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Introduction

Let ¢ be a complex projective manifold. Létbe a rational or holomorphic map an . When we iterate this
map we obtain a “dynamical system”: a pomof # moves top; = f(p), then top, = f(p1), to ps = f(p2)

... Sof “induces a movement om ”. The set{p, p1, p2, ps, ...} is theorbit of p.

Let A be a smooth cubic in the complex projective plane defined bdyoamogeneous equation with rational
coefficients; assume tht contains at least a point with rational coordinates. Up tnaar change of
coordinates (with rational coefficients) suclaan be described by

V2z= 4+ axZ + b7, abecQ.

The set of complex solutions of this equation isi@®ANN surface which is holomorphically diffeomorphic
to the quotientC/A whereA is a cocompact lattice 4, 43). Let us denotéd(C) the quotientC/A. We can
choose the isomorphism such that the class of© moduloA corresponds to the poig® : 1 : 0) of A. Thus
A(C) has a structure of additive group induced(lty +) for which (0: 1: 0) is the identity element. Under
these assumptions 1, p2, ps are three points oA(C) thenp; + p2+ ps = 0 if and only if p1, p2, ps are
aligned inP?(C). Let A be a projective manifoldA is anAbelian varietyof dimensiork if A(C) is isomorphic
to a compact quotient .

Multiplication by an integem > 1 on an Abelian variety, endomorphisms of degitee 1 on projective spaces
are studied since XIXth century in particular byLJa and FAToU ([2]). These two families of maps “have
an interesting dynamic”. Consider the first case;flgtlenote the multiplication byn. Periodic points offy,
are repulsive and dense &(C) : a point is periodic if and only if it is a torsion point & the differential
of f" at a periodic point of periodh is an homothety of ration” > 1. Around 1964 ALER, KONHEIM
and McCANDREW introduce a hew way to measure the complexity of a dynamigstes: the topological
entropy (fL]). Let X be a compact metric space and febe a continuous map frofd into itself. Letn be
a positive integer and letbe a real number strictly positif. Two pointsandy of X have the same orbit of
periodn with precisiong if

dist(f! (x), f1(y)) <e, vo<j<n
Assume that is fixed; asn — 4o the number of orbits which can be distinguished grows at mgsbonen-

tially. The topological entropyhp( f) measures this exponential growtheas: 0. For an isometry oKX the
topological entropy is zero. For the multiplication byon a complex Abelian variety of dimensidnwe
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have: lyp(f) = 2klog m. For an endomorphism @*(C) defined by homogeneous polynomials of degtee
we have: kyp(f) = klog d (see[24]).

Let o be a complex projective manifold. On which conditions déoral maps with chaotic behavior exist ?
The existence of such rational maps implies a lot of congsainas :

Theorem 0.1([4]). — A smooth complex projective hypersurface of dimensiontgréhan 1 and degree
greater than2 admits no endomorphism of degree greater tthan

Let us consider the case of compact homogeneous manifoldthe group of holomorphic diffeomorphisms
acts faithfully onas and there are a lot of holomorphic maps on it. Meanwhile ia tantext all endomor-
phisms with topological degree strictly greater than 1 cdram endomorphisms on projective manifolds
and nilvarieties.

So the "idea” is that complex projective manifolds with rpblynomial dynamic are rare; moreover it is not
easy to describe the set of rational or holomorphic maps o swanifolds.

Acknowledgment. — I would like to thank D. &RvEAU for fruitful and helpful discussions. | also thank J.-
L. LiNn for comments and references. Thanks toBIVAUX for the explanation about the result oANATA.
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1. Some dynamic

1.1. SvALE horseshoe. —The SVALE horsehoe is the hallmark of chaos. Let us describe whatseis {or

examplg40]). Consider the embeddinfjof the discA into itself. Assume that
— f contracts the semi-disd§A) and f (E) in A;
— f sends the rectanglésandD linearly to the rectangle$(B) and f (D) stretching them vertically and
shrinking them horizontally, in the case Dfit also rotates by 180 degrees.
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We don't care what the imagg(C) of C is as long asf (C) N (BUCUD) = 0. In other words we have the
following situation

W O| O m
@
o

>

There are three fixed pointsp € f(B), g € A, s€ f(D). The pointsq is a sink in the sense that forall
ze AUCUE we haven_l>i£n f"(z) = g. The pointsp ands are saddle points if m lies on the horizontal

throughp then f" squeezes it tp asn — +o, while if mlies on the vertical throughp then f " squeezes it
to pash — +. In some coordinates centeredpiwe have

v(xy) €B, foy) = (kxmy)
for some O< k < 1 < m; similarly f(x,y) = (—kx,—my) on D for some coordinates centeredsaT he sets
W? = {z| f"(z2) — pasn — +o}, WY = {z] f"(z) —» pasn— —oo}

are calledstableandunstablemanifolds ofp. They intersect at, which is what ®INCARE called ahomo-
clinic point Homoclinic points are dense fme A| f"(m) e A,ne Z}.
The keypart of the dynamic df happens on the horseshoe

N={z|f"(z7 eBUD VYne Z}.

Let us introduce shift map on the space of two symbols. Takedynbols 0 and ,land look at the set
3 = {0,1}* of all bi-infinite sequencea = (an)ncz Where, for eac, a, is 0 or 1 The mapo: T — 3 that
sendsa= (a,) to o(a) = (an+1) is @ homeomorphism called tis@ift map Let us consider the itinerary map
i: A — Z defined as followsi(p) = (sh)nez Wheres, = 1 if f"(p) is in B ands, =0 if f"(p) belongs tdD.

The diagram

s 2.5

|l li

A—o A
commutes so every dynamical property of the shift map isgesexl equally by|,. Due to conjugacy the
chaos ofo is reproduced exactly in the horseshoe: the midm@s positive entropy: log 2; it had periodic
orbits of periodn, and so must be the set of periodic orbitsfgf.
To summarize: every dynamical system having a transvensmtliic point also has a horseshoe and thus
has a shift chaos, even in higher dimensions. The mere egestef a transverse intersection between the
stable and unstable manifolds of a periodic orbit impliesoeséshoe; since transversality persists under
perturbation, it follows that so does the horseshoe and ss the chaos.
The concepts of horseshoe and hyperbolicity are relatethelmescription of the horseshoe the derivative
of f stretches tangent vectors that are parallel to the veditdlcontracts vectors parallel to the horizontal,
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not only at the saddle points, but uniformly throughdutin generalhyperbolicityof a compact invariant set
such as\ is expressed in terms of expansion and contraction of theadise on subbundles of the tangent
bundle.

1.2. Two examples. —Let us consideP.(z) = 2 + c. A periodic pointp of P, with periodn is repelling if
|(P2(p))'| > 1 and the OLIA setof f is the closure of the set of repelling periodic poinis.is a complex
horseshoe if it is hyperbolid.€é. uniformly expanding on theuliA set) and conjugated to the shift on two
symbols. The MNDELBROT set Mis defined as the set of all pointsuch that the sequen¢Bl(0)), does
not escape to infinity

M={ceC|3IseR,VneN,|P}0)| <s}.
The complex horseshoe locus is the complement of theilMELBROT set.
Let us consider the ENoN family of quadratic maps
fap: R? — R, fan(X,y) = (X* +a—by,x).

