently, every real structure p on A} that makes commutative the
diagram

AR — 5 A3

I I

AL —Z2Z 4 Al
s equivalent to the standard real structure p.

Proof: Let v € Z'(Gc,,) be a 1-cocycle, that is, an element v € Gc .
such that v o7 = idys. We need to show that there exists f € Gc,. such
that v = f~1o f.

Consider Gc  as a subgroup of Aut(A% ), where K = C(z) and A% =
Spec(K[z,y]). Since H'(Auty (K|x,y])) = 1 by [16, Theorem 3], there
is an element f € Aut(c(z)(A%(z)) such that v = f~!o f. In other words,
there exist f1, f2, 91, g2 € C(2)[z,y] such that

£ AL > A2
(x,y,z) — (fl(:c,y,z),fg(m,y7z),z)
and
g=f"1: A% - A%
(CE, Y, Z) — (gl(x7 Y, 2)792(1:7 Y, Z)? Z)
are inverse birational maps and v = f~! o f.

We may actually assume that f; and fo are both elements of
Clz,y, z]. Indeed, there exists ¢ € R[z] \ {0} such that ¢(z)f1(z,y,2)
and ¢(z) f2(x, y, z) belong to Clx,y, 2], and the equality v = f~1 o f re-
mains true when we replace f with v o f, where v € Bir(A2) is defined
by (z,y, z) — (c(2)z, c(2)y, z), because 7 = ~.

Let us write g; = Z— for each ¢ = 1,2, where h; € Clz,y,2| and
a; € C[z] \ {0} are without common factors.
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If deg(a; - a2) = 0, i.e., if a1 and ag are nonzero constants, then
g is a morphism too. In this case, f is in G¢ . and we are done. If
deg(ay - ag) > 1, we proceed by decreasing induction on deg(a; - ag).
To prove the proposition, it suffices to find a suitable birational map
¢ € Bir(A2) with the following four properties:

“(2) =

1) ¢
2) all components of po f are in (C[o: Y, 2];

3) ¢ = @, which implies v = (po f)~ o (po f);

4) the degree of the product of the denominators appearing in the
components of (o f)~! is strictly smaller than that of a; - as.

(
(
(
(

So, suppose from now on that deg(a; - az) > 1 and let ¢ € C be such
that ai(q)az(q) = 0. Without loss of generality, we may assume that
ai(q) = 0. Since go f = idys, we then obtain that

al(z)‘r = hl(fl(xv Y, Z)v fQ(xa Y, Z)a Z)
and thus that the equality

() hi(fi(x,y,q), f2(2,y,49),q) =0

holds in Cl[z,y].
For each p € AL, we consider the set Ay, C A} defined by

Agp={(fi(@,y,p), f2(x,y,p),p) | (x,y) € AZ} = F(AZ x {p}).

We remark that applying the complex conjugation to the set Ay, gives
(@) App=Asp

for all p € C. Indeed, as v = f~' o f, we have fov = f = po fop and
therefore

Arp=p(Ayyp) = pof(AZx{p}) = fovop(AEx{p}) = f(AEx{P})=Atp.

We shall prove later that if Ay, with ai(¢g) = 0 as above, is not a
point, then it is isomorphic to A<1c~

(a) Let us first consider the case where the set Ay, is a point. Then,
there exist 71,72 € C such that Ay, = {(r1,72,¢)} and Ry, Rs € C[z,y, 2]
such that

fi(xay?z) =T + (Z - q)Rz(xay7Z)
for both i =1, 2.
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(al) Suppose now that ¢ € R. By the equality (©), we then have that
71,79 € R. Therefore, the birational map

T—T1 Y—To .3
_ YT ) eBin(A
o= (L0122 5) e Buad)

satisfies ¢ = P and we compute
¥ o f = (Rl ($7 Y, Z)7 RQ(J:’ Y, Z)v Z)
The inverse map of ¢ o f is given by

hi(z(z —q) +711,9(2 —q) +72,2)

o= (

a1(2) ’
ho(z(z — q) +71,y(2 — q) + 72, 2) z>
as(2) )
_ E1(:L‘,y,z) ﬁ2($7y7z) .
ar(z) 7 a(z) 7]

where 711,712 € C[z,y, z]. We obtain that

Y (®)
hl(%y,Q) = hl(ﬁﬂ”QaQ) = hl(f1(3371/7Q)7fz(xayaQ)7Q) = U

Therefore, El(aﬂ, Yy, z) is divisible by (z —¢q) and the map ¢ fulfils the four
desired properties (1)—(4).

