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Abstract. — This note presents the study of the conjugacy classes of elements of
some given finite order n in the Cremona group of the plane. In particular, it is shown

that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5, and that it

is equal to 3 (respectively 9) if n = 9 (respectively if n = 15) and to 1 for all remaining
odd orders.

Some precise representative elements of the classes are given.

Résumé. — Cet article présente l’étude des classes de conjugaisons des éléments

d’ordre fini n dans le groupe de Cremona du plan. En particulier, il est montré que le
nombre de classes de conjugaisons est infini si n est pair, n = 3 ou n = 5, et que ce

nombre est égal à 3 (respectivement 9) si n = 9 (respectivement si n = 15) et à 1 pour

les nombres entiers impairs restant.
Des représentants explicites des classes de conjugaisons sont donnés.

1. Introduction

Let us recall that a rational transformation of P2(C) is a map of the form

(x : y : z) 99K (ϕ1(x, y, z) : ϕ2(x, y, z) : ϕ3(x, y, z)),

where ϕ1, ϕ2, ϕ3 ∈ C[x, y, z] are homogeneous polynomials of the same degree.
If such a map has an inverse of the same type, we say that it is birational.

The Cremona group is the group of birational transformations of P2(C). This
group has been studied since the XIXth century by many mathematicians. One
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of the first natural questions that we may ask when we study some group is
the following:

Question 1.1. — Given some positive integer n, how many conjugacy classes
of elements of order n exist in the Cremona group?

First of all, it is important to note that the number of conjugacy classes is
at least one, for any integer n, as the linear automorphism

(x : y : z) 7→ (x : y : e2iπ/nz)

is a representative element of one class. It was proved in [Be-Bl] that all the
linear automorphisms of the plane of the same finite order are birationally
conjugate (the same is true in any dimension, see [Bla1], Proposition 5); to
find more conjugacy classes we have therefore to show the existence of non-
linearizable birational transformations.

The first answer to Question 1.1 was given in [Ber] for n = 2. Infinitely
many involutions which are not conjugate are found. Since the proof of [Ber] is
considered as incomplete, a precise and complete one may be found in [Ba-Be].

In [dFe], the answer for n prime is given. It is shown that the number of
conjugacy classes is infinite for n = 3, 5 and is equal to 1 if n is a prime integer
≥ 7.

For other orders, a lot of examples have been given in the ancient articles (for
example in [Kan], [Wim]) and in many more recent articles, the most recent
one being [Do-Iz]. However, the precise answer to Question 1.1 was not given
for n not prime.

In this paper, we answer Question 1.1 for any integer n, proving the following
theorems:

Theorem 1.2. — For any even integer n, the number of conjugacy classes of
elements of order n in the Cremona group is infinite. This is also true for
n = 3, 5.

Theorem 1.3. — For any odd integer n 6= 3, 5, the number of conjugacy
classes of elements of order n in the Cremona group is finite.
Furthermore this number is equal to 3 (respectively 9) if n = 9 (respectively if
n = 15) and is 1 otherwise.

This paper is a part of the author’s PHD Thesis (the full text is available in
[Bla2], the results without proofs have been published in [Bla3]). The results
have been a little improved and the arguments have been slightly ameliorated
to reduce the length of the proofs. We thank a lot our PHD advisor Thierry
Vust, and also Arnaud Beauville, Igor Dolgachev, Ivan Pan and Felice Ronga
for helpful discussions.

Remark 1.4. — Theorem 1.2 and a part of Theorem 1.3 may be proved using
the classification of finite Abelian subgroups of the Cremona group made in
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[Bla2], but the proof is really long and intricate, whereas the results of this
paper only require a much shorter and direct proof. Moreover, the precise
counting of Theorem 1.3 does not follow from the classification (in general, it
is not easy to decide whether or not two elements of the same subgroup are
conjugate).

2. Automorphisms of rational surfaces

Let us remark the obvious but important observation: take some birational
transformation ϕ of a rational surface S. Any birational map λ : S 99K P2 con-
jugates ϕ to the birational transformation ϕλ = λ◦ϕ◦λ−1 of P2. Although ϕλ

is not unique, all the possible ϕλ’s form an unique conjugacy class of birational
transformations of P2.

Conversely, taking some birational transformation of P2, we may conjugate
it to a birational transformation of any rational surface. If the order of the
transformation is finite, we may furthermore conjugate it to a (biregular) au-
tomorphism of a rational surface. (See for example [dF-Ei], Theorem 1.4).