For fixed parametera andb, f, define a dynamical system, and we are interested in the waythba
dynamic varies with the parameters. The paramieisrequal to detjat,; whenb = 0, the map has a one-
dimensional image and is equivalentRg As soon ad is non zero, these maps are diffeomorphisms, and
maps similar to ®IALE’s horseshoe example occur wher: < 0 (see[13]).

In the 60’s it was hoped that uniformly hyperbolic dynamisgétems might be in some sense typical. While
they form a large open sets on all manifolds, they are notedefbe search for typical dynamical systems
continues to be a great problem, in order to find new phenomenay the framework of complex compact
surfaces.

2. Some algebraic geometry

2.1. Compact complex surfaces. —A proper modificationis a proper surjective holomorphic map whose
generic fiber is a point. Let be a compact complex surface and febe a point ofz; the blow-upof z
at p is the proper modification: Bl,z — z which replaces with the setrt1(p) ~ P1(C) of holomorphic
tangent directions gb and is a biholomorphism elsewhere. The rational carvl p) is calledexceptional
divisor. An irreducible curve is saidxceptionalif it is the exceptional set for some blow-up. dfis a curve
throughp, thenC =T1-1(¢ \ {p}) is thestrict transformof ¢. The blow-ups play an important role as we can
not in the following statement.

Theorem 2.1 — Any proper modification between compact complex surfacascemposition of finitely
many blow-ups.

Let x, z be two compact complex surfaces.meromorphic majis defined by its graph (f) C x x z, an
irreducible subvariety for which the projection: I'(f) — x is a proper modification 20]). The mapf is
dominatingwhen the second projectian: I'(f) — z is surjective. Théndeterminacy se the finite set of
points wherar does not admit a local inverse; we will denote it lind_et Excri be the set of points where
Tk is not a finite map; thexceptional setf f is given by Exd = 1y (ExcTn).

Whenf: x --» z admits a meromorphic inverse, we say tfias bimeromorphic If f is a bimeromorphic
map andl a desingularization of its graph, then the two induced pt@esm: N — x, T™: I — z are
proper modifications and Theorem 2.1 implies the followitegesment.
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Theorem 2.2 — Any bimeromorphic map :fx --» z between smooth compact complex surfaces can be
written as composition £ f;... fy where fis either a blow-up, or the inverse of a blow-up.

Let z be a compact complex surface divisor E onz is a linear combinatiofy ¢;c; wherec; is an irreducible
curve (singular or not) and an element ofZ.. The two divisors D and Darelinearly equivalentif D — D’
is the divisor of a rational functiori, in other words if D— D’ is the set of zeroes of a rational functidn
minus the poles. If D and Tare linearly equivalent, we will denote it® D’. The RCARD groupof z, deno-
ted Picz, is the quotient group of divisors modulo linear equivalen€e and¢’ are two distinct curves on
z,thenc - ¢’ is the number of intersections counted with multiplicitgte that in this case - ¢’ > 0. We
can naturally extend this definition to give a sense to thergetction of two divisors; one particular case is
the self intersection, we denote D by D?. This intersection number satisfies the following propstrtie
—ifD~D’ thenD-D”" =D’'-D”;
— if m: Blpz — z is the blow-up ofpin z and E the exceptional divisor, then

™D -wD' =D-D, E-tD=0, E2=—1, c?=c?-1

wherec is the strict transform of a curve throughp.
We have a criterion to detect exceptional curves.

Theorem 2.3 CASTELNUOVO''s criterion) . — An irreducible curvec C z is exceptional if and only if it
is a smooth rational curve of self-intersectieri.

To any surfacez one associates its@ BEAULT cohomology groups H4(z) and the cohomological groups
H¥(z,Z), H¥(z,R) and H(z,C). Set H;'(z) = HYY(z) NH%(z,R). Let f: x --» z be a dominating
meromorphic map between compact complex surfates,desingularization of its graph and, 13 the
natural projections. A smooth formin ¢, (z) can bepulled backas a smooth formza € ¢ (I") and then
pushed forward as a current. We defifieby

ffa = m, %0

which gives a . form on x that is smooth outside Ind The action off* satisfies: f*(da) = d(f*a) so
descends to a linear action oroDBEAULT cohomology.
Let {a} € HPY9(z) be the DbLBEAULT class of some smooth form We set

{0} = {mu.1a} € HP9(x).

This defines a linear map* from HPY9(z) into HP9(x ). Similarly one can define thpush-forward f =
TR, TG from HPA(x ) into HPY9(z). When f is bimeromorphic, one hak = (f~1)*. The operation(a,B)
[a A B on smooth 2-forms induced a quadratic intersection fored@roduct intersectiondenoted., .)
on H(z,C). Its structure is given by the following fundamental statetne

Theorem 2.4([3]). — Letz be acompacKAHLER surface and leb’! denote the dimension bit1(z,R) C
H?(z,R). Then the signature of the restriction of the intersectioadoict toH>(z,R) is (1,h** —1). In
particular, there is n®-dimensional linear subspadein H-(z,R) with the property thatv, v) = 0 forall v
inL.

Theorem-Definition 2.5[15]). — Let f: z — z be a dominating meromorphic map oiK&HLER surface
and letw be aKAHLER form. Then f is algebraically stable if and only if any of teddwing hold:

— for anya € HYY(z) and any k inN, one hag f*)ka = (f¥)*q;

— there is no curve in z such that f(¢) c Ind f for some integer k> 0;

— for all k> 0 one has( f)*w = (f*)kw.
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2.2. Projective plane and blow-ups of the projective plane— A rational mapfrom P?(C) into itself is a
map of the form

(X LYy Z) - (fo(X,y,Z) : f]_(X,y,Z) : fz(X,y,Z))
where thef; are homogeneous polynomials of the same degree without corfamtor.

A birational mapis a rational map which admits an inverse of the same typeBlr¢P?) denote the group
of such maps; it is also calledREMONA group.

Examples 2.6 — — Each element of A(@P?) = PGL3(C) is a birational map.
— The mapo: P?(C) --» P?(C), (x:y:2) — (yz: xz: xy) is a rational map; in the affine chart= 1 one
11

haso = (;, )—/> . One notes that is an involution; in particulao is birational.

Example 2.7 — A polynomial automorphisrof C? is a bijective application of the following type
f: CZ_)CZa (Xay) = (fl(xay)afZ(Xay))a fi GC[Xay]'

Thedegreeof f = (f, f2) is defined by ded = max(degfi,degfz). The set of the polynomial automorphisms
is a group denoted A[E?].

The map
C? - C?, (X,y) — (a1x+ bry+ c1,aX+ boy + ), a, by, ¢ eC,aby—ah; #0
is an automorphism df2. The set of all these maps is théfine groupA.
The map
C*—C?, (x,y) = (ax+P(y), By +V), a,B,v,ap#0,PeCly

is an automorphism df?. The set of all these maps is a group, #ementary grou.
Of course

S=ANE= {(a1x+ b1y + ¢y, by + Cz) | g, b,ceC, aby # 0}
is a subgroup of AUC?].
The group AuC?] has a very special structure.
Theorem 2.8[29]). — The groupAut[C?] is the amalgated product @ andE along$S :
Aut[C?] = A xsE.