(a2) We now consider the case where ¢ ¢ R. For each i = 1,2, we
define two real numbers s; = % and t; = @. Then, the poly-
nomials p;(z) = s;z + t; € R[z] satisfy that p;(¢) = r; and p;(q) = 7.
We recall that the equality f;(z,y,q) = r; holds true in C[z,y]. Simi-
larly, it follows from (Q) that f;(z,y,q) = 7;. Therefore the polynomi-
als fi(z,y, z) — s;z —t; are divisible by (z —¢)(2—q) € R[z]. This implies
that the birational map

S x—s12—11 y—s:z—t .
@‘<@—@@—@’u—@@—@’>
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satisfies ¢ = @ and that all components of o f are elements of Clz, y, z].
Moreover, the inverse map of ¢ o f is then given by

(pof) = (hl(az(zq)(zq)+slz + le,é()zq)(z@ 522t 2)
hﬂx@—qu—q}+ﬁz+h,Mz—qﬂz—@—%&z+%%z)Z)
as(z) ’

o El(xayaz) Eg(:c,y,z)
- Y ’Z b
a1(z) az(z)
where 711,77,2 € Clz,y, z]. We obtain the two equalities
5 (W)
hl(xa y,Q) = hl(Tl,T’Q, C]) = hl(f1($7y7 Q)7 fQ(xaya Q)7 (Z) = 07

711(33,2/,(]) hl(""lﬂ'Q, ) hl(fl(x Y, q ) fQ(x,y’q)7q) (g) 0.

Therefore, h (x,y, z) is divisible by (z—¢)(z —¢) and the map ¢ fulfils
the four desired properties (1)—(4).

(b) We now proceed with the case where A, is not a point. For every p €
Al and every variable u € C[z,y], we define the curve

Ly ={(z,y,p) € A | u(z,y) = 0} = Af.
By Lemma 2.6, there exists a variable v € C[z, y] such that hy(z,y,q) €
C[v]. Note that hi(z,y, ¢) is not the zero-polynomial because h; and a;

were chosen without common factors. Setting p € C*, m > 1, and
&1, -, &n € C such that

hi(z,y,q) MH v(x,y) - &) € Cla,y,

it then follows from (&) that there exists 1 < i < m such that the
equality

v(fi(z,y, ), f2(,9,9)) =& =0
holds true in C[z, y]. Therefore, the set Ay 4 is contained in the curve I'g 4,
where w = v — &. As a nonconstant morphism A% — Al is surjective,
and since Ay 4 is not a point, this implies that

Apy=T4w =~ AL

We now prove that we can assume that w € Rz, y] if ¢ € R, so that
we may apply Lemma 5.3. Indeed, suppose g € R. In this case, we have

Q
Ajq © Arg=Aygq Thus, I'y = I'qw. As both polynomials w and w
are variables, they are irreducible. Since their zero-sets are equal, there
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exists a constant p € C* such that w = pw. It then follows that w =
AW = [uw = ppw, whence g = 1. As H*(C*) = {1} by Lemma 2.9, we
may choose 1 € C* with /7] = p. The variable w’ = nw then satisfies
w = 7w = Huw = w and Aj, = Iy, Thus, we may replace w
by w’ € R[z,y] if necessary, as desired.

