

1. MINI-COURSE 1 - ALBERTO CALABRI - INTRODUCTION TO PLANE CREMONA MAPS

Exercise 1. Consider the rational map $\alpha \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^4$ given by

$$\alpha([x_0:x_1:x_2]) = [x_1^2:x_2^2:x_0x_1:x_0x_2:x_1x_2]$$

and call S the image of this map.

- (a) Determine the fundamental points of α .
- (b) Choose your favourite line L_1 passing through P = [1:0:0]. Show that the image of L_1 via α is a line in \mathbb{P}^4 .
- (c) Do the same for each line passing through P.
- (d) Choose your favourite line L_2 not passing through P. Show that the image of L_2 via α is a conic in \mathbb{P}^4 .
- (e) Do the same for each line not passing through P.
- (f) Show that S is isomorphic to the blow up of \mathbb{P}^2 at P.
- (g) Find the equations in \mathbb{P}^4 of the exceptional curve E of S.

Notation. Denote by σ the standard quadratic map $\sigma([x_0:x_1:x_2]) = [x_1x_2:x_0x_2:x_0x_1].$

Exercise 2. Let $P_1 = [1:0:0], P_2 = [0:1:0], P_3 = [1:1:1]$ in \mathbb{P}^2 .

- (a) Define a quadratic plane Cremona map γ with fundamental points P_1, P_2, P_3 .
- (b) Find linear maps α, β such that $\gamma = \alpha \circ \sigma \circ \beta$.
- (c) Find, it it exists, γ as above such that γ is an *involution*, i.e. $\gamma^{-1} = \gamma$.

One says that a quadratic Cremona map with three fundamental points is of the first type.

Exercise 3. Consider the rational map $\gamma \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$

$$\gamma([x_0:x_1:x_2]) = [x_2^2:x_0x_1:x_1x_2].$$

- (a) Compute the fundamental points of γ .
- (b) Show that γ is birational by computing its inverse γ^{-1} .
- (c) Find an open subset of \mathbb{P}^2 where γ is an isomorphism.
- (d) Describe γ as the composition of blowing-ups and blowing-downs.

- (e) Find two quadratic maps σ_1, σ_2 of the first type such that $\gamma = \sigma_1 \circ \sigma_2$.
- (f) Find three linear maps $\alpha_1, \alpha_2, \alpha_3$ such that $\gamma = \alpha_1 \circ \sigma \circ \alpha_2 \circ \sigma \circ \alpha_3$.

One says that γ is a quadratic plane Cremona map of the second type.

Exercise 4. Consider the birational map $\gamma \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$

$$\gamma([x_0:x_1:x_2]) = [x_1x_2:x_2^2 - x_0x_1:x_1^2].$$

- (a) Compute the fundamental points of γ .
- (b) Find an open subset of \mathbb{P}^2 where γ is an isomorphism.
- (c) Describe γ as the composition of blowing-ups and blowing-downs.
- (d) Find two quadratic maps σ_1, σ_2 of the second type such that $\gamma = \sigma_1 \circ \sigma_2$.
- (e) Write γ as the composition of σ and linear maps. How many σ 's do you use?

One says that γ is a quadratic plane Cremona map of the *third type*.

Exercise 5. Let $P_1 \in \mathbb{P}^2$ be a point and $\tau_1 \colon S_1 \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at P_1 , with exceptional curve E_1 . Let $P_2 \in S_1$ be a point of E_1 and $\tau_2 \colon S_2 \to S_1$ be the blowing up of S_1 at P_2 , with exceptional curve E_2 . Denote by \tilde{E}_1 the strict transform of E_1 via τ_2 and let P_3 be the point $E_2 \cap \tilde{E}_1$.

- (a) Show that, for each point $P \in E_2$, $P \neq P_3$, there exists a plane conic C such that the strict transform of C via $\tau_1 \circ \tau_2$ passes through P.
- (b) Show that there is no plane conic whose strict transform via $\tau_1 \circ \tau_2$ passes through P_3 .

One says that P_3 is proximate to P_1 and P_3 is infinitely near of order 2 to P_1 , so P_3 is an example of a *satellite* point (to P_1).

Notation. Let $\phi = \tau_1 \circ \cdots \circ \tau_n$: $S = S_n \to S_0 = \mathbb{P}^2$ be a sequence of blowing ups $\tau_k \colon S_k \to S_{k-1}$ at a single point $P_k \in S_{k-1}$. For each $k = 1, \ldots, n$, denote by

- $E_k \subset S_k$ the exceptional curve of τ_k ,
- \tilde{E}_k the strict transform of E_k in S via $\tau_n \circ \cdots \circ \tau_{k+1}$,
- $\overline{E_k}$ the total transform of E_k in S via $\tau_n \circ \cdots \circ \tau_{k+1}$.
- L the total transform in S of a general line in $S_0 = \mathbb{P}^2$.