An important family of rational surfaces are the rational surfaces with an
ample anticanonical divisor, i.e. the Del Pezzo surfaces. These surfaces are
P1×P1, P2, and the blow-up of 1 ≤ r ≤ 8 points of P2 in a general position (i.e.
such that no irreducible curve of self-intersection −2 belongs to the surface).
There is an extensive literature about this; some descriptions may be found for
example in [Kol]. The degree of such a surface is the square of its canonical
divisor, and is an integer between 1 and 9; it is 9 for P2, 8 for P1 × P1 and
9− r for the blow-up of r points in P2. Almost all of our examples of rational
surfaces will be Del Pezzo surfaces.

3. Elements of order 3,5 and of any even order - The proof of
Theorem 1.2

Let us give families of conjugacy classes of elements of order 2, 3 and 5 of
the Cremona group.

Example 3.1. — Birational transformations of order 2
Let a1, ..., an, b1, ..., bn ∈ C be all distinct. The birational map(

(x1 : x2), (y1 : y2)
)

99K
(
(x1 : x2), (y2

n∏
i=1

(x1 − bix2) : y1

n∏
i=1

(x1 − aix2))
)

of P1 ×P1 is an involution, which is classically called de Jonquières involution.
Its fixed points form a smooth curve Γ ⊂ P1 × P1 of equation

(y1)2 ·
n∏

i=1

(x1 − aix2) = (y2)2 ·
n∏

i=1

(x1 − bix2).
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The restriction to Γ of the projection P1 × P1 → P1 on the first factor
is a surjective morphism Γ → P1 of degree 2, ramified over the points
(a1 : 1), ..., (an : 1), (b1 : 1), ..., (bn : 1). The curve Γ is therefore an hyperelliptic
curve.
These involutions are birationally equivalent to those of [Ba-Be], Exam-
ple 2.4(c).

Example 3.2. — Birational transformations of order 3
Let F be a non-singular form of degree 3 in 3 variables and let Γ = {(x : y :

z) ∈ P2 | F (x, y, z) = 0} be the smooth cubic plane curve associated to it.
The surface S = {(w : x : y : z) ∈ P3 | w3 = F (x, y, z)} ⊂ P3 is thus

a smooth cubic surface in P3, which is rational (it is a Del Pezzo surface of
degree 3, see for example [Kol], Theorem III.3.5). The map w 7→ e2iπ/3w gives
rise to an automorphism of S whose set of fixed points is isomorphic to the
elliptic curve Γ.
Such elements generate cyclic groups of order 3, already given in [dFe], Theorem
A, case A1.

Example 3.3. — Birational transformations of order 5
Let us choose λ, µ ∈ C such that the surface

S = {(w : x : y : z) ∈ P(3, 1, 1, 2) | w2 = z3 + λx4z + x(µx5 + y5)}

is smooth. The surface S is thus rational (it is a Del Pezzo surface of degree 1,
see [Kol], Theorem III.3.5) and the map y 7→ e2iπ/5y gives rise to an automor-
phism of S whose set of fixed points is the union of the point (0 : 0 : 1 : 0) and
an the elliptic curve which is the trace on S of the equation y = 0.
The corresponding cyclic groups of order 5 were given in [dFe], Theorem A,
case A3.

To prove Theorem 1.2, it remains to give the existence of infinitely many
conjugacy classes of elements of order n, for any even integer n ≥ 4. The
elements that we will give are roots of de Jonquières involutions (Example 3.1)
and belong to the classical de Jonquières group, which is a subgroup of the
Cremona group. We now introduce this group.

Example 3.4. — The de Jonquières group
The de Jonquières group is isomorphic to PGL(2, C(x)) o PGL(2, C), where

PGL(2, C) acts naturally on C(x), as PGL(2, C) = Aut(P1) is the automor-
phism group of P1 and C(x) = C(P1) is its function field. To the element( (

α(x) β(x)
γ(x) δ(x)

)
,

(
a b
c d

) )
∈ PGL(2, C(x)) o PGL(2, C)
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we associate the birational map

(x, y) 99K
(ax + b

cx + d
,
α(x)y + β(x)
γ(x)y + δ(y)

)
of C2. The natural inclusion C2 ⊂ P2(C) (respectively C2 ⊂ P1(C) × P1(C))
sends the de Jonquières group on the group of birational transformations of P2

(respectively of P1 × P1) that leave invariant the pencil of lines of P2 passing
through one point (respectively that leave invariant one of the two standard
pencils of lines of P1 × P1).