In other wordsA and E generateAut[C?] and each element f iAut[C?]\ S can be written as follows

f=(a1)er...an(en), 6 €E\A, g €A\E
Moreover this decomposition is unique modulo the followilgtions
ae = (as)(s 'a), a-13 = (6_15)(s &), sses

From a dynamical point of view affine automorphisms and etearg automorphisms are simple. Neverthe-
less there exist some elements in Klﬁ] with a rich dynamic; this is the case ofeNON automorphisms
automorphisms of the type

0g1...9p0 1, b € Aut[C?), gi = (y,R(y) — 8ix), B € C[y], degh, > 2, & € C*.
cA\E cE\A

—~ N ——
Note thatgi :(y7X) (—6iX—|— Pl(y)vy) :
Using UNG's theorem, RIEDLAND and MILNOR proved the following statement.



AN INTRODUCTION TO AUTOMORPHISMS WITH POSITIVE ENTROPY ON GMPACT COMPLEX SURFACES 7

Proposition 2.9[21]). — Let f be an element &ut[C?].
Either f is conjugate to an elementBf or f is a HENON automorphism.

The polynomial automorphisms 6P can be viewed as birational mapsR#(C), in other words AutC?] is
a subgroup of Bi{P?).
Exercise 2.1 — Let# be the subset of A{{f?] defined by
9 ={f = (y,P(y) — ) |P(y) =y + pv_2y’ 2+...4+ po,v>28ec C}.
— Show that the jacobian of an elemdnof # is , and in particular it is constant.
— Show that the degree of the first (resp. second) componefitiefd"* (resp.d").
— Consider the dilatiod(x,y) = (ax,ay) by a and the translatiot(x,y) = (x+ ,y+ B) by B. Show that
if fisin s, then the conjugated fd—1t~ has the form of an element of except that the coefficient
of y? is an arbitrary nonzero number, and the coefficientiof is arbitrary.

— If f is an element ofy, its inverse is not. Let be the involution defined by(x,y) = (y,x). The
conjugatet f ~1t has the form of an element of , except thaP is not monic.

Thedegreeof a birational magf < Bir(P?) is equal to the degree of tHgs. This is not a birational invariant,
but the degree growth is: forafl, g in Bir(IP?) there exist two strictly positive constaridsandp such that

adegf" < deg(gf"g™?) < Bdegf".
So we introduce the birational invariant defined by
— limi n1/n
A(f) = Imﬂ(degf )
which is calledfirst dynamical degreef f.

Exercise 2.2 —  — Find the first dynamical degree of an element of (Rdj.
— Find the first dynamical degree of P?(C) --» P?(C), (X:y:2) --» (yzZ: XZ: Xy).
— Find the first dynamical degree of an elementary automsnplaif C2.
— Find the first dyamical degree of theeNON automorphism(y, P(y) — 8x) with & in C*, P in CJy],
v =degP > 2.

Let f = (fo: f1: f) a birational map oP?(C). Theindeterminacy sedf f is the set
{me PA(C)| fo(m) = f1(m) = fo(m) = 0}.

Theexceptional sebf f is given by the zeroes of detjéc

Exercise 2.3 — Let f be an element of A@P?); check that Ind = Excf = 0.

Exercise 2.4 — — Consider the birational map given by P?(C) --» P?(C), (x:y: 2) --+ (yz: XZ: Xy);

describe Indy and Exa.

— Consider the birational map given lpy P?(C) --» P2(C), (x:y:2) --» (xy: 2 : y2); describe Ing
and Ex@.

— Consider the birational map given byP?(C) --» P2(C), (x:y: z) --» (X2 : xy: y> — x2); describe Ind
and Exa.

— Are there some relationships between the exceptional sebioational map off and the degree df?

— Are there some relationships between the indetermicayf sebirational map of and the degree df?

Exercise 2.5 — — Let f be the HENON automorphism(y,P(y) — dx) with & in C*, P in Cly], v =
degP > 2; the mapf can be viewed as a birational map, describeflagid Excf.



8 JULIE DESERTI

— Let f be an elementary mapix+ P(y),By+ 0) with a, B, yin C, ap # 0, P in Cly|; the mapf can be
viewed as a birational map, describe ndnd Excf.
— What can you say about the indeterminacy and exceptioteabta polynomial automorphism ?

Let z be a surface anél: z --» z be a birational map. We say thhis analytically stabldf for any curvec
in z and for any positive integer, f"(¢) is not in the indeterminacy set. In other words for an anedyity
stable map the following does not happen

f f f f f
c

Exercise 2.6 — Let f be a GREMONA transformation. The map is not analytically stable if and only if
there exists an integérsuch that ded® < (degf ). So if f is analytically stable, thek(f) = degf.

Exercise 2.7 — Let A be an automorphism of the complex projective plane and ke the birational map
given bya: P?(C) --» P2(C), (x:y: 2) --+ (yz: xz: xy). Assume that the coefficients éfare positive real
numbers. Show thao is analytically stable.

Let A be an automorphism of the complex projective plane and ke the birational map given by

p: P2(C) --» P*(C),
(X:y:2) --» (xy: 2 :y2).

Assume that the coefficients &fare positive real numbers. Show ti#t is analytically stable.
Let A be an automorphism of the complex projective plane and k& the birational map given by

1: P?(C) --» P?(C), (X:y:2)--> (R xy:y> —x2).

Assume that the coefficients &fare positive real numbers. Show tiatis analytically stable.

Let us say that the coefficients of an automorphi&rnof P?(C) are algebraically independent if it has a
representativéd in GL3(C) whose coefficients are algebraically independent @e©ne can deduce the
following: let A be an automorphism of the projective plane whose coeffieiarg algebraically independent
overQ, thenAc and(Ac)~! are analytically stable.

The RCARD group PidP?(C) is isomorphic tdZ; similarly H?(P?(C), Z) is isomorphic tdZ. We may identi-
fy PicP?(C) and H(P?(C),Z).

Let 1: BIpP?2 — P?(C) be the blow-up ofp in P(C) and E= 1 1(p) be the exceptional divisor. One can
describe the set of rational functions from,BF into itself:

Rat(Bl,P?) = 1" (RatP?(C)).

The group Pi¢BI,P?) is generated by E andwherel = 1L = {¢o1t= 0} is the pull back of a line 1=
{¢ = 0} which does not contaip.

Let us give a concrete presentation of the blow-ugpet (0: 0 : 1) in P?(C). We will work in the affine
chartz= 1. Consider

M ={((xy).[r :v]) € C2x PX(C) [xv=yr}
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andrtthe projection on the first factor. The pdir, ) is the blow-up ofp in the affine charz = 1. Note that
1 C?\ {0} — I is given byrr(x,y) = ((x,y),[x,y]); one can also write

A xY) = ((%Y), [1:y/X) = ((xy), [x/y : 1])
These two representations allow to define two charts (Cﬁ’\, andu’ = (Cﬁs where coordinates are given by
X=Uu, y=uy, X=TIS, y=5

One had” = w U ¢’ and if we want to work neafx = 0} (resp.{y = 0}) we use the coordinates, s) (resp.
(U, ).