One says that P_h is proximate to P_k , and we write $P_h \to P_k$, if h > k and P_h lies on the strict transform of E_k on S_{h-1} via $\tau_{h-1} \circ \cdots \circ \tau_{k+1}$. In particular $P_{k+1} \to P_k$ if $P_{k+1} \in E_k$.

Denote by Q the proximity matrix, namely the $n \times n$ matrix whose entries are

$$q_{ij} = \begin{cases} 1 & \text{if } P_j \to P_i \\ 0 & \text{otherwise.} \end{cases}$$

Exercise 6. With notation as above, show that $Q = (q_{ij})$ has the following properties:

- (a) each column has at most two non-zero entries;
- (b) if $q_{ij} = q_{hj} = 1$ and h > i, then $q_{ih} = 1$;
- (c) two columns, each one with two non-zero entries, are not equal.

Exercise 7. With notation as above,

- (a) show that $\{L, \overline{E_1}, \ldots, \overline{E_n}\}$ is a set of generators of $\operatorname{Pic}(S) \cong \mathbb{Z}^{n+1}$,
- (b) show that $\overline{E_i} \cdot \overline{E_j} = -\delta_{ij}$, for each $i, j = 1, \ldots, n$;
- (c) show that $L \cdot L = 1$ and that $L \cdot \overline{E_i} = 0$, for each $i = 1, \ldots, n$;
- (d) compute the $n \times n$ matrix $N = (n_{ij})$ such that

$$\tilde{E}_i = \sum_{j=1}^n n_{ij} \overline{E_k}$$

in terms of Q; show that N is invertible and compute its inverse in terms of Q;

- (e) show that also $\{L, \tilde{E}_1, \ldots, \tilde{E}_n\}$ is a set of generators of $\operatorname{Pic}(S)$;
- (f) compute the $n \times n$ matrix $(\tilde{E}_i \cdot \tilde{E}_j), i, j = 1, \ldots, n$, in terms of Q.

Exercise 8. Let C be a plane curve of degree d and \hat{C} its strict transform in S.

(a) Show that there exist non-negative integers m_1, \ldots, m_n such that

$$\tilde{C} \in |dL - m_1 \overline{E_1} - \dots - m_n \overline{E_n}|$$

where m_k is the multiplicity at P_k of the strict transform of C in S_{k-1} , $k = 1, \ldots, n$. (b) Show that, for each $k = 1, \ldots, n$, one has

(1) $m_k \ge \sum_{j: P_j \to P_k} m_j,$

that is called the *proximity inequality* at P_k .

(c) Find conditions such that the equality holds in (1).

Exercise 9. With notation as above, the *Enriques weighted graph* of \hat{C} is defined as the directed graph with vertices P_1, \ldots, P_n and arrow from P_h to P_k if and only if $P_h \to P_k$, and such that m_k is the weight at $P_k, k = 1, \ldots, n$.

- (a) Let $C_6: (x_1^2 + x_2^2)^3 4x_0^2 x_1^2 x_2^2 = 0$. Find P_1, P_2, P_3 such that \tilde{C}_6 is smooth and write its Enriques weighted graph.
- (b) Let $C_3: x_0x_1^2 x_2^3 = 0$. Find *n* and P_1, \ldots, P_n such that \tilde{C}_3 is smooth and there is no exceptional curve E_k which does not meet transversely \tilde{C}_3 . Write the Enriques weighted graph of \tilde{C}_3 .
- (c) Do the same for $C_5: x_0^3 x_1^2 x_2^5 = 0.$

Exercise 10. Consider the plane Cremona map $\gamma \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ defined by

$$\gamma([x_0:x_1:x_2]) = [x_0x_1^2:x_1^3:x_0^3 + x_1^2x_2].$$

- (a) Describe the base locus of γ , i.e. its base points including infinitely near ones.
- (b) Show that there is no quadratic plane Cremona map ρ such that $\rho \circ \gamma$ is quadratic.
- (c) Find three quadratic plane Cremona maps $\sigma_1, \sigma_2, \sigma_3$ such that $\gamma = \sigma_1 \circ \sigma_2 \circ \sigma_3$. Which types of quadratic transformations do you find?

Exercise 11. Compute all solutions $(d; m_1, \ldots, m_n)$ to Noether's equations

$$\sum_{k=1}^{n} m_k = 3(d-1), \qquad \sum_{k=1}^{n} m_k^2 = d^2 - 1,$$

for $2 \le d \le 7$. How many of them do not satisfy Hudson's test?

Exercise 12. Let γ be a plane De Jonquières map of degree d > 2 and let P be the base point of multiplicity d-1 of the homaloidal net \mathcal{L}_{γ} .

