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Introduction

LetM be a complex projective manifold. Letf be a rational or holomorphic map onM . When we iterate this
map we obtain a “dynamical system”: a pointp of M moves top1 = f (p), then top2 = f (p1), to p3 = f (p2)
. . . So f “induces a movement onM ”. The set{p, p1, p2, p3, . . .} is theorbit of p.
Let A be a smooth cubic in the complex projective plane defined by anhomogeneous equation with rational
coefficients; assume thatA contains at least a point with rational coordinates. Up to a linear change of
coordinates (with rational coefficients) such aA can be described by

y2z= 4x3+axz2+bz3, a, b∈Q.

The set of complex solutions of this equation is a RIEMANN surface which is holomorphically diffeomorphic
to the quotientC/Λ whereΛ is a cocompact lattice ([34, 42]). Let us denoteA(C) the quotientC/Λ. We can
choose the isomorphism such that the class of 0 inC moduloΛ corresponds to the point(0 : 1 : 0) of A. Thus
A(C) has a structure of additive group induced by(C,+) for which (0 : 1 : 0) is the identity element. Under
these assumptions ifp1, p2, p3 are three points ofA(C) then p1+ p2+ p3 = 0 if and only if p1, p2, p3 are
aligned inP2(C). Let A be a projective manifold;A is anAbelian varietyof dimensionk if A(C) is isomorphic
to a compact quotient ofCk.
Multiplication by an integerm> 1 on an Abelian variety, endomorphisms of degreed> 1 on projective spaces
are studied since XIXth century in particular by JULIA and FATOU ([2]). These two families of maps “have
an interesting dynamic”. Consider the first case; letfm denote the multiplication bym. Periodic points offm
are repulsive and dense inA(C) : a point is periodic if and only if it is a torsion point ofA; the differential
of f n at a periodic point of periodn is an homothety of ratiomn > 1. Around 1964 ADLER, KONHEIM

and MCANDREW introduce a new way to measure the complexity of a dynamical system: the topological
entropy ([1]). Let X be a compact metric space and letf be a continuous map fromX into itself. Letn be
a positive integer and letε be a real number strictly positif. Two pointsx andy of X have the same orbit of
periodn with precisionε if

dist( f j(x), f j (y))≤ ε, ∀ 0≤ j ≤ n.

Assume thatε is fixed; asn→+∞ the number of orbits which can be distinguished grows at mostexponen-
tially. The topological entropyhtop( f ) measures this exponential growth asε → 0. For an isometry ofX the
topological entropy is zero. For the multiplication bym on a complex Abelian variety of dimensionk we
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have: htop( f ) = 2k log m. For an endomorphism ofPk(C) defined by homogeneous polynomials of degreed
we have: htop( f ) = k log d (see[24]).
LetM be a complex projective manifold. On which conditions do rational maps with chaotic behavior exist ?
The existence of such rational maps implies a lot of constraints onM :

Theorem 0.1([4]). — A smooth complex projective hypersurface of dimension greater than1 and degree
greater than2 admits no endomorphism of degree greater than1.

Let us consider the case of compact homogeneous manifoldsM : the group of holomorphic diffeomorphisms
acts faithfully onM and there are a lot of holomorphic maps on it. Meanwhile in this context all endomor-
phisms with topological degree strictly greater than 1 comefrom endomorphisms on projective manifolds
and nilvarieties.
So the "idea” is that complex projective manifolds with richpolynomial dynamic are rare; moreover it is not
easy to describe the set of rational or holomorphic maps on such manifolds.
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L. L IN for comments and references. Thanks to J. GRIVAUX for the explanation about the result of NAGATA .
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1. Some dynamic

1.1. SMALE horseshoe. —The SMALE horsehoe is the hallmark of chaos. Let us describe what it is (see for
example[40]). Consider the embeddingf of the disc∆ into itself. Assume that

– f contracts the semi-discsf (A) and f (E) in A;
– f sends the rectanglesB andD linearly to the rectanglesf (B) and f (D) stretching them vertically and

shrinking them horizontally, in the case ofD it also rotates by 180 degrees.
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We don’t care what the imagef (C) of C is as long asf (C)∩ (B∪C∪D) = /0. In other words we have the
following situation

E

D

C

B

A

f (C)

f (D)f (B)

f (A) f (E)

There are three fixed points:p ∈ f (B), q ∈ A, s∈ f (D). The pointsq is a sink in the sense that forall
z∈ A∪C∪E we have lim

n→+∞
f n(z) = q. The pointsp and s are saddle points: if m lies on the horizontal

throughp then f n squeezes it top asn→+∞, while if m lies on the vertical throughp then f−n squeezes it
to p asn→+∞. In some coordinates centered inp we have

∀(x,y) ∈ B, f (x,y) = (kx,my)

for some 0< k< 1< m; similarly f (x,y) = (−kx,−my) onD for some coordinates centered ats. The sets

Ws = {z| f n(z)→ p asn→+∞}, Wu = {z| f n(z)→ p asn→−∞}
are calledstableandunstablemanifolds ofp. They intersect atr, which is what POINCARÉ called ahomo-
clinic point. Homoclinic points are dense in{m∈ ∆ | f n(m) ∈ ∆, n∈ Z}.
The keypart of the dynamic off happens on the horseshoe

Λ = {z| f n(z) ∈ B∪D ∀n∈ Z}.
Let us introduce shift map on the space of two symbols. Take two symbols 0 and 1, and look at the set
Σ = {0,1}Z of all bi-infinite sequencesa= (an)n∈Z where, for eachn, an is 0 or 1. The mapσ : Σ → Σ that
sendsa= (an) to σ(a) = (an+1) is a homeomorphism called theshift map. Let us consider the itinerary map
i : Λ → Σ defined as follows:i(p) = (sn)n∈Z wheresn = 1 if f n(p) is in B andsn = 0 if f n(p) belongs toD.
The diagram

Σ

i
��

σ
// Σ

i
��

Λ
f

// Λ
commutes so every dynamical property of the shift map is possessed equally byf|Λ. Due to conjugacy the
chaos ofσ is reproduced exactly in the horseshoe: the mapσ has positive entropy: log2; it has 2n periodic
orbits of periodn, and so must be the set of periodic orbits off|Λ.
To summarize: every dynamical system having a transverse homoclinic point also has a horseshoe and thus
has a shift chaos, even in higher dimensions. The mere existence of a transverse intersection between the
stable and unstable manifolds of a periodic orbit implies a horseshoe; since transversality persists under
perturbation, it follows that so does the horseshoe and so does the chaos.
The concepts of horseshoe and hyperbolicity are related. Inthe description of the horseshoe the derivative
of f stretches tangent vectors that are parallel to the verticaland contracts vectors parallel to the horizontal,
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not only at the saddle points, but uniformly throughoutΛ. In general,hyperbolicityof a compact invariant set
such asΛ is expressed in terms of expansion and contraction of the derivative on subbundles of the tangent
bundle.

1.2. Two examples. —Let us considerPc(z) = z2+ c. A periodic pointp of Pc with periodn is repelling if
|(Pn

c (p))
′| > 1 and the JULIA setof f is the closure of the set of repelling periodic points.Pc is a complex

horseshoe if it is hyperbolic (i.e. uniformly expanding on the JULIA set) and conjugated to the shift on two
symbols. The MANDELBROT set M is defined as the set of all pointsc such that the sequence(Pn

c (0))n does
not escape to infinity

M = {c∈ C |∃s∈ R, ∀n∈ N, |Pn
c (0)| ≤ s}.

The complex horseshoe locus is the complement of the MANDELBROT set.

Let us consider the HÉNON family of quadratic maps

fa,b : R2 → R2, fa,b(x,y) = (x2+a−by,x).

For fixed parametersa and b, fa,b define a dynamical system, and we are interested in the way that the
dynamic varies with the parameters. The parameterb is equal to det jacfa,b; whenb= 0, the map has a one-
dimensional image and is equivalent toPc. As soon asb is non zero, these maps are diffeomorphisms, and
maps similar to SMALE ’s horseshoe example occur whena<< 0 (see[13]).

