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1. Introduction

A curve Γ ⊂ P2 = P2(R) (respectively ⊂ R2) is a projective (respectively an
affine) pseudo-line if there is a homeomorphism φ : P2 → P2 (respectively φ : R2 →
R2) such that φ(Γ) is a line.

A projective (respectively an affine) arrangement of n pseudo-lines is a set of n
pseudo-lines in P2 (respectively in R2), such that any pair of pseudo-lines intersects
in exactly one point. A projective (respectively an affine) arrangement of lines is
such an arrangement where each pseudo-line is a line. Note that there usually is
no homeomorphism φ of the plane turning a pseudo-line arrangement A into a line
arrangement φ(A) ([Grü], page 42, Theorem 3.2). Our sole interest is with simple
arrangements, i.e. arrangements without multiple intersections.

A simple projective arrangement A of n lines decomposes the projective plane
P2 into n(n − 1)/2 + 1 polygons; we will denote by p3(A) the number of triangles
obtained. We can do the same for pseudo-lines, as a triangle is a region delimited
by exactly three pseudo-lines of the arrangement. Similarly, in the Euclidean plane
R2, we denote by a3(A

′) the number of (bounded) triangles delimited by an affine
arrangement A′.

It was originally proposed by Grünbaum [Grü] to look for arrangements with
many triangles, and there is already a substantial literature on this question.

Denote by ps
3(n) (respectively as

3(n)) the maximal number of triangles that can be
obtained with a simple arrangement of n lines in the projective plane (respectively in
the Euclidean plane). We denote by ps

3(n) and as
3(n) the same notions for pseudo-

lines. A projective arrangement A of n pseudo-lines such that p3(A) = p3(n)
is classically called p3-maximal. Here we will only say that the arrangement is
maximal, and will use the same terminology for affine arrangements.

Then, an easy observation on the number of segments shows that if n ≥ 4, the
following relations occur:

(1)
ps
3(n) ≤ ps

3(n) ≤ n(n − 1)/3

≥ ≥ ≥

as
3(n) ≤ as

3(n) ≤ n(n − 2)/3.

We will say that a segment is used if it is a part of one triangle of the arrangement,
and say that it is unused otherwise. An arrangement satisfying the equality with
the bound above is an arrangement whose segments are all used in one triangle
– we will say in this case that it is a perfect arrangement. Note that a perfect
arrangement is maximal, but the converse is false in general.
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There is currently no known n such that ps
3(n) 	 ps

3(n) or as
3(n) 	 as

3(n).
Infinitely many examples of integers n ≡ 0, 4 (mod 6) are known to satisfy

ps
3(n) = n(n − 1)/3 (see [Ha1], [Ha2], [Ro1]), an algorithm to find these was

given in [BoRoSt], and the only counterexample previously known is n = 12 (see
[Ro2]). A construction in straight lines has been given in [FoRa] to prove that
ps
3(n) = n(n − 1)/3 for n = 2 · 2t + 2, for any integer t ≥ 0 – we generalise this for

more infinite sequences in Theorem 1.3.
The projective examples of pseudo-lines lead to similar affine configurations by

putting one of the pseudo-lines at infinity and by removing it. In particular, ps
3(n) =

n(n − 1)/3 if and only if as
3(n − 1) = (n − 1)(n − 3)/3, and the same if true for

arrangements of straight lines (i.e. for ps
3 and as

3). There exist thus infinitely many
examples of integers n ≡ 3, 5 (mod 6) such that as

3(n) = n(n − 2)/3, and we have
also as

3(n) = n(n − 2)/3 for n = 2 · 2t + 1.
The projective odd case is worse than the even case: it was observed by J.

Granham ([Grü], page 26, Theorem 2.21) that

(2) ps
3(n) ≤ n(n − 2)/3 if n > 3 is odd.

Conversely, the affine even case is worse than the odd case. We give a new bound
in this case:

Theorem 1.1. If n is an even integer, then as
3(n) ≤ ⌊n(n − 7/3)/3⌋.