In this context, we may look at the subgroup of the de Jonquières group
that fixes some hyperelliptic curve:

Example 3.5. — The group of birational transformations that fix some curve
Let g(x) ∈ C(x)∗ be some element which is not a square in C(x). We denote

by Jg the torus of PGL(2, C(x)) which is the image in PGL(2, C(x)) of the
subgroup

Tg =
{(

α(x) β(x)g(x)
β(x) α(x)

) ∣∣∣ α(x), β(x) ∈ C(x), α 6= 0 or β 6= 0
}

of GL(2, C(x)). The group Jg corresponds to the group of birational transfor-
mations of the form

(x, y) 99K
(
x,

α(x)y + β(x)g(x)
β(x)y + α(x)

)
.

Note that Tg is isomorphic to the multiplicative group of the field

C(x)
[√

g(x)
]

=
{
α(x) + β(x)

√
g(x)

∣∣ α(x), β(x) ∈ C(x)
}
.

In the case where g(x) is a polynomial without multiple roots, the field
C(x)[

√
g(x)] is the function field C(Γ) of the smooth curve Γ of equation

y2 = g(x), and the group Jg = C(Γ)∗/C(x)∗ is the group of elements of the de
Jonquières group that fix the curve Γ. (If the degree of g(x) is at least 5, it is
in fact the group of birational maps that fix the curve, see [Bl-Pa-Vu].)

Proposition 3.6. — Let n ≥ 1 be some integer, and let g(x) ∈ C(x)∗ be such
that g(e2iπ/n · x) = g(x). There exists ν(x) ∈ C(x) such that the n-th power of
the birational map

ϕ : (x, y) 99K
(
e2iπ/n · x,

ν(x)y + g(x)
y + ν(x)

)
is the de Jonquières involution

ϕn : (x, y) 99K
(
x,

g(x)
y

)
.
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Proof. — Note that choosing any ν(x) ∈ C(x), the associated map ϕ belongs
to the de Jonquières group (Example 3.4) and is the composition of (x, y) 7→
(e2iπ/n · x, y) with an element of Jg defined in Example 3.5. The n-th power
of ϕ in the de Jonquières group PGL(2, C(x)) o PGL(2, C) is equal to( (

ν(x) g(x)
1 ν(x)

) (
ν(ξ · x) g(x)

1 ν(ξ · x)

)
· · ·

(
ν(ξn−1 · x) g(x)

1 ν(ξn−1 · x)

)
,

(
1 0
0 1

) )
,

where ξ = e2iπ/n. Since the element
(

ν(x) g(x)
1 ν(x)

)
∈ Jg ⊂ PGL(2, C(x)) is the

image of some element of Tg ⊂ GL(2, C(x)) corresponding to

ζ = (ν(x) +
√

g(x)) ∈ C(x)[
√

g(x)]∗,

the element ϕn ∈ Jg ⊂ PGL(2, C(x)) is therefore the image of the element

ζ · σ(ζ) · σ2(ζ) · · ·σn−1(ζ) ∈ C(x)[
√

g(x)]∗,

where σ is the automorphism of C(x)[
√

g(x)]∗ that sends x on ξx and acts
trivially on C[

√
g(x)]. Let us look at the morphism

N : C(x)[
√

g(x)]∗ −→ C(x)[
√

g(x)]∗

τ 7→ τ · σ(τ) · σ2(τ) · · ·σn−1(τ).

All elements of its image are invariant by σ and thus belong to the multiplicative
group of the field C(xn)[

√
g(x)]. Furthermore, the map N is the norm of the

field extension C(x)[
√

g(x)]/C(xn)[
√

g(x)].
Since this is a finite Galois extension, and the field C(x) has the C1-property

(by Tsen theorem), the norm N is surjective (see [Ser], X.7, Propositions 10
and 11). We may thus choose an element ζ0 = α(x) + β(x)

√
g(x) whose norm

is equal to
√

g(x). As β(x) is certainly not equal to zero, we may choose
ν(x) = α(x)/β(x), so that ζ = ζ0/β(x) is sent by N on N(β−1) ·

√
(g(x),

whose image in PGL(2, C(x)) is
(

0 g(x)
1 0

)
, as we wanted.

We give now explicitly a family of examples produced in Proposition 3.6.

Example 3.7. — Let n = 2m, where m is an odd integer and let h ∈ C(x) be
a rational function. We choose α to be the birational transformation

α : (x, y) 99K
(
e2iπ/n · x,

h(xm)y − h(xm)h(−xm)
y + h(xm)

)
.