In the 60’s it was hoped that uniformly hyperbolic dynamicalsystems might be in some sense typical. While
they form a large open sets on all manifolds, they are not dense. The search for typical dynamical systems
continues to be a great problem, in order to find new phenomenawe try the framework of complex compact
surfaces.

2. Some algebraic geometry

2.1. Compact complex surfaces. —A proper modificationis a proper surjective holomorphic map whose
generic fiber is a point. LetZ be a compact complex surface and letp be a point ofZ ; the blow-upof Z
at p is the proper modificationπ : BlpZ → Z which replacesp with the setπ−1(p)≃ P1(C) of holomorphic
tangent directions atp and is a biholomorphism elsewhere. The rational curveπ−1(p) is calledexceptional
divisor. An irreducible curve is saidexceptionalif it is the exceptional set for some blow-up. IfC is a curve
throughp, thenC̃= π−1(C \{p}) is thestrict transformof C . The blow-ups play an important role as we can
not in the following statement.

Theorem 2.1. — Any proper modification between compact complex surfaces isa composition of finitely
many blow-ups.

Let X , Z be two compact complex surfaces. Ameromorphic mapis defined by its graphΓ( f ) ⊂ X ×Z , an
irreducible subvariety for which the projectionπ1 : Γ( f )→ X is a proper modification ([20]). The mapf is
dominatingwhen the second projectionπ2 : Γ( f )→ Z is surjective. Theindeterminacy setis the finite set of
points whereπ1 does not admit a local inverse; we will denote it Indf . Let Excπ2 be the set of points where
π2 is not a finite map; theexceptional setof f is given by Excf = π1(Excπ2).
When f : X 99K Z admits a meromorphic inverse, we say thatf is bimeromorphic. If f is a bimeromorphic
map andΓ a desingularization of its graph, then the two induced projections π1 : Γ → X , π2 : Γ → Z are
proper modifications and Theorem 2.1 implies the following statement.
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Theorem 2.2. — Any bimeromorphic map f: X 99K Z between smooth compact complex surfaces can be
written as composition f= f1 . . . fk where fi is either a blow-up, or the inverse of a blow-up.

LetZ be a compact complex surface. AdivisorE onZ is a linear combination∑ciC i whereC i is an irreducible
curve (singular or not) andci an element ofZ. The two divisors D and D′ are linearly equivalent, if D −D′

is the divisor of a rational functionf , in other words if D−D′ is the set of zeroes of a rational functionf
minus the poles. If D and D′ are linearly equivalent, we will denote it D∼D′. The PICARD groupof Z , deno-
ted PicZ , is the quotient group of divisors modulo linear equivalence. If C andC ′ are two distinct curves on
Z , thenC · C ′ is the number of intersections counted with multiplicity; note that in this caseC · C ′ ≥ 0. We
can naturally extend this definition to give a sense to the intersection of two divisors; one particular case is
the self intersection, we denote D·D by D2. This intersection number satisfies the following properties:

– if D ∼ D′, then D·D′′ = D′ ·D′′;
– if π : BlpZ → Z is the blow-up ofp in Z and E the exceptional divisor, then

π∗D ·π∗D′ = D ·D′, E ·π∗D = 0, E2 =−1, C̃
2 = C 2−1

whereC̃ is the strict transform of a curveC throughp.
We have a criterion to detect exceptional curves.

Theorem 2.3(CASTELNUOVO ’s criterion) . — An irreducible curveC ⊂ Z is exceptional if and only if it
is a smooth rational curve of self-intersection−1.

To any surfaceZ one associates its DOLBEAULT cohomology groups Hp,q(Z ) and the cohomological groups
Hk(Z ,Z), Hk(Z ,R) and Hk(Z ,C). Set H1,1

R (Z ) = H1,1(Z )∩H2(Z ,R). Let f : X 99K Z be a dominating
meromorphic map between compact complex surfaces,Γ a desingularization of its graph andπ1, π2 the
natural projections. A smooth formα in C ∞

p,q(Z ) can bepulled backas a smooth formπ∗
2α ∈ C ∞

p,q(Γ) and then
pushed forward as a current. We definef ∗ by

f ∗α = π1∗π∗
2α

which gives a L1loc form onX that is smooth outside Indf . The action off ∗ satisfies: f ∗(dα) = d( f ∗α) so
descends to a linear action on DOLBEAULT cohomology.
Let {α} ∈ Hp,q(Z ) be the DOLBEAULT class of some smooth formα. We set

f ∗{α} = {π1∗π∗
2α} ∈ Hp,q(X ).

This defines a linear mapf ∗ from Hp,q(Z ) into Hp,q(X ). Similarly one can define thepush-forward f∗ =
π2∗π∗

1 from Hp,q(X ) into Hp,q(Z ). When f is bimeromorphic, one hasf∗ = ( f−1)∗. The operation(α,β) 7→
∫

α∧β on smooth 2-forms induced a quadratic intersection form, called product intersection, denoted〈., .〉
on H2(Z ,C). Its structure is given by the following fundamental statement.

Theorem 2.4([3]). — LetZ be a compactKÄHLER surface and leth1,1 denote the dimension ofH1,1(Z ,R)⊂
H2(Z ,R). Then the signature of the restriction of the intersection product toH1,1(Z ,R) is (1,h1,1 − 1). In
particular, there is no2-dimensional linear subspaceL in H1,1(Z ,R) with the property that〈v, v〉= 0 forall v
in L.

Theorem-Definition 2.5([15]). — Let f : Z → Z be a dominating meromorphic map on aKÄHLER surface
and letω be aKÄHLER form. Then f is algebraically stable if and only if any of the following hold:

– for anyα ∈ H1,1(Z ) and any k inN, one has( f ∗)kα = ( f k)∗α;
– there is no curveC in Z such that fk(C )⊂ Ind f for some integer k≥ 0;
– for all k≥ 0 one has( f k)∗ω = ( f ∗)kω.
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2.2. Projective plane and blow-ups of the projective plane.— A rational mapfrom P2(C) into itself is a
map of the form

(x : y : z) 99K ( f0(x,y,z) : f1(x,y,z) : f2(x,y,z))

where thefi are homogeneous polynomials of the same degree without common factor.
A birational mapis a rational map which admits an inverse of the same type. LetBir(P2) denote the group
of such maps; it is also called CREMONA group.

Examples 2.6. — – Each element of Aut(P2) = PGL3(C) is a birational map.
– The mapσ : P2(C) 99K P2(C), (x : y : z) 7→ (yz: xz: xy) is a rational map; in the affine chartz= 1 one

hasσ =
(

1
x ,

1
y

)
. One notes thatσ is an involution; in particularσ is birational.

Example 2.7. — A polynomial automorphismof C2 is a bijective application of the following type

f : C2 → C2, (x,y) 7→ ( f1(x,y), f2(x,y)), fi ∈C[x,y].

Thedegreeof f =( f1, f2) is defined by degf =max(degf1,degf2). The set of the polynomial automorphisms
is a group denoted Aut[C2].
The map

C2 → C2, (x,y) 7→ (a1x+b1y+c1,a2x+b2y+c2), ai , bi , ci ∈ C, a1b2−a2b1 6= 0

is an automorphism ofC2. The set of all these maps is theaffine groupA.
The map

C2 → C2, (x,y) 7→ (αx+P(y),βy+ γ), α, β, γ, αβ 6= 0, P∈C[y]

is an automorphism ofC2. The set of all these maps is a group, theelementary groupE.
Of course

S= A ∩E= {(a1x+b1y+c1,b2y+c2) |ai , bi , ci ∈ C, a1b2 6= 0}
is a subgroup of Aut[C2].
The group Aut[C2] has a very special structure.

Theorem 2.8([29]). — The groupAut[C2] is the amalgated product ofA andE alongS :

Aut[C2] = A ∗SE.