By Lemma 5.3, there exists an element ¢ = (Py(x,y, 2), P2 (x,y, 2), 2)
in Gg,, such that Pi(z,y,q) = w. Observe that ¢)(I'y ) C I'q ;. As these
two curves are isomorphic to A(}:, they are actually equal, i.e., (T ) =
I'y,». We may thus replace f with 9 o f and suppose that Ay, = I'y ..
Note that, as 1) € Gr,; is defined over R and is an automorphism, the
equality v = f~' o f is preserved when replacing f with ¥ o f, and
we do not change the denominators a1, as appearing in the expression
of the inverse of f. Moreover, the fact that Ay, = I'; , implies that
fi(z,y,q) = 0, or, equivalently, that z — ¢ divides f1 in C[z,y, z]. We
note that in the case where ¢ ¢ R, we also have Az = Af, = I'ga,
and so (z — q) also divides f;. Defining u(z) = z — ¢ if ¢ € R and
w(z) = (z—¢q)(z — 9 if ¢ € R, we thus get a polynomial u € R]z]
with u(q) = 0 that divides f.

Finally, since the birational map ¢ € Bir(A) defined by ¢: (z,y, ) —
(ﬁ,y,z) satisfies the four properties (1)—(4), we can conclude the
proof. O

Corollary 5.5. Taking the standard action of Gal(C/R) on Clz,y, 2],
we obtain

Hl(Aut(C[z] ((C[SU, Y, Z])) = {1}
Proof: The map f ~— (f~!)* defines an isomorphism between the
groups Gc,. and Autcp,)(Clz,y, 2]). As the action of Gal(C/R) on both
groups is compatible with this isomorphism, H 1(Aut(c[z] (Clz,y,2]) =
{1} then follows from H(Gc.) = {1}. O
Question 5.6. Do we have H'(Autcy, ) (Clz,y, z,w])) = {1}?
Lemma 5.7. Let r > 1 and let
G, ={f € Autcy(Clz,y,2]) | f =id (mod 2")}.
Taking the standard action of Gal(C/R) on Clx,y, 2], we obtain
HY(G,) = {1}.

Proof: (a) First we prove the result in the case where r = 1. Let v €
ZY(G1). By Corollary 5.5, there exists « € Autcr,)(Clz, y, 2]) such that

v=aloa. Since aov =a and since v =id (mod z), we have that
a=a (mod z).
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Denoting a(z) = a(z,y,2) and a(y) = b(z,y,2), we can define an
automorphism ¢ € Autcp,)(Clz,y,2]) by letting ¢(z) = a(x,y,0) and
o(y) = b(z,y,0). Note that ¢ = o (mod z) and that g = ¢.

Thus, 8 = ¢! o « defines an element in G; and we check that

flof=altopoploa=alopop loa=aloa=r
Hence, H'(G;) = {1} is proved.

(b) We prove the lemma for every r > 2 by induction on r. We fix r > 2
and suppose that H'(G,_1) = {1} holds. Let v € Z}(G,). We want
to find an element 3 € G, such that v = 8~ o 3. By our induction
hypothesis, there exists o € G,_; such that v = o~ ! o @.

Now, it suffices to construct an element ¢ € Autc(,)(Clz,y, 2]) with
@ = p such that ¢ = a (mod 2"). The lemma will indeed follow since
the automorphism 3 = ¢! o ar is then in G, and satisfies

57103:071 ogpopoa:oflocpogp’l oazofloazy,
as desired.

Let a,b € C[z,y] be such that a(x) = z + 2" ta(z,y) and a(y) =
y+2""1b(x,y) (mod z"). Since aov =@ and v = id (mod 2"), we have
that a(z,y) and b(x,y) both belong to R[z,y]. Therefore, « induces
an endomorphism & € Endgp,j/(.r)(R[2]/(2")[z,y]) defined by a(x) =
r+2""ta(z,y) and a(y) = y+ 2"~ 'b(z,y). In fact, & is an isomorphism.
Indeed, one can check that its inverse map is simply defined by a~1(x) =
x — 2" ta(x,y) and a~1(y) = y — 2" 1b(x,y). Moreover, the Jacobian
determinant of & is equal to 1 € R[z]/(2") because & = o (mod z") and
Jac(a) =1 € R[z].