More generally let us considerdistinct pointspy, ..., pn in P?(C). Let BllepnIPZ be the surface obtained
from P2(C) by blowing upp, ..., pn and denote byt: Bl P2 — P?(C) the composition of these blow-
ups. Let H be a line if??(C) and set =1 1(pj). If H contains nop; thenTt*H is represented by the strict

transformH of H, otherwisert'H = H + Z E;j. In this case one can describe @b, 5 P?).
jlpjeH

Theorem 2.10 — Let p, ..., pn be n distinct points irfP?(C). Denote byrt: Bly, 5 P? — P?(C) the
sequence of blow-ups of thesp If Ej = 1t 1(p;) are the exceptional divisors ardla generic line of??(C),
then

Theorem 2.11 — Let p, ..., pn be n distinct points ifP?(C). Denote byrt: Bly, 5 P? — P?(C) the
sequence of blow-ups of the'spand by E; = 1 1(p;) the exceptional divisors. Consider two elements
T=D+yY;aE and T =D’ + 3 bjEj in Pic(Blp,... p,P?), whereD and D’ denote strict transforms of
divisors inP?(C).

We haveT ~ T’ if and only ifD andD’ have the same degrees, and=ab; for all j.

2.3. Exceptional configurations and characteristic matries. — Let f be a birational map frorf??(C) into
itself of degreev. By Theorem 2.2 there existandn two sequences of blow-ups such that

zZ
VR
P2(C) - - -+ - - = P?(C)

We can rewritat as follows
T 2z=20 5 21 5 ... B 2. 58 20 =P?(C)
wherers is the blow-up of the poinp;_1 in zj_;. Let
E =1 (pi), Ei = (Th10...0Tk)"Ej

The divisorsz; are called thexceptional configurationsf Ttand thep; base points of .

For any effective divisor B4 0 onP?(C) let mult, D be defined inductively in the following way. We set
mult,, D to be the usual multiplicity of D ap; : it is defined as the largest integersuch that the local
equation of D aip; belongs to then-th power of the maximal ideahp , . Suppose mulf D is defined. We
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take the proper inverse transfomuD of D in z; and define mufj,,D = multy, 77 D. It follows from the
definition that

mlD=m(D Zmz.

wherem;, = mult, D
There are two relationships betweeand themy’s:

k k
1:v2—i;mz, 3:3v—i;m.

Considered a resolution of a birational mafrom P?(C) into itself of degreev :

/\

______ - P?(C

We can rewritat as follows
T z=2S 21 5 ... B 2, B 2o =P?(C)

whereTs is the blow-up of the poinpi_1 in zj_y; similarly, for j =1, ..., k, there exist9);: xj — Xj_1
blow-up of the point|_, in xj_; such that
nN: z =Xk xp_q B M xe =PA(C).
Note that k, ..., Ex (resp. B, ..., E}) are the exceptlonal divisors obtained by blowingpp.. ., pk (resp.
Pi, ---, P)- An ordered resolutiorof f is a decompositiorf = nrt ! wheren andmare ordered sequences
of blow-ups. An ordered resolution dfinduces two basis of Piz)
~ 3 ={eg=T0H, e = [£], ..., = [£]},
-3’ ={g=n He, = [z 1l --,eﬁz[fli]},
where H is a generic line. We can writeas follows
k k
€ =Vep— Yy me, € =vieg— Y mjeg,j>1
i; J J i; J
The matrix of change of basis
Vv Vi ... Wk
—mMm —M ... —Mgg
M= . .
—Me —Mkg .0 —Mik
is calledcharacteristic matrixof f. The first column ofM, which is thecharacteristic vectoof f, is the
vector (v, —my, ..., —m). The other columngv;, —my;, ..., —my) describe the “behavior af/": if v; > 0,

thenTi(£!) is a curve of degree; in P?(C) through the pointp, of f with multiplicity my;.

j
Example 2.12 — Consider the birational map
o: P?(C) --» P2(C), (X1y:2) --» (YZ: XZ: Xy).

The points of indeterminacy af areP=(1:0:0), Q= (0:1:0) andR= (0:0: 1); the exceptional set is
the union of the three line& = {x =0}, A’ = {y = 0} andA” = {z= 0}.
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First we blow upP; let us denote E the exceptional divisor angthe strict transform of. Set

y=ul E={u =0} y=ris E={s1=0}
Z=Wv A7 = {v1 =0} z=8 Ny ={r; =0}

On the one hand

(u1,vi) — (Ug,Ugvy) —)(UV'V'l)—<1 l) —><1 l> ;
1, V1 1, Y1V1)(y,2) 1Vl . V1. U1’U1V1 v2) U]_,V]_ (u17v1>1

on the other hand

(re,s1) = (r181,81) (yz — (S1:1:r1) = (ii> — <i7i> :
I’1$1 Sl (yz) rl S.I. (rl-,sl)
Hence E is sent oAA;; aso is an involution/\; is sent on E
Now blow upQ;; this time let us denote F the exceptional divisor andhe strict transform of; :

X= U F={u,=0} X =125 E={s=0}
Z= U\ Ny = {v, =0} =9 Dy = {rp =0}
One has 11 11
Uz, V2) — (U, UpV: (Vi :l)= — — - —,—
(U2,V2) = (U2, UV2)(xz) — (V21 l2V2: 1) <u2 u2v2> . <u2 Vz) -
and 1 1 11
r,S) = (M2, ) (xz) — (Lirxsp:r :(—,—) —><—,—> .
(12, %) = (12 )(X'Z> (L:rz 2) 2% 2/ (xz) 12 2/ (1)
Therefore F— A, andA, — F.
Finally we blow upRy; let us denote G the exceptional divisor and set
X= U3 G={uz=0} X=1r383 E={ss=0}
y=UgV3 N = {v3 = 0} z=s3 Ay = {r3 =0}
Note that 11 11
(U3,V3) — (U3,U3V3)(X’y) — (V3 o U3V3) = <—, —) — (—, —)
Uz Us3V3 (xy) Uz Vi3 (U3,V3)

and

(r3,%3) — (r3ss,S3)(xy) — (1:r3:r3ss) (1 1) —><1 1)
3 393, : -13.13 =\ Ty .
Y 3% B/ (xy  \13 38/ (r35)
Thus G— A3 andA; — G. There is no more point of indeterminacy, no more excepticuabe; in other
wordsa is conjugate to an automorphism ofB), r,P2.

Let H be a generic line. Note thaty = E, £, = F, £3 = H. Consider the basi§H, E, F, G}. After the first
blow-up A and E are swapped; the point blown up is the intersectiof ahdA” soA — A+ F+G. Then
0*E =H—F— G. Similarly we have:

o'F=H-E-G and 0'G=H-E—-F.

It remains to determineg*H. The image of a generic line layis a conic hence*H = 2H—mE—myF—mgG.
Let L be a generic line described byx+ a1y + apz. A computation shows that

(U]_,Vl) — (Ul, Ulvl)(y,z) — (U%V]_ sUgvy ! Ul) — ul(a0v2 +ajupVo + a.z)
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vanishes to order 1 on £ {u; = 0} thusmy = 1. Note also that

(U2, V2) — (U2, UpV2) (xz) — (UpV2 : UBV, : Up) — Up(8oV2 + 81UV + 82),
resp.