In other wordsA andE generateAut[C2] and each element f inAut[C2]\S can be written as follows

f = (a1)e1 . . .an(en), ei ∈ E\A, ai ∈ A \E.

Moreover this decomposition is unique modulo the followingrelations

aiei = (ais)(s
−1ei), ei−1ai = (ei−1s′)(s′−1ai), s, s′ ∈ S.

From a dynamical point of view affine automorphisms and elementary automorphisms are simple. Neverthe-
less there exist some elements in Aut[C2] with a rich dynamic; this is the case of HÉNON automorphisms,
automorphisms of the type

ϕg1 . . .gpϕ−1, ϕ ∈ Aut[C2], gi = (y,Pi(y)−δix), Pi ∈C[y], degPi ≥ 2, δi ∈ C∗.

Note thatgi =

∈A\E︷︸︸︷
(y,x)

∈E\A︷ ︸︸ ︷
(−δix+Pi(y),y) .

Using JUNG’s theorem, FRIEDLAND and MILNOR proved the following statement.
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Proposition 2.9([21]). — Let f be an element ofAut[C2].
Either f is conjugate to an element ofE, or f is a HÉNON automorphism.

The polynomial automorphisms ofC2 can be viewed as birational maps ofP2(C), in other words Aut[C2] is
a subgroup of Bir(P2).

Exercise 2.1. — LetH be the subset of Aut[C2] defined by

H = { f = (y,P(y)−δx) |P(y) = yν + pν−2y
ν−2+ . . .+ p0, ν ≥ 2, δ ∈ C∗}.

– Show that the jacobian of an elementf of H is δ, and in particular it is constant.
– Show that the degree of the first (resp. second) component off n is dn−1 (resp.dn).
– Consider the dilationd(x,y) = (αx,αy) by α and the translationt(x,y) = (x+β,y+β) by β. Show that

if f is in H , then the conjugatetd f d−1t−1 has the form of an element ofH except that the coefficient
of yd is an arbitrary nonzero number, and the coefficient ofyd−1 is arbitrary.

– If f is an element ofH , its inverse is not. Letτ be the involution defined byτ(x,y) = (y,x). The
conjugateτ f−1τ has the form of an element ofH , except thatP is not monic.

Thedegreeof a birational mapf ∈ Bir(P2) is equal to the degree of thefi ’s. This is not a birational invariant,
but the degree growth is: forallf , g in Bir(P2) there exist two strictly positive constantsα andβ such that

αdeg f n ≤ deg(g fng−1)≤ βdeg f n.

So we introduce the birational invariant defined by

λ( f ) = lim inf
n→+∞

(degf n)1/n

which is calledfirst dynamical degreeof f .

Exercise 2.2. — – Find the first dynamical degree of an element of Aut(P2).
– Find the first dynamical degree ofσ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy).
– Find the first dynamical degree of an elementary automorphism ofC2.
– Find the first dyamical degree of the HÉNON automorphism(y,P(y)− δx) with δ in C∗, P in C[y],

ν = degP≥ 2.

Let f = ( f0 : f1 : f2) a birational map ofP2(C). The indeterminacy setof f is the set

{m∈ P2(C) | f0(m) = f1(m) = f2(m) = 0}.
Theexceptional setof f is given by the zeroes of det jacf .

Exercise 2.3. — Let f be an element of Aut(P2); check that Indf = Exc f = /0.

Exercise 2.4. — – Consider the birational map given byσ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy);
describe Indσ and Excσ.

– Consider the birational map given byρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz); describe Indρ
and Excρ.

– Consider the birational map given byτ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2−xz); describe Indτ
and Excτ.

– Are there some relationships between the exceptional set of a birational map off and the degree off ?
– Are there some relationships between the indetermicay setof a birational map off and the degree off ?

Exercise 2.5. — – Let f be the HÉNON automorphism(y,P(y)− δx) with δ in C∗, P in C[y], ν =
degP≥ 2; the mapf can be viewed as a birational map, describe Indf and Excf .
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– Let f be an elementary map(αx+P(y),βy+δ) with α, β, γ in C, αβ 6= 0, P in C[y]; the mapf can be
viewed as a birational map, describe Indf and Excf .

– What can you say about the indeterminacy and exceptional sets of a polynomial automorphism ?

LetZ be a surface andf : Z 99K Z be a birational map. We say thatf is analytically stableif for any curveC
in Z and for any positive integern, f n(C ) is not in the indeterminacy set. In other words for an analytically
stable map the following does not happen

. . ... . .
fffff

C

Exercise 2.6. — Let f be a CREMONA transformation. The mapf is not analytically stable if and only if
there exists an integerk such that degf k < (degf )k. So if f is analytically stable, thenλ( f ) = degf .

Exercise 2.7. — Let A be an automorphism of the complex projective plane and letσ be the birational map
given byσ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy). Assume that the coefficients ofA are positive real
numbers. Show thatAσ is analytically stable.
Let A be an automorphism of the complex projective plane and letσ be the birational map given by

ρ : P2(C) 99K P2(C),

(x : y : z) 99K (xy : z2 : yz).

Assume that the coefficients ofA are positive real numbers. Show thatAσ is analytically stable.
Let A be an automorphism of the complex projective plane and letσ be the birational map given by

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2−xz).

Assume that the coefficients ofA are positive real numbers. Show thatAτ is analytically stable.
Let us say that the coefficients of an automorphismA of P2(C) are algebraically independent if it has a
representativeA in GL3(C) whose coefficients are algebraically independent overQ. One can deduce the
following: let A be an automorphism of the projective plane whose coefficients are algebraically independent
overQ, thenAσ and(Aσ)−1 are analytically stable.

The PICARD group PicP2(C) is isomorphic toZ; similarly H2(P2(C),Z) is isomorphic toZ. We may identi-
fy PicP2(C) and H2(P2(C),Z).

Let π : BlpP
2 → P2(C) be the blow-up ofp in P2(C) and E= π−1(p) be the exceptional divisor. One can

describe the set of rational functions from BlpP
2 into itself:

Rat(BlpP
2) = π∗(RatP2(C)).

The group Pic(BlpP
2) is generated by E and̃L whereL̃ = π∗L = {ℓ ◦π = 0} is the pull back of a line L=

{ℓ= 0} which does not containp.
Let us give a concrete presentation of the blow-up ofp = (0 : 0 : 1) in P2(C). We will work in the affine
chartz= 1. Consider

Γ = {((x,y), [r : v]) ∈ C2×P1(C) |xv= yr}
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andπ the projection on the first factor. The pair(Γ,π) is the blow-up ofp in the affine chartz= 1. Note that
π−1 : C2\{0} → Γ is given byπ−1(x,y) = ((x,y), [x,y]); one can also write

π−1(x,y) = ((x,y), [1 : y/x]) = ((x,y), [x/y : 1])

These two representations allow to define two chartsU =C2
u,v andU ′ =C2

r,s where coordinates are given by

x= u, y= uv, x= rs, y= s.

One hasΓ = U ∪U ′ and if we want to work near{x= 0} (resp.{y= 0}) we use the coordinates(r,s) (resp.
(u,v)).

More generally let us considern distinct pointsp1, . . . , pn in P2(C). Let Blp1,...,pnP
2 be the surface obtained

from P2(C) by blowing upp1, . . . , pn and denote byπ : Blp1,...,pnP
2 → P2(C) the composition of these blow-

ups. Let H be a line inP2(C) and set Ej = π−1(p j). If H contains nopi thenπ∗H is represented by the strict
transformH̃ of H, otherwiseπ∗H = H̃+ ∑

j | pj∈H

E j . In this case one can describe Pic(Blp1,...,pnP
2).

Theorem 2.10. — Let p1, . . . , pn be n distinct points inP2(C). Denote byπ : Blp1,...,pnP
2 → P2(C) the

sequence of blow-ups of the pi ’s. If E j = π−1(p j) are the exceptional divisors andH a generic line ofP2(C),
then

Pic(Blp1,...,pnP
2) = ZE1⊕ . . .⊕ZEn⊕Zπ∗H.