The bound of Theorem 1.1 is reached for 4, 6, 10, 16 pseudo-lines but not for
8, 12, 14 pseudo-lines (see Theorem 1.4). Note that adding one line to an affine
perfect arrangement of n − 1 ≡ 3, 5 (mod 6) lines, we obtain infinitely many ex-
amples of values of n ≡ 0, 4 (mod 6) lines where as

3(n) ≥ n(n − 5/2)/3, which is
close to the polynomial of Theorem 1.1. It would be interesting to find the best
polynomial upper bound, which is between the two above. Note that there exists
no even integer n where as

3(n) > n(n − 5/2)/3 has been proved.

Remark that the bounds of (1) are sometimes not integers, and thus may not
be attained, even if the parity is good. In the affine odd case, taking the integer
part of (1) is a tight bound, as we will provide infinitely many examples of maximal
arrangements of n ≡ 1 (mod 6) lines with ⌊n(n − 2)/3⌋ triangles (Theorem 1.3).
However, in the projective even case, the bound may be improved, to give the
following result, which seems to be already known (see [Ro3] Table I), but we were
not able to find a proof in the literature.

Proposition 1.2. If n ≡ 2 (mod 6), then ps
3(n) ≤ ⌊n(n − 1)/3⌋ − 1.

Note that this bound could be improved, as there is still no known example
where the equality occurs.

We give then in Proposition 3.1 a way to obtain a good affine arrangement
of 2n − 1 lines starting from another good one of n lines. The construction is
homeomorphic to those of [Ha1] and [FuPa] but has two advantages: it is explicit
and may be used starting from non-perfect arrangements. This gives in particular
the following new sequences:

Theorem 1.3. For any integer t ≥ 0 we have
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if n = 14 · 2t + 1, as
3(n) = n(n − 2)/3;

if n = 6 · 2t + 1, as
3(n) = ⌊n(n − 2)/3⌋ = (n(n − 2) − 2)/3;

if n = 18 · 2t + 1, as
3(n) = ⌊n(n − 2)/3⌋ = (n(n − 2) − 2)/3.

In particular, this shows that the best polynomial upper bound for as
3(n), as

3(n),
ps
3(n) and ps

3(n), n ≡ 1 (mod 6) is (n(n − 2) − 2)/3 = ⌊n(n − 2)/3⌋.

Finally, we are able to describe the explicit values of as
3(n), as

3(n), ps
3(n), ps

3(n)
for small values of n. A computer program – described in Section 4 – allows us
to find explicitly some values of as

3(n). Using the bounds and sequences described
above, and the relation between as

3(n) and ps
3(n + 1) – adding the line at infinity –

we obtain the following result:

Theorem 1.4. The values of as
3(n), as

3(n), ps
3(n), ps

3(n) are given in the table

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ps
3(n) 4 4 5 10 11 16 21 30 32− 33 42 47 58− 59 65 80

as
3(n) 1 2 5 7 11 14 21 25 32 37 47 53 65 72

n 17 18 19 20 21 22 23

ps
3(n) 85 102 107 124 − 125 133 154 161

as
3(n) 85 93− 94 107 116 − 117 133 143 − 144 161

n 24 25 26 27 28 29 30

ps
3(n) 184 191 214− 215 225 252 261 290

as
3(n) 172 − 173 191 203− 205 225 238 − 239 261 275− 276

.

An entry of the form x − y means that we have an arrangement with x pseudo-
lines but that the best upper bound is y. Bold entries are known to be stretchable.
Underlined quantities are strictly smaller than the bounds given above. Grey
entries were previously known (in particular in [Ro3] for pseudo-lines); we include
them for completeness.

2. Some new bounds – Proof of Theorem 1.1 and Proposition 1.2

We prove Theorem 1.1, i.e. that for any even integer n, the inequality as
3(n) ≤

⌊n(n − 7/3)/3⌋ holds.

Proof of Theorem 1.1. Let A be an affine simple arrangement of n pseudo-lines,
with n ≥ 2 an even number.
Suppose that a pseudo-line L ∈ A contains n − 2 used segments, i.e. L touches
exactly n−2 triangles of the arrangement. We denote these triangles by t1, ..., tn−2,
such that ti and ti+1 have a common vertex for i = 1, ..., n − 3, denote by M and
N the two pseudo-lines intersecting L in the extremities (such that M touches t1
and N touches tn−2) and denote by ∆ the region delimited by the three lines L,
M ,N (which is not a ”triangle” of our arrangement as other pseudo-lines intersect
it). The n − 2 triangles touching L are alternatively inside ∆ and outside it. So,
either t1 or tn−2 is not contained in ∆. Without loss of generality, we assume that
tn−2 is not contained in ∆ and illustrate the situation in Figure 1. Note that the
segment of the line N which starts from L and which is not contained in tn−2 is
not used. (On the figure, the segment with an arrow).