(us,v3) — (us, U3V3)(X’y) — (UgV3:Ug: U%Vg) — Ug(@agVs + ag + apUsVs)

vanishes to order 1 on £ {u, = 0}, resp. G= {u3 = 0} som, = 1, resp. mg = 1. Thereforec*H =
2H— E— F— G and the characteristic matrix ofin the basi{H, E, F, G} is

2 1 1 1

-1 0 -1 -1
Mo = -1 -1 0 -1
-1 -1 -1 O

Exercise 2.8 — Let us consider the involution given by
p: P?(C) --» P?(C), (X:y:2) --» (xy: 2 :y2).
One can show thd¥l, = M.

Exercise 2.9 — Consider the birational map
1: P?(C) --» P?(C), (X:y:2)--> (P xy:y>—x2).
One can verify thaM; = Mg.

3. Where can we find automorphisms with positive entropy ?

3.1. Notion of entropy. — Let X be a compact metric space. Liebe a continuous map froid into itself.
Let € be a strictly positif real number. For all integetet N(n,€) be the minimal cardinal of a paK, of X
such that for ally in X there existx in X satisfying

dist(f1(x), fl(y)) <k, vo<j<n
We introduce ky( f,€) defined by
htop(f,€) = Iimsup} log N(n,¢€).

N——00

The topological entropy of is given by
htop( f) = Li_mohtop(fas)-
Let f be a map of class® on a compact manifolds ; we have this inequality

htop(f) > logr(f*)

in other words the topological entropy is smaller than thgatithm of the spectral radius of the linear
map induced byf on H*(a ,R), direct sum of the cohomological groups @f. Remark that the inequali-
ty heop(f) > log r(f*) is still true in the meromorphic casel (). Before stating a more precise result wimgn

is KAHLER we introduce some notation: for all integesuch that 0< p < dimc %/ we denote by\y(f) the
spectral radius of the mafy acting on the @LBEAULT cohomological group AP(a ,R).
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Theorem 3.1([24, 23, 4%). — Let f be a holomorphic map on a complex comp&aéHLER manifoldas ;
we have
hop(f) = max logAp(f).
kop( ) 0< Pt ot gAp(f)
Remark 3.2 — The spectral radius of* is strictly greater than 1 if and only if one of thg(f)’s is and,
in fact, if and only ifA(f) = A1(f) is. In other words in order to know if the entropy bfs positive we just
have to study the growth ¢ffi")*{a} where{a} is a KAHLER form.

Examples 3.3 — — Leta be a compact KHLER manifold and Aut(a/ ) be the connected component
of Autas which contains the identity element. The topological emjrof each element of ABtar ) is
zero.

— The topological entropy of an holomorphic endomorphiérof the projective sapce is equal to the
logarithm of the topological degree 6f

— Whereas the topological entropy of an elementary autohigmpis zero, the topological entropy of an
HENON automorphism is positive.

3.2. Atheorem of CANTAT . — Before describing the paifs, f) of complex compact surfacescarrying
an automorphisnf with positive entropy, let us recall one definition: a suefacis rational if one can find a
surfacex and proper modifications; : x — P?(C) andmy: x — z. A rational surface is always projective
([3]). A K3 surfaceis a complex, compact, simply connected surfaceith a trivial canonical bundle. In
particular there exists a holomorphic 2-fouron z which is never zerow is unique modulo multiplication
by a scalar. Letz be a K3 surface with a holomorphic involutionif 1 has no fixed point the quotient is an
ENRIQUESsurface otherwise it is a rational surface. AZNBIQUES surfacesare quotients of K3 surfaces by
a group of order 2 acting without fixed points, their theorgiigilar to that of algebraic K3 surfaces.

Theorem 3.4[9]). — Let z be a complex compact surface. Assume thditas an automorphism f with
positive entropy. Then
— either f is conjugate to an automorphism on the unique nahimodel ofz which is either a torus, or
a K3 surface, or arENRIQUES surface;
— or z is rational, obtained fronP?(C) by blowing upP?(C) in at least10 points and f is birationally
conjugate to a birational map @?(C).
In particular z is KAHLER.

Examples 3.5— - SetA = Z[i] andE = C/A. The group Sk(A) acts linearly orC? and preserves the
lattice A x A\; then each element A of SIA) induces an automorphisiia on E x E which commutes
with 1(x,y) = (ix,1y). Each automorphisnia can be lifted to an automorphisﬁ on the desingula-
rization of (E x E) /1 which is a K3 surface. The entropyﬁi is positive as soon as the modulus of one
eigenvalue of A is strictly greater than 1

— We have the following statement due tORELLI.

Theorem 3.6 — Let z be a K3 surface. The morphism
Autz — GL(#%(2,2)), fis f*
is injective.
Conversely assume that F is an elemer@bfH?(z,Z)) which preserves the intersection formief( z,7Z),

the Hodge decomposition &f(z,7) and theKAHLER cone ofH?(z,7Z). Then there exists an auto-
morphism f onz such that f =F.
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The case of K3 surfaces has been studied BT, MCMULLEN, SILVERMAN , WANG and othersgeefor
example 10, 35, 41, 49). The context of rational surfaces produces much more plesréeefor example
[36, 6, 7,8, 1D.

3.3. Case of rational surfaces. —

Exercise 3.1 — Let us consider the following statement due tad4TA ([37], Theorem 5): letz be a
rational surface and let be an automorphism om such thatf, is of infinite order; then there exists a
sequence of holomorphic maps;1: zj;1 — zj such thatz, = IPZ(C), Zn+1 = 2 andTrj, g is the blow up
of pj € z;.
If 9/1 andjz are two projective surfaces, we say thatdominatesz if there exists a surjective algebraic
birational morphism fromy to z. A surfacez is basicif it can be obtained by successive blowups from the
projective plane.

— Show that ifz is notP(C) x P}(C) and if z dominatesP!(C) x PY(C) thenz dominatesP?(C).
If z is notPY(C) x PY(C) and if z has two different rational fibrations, thenis basic.
If z is notP(C) x P1(C) and if z is non basic, therz contains a unique rational fibration and each
automorphism ot preserves this fibration.
If z is notP(C) x P1(C) and z is non basic then for eachin Aut(z), the induced mag* on Picz is
cyclic.

Remark that a surface obtained fr@#(C) via generic blow-ups has no nontrivial automorphis@8([31).
Moreover we have the following statement which can be foumeékample in 14].

Proposition 3.7 — Let z be a surface obtained fro?(C) by blowing up n< 9 points. Let f be an
automorphism orz. The topological entropy of f is zero.

Moreover, if n< 8 then there exists an integer k such th&i birationally conjugate to an automorphism of
the complex projective plane.

Exercise 3.2 — Prove the previous result.

Let f be an automorphism with positive entropy on A ER surface. The following statement gives
properties on the eignevalues ©f.

Theorem 3.8 — Let f be an automorphism with positive entrdpgA(f) on aKAHLER surface. The first
dynamical degreé\(f) is an eigenvalue of *f with multiplicity 1 and this is the unique eigenvalue with
modulus strictly greater tha.

If n is an eigenvalue off then eithem belongs to{A(f),A(f)~1}, or |n| is equal tol.

Exercise 3.3 — Prove the previous result.