Theorem 2.11. — Let p1, . . . , pn be n distinct points inP2(C). Denote byπ : Blp1,...,pnP
2 → P2(C) the

sequence of blow-ups of the pi ’s and byE j = π−1(p j) the exceptional divisors. Consider two elements
T = D+∑ j a jE j and T′ = D′ + ∑ j b jE j in Pic(Blp1,...,pnP

2), whereD and D′ denote strict transforms of
divisors inP2(C).
We have:T ∼ T′ if and only ifD andD′ have the same degrees, and aj = b j for all j .

2.3. Exceptional configurations and characteristic matrices. — Let f be a birational map fromP2(C) into
itself of degreeν. By Theorem 2.2 there existπ andη two sequences of blow-ups such that

Z

π

||zz
zz
zz
zz η

""D
DD

DD
DD

D

P2(C)
f

//_______ P2(C)

We can rewriteπ as follows

π : Z = Z k
πk→ Z k−1

πk−1→ . . .
π2→ Z1

π1→ Z0 = P2(C)

whereπi is the blow-up of the pointpi−1 in Z i−1. Let

Ei = π−1
i (pi), E i = (πi+1◦ . . .◦πk)

∗Ei

The divisorsE i are called theexceptional configurationsof π and thepi base points off .
For any effective divisor D6= 0 onP2(C) let multpi D be defined inductively in the following way. We set
multp1D to be the usual multiplicity of D atp1 : it is defined as the largest integerm such that the local
equation of D atp1 belongs to them-th power of the maximal idealmP2,p1

. Suppose multp1D is defined. We
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take the proper inverse transformπ−1
i D of D in Z i and define multpi+1D = multpi+1π−1

i D. It follows from the
definition that

π−1D = π∗(D)−
k

∑
i=1

miE i

wheremi = multpi D.
There are two relationships betweenν and themi ’s:

1= ν2−
k

∑
i=1

m2
i , 3= 3ν−

k

∑
i=1

mi.

Considered a resolution of a birational mapf from P2(C) into itself of degreeν :

Z

π

||zz
zz
zz
zz η

""D
DD

DD
DD

D

P2(C)
f

//_______ P2(C)

We can rewriteπ as follows

π : Z = Z k
πk→ Z k−1

πk−1→ . . .
π2→ Z1

π1→ Z0 = P2(C)

whereπi is the blow-up of the pointpi−1 in Z i−1; similarly, for j = 1, . . . , k, there existsη j : X j → X j−1

blow-up of the pointp′j−1 in X j−1 such that

η : Z = Xk
ηk→ Xk−1

ηk−1→ . . .
η2→ X1

η1→ X0 = P2(C).

Note that E1, . . . , Ek (resp. E′1, . . . , E′
k) are the exceptional divisors obtained by blowing upp1, . . . , pk (resp.

p′1, . . . , p′k). An ordered resolutionof f is a decompositionf = ηπ−1 whereη andπ are ordered sequences
of blow-ups. An ordered resolution off induces two basis of Pic(Z )

– B = {e0 = π∗H, e1 = [E1], . . . , ek = [E k]},
– B ′ = {e′0 = η∗H, e′1 = [E ′1], . . . , e′k = [E ′k]},

where H is a generic line. We can writee′i as follows

e′0 = νe0−
k

∑
i=1

miei , e′j = ν je0−
k

∑
i=1

mi j ei , j ≥ 1.

The matrix of change of basis

M =




ν ν1 . . . νk

−m1 −m11 . . . −m1k
...

...
...

−mk −mk1 . . . −mkk




is calledcharacteristic matrixof f . The first column ofM, which is thecharacteristic vectorof f , is the
vector(ν,−m1, . . . ,−mk). The other columns(νi ,−m1i , . . . ,−mki) describe the “behavior ofE ′i ”: if ν j > 0,
thenπ(E ′j) is a curve of degreeν j in P2(C) through the pointspℓ of f with multiplicity mℓ j .

Example 2.12. — Consider the birational map

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy).

The points of indeterminacy ofσ areP= (1 : 0 : 0), Q= (0 : 1 : 0) andR= (0 : 0 : 1); the exceptional set is
the union of the three lines∆ = {x= 0}, ∆′ = {y= 0} and∆′′ = {z= 0}.
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First we blow upP; let us denote E the exceptional divisor andD 1 the strict transform ofD . Set

{
y= u1

z= u1v1

E= {u1 = 0}
∆′′

1 = {v1 = 0}

{
y= r1s1

z= s1

E= {s1 = 0}
∆′

1 = {r1 = 0}
On the one hand

(u1,v1)→ (u1,u1v1)(y,z) → (u1v1 : v1 : 1) =

(
1
u1

,
1

u1v1

)

(y,z)
→
(

1
u1

,
1
v1

)

(u1,v1)

;

on the other hand

(r1,s1)→ (r1s1,s1)(y,z) → (r1s1 : 1 : r1) =

(
1

r1s1
,

1
s1

)

(y,z)
→
(

1
r1
,

1
s1

)

(r1,s1)

.

Hence E is sent on∆1; asσ is an involution∆1 is sent on E.

Now blow upQ1; this time let us denote F the exceptional divisor andD 2 the strict transform ofD 1 :

{
x= u2

z= u2v2

F= {u2 = 0}
∆′′

2 = {v2 = 0}

{
x= r2s2

z= s2

E= {s2 = 0}
∆2 = {r2 = 0}

One has

(u2,v2)→ (u2,u2v2)(x,z) → (v2 : u2v2 : 1) =

(
1
u2

,
1

u2v2

)

(x,z)
→
(

1
u2

,
1
v2

)

(u2,v2)

and

(r2,s2)→ (r2s2,s2)(x,z) → (1 : r2s2 : r2) =

(
1

r2s2
,

1
s2

)

(x,z)
→
(

1
r2
,

1
s2

)

(r2,s2)

.

Therefore F→ ∆′
2 and∆′

2 → F.
Finally we blow upR2; let us denote G the exceptional divisor and set

{
x= u3

y= u3v3

G= {u3 = 0}
∆′′

3 = {v3 = 0}

{
x= r3s3

z= s3

E= {s3 = 0}
∆2 = {r3 = 0}

Note that

(u3,v3)→ (u3,u3v3)(x,y) → (v3 : 1 : u3v3) =

(
1
u3

,
1

u3v3

)

(x,y)
→
(

1
u3

,
1
v3

)

(u3,v3)

and

(r3,s3)→ (r3s3,s3)(x,y) → (1 : r3 : r3s3) =

(
1

r3s3
,

1
s3

)

(x,y)
→
(

1
r3
,

1
s3

)

(r3,s3)

.

Thus G→ ∆′
3 and∆′

3 → G. There is no more point of indeterminacy, no more exceptionalcurve; in other
wordsσ is conjugate to an automorphism of BlP,Q1,R2P

2.

Let H be a generic line. Note thatE1 = E, E2 = F, E3 = H. Consider the basis{H, E, F, G}. After the first
blow-up ∆ and E are swapped; the point blown up is the intersection of∆′ and∆′′ so∆ → ∆+F+G. Then
σ∗E= H−F−G. Similarly we have:

σ∗F= H−E−G and σ∗G= H−E−F.

It remains to determineσ∗H. The image of a generic line byσ is a conic henceσ∗H= 2H−m1E−m2F−m3G.
Let L be a generic line described bya0x+a1y+a2z. A computation shows that

(u1,v1)→ (u1,u1v1)(y,z) → (u2
1v1 : u1v1 : u1)→ u1(a0v2+a1u2v2+a2)
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vanishes to order 1 on E= {u1 = 0} thusm1 = 1. Note also that

(u2,v2)→ (u2,u2v2)(x,z) → (u2v2 : u2
2v2 : u2)→ u2(a0v2+a1u2v2+a2),

resp.