Compute α2 : (x, y) 99K (e2iπ/m · x, −h(xm)·h(−xm)
y ) and see that this is the

composition of the commuting birational transformations (x, y) 7→ (e2iπ/m·x, y)
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and (x, y) 99K (x, −h(xm)·h(−xm)
y ) of order respectively m and 2. Thus, the order

of α2 is 2m = n and αn = α2m is the birational involution

αn : (x, y) 99K
(
x,
−h(xm) · h(−xm)

y

)
.

We are now able to prove Theorem 1.2, i.e. to show the existence of infinitely
many conjugacy classes of elements of order n in the Cremona group, for any
even integer n and for n = 3, 5.

Proof of Theorem 1.2. — First of all, taking some non-rational curve Γ, any
birational transformation sends Γ on a curve birational to it (the same result
for a rational curve is false, as the curves may be collapsed on one point). If
two birational transformations α, β are conjugate by ϕ, the element ϕ sends
the non-rational curves fixed by α on the non-rational curves fixed by β. (In
fact there is at most one such curve, but we will not need it here).

Choosing different de Jonquières involutions (Example 3.1), the possible
curves fixed are all the hyperelliptic curves. As the number of isomorphism
classes of such curves is infinite, we obtain infinitely many conjugacy classes of
de Jonquières involutions in the Cremona group.

The same arguments works for elements of order 3 and 5 (Examples 3.2 and
3.3), that may fix all the elliptic curves, whose number of isomorphism classes
is also infinite.

Taking n ≥ 2, and any polynomial g ∈ C[xn] without multiple roots, there
exists an element α in the Cremona group which has order 2n and such that
αn is the birational involution (x, y) 99K (x, g(x)

y ) (Proposition 3.6). As this
involution fixes the hyperelliptic curve y2 = g(x), the number of conjugacy
classes of such elements (when changing the element g) is infinite.

4. Elements of odd order ≥ 7 - The proof of Theorem 1.3

As it was said in Section 2, any birational transformation of finite order of
the plane is conjugate to an automorphism g of some rational surface S. We
may then assume that the pair (g, S) is minimal and use the following result,
proved in [Man].

Proposition 4.1. — Let g be some automorphism of a rational surface S,
such that the pair (g, S) is minimal (i.e. every g-equivariant birational mor-
phism S → S′ is an isomorphism). Then, one of the two following cases
occurs:

– rk Pic(S)g = 1 and S is a Del Pezzo surface.
– rk Pic(S)g = 2 and g preserves a conic bundle structure on S.

(i.e. there exists some morphism π : S → P1 with fibres isomorphic to P1,
except for a finite number of singular fibres, that consist on the union of
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two intersecting curves isomorphic to P1; and g sends any fibre of π on
another fibre).

To prove Theorem 1.3, we enumerate the possibilities of pairs (g, S) where
g is an automorphism of odd order ≥ 7, using Proposition 4.1. The following
lemma will help us to prove the Theorem for Del Pezzo surfaces:

Lemma 4.2 (Size of the orbits). — Let S be a Del Pezzo surface, which is the
blow-up of 1 ≤ r ≤ 8 points of P2 in general position, and let G ⊂ Aut(S) be
a finite subgroup of automorphisms with rk Pic(S)G = 1. Then:

– G 6= {1};
– the size of any orbit of the action of G on the set of exceptional divisors

is divisible by the degree of S, which is (KS)2;
– in particular, the order of G is divisible by the degree of S.

Proof. — It is clear that G 6= {1}, since rk Pic(S) > 1. Let D1, D2, ..., Dk

be k exceptional divisors of S, forming an orbit of G. The divisor
∑k

i=1 Di is
fixed by G and thus is a multiple of KS . We can write

∑k
i=1 Di = aKS , for

some rational number a ∈ Q. In fact, since aKS is effective, we have a < 0;
furthermore a ∈ Z, since the canonical divisor is not a multiple in Pic(S). The
Di’s being irreducible and rational, we deduce from the adjunction formula
Di(KS + Di) = −2 that Di ·KS = −1. Hence

KS ·
∑k

i=1 Di =
∑k

i=1 KS ·Di = −k = KS · aKS = a(KS)2.

Consequently, the degree of S divides the size k of the orbit.

We decompose now our investigations on different surfaces.

Proposition 4.3. — Any automorphism of P1 × P1 is birationally conjugate
to a linear automorphism of P2.

Proof. — Recall first that any automorphism of P1 fixes a point. We prove
that the same is true for the automorphisms of P1 × P1. Indeed, any such
automorphism is of the form (u, v) 7→ (α(u), β(v)) or (u, v) 7→ (α(v), β(u)), for
some α, β ∈ Aut(P1) = PGL(2, C). The first automorphism fixes the point
(a, b), where a, b ∈ P1 are points fixed by respectively α and β. The second one
fixes the point (c, β(c)), where c ∈ P1 is a point fixed by αβ.