- (a) Show that an infinitely near base point of \mathcal{L}_{γ} can be satellite only to P.
- (b) Show that the simplicity of γ is (1, 2d 2, s) with $0 \le s \le d 2$.
- (c) Show that the bounds for s are sharp by producing examples, at least for d = 3, 4.
- (d) When s = d 2, describe the Enriques weighted graph of the general element of \mathcal{L}_{γ} , under the assumption that all base points of \mathcal{L}_{γ} are infinitely near to P.
- (e) Explain how to decompose De Jonquières transformations in quadratic ones.

2. MINI-COURSE 2 - SERGE CANTAT - EXAMPLES OF BIRATIONAL TRANSFORMATIONS

B.- Consider the following birational transformation f of
the office flame
$$A^2$$
: $f(x,y) = (x+1, xy)$.
B.1.- Compute the M-th iterate f^m of f and ite
degree
B.2.- Show that f contracts $\{n=0\}$ onto the point (1,0).
Show that f^m contracts $\{x=-i\}$ onto $(m\cdot i, o)$
for every $i \in \{0, ..., m-1\}$.
B.3.- Show that the curves $y=0$ and $y=\infty$ (in $P^{\pm} R^2$)
are f -invariant. List all f-invariant curves
in $P^{a} \times P^{a}$ (i.e. f is viewed as a birational
transformation of the compactification $P' \times P'$ of A^{2}).
B.4.- The transformation f permutes the lines $\{x=c^{*}\}$.
Show that f does not preserve any other pencil
of curves.
B.5.- Solve the equation
 $x = a(n+i) = (x+k) a(x)$
for $a(n) \in \underline{k}(x)$ (here \underline{k} is a field and
 $k \in \mathbb{Z}$).
B.6.- Assume that $g \in Bir(P' \times P')$ (commutes to f ,
 $j = (x+k, -1) = (x+k) + d(x)$
 $g(n, y) = (x+k, -1) + d(x)$

 $\mathbf{5}$

D.- Compute the degrees
$$d_i(\sigma)$$
, $0 \le i \le 4$, of the
birational transformation σ [$x_0 : \dots : x_4$] = $[\frac{1}{x_0} : \dots : \frac{1}{x_4}]$
of \mathbb{P}^4 . (recall that $d_i(\sigma)$ is the degree
of the strict transform of a linear subspace of
codimension i).

Exercise 1. Let $n \ge 1$. Find a bijective polynomial map from \mathbb{R}^n to \mathbb{R}^n that is not a polynomial automorphism. Then meditate on that for a minute or two.

Exercise 2. Let **k** be the field with two elements. Your first instinct might be that $Aut(\mathbb{A}_{\mathbf{k}}^2)$ is a finite group. However, the exercise is to show that $Aut(\mathbb{A}_{\mathbf{k}}^2)$ contains a free group over two generators!

- **Exercise 3.** (1) Let T be a tree, and f, g two elliptic isometries of T without a common fixed point. Prove that $\langle f, g \rangle = \langle f \rangle * \langle g \rangle$.
 - (2) Let **k** be your favourite field. Find an example of two involutions $f, g \in Aut(\mathbb{A}^2_{\mathbf{k}})$ such that you can apply the previous question to the action on the Bass-Serre tree.

Exercise 4. Let $E = \{(x, y) \mapsto (x + P(y), y) \mid P \in \mathbf{k}[X]\}$ be the elementary group, and let E_{λ} be the conjugate of E by $a_{\lambda}: (x, y) \to (\lambda x + y, x)$, where $\lambda \in \mathbf{k}$. Prove that the subgroup of $\operatorname{Aut}(\mathbb{A}^2)$ generated by the E_{λ} is a free product (and observe that if the field \mathbf{k} is uncountable, this is a free product over uncountably many factors...):

$$\langle E_{\lambda} \mid \lambda \in \mathbf{k} \rangle = \overset{\mathbf{*}}{\underset{\lambda \in k}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}{\overset{\mathrm{Aut}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }$$

Exercise 5. Let **k** be your favourite field again. Give an explicit example of a polynomial automorphism $g \in Aut(\mathbb{A}^2_{\mathbf{k}})$ with exactly 8 base points.

Exercise 6. For this exercise we work over an algebraically closed field. We know by the classical theorem of Noether & Castelnuovo that any birational self-maps g of \mathbb{P}^2 can be decomposed as a product of quadratic maps, each of them with three proper base points (that is, no infinitely near base point). Moreover, any polynomial automorphism of \mathbb{A}^2 can be naturally extended as a birational map of \mathbb{P}^2 . The question is: what is the minimal number of such quadratic maps that you will need to factorize the polynomial automorphism $g: (x, y) \mapsto (x + y^3, y)$?