(u3,v3)→ (u3,u3v3)(x,y) → (u3v3 : u3 : u2
3v3)→ u3(a0v3+a1+a2u3v3)

vanishes to order 1 on F= {u2 = 0}, resp. G= {u3 = 0} so m2 = 1, resp. m3 = 1. Thereforeσ∗H =
2H−E−F−G and the characteristic matrix ofσ in the basis{H, E, F, G} is

Mσ =




2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0


 .

Exercise 2.8. — Let us consider the involution given by

ρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz).

One can show thatMρ = Mσ.

Exercise 2.9. — Consider the birational map

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2−xz).

One can verify thatMτ = Mσ.

3. Where can we find automorphisms with positive entropy ?

3.1. Notion of entropy. — Let X be a compact metric space. Letf be a continuous map fromX into itself.
Let ε be a strictly positif real number. For all integern let N(n,ε) be the minimal cardinal of a partXn of X
such that for ally in X there existsx in X satisfying

dist( f j(x), f j (y))≤ ε, ∀ 0≤ j ≤ n.

We introduce htop( f ,ε) defined by

htop( f ,ε) = limsup
n→+∞

1
n

log N(n,ε).

The topological entropy off is given by

htop( f ) = lim
ε→0

htop( f ,ε).

Let f be a map of classC ∞ on a compact manifoldM ; we have this inequality

htop( f )≥ log r( f ∗)

in other words the topological entropy is smaller than the logarithm of the spectral radius of the linear
map induced byf on H∗(M ,R), direct sum of the cohomological groups ofM . Remark that the inequali-
ty htop( f )≥ log r( f ∗) is still true in the meromorphic case ([16]). Before stating a more precise result whenM
is KÄHLER we introduce some notation: for all integerp such that 0≤ p≤ dimCM we denote byλp( f ) the
spectral radius of the mapf ∗ acting on the DOLBEAULT cohomological group Hp,p(M ,R).
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Theorem 3.1([24, 23, 45]). — Let f be a holomorphic map on a complex compactKÄHLER manifoldM ;
we have

htop( f ) = max
0≤p≤dimCM

log λp( f ).

Remark 3.2. — The spectral radius off ∗ is strictly greater than 1 if and only if one of theλp( f )’s is and,
in fact, if and only ifλ( f ) = λ1( f ) is. In other words in order to know if the entropy off is positive we just
have to study the growth of( f n)∗{α} where{α} is a KÄHLER form.

Examples 3.3. — – LetM be a compact KÄHLER manifold and Aut0(M ) be the connected component
of AutM which contains the identity element. The topological entropy of each element of Aut0(M ) is
zero.

– The topological entropy of an holomorphic endomorphismf of the projective sapce is equal to the
logarithm of the topological degree off .

– Whereas the topological entropy of an elementary automorphism is zero, the topological entropy of an
HÉNON automorphism is positive.

3.2. A theorem of CANTAT . — Before describing the pairs(Z , f ) of complex compact surfacesZ carrying
an automorphismf with positive entropy, let us recall one definition: a surfaceZ is rational if one can find a
surfaceX and proper modificationsπ1 : X → P2(C) andπ2 : X → Z . A rational surface is always projective
([3]). A K3 surfaceis a complex, compact, simply connected surfaceZ with a trivial canonical bundle. In
particular there exists a holomorphic 2-formω onZ which is never zero;ω is unique modulo multiplication
by a scalar. LetZ be a K3 surface with a holomorphic involutionι. If ι has no fixed point the quotient is an
ENRIQUESsurface, otherwise it is a rational surface. As ENRIQUESsurfacesare quotients of K3 surfaces by
a group of order 2 acting without fixed points, their theory issimilar to that of algebraic K3 surfaces.

Theorem 3.4([9]). — Let Z be a complex compact surface. Assume thatZ has an automorphism f with
positive entropy. Then

– either f is conjugate to an automorphism on the unique minimal model ofZ which is either a torus, or
a K3 surface, or anENRIQUESsurface;

– or Z is rational, obtained fromP2(C) by blowing upP2(C) in at least10 points and f is birationally
conjugate to a birational map ofP2(C).

In particular Z is KÄHLER.

Examples 3.5. — – SetΛ = Z[i] andE = C/Λ. The group SL2(Λ) acts linearly onC2 and preserves the
latticeΛ×Λ; then each element A of SL2(Λ) induces an automorphismfA on E×E which commutes
with ι(x,y) = (ix, iy). Each automorphismfA can be lifted to an automorphism̃fA on the desingula-
rization of(E×E)/ι which is a K3 surface. The entropy of̃fA is positive as soon as the modulus of one
eigenvalue of A is strictly greater than 1.

– We have the following statement due to TORELLI.

Theorem 3.6. — LetZ be a K3 surface. The morphism

AutZ → GL(H 2(Z ,Z)), f 7→ f ∗

is injective.
Conversely assume that F is an element ofGL(H2(Z ,Z)) which preserves the intersection form onH2(Z ,Z),
the Hodge decomposition ofH2(Z ,Z) and theKÄHLER cone ofH2(Z ,Z). Then there exists an auto-
morphism f onZ such that f∗ = F.
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The case of K3 surfaces has been studied by CANTAT , MCMULLEN, SILVERMAN , WANG and others (seefor
example [10, 35, 41, 44]). The context of rational surfaces produces much more examples (seefor example
[36, 6, 7, 8, 12]).

3.3. Case of rational surfaces. —

Exercise 3.1. — Let us consider the following statement due to NAGATA ([37], Theorem 5): letZ be a
rational surface and letf be an automorphism onZ such that f∗ is of infinite order; then there exists a
sequence of holomorphic mapsπ j+1 : Z j+1 → Z j such thatZ1 = P2(C), ZN+1 = Z andπ j+1 is the blow up
of p j ∈ Z j .
If Y andZ are two projective surfaces, we say thatY dominatesZ if there exists a surjective algebraic
birational morphism fromY to Z . A surfaceZ is basicif it can be obtained by successive blowups from the
projective plane.

– Show that ifZ is notP1(C)×P1(C) and ifZ dominatesP1(C)×P1(C) thenZ dominatesP2(C).
– If Z is notP1(C)×P1(C) and ifZ has two different rational fibrations, thenZ is basic.
– If Z is notP1(C)×P1(C) and if Z is non basic, thenZ contains a unique rational fibration and each

automorphism ofZ preserves this fibration.
– If Z is notP1(C)×P1(C) andZ is non basic then for eachf in Aut(Z ), the induced mapf ∗ on PicZ is

cyclic.

Remark that a surface obtained fromP2(C) via generic blow-ups has no nontrivial automorphism ([28, 31]).
Moreover we have the following statement which can be found for example in [14].

Proposition 3.7. — Let Z be a surface obtained fromP2(C) by blowing up n≤ 9 points. Let f be an
automorphism onZ . The topological entropy of f is zero.
Moreover, if n≤ 8 then there exists an integer k such that fk is birationally conjugate to an automorphism of
the complex projective plane.

Exercise 3.2. — Prove the previous result.

Let f be an automorphism with positive entropy on a KÄHLER surface. The following statement gives
properties on the eignevalues off ∗.

Theorem 3.8. — Let f be an automorphism with positive entropylogλ( f ) on aKÄHLER surface. The first
dynamical degreeλ( f ) is an eigenvalue of f∗ with multiplicity 1 and this is the unique eigenvalue with
modulus strictly greater than1.
If η is an eigenvalue of f∗, then eitherη belongs to{λ( f ),λ( f )−1}, or |η| is equal to1.

Exercise 3.3. — Prove the previous result.