Then, to every pseudo-line that contains n − 2 used segments, we associate the
unused segment defined above. It does not belong to L, but it has one of its
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M

N

L

t1

∆
t2 t3

tn−3 tn−2

↓

Figure 1. The situation of the pseudo-line L

extremities on it. As the arrangement is simple, a segment cannot be associated to
more than two pseudo-lines.

Denote by m the number of pseudo-lines that contain exactly n−2 used segments;
we associate to them at least m/2 unused segments. Suppose, ab absurdo, that there
are more than n(n − 7/3)/3 triangles. Then at least n(n− 7/3) segments are used,
so n(n−7/3)+m/2 ≤ n(n−2), which implies that m ≤ 2

3n. But then, the number
of used segments is at most

m · (n − 2) + (n − m) · (n − 3) = n · (n − 3) + m ≤ n · (n − 7/3),

which is a contradiction. �

We prove now Proposition 1.2, i.e. that ps
3(n) < ⌊n(n−1)

3 ⌋ for any positive integer
n ≡ 2 (mod 6).

Proof of Proposition 1.2. Suppose that there exists some projective arrangement A

of n pseudo-lines with exactly ⌊n(n−1)
3 ⌋ = n(n−1)−2

3 triangles. Since the number
of segments is not divisible by 3, there exists at least one of them which is not
touching any triangle. We choose then one pseudo-line that touches at most n − 2
triangles of the arrangement; we stretch it to a line and remove it to get an affine

arrangement of n− 1 pseudo-lines, which has at least n(n−1)−2
3 − (n− 2) triangles.

But this number is strictly bigger than (n−1)(n−3)
3 , which is not possible. �

3. A way to construct maximal arrangements

Proposition 3.1. Let n ≥ 2 be an even number and let A = {Y0, L1, ..., Ln} be a
simple affine arrangement of n + 1 lines, given by the equations

Y0 := {(x, y) ∈ R2 | y = 0},
Li := {(x, y) ∈ R2 | y = mi(x − ai)},

where

{a1, ..., an−2} =
{

tan(α)
∣

∣ ± α ∈ {π
n
, 2π

n
, ..., π

2 − π
n
}
}

− 1
n

< an−1 < 0 < an < 1
n
;

and such that the line Y0 touches exactly n − 1 triangles (which means that every
one of its segments is used in one triangle) of the affine arrangement A.

Then, there exist n lines M1, M2, ..., Mn given by the equations

Mi := {(x, y) ∈ R2 | y = µi(x − bi)},

where bi = tan(βi) and

{β1, ..., βn} =
{

− π
2 + 1

2 · π
n
,−π

2 + 3
2 · π

n
, ...,− 1

2 · π
n
, 1

2 · π
n
, ..., π

2 − 1
2 · π

n

}
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and such that the affine arrangement B = {Y0, L1, . . . , Ln, M1, ..., Mn} of 2n + 1
lines is simple and has exactly n2 triangles more than A; the line Y0 touches exactly
2n− 1 triangles of the arrangement B.

Explicitly, we can take

µi := σ · mmin

n10 ·
(

sin
(

2βi

)

+ 1
n6·bi

)

,

where σ := 1 if Ln and Ln−1 intersect in the upper half-plane and σ := −1 other-
wise, and where mmin := min{|mi| | i = 1, .., n}.

Remark 3.2. If |an−1| and |an| are smaller than 1/2n, then the new arrangement B
also satisfies the conditions of the Proposition; this allows us to iterate the process
if |an−1| and |an| are arbitrary small.

Proof. Write ǫ1 := 1
n10 , ǫ2 := 1

n6 . Multiplying all the slopes by −1 if needed, we
may assume that Ln and Ln−1 intersect in the upper half plane.

The explicit values of µi given in the Proposition become thus

µi = ǫ1 · mmin ·
(

sin
(

2βi

)

+ 1
bi

· ǫ2
)

.