Let xs denote the caracteristic polynomial &f. This is a monic polynomial whose constant termti&
(constant term is equal to the determinanf tf. Let W; be the minimal polynomial ok( f). Except forA(f)
andA(f)~! all zeroes ofs (and thus of¥;) lie on the unit circle. Such polynomial is%alem polynomial
and such a(f) is a SALEM number
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4. Automorphisms with positive entropy on rational surfaces

4.1. The approach of MCMULLEN ([36]). — In [36] MCMULLEN, thanks to MGATA’s works and H\R-
BOURNES works, establishes a result similar t@RELLI'S theorem for K3 surfaces: he constucts auto-
morphisms on some rational surfaces prescribing the aofitime automorphisms on cohomological groups
of the surface. These surfaces are rational ones which ogvip multiplication by a constant, a unique
meromorphic non-vanishing 2-for@. If f is an automorphism o obtained via this constructiorf,*Q is
proportional toQ and f preserves the poles ¢. When we projectz on the complex projective pland,
induces a birational map preserving a cubic.

The relationship of the \WyL group to the birational geometry of the plane, used byMAILLEN, is dis-
cussed since 1895 i8(] and has been much developed since th&f,(B7, 38, 11, 22, 32, 25, 33, 26, 39, 27,
17, 28, 46, 18.

4.1.1. WEYL groups — Let z be a surface obtained by blowing up the complex projectiamglin a finite
number of points. Lefey, ..., &} be a basis of A z,7); if

e&-e=1 g-e=-1Vv1< <K, 6-=0,vV0<i#j<n

then{ey, ..., &} is ageometric basisConsider in H?(z,7Z) such thatr - o = —2, thenRy (X) = X+ (x-a)a
sendsx on —a andRy fixes each element @f-; in other wordsR, is a reflection in the direction.
Consider the vectors given by

Oo=e —e —&—es aj=ej1—€,1<j<n-1

Forall j in {0,...,n—1} we havea|-aj = —2. When j is nonzero the reflectioRy,; induces a permutation
on {ej, &j41}. The subgroup generated by tRg;’s, with 1 < j < n— 1, is the set of permutations on the
elementsey, ..., e}. Let W, C O(Z'") denote the grougRy; |0 < j < n—1) which is called WYL group
The WEYL groups are, for 3 n < 8, isomorphic to the following finite groups

Ag x Ag, Ag, Ds, Es, = Es

and are associated toeD PEzzo surfaces?. Fork > 9 WEYL groups are infinite and fdk > 10 WEYL
groups contain elements with a spectral radius strictlatgrethan 1
If fisan automorphism aof, by a theorem of NGATA there exists a unique elemestin W, such that

71n w 71n

| Jo
H2(z,7) — > H2(2,7)

commutes; we said that is realizedby the automorphisni.

A product of generatorRy;is a COXETER elemenbf W,,. Note that all @XETER elements are conjugate so
the spectral radius of adXETER element is well defined.

The mapo is represented by the reflectian, = Raije wheredijx = e —& —ej —eandi, j, k> 1 are distinct
elements; it acts as follows

€ — 26— 6 — € — &, € — € — € — &, € — 6 — 6 — &

1. A DEL Pezzo surface is isomorphic either #(C), or to PX(C) x P1(C), or to P2(C) blown up in 1< r < 8 points in
“generic position”.
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&— &—6—g, e —esitg{0i,j,k}
Whenn = 3, we say thak;,3is thestandard elemenif W3. Consider the cyclic permutation
(123...N) =K123Rq; - - - Ra,; € Zn C Wh;
let us denote itT,. Forn > 4 we define thestandard element wf W, by w = TiK123. It satisfies
W(ep) = 2€p — €2 — €3 — €y, w(er) = € — €3 — €, w(ez) = € — € — €,

w(es) = e — & —€g, w(ej) =e€ji1, 4<j<n-2 W(er-1) = €.
4.1.2. Statements— In[36] MCMULLEN constructs examples of automorphisms with positive egtfthanks
to” elements of VYL groups.

Theorem 4.1([36]). — For n> 10, eachCoxETER element of/,, can be realizable by an automorphism f
with positive entropyog(A,) of a rational surfacezy,.

More precisely the automorphisify: z, — z, can be chosen to have the following additional properties:
— zpis the projective plane blown up mdistinct pointsps, ..., pn lying on a cuspidal cubic curve,
— there exists a nowhere vanishing meromorphic 2-fgrmn z, with a simple pole along the proper
transform ofc,
- frT(r]) = }\n'n>
— ({fn), Zn) is minimal in the sense of MNIN (2,
The first three properties determirig uniquely. The pointg; admit a simple description which leads to
concrete formulas fofy,.
The smallest known & EM number is a rooA gymer ~ 1.17628081 of IEHMER'S polynom

L) =t % —t" -t -5 —t*—t3 4t + 1

Theorem 4.2([36]). — If f is an automorphism of a compact complex surface withtpesentropy, then
htop(f) > logALenmer-

Corollary 4.3([36]). — The map fo: 210 — Z10 is an automorphism of1g9 with the smallest possible
positive entropy.

Let us also mention a more recent work in this directiofSf]. DILLER also find examples using plane
cubics ([L4).

4.2. Another approach. —

4.2.1. Works oBeEDFORDandKim ([6, 7, 8, 3). — A way to construct automorphisms on a rational surface

z is the following: starting with a birational mapof P2(C), we try to find a sequence of blow-ups z —
P?(C) such that the induced mafp, = mtfrr ! is an automorphism om. The difficulty is to find such a
sequencet.. If f is an automorphism of the complex projective plahblows down a curve; to a pointpy;
the first thing to do in order to obtain an automorphism frbia to blow up the poinp; viaty: z1 — P?(C).
In the best casé;, = Ttlfrql sends the transform @f; on the exceptional divisor.EBut if p; is not a point
of indeterminacyf,, blows down E to p, = f(p1). In other words this process finishes onlyfifis not
algebraically stable. Thanks to this method-orRD and Kim found some examples§] 7, 8, 9); one of
their statement is the following:

2. Letz be a surface an@ be a subgroup of A(itz ). A birational mapf : z --» z is G-equivariant ifG = fGf 1 c Aut(z).
The pair(G, z) is minimal if everyG-equivariant birational morphism is an isomorphism



AN INTRODUCTION TO AUTOMORPHISMS WITH POSITIVE ENTROPY ON GMPACT COMPLEX SURFACES 17

Theorem 4.4[8]). — Consider two integers & 3 and k> 2 such that n is odd an@h K) # (3,2). There
exists a nonempty subset @ R such that, if o= C and a= (ap, a4,...,an-3) € cs , the map

far (x1y:12) = (x27 2 X" -yl e+ z ax T (4.1)
Zeven

can be lifted to an automorphism of positive topologicalr@py of a rational surface X The surfaces X
are obtained by blowing up k infinitely near points of length- 1 on the invariant line{x = 0} and form a
holomorphic family over the parameter space given by tfs a

If k=2 and n> 5is odd, then there exists a neighborhoodadf C "z ? such that for all distinct elements a
and d in U with a,_3 # 0, X5 and X%, are not biholomorphic.