Let χ f denote the caracteristic polynomial off ∗. This is a monic polynomial whose constant term is±1
(constant term is equal to the determinant off ∗). Let Ψ f be the minimal polynomial ofλ( f ). Except forλ( f )
andλ( f )−1 all zeroes ofχ f (and thus ofΨ f ) lie on the unit circle. Such polynomial is aSalem polynomial
and such aλ( f ) is a SALEM number.
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4. Automorphisms with positive entropy on rational surfaces

4.1. The approach of MCM ULLEN ([36]). — In [36] M CMULLEN, thanks to NAGATA ’s works and HAR-
BOURNE’s works, establishes a result similar to TORELLI’s theorem for K3 surfaces: he constucts auto-
morphisms on some rational surfaces prescribing the actionof the automorphisms on cohomological groups
of the surface. These surfaces are rational ones which own, up to multiplication by a constant, a unique
meromorphic non-vanishing 2-formΩ. If f is an automorphism onZ obtained via this construction,f ∗Ω is
proportional toΩ and f preserves the poles ofΩ. When we projectZ on the complex projective plane,f
induces a birational map preserving a cubic.

The relationship of the WEYL group to the birational geometry of the plane, used by MCMULLEN, is dis-
cussed since 1895 in [30] and has been much developed since then ([19, 37, 38, 11, 22, 32, 25, 33, 26, 39, 27,
17, 28, 46, 18]).

4.1.1. WEYL groups. — Let Z be a surface obtained by blowing up the complex projective plane in a finite
number of points. Let{e0, . . . , en} be a basis of H2(Z ,Z); if

e0 ·e0 = 1, ej ·ej =−1, ∀ 1≤ j ≤ k, ei ·ej = 0, ∀ 0≤ i 6= j ≤ n

then{e0, . . . , en} is ageometric basis. Considerα in H2(Z ,Z) such thatα ·α =−2, thenRα(x) = x+(x·α)α
sendsα on−α andRα fixes each element ofα⊥; in other wordsRα is a reflection in the directionα.
Consider the vectors given by

α0 = e0−e1−e2−e3, α j = ej+1−ej , 1≤ j ≤ n−1.

Forall j in {0, . . . ,n−1} we haveα j ·α j = −2. When j is nonzero the reflectionRα j induces a permutation
on {ej , ej+1}. The subgroup generated by theRα j ’s, with 1≤ j ≤ n− 1, is the set of permutations on the
elements{e1, . . . , en}. Let Wn ⊂ O(Z1,n) denote the group〈Rα j |0≤ j ≤ n−1〉 which is called WEYL group.
The WEYL groups are, for 3≤ n≤ 8, isomorphic to the following finite groups

A1×A2, A4, D5, E6, E7, E8

and are associated to DEL PEZZO surfaces(1). For k ≥ 9 WEYL groups are infinite and fork ≥ 10 WEYL

groups contain elements with a spectral radius strictly greater than 1.
If f is an automorphism ofZ , by a theorem of NAGATA there exists a unique elementw in Wn such that

Z1,n

ϕ
��

w
// Z1,n

ϕ
��

H2(Z ,Z)
f∗

// H2(Z ,Z)

commutes; we said thatw is realizedby the automorphismf .
A product of generatorsRα j is a COXETER elementof Wn. Note that all COXETER elements are conjugate so
the spectral radius of a COXETER element is well defined.
The mapσ is represented by the reflectionκi jk =Rαi jk whereαi jk = e0−ei −ej −ek andi, j, k≥ 1 are distinct
elements; it acts as follows

e0 → 2e0−ei −ej −ek, ei → e0−ej −ek, ej → e0−ei −ek

1. A DEL PEZZO surface is isomorphic either toP2(C), or to P1(C)×P1(C), or to P2(C) blown up in 1≤ r ≤ 8 points in
“generic position”.
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ek → e0−ei −ej , eℓ → eℓ si ℓ 6∈ {0, i, j, k}
Whenn= 3, we say thatκ123 is thestandard elementof W3. Consider the cyclic permutation

(123. . .n) = κ123Rα1 . . .Rαn−1 ∈ Σn ⊂ Wn;

let us denote itπn. For n≥ 4 we define thestandard element wof Wn by w= πnκ123. It satisfies

w(e0) = 2e0−e2−e3−e4, w(e1) = e0−e3−e4, w(e2) = e0−e2−e4,

w(e3) = e0−e2−e3, w(ej) = ej+1, 4≤ j ≤ n−2, w(en−1) = e1.

4.1.2. Statements. — In [36] M CMULLEN constructs examples of automorphisms with positive entropy “thanks
to” elements of WEYL groups.

Theorem 4.1([36]). — For n≥ 10, eachCOXETER element ofWn can be realizable by an automorphism fn

with positive entropylog(λn) of a rational surfaceZn.

More precisely the automorphismfn : Zn → Zn can be chosen to have the following additional properties:
– Zn is the projective plane blown up inn distinct pointsp1, . . . , pn lying on a cuspidal cubic curveC ,
– there exists a nowhere vanishing meromorphic 2-formη on Zn with a simple pole along the proper

transform ofC ,
– f ∗n (η) = λn ·η,
– (〈 fn〉,Zn) is minimal in the sense of MANIN (2).

The first three properties determinefn uniquely. The pointspi admit a simple description which leads to
concrete formulas forfn.
The smallest known SALEM number is a rootλLEHMER ∼ 1.17628081 of LEHMER’s polynom

L(t) = t10+ t9− t7− t6− t5− t4− t3+ t +1.

Theorem 4.2([36]). — If f is an automorphism of a compact complex surface with positive entropy, then
htop( f )≥ logλLEHMER.

Corollary 4.3([36]). — The map f10: Z10 → Z10 is an automorphism ofZ10 with the smallest possible
positive entropy.

Let us also mention a more recent work in this direction ([43]). D ILLER also find examples using plane
cubics ([14]).

4.2. Another approach. —

4.2.1. Works ofBEDFORDand K IM ([6, 7, 8, 5]). — A way to construct automorphisms on a rational surface
Z is the following: starting with a birational mapf of P2(C), we try to find a sequence of blow-upsπ : Z →
P2(C) such that the induced mapfZ = π f π−1 is an automorphism onZ . The difficulty is to find such a
sequenceπ... If f is an automorphism of the complex projective plane,f blows down a curveC1 to a pointp1;
the first thing to do in order to obtain an automorphism fromf is to blow up the pointp1 via π1 : Z1 → P2(C).
In the best casefZ1 = π1 f π−1

1 sends the transform ofC1 on the exceptional divisor E1. But if p1 is not a point
of indeterminacyfZ1 blows down E1 to p2 = f (p1). In other words this process finishes only iff is not
algebraically stable. Thanks to this method BEDFORD and KIM found some examples ([6, 7, 8, 5]); one of
their statement is the following:

2. LetZ be a surface andG be a subgroup of Aut(Z ). A birational mapf : Z 99K Z̃ is G-equivariant ifG̃= f G f−1 ⊂ Aut(Z̃ ).
The pair(G,Z ) is minimal if everyG-equivariant birational morphism is an isomorphism
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Theorem 4.4([8]). — Consider two integers n≥ 3 and k≥ 2 such that n is odd and(n,k) 6= (3,2). There
exists a nonempty subset Ck of R such that, if c∈Ck and a= (a2,a4, . . . ,an−3) ∈ C

n−3
2 , the map

fa : (x : y : z)→
(
xzn−1 : zn : xn−yzn−1+czn+

n−3

∑
ℓ=2

ℓ even

aℓx
ℓ+1zn−ℓ−1) (4.1)

can be lifted to an automorphism of positive topological entropy of a rational surface Xa. The surfaces Xa
are obtained by blowing up k infinitely near points of length2n−1 on the invariant line{x= 0} and form a
holomorphic family over the parameter space given by the aj

′s.

If k = 2 and n≥ 5 is odd, then there exists a neighborhood of0 in C
n−3

2 such that for all distinct elements a
and a′ in U with an−3 6= 0, Xa and Xa′ are not biholomorphic.