We will use the fact that {1/bi | i = 1, ..., n} = {bi | i = 1, ..., n}.
We calculate some simple assertions. For 1 ≤ i ≤ n, we have π/2n < tan(π/2n) ≤

|bi| ≤ tan(π/2−π/2n) = 1/ tan(π/2n) < 2n/π and π/2n < sin(π/n) ≤ | sin(2βi)| ≤
1. This gives – using the equality ǫ2 = n−6 – the following relations

(3)

π/2n < |bi| < 2n/π;
π/2n < | sin(2βi)| ≤ 1;
1/n < | sin(2βi) + 1

bi
· ǫ2| < 2;

1/n11 · mmin < |µi| < 2mmin/n10;

and we see that µi, sin(2βi) and bi have the same sign.
For 1 ≤ i ≤ n − 2, we obtain similarly the relation

(4) π/n < |ai| < n/π.

We calculate now some coordinates of intersections of the lines of B.
1. The y-coordinate of the intersection of Li and Lj (for i 6= j) is equal to

(ai − aj) · ( 1
mi

− 1
mj

)−1. Assuming that {i, j} 6= {n, n − 1}, we have |ai − aj| ≥

tan(π/n) − 1/n > π/n − 1/n > 2/n. Since | 1
mi

− 1
mj

| ≤ 2/mmin, we obtain the

following assertion:

(5)
The y-coordinate of Li ∩ Lj, for {i, j} 6= {n, n− 1}

is (in absolute value) bigger than mmin/n.

Note that the lines Ln−1 and Ln may intersect at a very small y-coordinate.

2. The y-coordinate of the intersection of Li and Mj is equal to (ai − bj) · (
1

mi
−

1
µj

)−1. We calculate first – using (3) and (4) – that |ai−bj| ≤ max |ak|+max |bk| <

n/π + 2n/π = 3n/π < n. Secondly, we have | 1
mi

| ≤ 1
mmin

and – using (3) – obtain

also | 1
µj
| > n10/2mmin. We see that | 1

mi
− 1

µj
| > n10/3mmin.

(6)
The y-coordinate of Li ∩ Mj ,

is (in absolute value) smaller than 3mmin/n9.
The x-coordinate is between ai − 3/n9 and ai + 3/n9.
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3. The x-coordinate of the intersection of Mi and Mj is equal to

xij =
µibi − µjbj

µi − µj

=
sin(2βi)bi − sin(2βj)bj

sin(2βi) − sin(2βj) + ǫ2 · (bi
−1 − bj

−1)
,

where bi = tan(βi), bj = tan(βj). We study now three cases:
3a) If βi + βj = 0, the x-coordinate xij is equal to 0, and the y-coordinate is

negative.
3b) Assume that βi + βj = ±π/2, which implies that sin(2βi) = sin(2βj) and

bibj = 1, whence 1/bi−1/bj = bj−bi. We find xij = sin(2βi)·(bi−bj)/(ǫ2·(bj−bi)) =
− sin(2βi)/ǫ2, which implies – with (3) – that |xij | > (π/2n)/n−6 > n5.

3c) Assume that βi + βj /∈ {0,±π/2}. The trigonometric identities leads to
sin(2βi) tan(βi)−sin(2βj) tan(βj) = tan(βi +βj)(sin(2βi)−sin(2βj)), which implies
that

xij − tan(βi + βj) = − tan(βi + βj) ·
ǫ2 · (1/bi − 1/bj)

sin(2βi) − sin(2βj) + ǫ2 · (1/bi − 1/bj)
.

We bound the values of this expression: π/n < 2 tan(π/2n) ≤ |1/bi − 1/bj| ≤
2/ tan(π/2n) < 4n/π, and 8/n2 = 2/π2 · (2π/n)2 < 1 − cos(2π/n) = sin(π/2) −
sin(π/2−2π/n) ≤ | sin(2βi)−sin(2βj)| ≤ 2, and π/n < tan(π/n) ≤ | tan(βi+βj)| ≤
tan(π/2 − π/n) = 1/ tan(π/n) < n/π. We obtain – since ǫ2 = n−6 – the following
bounds

(7)

π/n < |1/bi − 1/bj| < 4n/π;
8/n2 < | sin(2βi) − sin(2βj)| ≤ 2;
7/n2 < | sin(2βi) − sin(2βj) + ǫ2(1/bi − 1/bj)| < 3;
π/n < | tan(βi + βj)| < n/π,

and see that the expressions sin(2βi) − sin(2βj) + ǫ2(1/bi − 1/bj) and sin(2βi) −
sin(2βj) have the same sign.