By the main result of [24], there thus exists ¢ € Autgp,)(R[z][x, y])
with ¢(z) =z + 2" La(x,y) = a(x) and ¢(y) = y + 2" b(z,y) = a(y)
(mod 2"). This concludes the proof. O

5.2. Real forms of Koras—Russell threefolds of the first kind.
The Koras—Russell threefolds of the first kind are the hypersurfaces Xg ¢
in A defined by an equation of the form z%y + 2% 4+ z + t* = 0, where
d > 2and 2 < k < ¢ are integers with k& and ¢ relatively prime. Their
automorphism groups are computed in [10, 20]; see also [11], where the
following notations are introduced. We fix the integers d, k, ¢ as above,
and denote by A C Autc(C[z, 2,t]) the subgroup of all automorphisms
of C[x, z,t] that preserves the ideals (z) and (29, 2% + z + t¢). For ev-
ery 1 < n < d we further denote by A,, the normal subgroup of A defined
by
An={feA| f=id mod (z")} C Autcp,)(Clz, 2,1]).
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Proposition 5.8 ([20]).
(1) Aut(c(Xd,k,g) ~ A.
(2) A~ Ay x C*, where C* acts on Clz, z,t] by
a-P(z,z,t) = P(a*x, a2, a"t)
for alla € C*, P € Clz, 2,t].
(3) A,41 is a normal subgroup of A, and A,/ An+1 ~ (Clz,t],+) for
alll<n<d-1.

Moreover, the above isomorphisms are compatible with the natu-
ral action of Gal(C/R) on C* and on the polynomial rings Clz,t] C
Clz, z,t] C Clz,z7 1y, 2,t], where we see the ring C[X 4] of regular
functions on X, 5 ¢ as the subalgebra of Clz, 27!, 2, ¢] that is generated
by x, z, t, and y = — (2" + 2 + t*)/z%. We may now prove Theorem B.

Proof of Theorem B: By Proposition 5.8(3), we have a subnormal series
{1} <Ag<Ag_14-- <A1 < A,
where A, /An+1 =~ (Clz,t],+) for each 1 < n < d— 1. We may write
the latter isomorphism in the form of a short exact sequence of group
homomorphisms
{1} — A1 — A, — (Clz, t],4+) — {1},
that gives rise to a short exact sequence of homomorphisms of pointed sets
{1} — H'(Anpr) — HY(A,) — H'(Cl,1]) — {1)
(see for example [3, Proposition 1.17.]). Observe that
Ag = {f € Autcy)(Clz,2,t]) | f=id  mod (z%)},

for which Lemma 5.7 implies that the first cohomology pointed set H(Ay)
is trivial. Since, by Lemma 2.9, H'(C|[z,]) is trivial, H*(A4_1) is too.
By repeating the same argument, we see that the triviality of H!(A,11)
implies that of H'(A,). Hence, we successively find that all cohomology
pointed sets H'(Ag), ..., H'(A;) are trivial.

Now, by Proposition 5.8(2), we again obtain a short exact sequence
of group homomorphisms

{1} - A4 —A—C" — {1},
and thus a short exact sequence of homomorphisms of pointed sets
{1} — HY(A)) — H'(A) — HY(C*) — {1}.

As H(A;) = {1} by the preceding argument, and since H!(C*) is trivial
by Lemma 2.9, we can deduce that H*(A) is trivial.

Therefore, H' (Autc(Xax,¢)) is also trivial and we obtain that all real
forms of Xy 1 ¢ are isomorphic to the standard one. O
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Remark 5.9. The so-called Koras—Russell threefolds of the second kind
are the hypersurfaces in A defined by an equation of the form r+y(zd+
z‘“)e +t* =0, where d > 2, £ > 1, and a3 > as > 2 are integers with
ged(asg, d) = ged(az, az) = 1. Their automorphism groups are computed
in the main theorem of [23]. If X is such a threefold, then Aut(X) is iso-
morphic to a semi-direct product of two of its subgroups. One subgroup
is isomorphic to C*, the other one to (C[z, z], +). Moreover, as in the
case of Koras—Russell threefolds of the first kind, all isomorphisms are
compatible with the natural action of Gal(C/R). Therefore, arguing as
in the proof of Theorem B, it follows that every Koras—Russell threefold
of the second kind admits a unique (up to isomorphism) real form.
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