4.2.2. A “systematic” way ([12]). — Idea of the approach: this section is devoted to the construction of
examples of rational surfaces with biholomorphisms of positive entropy. The strategy is the following: start
with a birational mapf of P2(C). By the standard factorization theorem for birational maps on surfaces as
a composition of blow-ups and blow-downs, there exist two sets of (possibly infinitely near) pointŝP1 and
P̂2 in P2(C) such thatf can be lifted to an automorphism between BlP̂1

P2 and Bl̂P2
P2. The data ofP̂1 and

P̂2 allow to get automorphisms of rational surfaces in the left PGL3(C)-orbit of f : assume thatk ∈ N is
fixed and letϕ be an element of PGL3(C) such thatP̂1, ϕP̂2, (ϕ f )ϕP̂2, . . . , (ϕ f )k−1ϕP̂2 have all distinct
supports inP2(C) and(ϕ f )kϕP̂2 = P̂1. Thenϕ f can be lifted to an automorphism ofP2(C) blown up atP̂1,

ϕP̂2, (ϕ f )ϕP̂2, . . . , (ϕ f )k−1ϕP̂2. Furthermore, if the conditions above are satisfied for a holomorphic family
of ϕ, we get a holomorphic family of rational surfaces (whose dimension is at most eight). Therefore, we
see that the problem of lifting an element in the PGL3(C)-orbit of f to an automorphism is strongly related
to the equationu(P̂2) = P̂1, whereu is a germ of biholomorphism ofP2(C) mapping the support of̂P2 to
the support ofP̂1. In concrete examples, when̂P1 and P̂2 are known, this equation can actually be solved
and involves polynomial equations in the Taylor expansionsof u at the various points of the support ofP̂2.

It is worth pointing out that in the generic case,P̂1 and P̂2 consist of the same numberd of distinct points
in the projective plane, and the equationu(P̂2) = P̂1 gives 2d independent conditions onu (which is the
maximum possible number if̂P1 andP̂2 have lengthd). Conversely, infinitely near points can considerably
decrease the number of conditions onu as shown in our examples. This explains why holomorphic families
of automorphisms of rational surfaces occur when multiple blow-ups are made.

Birational maps whose exceptional locus is a line

Let us consider the birational map defined byΦn = (xzn−1 + yn : yzn−1 : zn), with n ≥ 3. The sequence
(degΦk

n)k∈N is bounded (it’s easy to see in the affine chartz= 1), soΦn is conjugate to an automorphism on
some rational surfaceZ and an iterate ofΦn is conjugate to an automorphism isotopic to the identity ([15]).
The mapΦn blows up one pointP= (1 : 0 : 0) and blows down one curve∆ = {z= 0}.
Here we will assume thatn= 3 but the construction is similar forn≥ 4 (see[12]). We first construct two in-
finitely near pointŝP1 andP̂2 such thatΦ3 induces an isomorphism between BlP̂1

P2 and Bl̂P2
P2. Then we give

“theoric” conditions to produce automorphismsϕ of P2(C) such thatϕΦ3 is conjugate to an automorphism
on a surface obtained fromP2(C) by successive blow-ups.

First step: description of the sequence of blow-ups

i. First blow up the pointP in the domain and in the range. Sety= u1 andz= u1v1; remark that(u1,v1) are
coordinates nearP1 = (0,0)(u1,v1), coordinates in which the exceptional divisor is given by E= {u1 = 0} and
the strict transform of∆ is given by∆1 = {v1 = 0}. Sety= r1s1 andz= s1; note that(r1,s1) are coordinates
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nearQ= (0,0)(r1,s1), coordinates in which E= {s1 = 0}. One has

(u1,v1)→ (u1,u1v1)(y,z) → (v2
1+u1 : v2

1u1 : v3
1u1)

=

(
v2

1u1

v2
1+u1

,
v3

1u1

v2
1+u1

)

(y,z)

→
(

v2
1u1

v2
1+u1

,v1

)

(u1,v1)

and

(r1,s1)→ (r1s1,s1)(y,z) → (1+ r3
1s1 : r1s1 : s1)

=

(
r1s1

1+ r3
1s1

,
s1

1+ r3
1s1

)

(y,z)

→
(

r1,
s1

1+ r3
1s1

)

(r1,s1)

;

thereforeP1 is a point of indeterminacy,∆1 is blown down toP1 and E is fixed.

ii. Let us blow upP1 in the domain and in the range. Setu1 = u2 and v1 = u2v2. Note that(u2,v2) are
coordinates aroundP2 = (0,0)(u2,v2) in which ∆2 = {v2 = 0} and F= {u2 = 0}. If we set u1 = r2s2 and
v1 = s2 then(r2,s2) are coordinates nearA= (0,0)(r2,s2); in these coordinates F= {s2 = 0}. Moreover

(u2,v2)→ (u2,u2v2)(u1,v1) → (1+u2v2
2 : u2

2v2
2 : u3

2v3
2)

and

(r2,s2)→ (r2s2,s2)(r1,s1) → (r2+s2 : r2s2
2 : r2s3

2).

Remark thatA is a point of indeterminacy. One also has

(u2,v2)→ (u2,u2v2)(u1,v1) → (1+u2v2
2 : u2

2v2
2 : u3

2v3
2)→

(
u2

2v2
2

1+u2v2
2

,
u3

2v3
2

1+u2v2
2

)

(y,z)

→
(

u2
2v2

2

1+u2v2
2

,u2v2

)

(u1,v1)

→
(

u2v2

1+u2v2
2

,u2v2

)

(r2,s2)

so F and∆2 are blown down toA.

iii. Now let us blow upA in the domain and in the range. Setr2 = u3 ands2 = u3v3; (u3,v3) are coordinates
nearA1 = (0,0)(u3,v3), coordinates in which F1 = {v3 = 0} and G= {u3 = 0}. If r2 = r3s3 and s2 = s3,
then(r3,s3) is a system of coordinates in which E2 = {r3 = 0} and G= {s3 = 0}. One has

(u3,v3)→ (u3,u3v3)(r2,s2) → (1+v3 : u2
3v2

3 : u3
3v3

3),

(r3,s3)→ (r3s3,s3)(r2,s2) → (1+ r3 : r3s2
3 : r3s3

3).

The pointT = (−1,0)(r3,s3) is a point of indeterminacy. Moreover

(u3,v3)→
(

u2
3v2

3

1+v3
,

u3
3v3

3

1+v3

)

(y,z)
→
(

u2
3v2

3

1+v3
,u3v3

)

(u1,v1)

→
(

u3v3

1+v3
,u3v3

)

(r2,s2)

→
(

1
1+v3

,u3v3

)

(r3,s3)

;

so G is fixed and F1 is blown down toS= (1,0)(r3,s3).
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iv. Let us blow upT in the domain andS in the range. Setr3 = u4 − 1 ands3 = u4v4; in the system of
coordinates(u4,v4) we have G1 = {v4 = 0} and H= {u4 = 0}. Note that(r4,s4), wherer3 = r4s4− 1 and
s3 = s4, is a system of coordinates in which H= {s4 = 0}. On the one hand

(u4,v4)→ (u4−1,u4v4)(r3,s3) → ((u4−1)u4v2
4,(u4−1)u2

4v3
4)(y,z)

→ ((u4−1)u4v2
4,u4v4)(u1,v1) → ((u4−1)v4,u4v4)(r2,s2) →

(
(u4−1)v4,

u4

u4−1

)

(u3,v3)

so H is sent on F2; on the other hand

(r4,s4)→ (r4s4−1,s4)(r3,s3) → (r4 : (r4s4−1)s4 : (r4s4−1)s2
4);

henceB= (0,0)(r4,s4) is a point of indeterminacy.