The bounds (7) yield a minimal bound for |xij − tan(βi + βj)|, which is (π/n) ·
ǫ2 · (π/n)/3 = π2/3n2 · ǫ2 > 3n−8. Similarly, the maximal bound is (n/π) · ǫ2 ·
(4n/π)/(7/n2) = 4/7π2 · n4 · ǫ2 < n−2. We obtain the following relation

(8) 3/n8 < |xij − tan(βi + βj)| < 1/n2.

We study now the sign of xij −tan(βi+βj), which is the same as those of − tan(βi+
βj) · (1/bi − 1/bj) ·

(

sin(2βi) − sin(2βj)
)

= −
(

sin(2βi) tan(βi) − sin(2βj) tan(βj)
)

·
(

1/ tan(βi) − 1/ tan(βj)
)

.

Note that the function x 7→ sin(2x) tan(x) = 2 sin(x)2 on ] − π/2; π/2[ acts
like x 7→ x2 (it is an even function, growing on [0;π/2[). We may thus replace
sin(2x) tan(x) by x2 in the above expression without changing the sign. Similarly,
we may replace 1/ tan(x) by 1/x. The sign of xij − tan(βi + βj) is thus the same

as the sign of −(βi
2 − βj

2)/(1/βi − 1/βj) = (βi + βj) · βi · βj .

(9)
The sign of xij − tan(βi + βj)

is the same as the sign of (βi + βj) · βi · βj .

4. We describe now the order of the x-coordinates of the intersections of some
line Mi with the other lines of B. Assume that bi = tan(βi) > 0 and for D ∈ B,
D 6= Mi, denote by xD the x-coordinate of the intersection of Mi and D. Recall
– see (6) – that xLj

∈]aj − 3/n9; aj + 3/n9[ for j = 1, ..., n. Furthermore, since



TRIANGLES IN ARRANGEMENTS OF LINES AND PSEUDO-LINES 7

Ln−1 and Ln intersect on the upper half-plane and an−1 < 0 < an, we see that
mn−1 > 0 > mn. Since bi > 0 and µi > 0, and since |µi| < |mn|, |mn−1| – see (3) –
the intersection of Mi with Ln−1 (respectively with Ln) has negative (respectively
positive) x-coordinate. Thus, xLn

∈]0; 1/n + 3/n9[ and xLn−1
∈] − 1/n − 3/n9; 0[.

The positions of the XLj
, for j = 1, ..., n are given in Figure 2.

xLn−1
xLn

tan(−π/2 + π/n) tan(−π/n) tan(π/n) tan(2π/n) tan(π/2 − π/n)0

· · ·· · ·

Figure 2. The disposition of xLj
for j = 1, ..., n.

We describe now the values of xMj
, for j 6= i. Writing z := βi+βj, the discussion

made above – in particular 3a), 3b), (8) and (9) – shows the following:

1] if z = 0 then xMj
= 0, xLn−1

< xMj
< xLn

;
2] if z = π/2 then xMj

< −n5;
3] if z < 0 or if π/2 < z < π then tan(z) + 3/n8 < xMj

< tan(z) + 1/n2;
4] if 0 < z < βi then tan(z) − 1/n2 < xMj

< tan(z) − 3/n8;
5] if βi < z < π/2 then tan(z) + 3/n8 < xMj

< tan(z) + 1/n2.

We obtain the situation of Figure 3 (note that xY0
= bi and that there is no xMj

near tan(2βi)).

1]2] 3] 3] 4] 4] 5]xY0
5]

tan(−π/2 + π/n) tan(−π/n) tan(π/n) tan(βi ± π/2n) tan(π/2 − π/n)0

· · ·· · · · · ·

Figure 3. The places of xMj
, depending on the value of z = βi + βj.