4.2.2. A “systematic” way[(L2]). — Idea of the approach: this section is devoted to the construction of
examples of rational surfaces with biholomorphisms of fpa@sentropy. The strategy is the following: start
with a birational mapf of P?(C). By the standard factorization theorem for birational mapsuorfaces as
a composition of blow-ups and blow-downs, there exist twis s (possibly infinitely near) point§1 and
P, in P2(C) such thatf can be lifted to an automorphism between; Bf and Bl P?. The data of?; and

P, allow to get automorphisms of rational surfaces in the [&LR(C)-orbit of f : assume thak € N is
fixed and letp be an element of PGIC) such thatPy, P, ()P, ..., (& f)* 1dP, have all distinct
supports ifP2(C) and (¢ f)*¢P, = Py. Thend f can be lifted to an automorphism B#(C) blown up atPy,
P, (9 F)OP,, ..., (0 f)* 1dP,. Furthermore, if the conditions above are satisfied for atolphic family

of ¢, we get a holomorphic family of rational surfaces (whose digien is at most eight). Therefore, we
see that the problem of I|ft|ng an element in the B@EL)-orbit of f to an automorphism is strongly related
to the equatlom(Pz) P., whereu is a germ of blholomorphlsm dr?(C) mapping the support d% to
the support ofP;. In concrete examples, wheé® and P, are known, this equation can actually be solved
and involves polynomial equations in the Taylor expansmﬂhs at the various points of the support e,

It is worth pointing out that in the generlc casfq andP, consist of the same numbdrof distinct points

in the projective plane, and the equatiofP;) = P, gives 2 independent conditions om (which is the
maximum possible number R, andP, have lengthd). Conversely, infinitely near points can considerably
decrease the number of conditionswas shown in our examples. This explains why holomorphic lfemi
of automorphisms of rational surfaces occur when multijpbevkups are made.

Birational maps whose exceptional locus is a line

Let us consider the birational map defined by = (x2"~1 +y" : y2-1: 2"), with n > 3. The sequence
(degdK)ken is bounded (it's easy to see in the affine cha#t 1), sod, is conjugate to an automorphism on
some rational surface and an iterate ofp, is conjugate to an automorphism isotopic to the identityb]j]
The mapd, blows up one poinP = (1:0: 0) and blows down one cun#e = {z= 0}.

Here we will assume that= 3 but the construction is similar for> 4 (see[12]). We first construct two in-
finitely near pointslsl andP; such thatds induces an isomorphism betweerpslB’I2 and BhIP’Z. Then we give

“theoric” conditions to produce automorphismisf P?(C) such thathds is conjugate to an automorphism
on a surface obtained frof#?(C) by successive blow-ups.

First step: description of the sequence of blow-ups

i. First blow up the poinP in the domain and in the range. Set u; andz = u;vp; remark that'u,v;) are
coordinates ned?, = (0,0)(y, v,), coordinates in which the exceptional divisor is given by-Eu; = 0} and
the strict transform oA is given byA; = {v; = 0}. Sety =r1s; andz = s;; note that(r;,s;) are coordinates
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nearQ = (0,0), s,), coordinates in which E {s, = 0}. One has

(Ul,Vl) — (Ul, U1V1)(y7z) — (V21 —+Up: V21U1 . vi’ul)

Vg By V2uy
=\ 12 7\ 2 V1
Vit Vit gy \VITUL )

(r1,s1) = (r1S1,81)(yz) — (141381111511 51)

(), ),
1+ris 1+19s1/ EERSCYIN

thereforeP; is a point of indeterminacy); is blown down toP; and E is fixed.

and

ii. Let us blow upP; in the domain and in the range. S&t= up; andv; = upv,. Note that(uy, Vo) are
coordinates aroun@, = (0,0),,) in which Az = {v» = 0} and F= {u; = 0}. If we setu; = rs; and
Vi = %, then(rz, ;) are coordinates nedr= (0,0), ,); in these coordinates + {s, = 0}. Moreover
(U27V2) — (u27u2V2)(U1,V1) — (1+ U2V§ : U%V% : Ugvg)
and
(r2.%2) = (12%2,%) (r.s1) — (2 + 521 1255 1 1255).
Remark that is a point of indeterminacy. One also has

A uwv3
(U2, V2) = (Uz, U2V2) 1y vy) — (14 UpV3 0 UGS 1 LU3VE) — ( e w >
2

1+ Ve’ 1+ Upva

2,2
usVv UpV

—><1 2 ,U2V2> —><71 222,U2V2>
U2V (up,v1) TUV; (r2,%2)

so F and)\; are blown down tdA.

iii. Now let us blow upA in the domain and in the range. Set= uz ands, = usvs; (us,Vv3) are coordinates
nearA; = (0,0)y, ), coordinates in which F= {v3 = 0} and G= {uz = 0}. If r, = r3s3 ands; = s3,
then(rs,s3) is a system of coordinates in which E {r3 = 0} and G= {s3 = 0}. One has

(U3,V3) — (u3,u3v3)(l'2,32) — (1+V3 : U%V% : u%"%)?

(r3,83) = (1388, %8)(r,.5) = (L+T3: 7355 : 3S3).
The pointT = (—1,0)r, s, IS @ point of indeterminacy. Moreover

22 B3 2.2
A0 U2V
(U37V3)—>< 33 . 33> —>< 337U3V3>
I+vs 14Vvs/yy \1+Vs ()

%<“3V3uv) %< 1 uv> -
o ,uU3V3 s . »,u3v3 y
1+vs (os)  \1+V3 (r3:)

so G is fixed and Fis blown down toS= (1,0), s,)-
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iv. Let us blow upT in the domain ands in the range. Set; = us — 1 andsz = UgVvs; in the system of
coordinatequs,Vs) we have G = {v4 = 0} and H= {us = 0}. Note that(rs,s1), wherers =rss — 1 and
3 = &, is a system of coordinates in which-H{s; = 0}. On the one hand

(U4,V4) — (U4 — 1, U4V4)(r3’53) — ((U4 — :I.)U4V27 (U4 — 1)U‘21V2)(y7z)

u
N ((U4— 1)U4V4217U4V4)(u1,\/1) — ((U4 — 1)V4,U4V4)(r2’52) — <(U4 — 1)V47 = 4 >
(u3,v3)

so H is sent on £ on the other hand
(ra,54) = (4S8 — L) (1555 — (T2 (rasu— 1)s4 (ras4 — 1)s5);
henceB = (0,0)r, s, is @ point of indeterminacy.

Setrz = as+ 1, s3 = aubs; (as,bs) are coordinates in which = {bs = 0} and K= {ay = 0}. One can
also setrz = c4ds + 1 ands; = dga; in the system of coordinatds,,ds) the exceptional divisor K is given
by ds =0.

Note that

1 V3
(us,V3) — (—,u3v3> — (— ,—u3(1+v3)> :
1+vs (s:%0) 1+vs (aa ba)

thus k is sent on K
We remark that

mvz  w\ T
(U, Vi) = (Vi +Uug: UgVd : ugV3) = ( L L > - ( - l2,V1>
(%3 (U1,v1)

Up+ V2 U+ V2 U+ V2

A% Uz V1
— —U +V27V1 — 7[] —|—V27V1 — —u +V27V1 :
17N (r2,%) 17T (r3,88) 17N (Ca,da)

S04 is blown down taC = (0,0) ¢, d,)-

v. Now let us blown ugB in the domain and in the range. Set; = Us, S4 = UsVs andrg = 1585, &4 = Ss.
Then (us,Vvs) (resp. (rs,Ss)) is a system of coordinates in which= {us = 0} (resp. H = {vs = 0} and
L = {s5 = 0}). One notes that
(Us, V) — (Us, UsVs)r, s, — (1 :Vs(UBVs — 1) : usVE(U2vs — 1))
and
rs,Ss) — (I5S5,S5)r, — (1501588 — 1 :55(rss2 — 1)).
Therefore L is sent o5 and there is no point of indeterminacy.