Set r3 = a4 + 1, s3 = a4b4; (a4,b4) are coordinates in which G1 = {b4 = 0} and K= {a4 = 0}. One can
also setr3 = c4d4+ 1 ands3 = d4; in the system of coordinates(c4,d4) the exceptional divisor K is given
by d4 = 0.
Note that

(u3,v3)→
(

1
1+v3

,u3v3

)

(r3,s3)

→
(
− v3

1+v3
,−u3(1+v3)

)

(a4,b4)

;

thus F2 is sent on K.
We remark that

(u1,v1)→ (v2
1+u1 : u1v2

1 : u1v3
1) =

(
u1v2

1

u1+v2
1

,
u1v3

1

u1+v2
1

)

(y,z)

→
(

u1v2
1

u1+v2
1

,v1

)

(u1,v1)

→
(

u1v1

u1+v2
1

,v1

)

(r2,s2)

→
(

u1

u1+v2
1

,v1

)

(r3,s3)

→
(
− v1

u1+v2
1

,v1

)

(c4,d4)

;

so∆4 is blown down toC= (0,0)(c4,d4).

v. Now let us blown upB in the domain andC in the range. Setr4 = u5, s4 = u5v5 andr4 = r5s5, s4 = s5.
Then(u5,v5) (resp. (r5,s5)) is a system of coordinates in which L= {u5 = 0} (resp. H1 = {v5 = 0} and
L = {s5 = 0}). One notes that

(u5,v5)→ (u5,u5v5)r4,s4 → (1 : v5(u
2
5v5−1) : u5v2

5(u
2
5v5−1))

and
r5,s5)→ (r5s5,s5)r4,s4 → (r5 : r5s2

5−1 : s5(r5s2
5−1)).

Therefore L is sent on∆5 and there is no point of indeterminacy.
Setc4 = a5, d4 = a5b5 andc4 = c5d5, d4 = d5. In the first (resp. second) system of coordinates the exceptional
divisor M is given by{a5 = 0} (resp.{d5 = 0}). One has

(u1,v1)→
(
− v1

u1+v2
1

,v1

)

(c4,d4)

→
(
− 1

u1+v2
1

,v1

)

(c5,d5)

;

in particular∆5 is sent on M.

Proposition 4.5([12]). — Let P̂1 (resp. P̂2) be the point infinitely near P obtained by blowing upP2(C) at
P, P1, A, T and U (resp. P, P1, A, S and U′).
The mapΦ3 induces an isomorphism betweenBlP̂1

P2 andBlP̂2
P2.
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The different components are swapped as follows

∆ → M, E→ E, F→ K, G→ G, H → F, L → ∆.

Second step: gluing conditions

The gluing conditions reduce to the following problem: ifu is a germ of biholomorphism in a neighborhood
of P, find the conditions onu in order thatu(P̂2) = P̂1.

Proposition 4.6([12]). — Let u(y,z) =

(

∑
(i, j)∈N2

mi, jy
izj , ∑

(i, j)∈N2

ni, jy
izj

)
be a germ of biholomorphism at P.

Then u can be lifted to a germ of biholomorphism betweenBlP̂2
P2 andBlP̂1

P2 if and only if

m0,0 = n0,0 = n1,0 = m3
1,0+n2

0,1 = 0, n2,0 =
3m0,1n0,1

2m1,0
.

Exercise 4.1. — Let σ be the birational map defined byσ : (x : y : z) 99K (yz : xz : xy); find P1, P2 andP3

three points inP2(C) such thatσ induces an isomorphism of BlP1,P2,P3.
Find how the differents components are swapped.
Find the matrix off∗.

Exercise 4.2. — Let ρ be the birational map defined byρ : (x : y : z) 99K (xy : z2 : yz); find P1 andP2 two
points infinitely nearP2(C) or in P2(C) such thatρ induces an isomorphism of BlP1,P2.
Find how the differents components are swapped.
Find the matrix off∗.

Examples

In this section, we will use the two above steps to produce explicit examples of automorphisms of rational
surfaces obtained from birational maps in the PGL3(C)-orbit of Φ3. As we have to blow upP2(C) at least ten
times to have non zero-entropy, we want to find an automorphism ϕ of P2(C) such that

(ϕΦ3)
kϕ(P̂2) = P̂1 with (k+1)(2n−1) ≥ 10 and(ϕΦ3)

iϕ(P) 6= P for 0≤ i ≤ k−1 (4.2)

First of all let us introduce the following definition.

Definition. — LetU be an open set ofCn andϕ : U →PGL3(C) a holomorphic map. Iff is a birational map
of the projective plane, we say that the family of birationalmaps(ϕα1, ...,αn f )(α1, ...,αn)∈U is holomorphically
trivial if for every α0 = (α0

1, . . . , α0
n) in U there exists a holomorphic map from a neighborhoodUα0 of α0

to PGL3(C) such that
– Mα0

1, ...,α0
n
= Id,

– ∀(α1, . . . , αn) ∈Uα0, ϕα1, ...,αn f = Mα1, ...,αn(ϕα0
1, ...,α0

n
f )M−1

α1, ...,αn
.

Theorem 4.7. — Let ϕα be the automorphism of the complex projective plane given by

ϕα =




α 2(1−α) (2+α−α2)
−1 0 (α+1)
1 −2 (1−α)


 , α ∈ C\{0, 1}.

The mapϕαΦ3 is conjugate to an automorphism ofP2(C) blown up in15 points.

The first dynamical degree ofϕαΦ3 is 3+
√

5
2 > 1.

The familyϕαΦ3 is holomorphically trivial.
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Proof. — The first assertion is given by Proposition 4.6.
The different components are swapped as follows (§4.2.2)

∆ → ϕαM, E→ ϕαE, F→ ϕαK, G→ ϕαG,

H → ϕαF, L → ϕα∆, ϕαE→ ϕαΦ3ϕαE, ϕαF→ ϕαΦ3ϕαF,

ϕαG→ ϕαΦ3ϕαG, ϕαK → ϕαΦ3ϕαK, ϕαM → ϕαΦ3ϕαM, ϕαΦ3ϕαE→ E,

ϕαΦ3ϕαF→ F, ϕαΦ3ϕαG→ G, ϕαΦ3ϕαK → H, ϕαΦ3ϕαM → L.

So, in the basis

{∆, E, F, G, H, L, ϕαE, ϕαF, ϕαG, ϕαK, ϕαM ϕαΦ3ϕαE, ϕαΦ3ϕαF, ϕαΦ3ϕαG, ϕαΦ3ϕαK, ϕαΦ3ϕαM},
the matrix of(ϕαΦ3)∗ is




0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −3 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




and its caracteristic polynomial is

(X2−3X+1)(X2−X+1)(X+1)2(X2+X+1)3(X−1)4.

Thus

λ(ϕαΦ3) =
3+

√
5

2
> 1.

Fix a pointα0 in C\{0, 1}. We can find locally aroundα0 a matrixMα dépending holomorphically onα such
that for all α nearα0 we haveϕαΦ3 = M−1

α ϕα0Φ3Mα : if µ is a local holomorphic solution of the equation
α = µnα0 such thatµ0 = 1 we can take

Mα =




1 0 α0−α
0 1 0
0 0 1


 .

A birational cubic map blowing down one conic and one line

Let f denote the following birational map

f = (y2z : x(xz+y2) : y(xz+y2));
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it blows up two points and blown down two curves, more precisely

Ind f = {R= (1 : 0 : 0), P= (0 : 0 : 1)}, Exc f = (C = {xz+y2 = 0})∪ (∆′ = {y= 0}).
One can verify thatf−1 = (y(z2−xy) : z(z2−xy) : xz2) and

Ind f−1 = {Q= (0 : 1 : 0), R}, Exc f−1 = (C ′ = {z2−xy= 0})∪ (∆′′ = {z= 0}).
Similar computations allow us to establish the following statement.

Theorem 4.8([12]). — Assume that f= (y2z : x(xz+y2) : y(xz+y2)) and that

ϕα =




2α3

343(37i
√

3+3) α −2α2

49 (5i
√

3+11)
α2

49(−15+11i
√

3) 1 − α
14(5i

√
3+11)

−α
7(2i

√
3+3) 0 0


 , α ∈ C∗.

The mapϕα f is conjugate to an automorphism ofP2(C) blown up in15points.

The first dynamical degree ofϕα f is λ(ϕα f ) = 3+
√

5
2 .

The familyϕα f is holomorphically trivial.
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