In particular, every element of U = {xMj
|j = 1, ..., n, j 6= i} ∪ {xY0

} is between
two consecutive xLj

’s. Furthermore, between two xLj
’s there is exactly one element

of U , except for one place (near tan(2βi)), where there is no element of U .
Doing the same for every Mi (the situation for βi < 0 is similar, as the construc-

tion of the Mj’s is symmetric), we see that between two consecuting intervals con-
taining one aj (of the form ]aj−3/n9; aj+3/n9[ or ]0; 1/n+3/n9[ or ]−1/n−3/n9; 0[
), exactly n/2 pairs of the lines M1, ..., Mn, Y0 intersect. Furthermore, these inter-
sect only one triangle of A, which is the triangle touching Y0 (see 5 and 6). We
obtain the situation of Figure 4.

Each of the n−1 triangles of A that touches Y0 is replaced in B by n+1 triangles,
and we obtain also n triangles at the extremities (formed by the lines Mi and Mj

with βi +βj = ±π/2). The arrangement B has thus exactly n2 triangles more than
A, and every segment of Y0 ⊂ B is used in one triangle. This achieves to prove the
Proposition. �

Corollary 3.3. Let n > 1 be an odd integer, write m := 2n − 1 and assume that
as
3(n) > n(n − 3)/3.
We have as

3(m) ≥ as
3(n)+(n−1)2, i.e. m(m−2)/3−as

3(m) ≤ n(n−2)/3−as
3(n).

In particular, if as
3(n) = ⌊n(n − 2)/3⌋ then as

3(m) = ⌊m(m − 2)/3⌋.
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Y0

Y0

Figure 4. The configurations of the lines M1, M2, . . . , Mn and Y0

– with at the left also some of the lines L1, ..., Ln.

Proof. Let A be an affine arrangement of n pseudo-lines with more than n(n−3)/3
triangles. There exists one pseudo-lines Y0 ∈ A that touches n − 2 triangles of
the arrangement; we stretch this to the line y = 0, arrange the intersections of Y0

with the other pseudo-lines L1, ..., Ln−1 to satisfy the conditions of Proposition 3.1,
and stretch every pseudo-line Li ∈ A\Y0 so that the segments of Li that touch Y0

become segments of lines. Then, adding the lines M1, ..., Mn of Proposition 3.1 to
our arrangement gives an arrangement of 2n−1 pseudo-lines with (n−1)2 triangles
more than A. �

We are now able to prove Theorem 1.3, with the help of the following new
maximal arrangement:

Figure 5. A maximal affine arrangement of 19 pseudo-lines with
107 triangles

Proof of Theorem 1.3. 1. There exists a maximal affine arrangement of n = 15
lines with n(n − 2)/3 triangles, found by Simmons in 1972 (see [Sim]). We give a
new one, having the properties needed to apply Proposition 3.1. For any ǫ > 0, let
Aǫ be the arrangement {L1, ..., L15} of 15 lines given by

Li := {(x, y) ∈ R2 | y = mi(x − ai)},

where
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a1 = tan(−6π/14) m1 = 1.66 a9 = tan(2π/14) m9 = −12.4
a2 = tan(−5π/14) m2 = 4.4 a10 = tan(3π/14) m10 = −22
a3 = tan(−4π/14) m3 = 3.28 a11 = tan(4π/14) m11 = −4.8
a4 = tan(−3π/14) m4 = 14.4 a12 = tan(5π/14) m12 = −5.3
a5 = tan(−2π/14) m5 = 13.1 a13 = tan(6π/14) m13 = −1.86
a6 = tan(−π/14) m6 = −65 a14 = −ǫ m14 = 50
a7 = 0 m7 = 0 a15 = ǫ m15 = −45
a8 = tan(π/14) m8 = −52

Figure 6. The perfect arrangement Aǫ of 15 lines, beginning of
the induction.

We can verify by inspection that the configuration is perfect (see Figure 6),
if ǫ is small enough. Furthermore, we can apply Proposition 3.1 to get a perfect
arrangement of 29 lines. By iterating, starting from Aǫ, for a small ǫ (which depends
on t), one obtains an arrangement of 14 · 2t + 1 lines, for any integer t ≥ 1.