Setcy = as, dy = asbs andcy = ¢s5ds, dg = ds. In the first (resp. second) system of coordinates the exaregdti
divisor M is given by{as = 0} (resp.{ds = 0}). One has

v 1
(Ug,v1) — <—71 27V1> — <—727V1> ,
ul + Vl (C4,d4) ul + Vl (C51d5)

in particularAs is sent on M

Proposition 4.5(]12]). — Let P, (resp. |32) be the point infinitely near P obtained by blowing Bf(C) at
P,P., A, T and U (resp. PP, A, S and U).
The mapd; induces an isomorphism betweBh; P> and Bl s P2.
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The different components are swapped as follows
A— M, E— E, F— K, G—G, H—F, L — A

Second step: gluing conditions
The gluing conditions reduce to the following problemuifs a germ of biholomorphism in a neighborhood
of P, find the conditions ol in order thatu(P,) = P;.

Proposition 4.6([12]). — Let uly,z) = ( > m.jy'z, > ni7jyizj> be a germ of biholomorphism at P

(i,j)en2 (i,)EN?
Then u can be lifted to a germ of biholomorphism bet\/\BI%gIP2 and B||31P2 if and only if
3mo.1n
r‘b,o = nO‘O = nl,O — mio"’ n(z)‘l - 0, n270 = 72 110,1 .
' ' Mo

Exercise 4.1 — Let o be the birational map defined loy. (x:y:2) --» (yz: xz: xy); find P, P, andP3
three points ifP2(C) such that induces an isomorphism of Blp, p,.

Find how the differents components are swapped.

Find the matrix off..

Exercise 4.2 — Let p be the birational map defined lpy. (x:y:2) --» (xy: 22 : y2); find P, and P, two
points infinitely neai®?(C) or in P?(C) such thap induces an isomorphism of Blp, .

Find how the differents components are swapped.

Find the matrix off..

Examples

In this section, we will use the two above steps to producdiakpxamples of automorphisms of rational
surfaces obtained from birational maps in the B(@&L)-orbit of ®3. As we have to blow ufP?(C) at least ten
times to have non zero-entropy, we want to find an automamptyif P?(C) such that

(0D3)*d(P,) = Py with (k+1)(2n—1) > 10 and(¢pD3)'dp(P) #P for 0<i<k—1 (4.2)
First of all let us introduce the following definition.

Definition. — LetU be an open set @" and¢: U — PGLs(C) a holomorphic map. If is a birational map
of the projective plane, we say that the family of biration@ps(da;, ..o, f)(qy,....ancu iS holomorphically
trivial if for every a® = (a9, ..., aQ) in U there exists a holomorphic map from a neighborhbgel of o®
to PGLg(C) such that

- Mcx%...,aﬂ =1d,

= V(ay, ..., 0n) €Ugo, Pay,.an f = Mal-,<~7an(¢dg7...7d(n) f)Mc;l%...,an-
Theorem 4.7 — Let ¢, be the automorphism of the complex projective plane given by
a 21-a) (2+a-—oa?)
ba=1| -1 0 (a+1) , aeC\{0,1}.
1 -2 (1-—a)
The mappqPs3 is conjugate to an automorphism Bf(C) blown up inl5 points.

The first dynamical degree ¢f®s is 355 > 1.
The family¢®3 is holomorphically trivial.



AN INTRODUCTION TO AUTOMORPHISMS WITH POSITIVE ENTROPY ON GMPACT COMPLEX SURFACES 21

Proof. — The first assertion is given by Proposition 4.6.
The different components are swapped as follows (84.2.2)

A — doM, E— ¢qE, F— ¢qK, G — ¢4G,

H — ¢qF, L — ¢aA, doE — o P3dqE, boF — daP3daF,
oG — 0o P304 G, oK — daP3daK, daM — o P3daM, ba P30 E — E,
baP3daF — F, 0aP30aG — G, baP3daK — H, daP39M — L.

So, in the basis

{Av Ea Fa Gv Hv Lv ¢GE5 ¢GF5 ¢GGv ¢GK7 ¢GM ¢GCD3¢GE5 ¢GCD3¢GF7 ¢GCD3¢GGv ¢GCD3¢GK5 ¢G¢3¢GM}5
the matrix of(¢qP3). is

O0OO0O0OORrROO0OO0OO0OO0OO0OOOOO
OO0OO0OO0OO0OO0OO0CO0OORrROOOOOO
O0OO0O0OO0OO0OrROOO0OO0OO0OOOOO
O0O0O0OO0OO0OO0ORrROOOOOOOO
OO0OO0OO0OO0OO0OO0ORrROO0OOOOOO
bt
CcoooORrQPCOCOCOOogoo0o0O0O
OCoOoORro0oCPOCOCOO0Osso0000O
OCOoOrPo0ooCPOCOCOO0Osoo00o0O
OCr0O0O0POCOOCO 00000
RPOO0OODOPOCOCOOso0o0o00O
Co00O0PCPOCOCOosoo0or O
0C000D0POCOCOCOsp0oroO
OC0o00O0PCPOOOgporooO

C0o00O0PCPOCOCO g proocoo
00000 ®PO0000 LA~ o

and its caracteristic polynomial is
(X2 = 3X+1)(X2 =X+ 1) (X +1)2(X3+ X+ 1)3(X — 1)

Thus

}‘(q)cx CD3) = 3—’_2\/5

Fix a pointag in C\ {0, 1}. We can find locally aroundg a matrixMy dépending holomorphically cm such
that for alla nearap we havedp,P3 = Mglq)uongMa . if nis a local holomorphic solution of the equation
o = W"ag such thapy = 1 we can take

> 1.

Qo
Mq ==

o O
o O
= O |

A birational cubic map blowing down one conic and one line
Let f denote the following birational map

f = (y?z: x(xz+Y?) : y(xz+y?));
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it blows up two points and blown down two curves, more prdgise

Indf ={R=(1:0:0,P=(0:0:1)}, Excf = (¢ = {xz+y*=0})U(A' = {y=0}).
One can verify thaft ! = (y(22 — xy) : z2(ZZ — xy) : xZ) and
Indf1={Q=(0:1:0,R}, Excf = (c'={Z-xy=0})U(Qd"={z=0}).

Similar computations allow us to establish the followingtstment.

Theorem 4.8[12]). — Assume that £ (y?z: x(xz+Y?) : y(xz+Yy?)) and that

%(37i\/§+3) a —2Z2(5iy/3+11)
ba = 3—9(—15+11iﬁ) 1 -&(5iv3+11) |, aeC.
~9(2iv3+3) 0 0

The mapdq f is conjugate to an automorphismB#(C) blown up in15 points.
The first dynamical degree ¢ f isA(¢qf) = 3*—2‘/5
The family¢q f is holomorphically trivial.
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