2. For any ǫ > 0, let Aǫ be the arrangement {L1, ..., L7} of 7 lines given by

Li := {(x, y) ∈ R2 | y = mi(x − ai)},

where
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a1 = tan(−2π/6) m1 = 3 a5 = tan(2π/6) m5 = −3
a2 = tan(−π/6) m2 = 1 a6 = −ǫ m6 = −7
a3 = tan 0 m3 = 0 a7 = ǫ m7 = 7
a4 = tan(π/6) m4 = −1

Figure 7. The maximal arrangement Aǫ of 7 lines, beginning of
the induction.

We see that the arrangement has 11 triangles, and use Proposition 3.1 to get an
maximal arrangement of 13 lines. By iterating, one gets – for any integer t ≥ 1 – a
maximal arrangements of n = 6 · 2t + 1 lines, with ⌊n(n − 2)/3⌋ triangles.

3. The arrangement of Figure 5 is a maximal arrangement of 19 pseudo-lines with
107 triangles. Iterating Corollary 3.3 we find – for any integer t ≥ 1 – a maximal
arrangements of n = 18 · 2t + 1 pseudo-lines, with ⌊n(n − 2)/3⌋ triangles. �

4. Description of the computer algorithm

In this Section, we discuss a computer algorithm to search for affine pseudo-line
arrangements with many triangles. The problem of finding line arrangements with
many triangles is a geometrical one. It is possible to formulate a related combina-
torial problem for pseudo-line arrangements. We will work with wiring diagrams
(introduced by Goodman [Goo]), see Figures 5 and 8. In this representation the
n curves are x-monotone and are restricted to n y-coy-coordinates except for some
local switches where adjacent lines cross.

The information of an affine arrangement of n pseudo-lines is stored into a (n−
1)×m matrix M , where m is some positive integer. Each column contains some X ’s
and describes the crossings at some x-coordinate; an ”X” at the height i means that
the pseudo-lines i and i + 1 intersect there. We typically add suggestive horizontal
lines to these matrices to obtain pseudo-line diagrams as seen in Figure 8.

Figure 8. Pseudo-line Diagrams describing the line configura-
tions above
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The polygons of pseudo-line affine arrangements represented by the matrices are
easy to compute and the notation lends itself to several “pruning” ideas. From now
on, we will write M = (M1, ..., Mm) and refer to this matrix as the pseudo-line
diagram. The search algorithm is:

Function depth first search(M)

Denote M = (M1, ..., Mk).
If M is a pseudo-line affine arrangement

Count its triangles

else

Generate the list L of all possible choices of Mk+1.

For each Mk+1 ∈ L,
depth first search((M1, ..., Mk, Mk+1))
End for

End if

We add some ”pruning criteria” to reduce the search:

(1) In any given column, no two crosses may be adjacent.
(2) It is not permitted to put a cross between two pseudo-lines that have already

crossed.
(3) Without loss of generality, we may impose that all crosses be placed as far

to the left as possible.

A vector (M1, ..., Mk) with insufficiently many intersections but otherwise satisfying
the three above properties is called a partial or incomplete affine arrangement.
Although an arrangement is incomplete we are able to compute its triangles and to
see that some segments are already unused (i.e. not touching a triangle of the future
complete arrangement). Since we are looking for diagrams with many triangles, we
must have few unused edges – this allows us to discard some partial arrangements
without compromising the search.

(1) If on column k we put a cross in row j that closes a triangle, then the
polygons in column k and rows j − 1 and j + 1 cannot be triangles.

(2) If the budget of unused segments is exhausted, we will have some forced
dispositions of the crosses, to ensure that every remaining segment will
touch one triangle.

5. Computer Results

We have looked for maximal affine arrangements of n pseudo-lines. Perfect
arrangements are only possible when n ≡ 3 or 5 (mod 6), and we achieved such
for n = 3, 5, 9, 15, 17, 21, 23, 27, 29. Because several of our heuristics exploit the low
number of unused edges, as the unused edge budget increases, the search quickly
becomes intractable when looking for imperfect arrangements.

Proposition 5.1. The maximum number of affine triangles in a pseudo-line ar-
rangement found by our algorithm are given in the following tables:

n 3 4 5 6 7 8 9 10 11 12 13

as
3(n) 1 2 5 7 11 14 21 25 32 37 47

n 14 15 17 19 21 23 27 29
as
3(n) 53 65 85 107 133 161 225 261
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