Blowing-up the fixed point, and blowing-down the strict pull-backs of the two
lines of P1×P1 passing through the fixed point, we conjugate the automorphism
to an automorphism of P2.
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Proposition 4.4. — Any automorphism of finite odd order of some conic
bundle (that preserves the c.b. structure) is birationally conjugate to a linear
automorphism of P2.

Proof. — Let us denote by g the automorphism of odd order of the conic bundle
induced by π : S → P1. Recall that the action of g on the fibres of π induces
an automorphism g of P1 of odd order m, whose orbits have all the same size
m, except for two fixed points.

Suppose that one fibre F of π is singular. The orbit of F by g is thus a set
of singular curves {F1, ..., Fn} (where n = 1 or n = m). Furthermore, g acts
on the set T of irreducible components of the Fi’s, whose size is even, equal to
2n. Since the order of g is odd, the action of g on T has two orbits of size n,
and two curves of the same orbit do not intersect. This allows us to blow-down
one of the two orbits, to obtain a birational g-equivariant morphism from the
conic bundle to another one, with fewer singular fibres.

Continuing by this way, we conjugate g to an automorphism of a conic
bundle which has no singular fibre. Since the fibration is smooth, the surface
is an Hirzebruch surface Fk, for some integer k ≥ 0. If k ≥ 1, choose one fibre
F invariant by g (there exist at least two such fibres). Since F ∼= P1, g fixes at
least two points of F . Blow-up one point of F fixed by g and not lying on the
exceptional section of Fk (the one of self-intersection −k); blow-down then the
strict pull-back of F , to obtain a g-equivariant birational map Fk 99K Fk−1.
By this way, we may assume that g acts biregularly on F0 = P1 × P1, and use
Proposition 4.3 to achieve the proof.

Proposition 4.5. — Any automorphism of finite odd order of a Del Pezzo
surface of degree ≥ 4 is birationally conjugate to a linear automorphism of P2.

Proof. — Recall that a Del Pezzo surface is either P1 × P1 or the blow-up of
some points in P2 in general position (i.e. such that no irreducible curve of
self-intersection ≤ −2 belongs to the surface).

Suppose that g acts on a Del Pezzo surface S of degree ≥ 4. By blowing-
down some curves (which gives once again a Del Pezzo surface, with a larger
degree), we may assume that g acts minimally on S. If S is P1 × P1 or P2, we
are done (Proposition 4.3).

Otherwise, either g preserves a conic bundle structure, or rk Pic(S)g = 1
(Proposition 4.1). In the first case, g is birationally conjugate to a linear
automorphism of P2 (Proposition 4.4). In the second case, the degree of S
divides the order of g (Lemma 4.2), which is odd by hypothesis. The only
possibilities for the degree of S are thus 5 or 7. We study now both cases.

If the degree of S is 7, i.e. if S is the blow-up of two distinct points of P2,
there are three exceptional divisors on S. These are the pull-back E1, E2 of
the two points, and the strict pull-back of the line of P2 passing through the
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two points. This configuration implies that the set {E1, E2} is invariant by any
automorphism of the surface, which is thus birationally conjugate to a linear
automorphism of P2.

If the degree of S is 5, i.e. if S is the blow-up of four points of P2, no 3 being
collinear, we may assume that the points blowed-up are (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1) and (1 : 1 : 1). The action of the group Aut(S) of automorphisms of
S on the 5 sets of 4 skew exceptional divisors of S gives rise to an isomorphism
of Aut(S) to the group Sym5. The group Aut(S) is generated by the lift of
the group Sym4 of automorphisms of P2 that leaves invariant the four points
blowed-up, and by the quadratic transformation (x : y : z) 99K (yz : xz : xy).
The nature of Aut(S) may be found by direct calculation, and is also well-
known for many years (see for example [Kan], [Wim], [Bla2], [Do-Iz]). Using
Lemma 4.2, the automorphism g with rk Pic(S)g = 1 must have order 5, and
is thus birationally conjugate to (x : y : z) 99K (x(z − y) : z(x− y) : xz), which
is birationally conjugate to a linear automorphism of P2 (see [Be-Bl]).

Proposition 4.5 is false for Del Pezzo surfaces of degree at most 3. We give
now some examples:

Example 4.6. — Let

SF = {(w : x : y : z) ∈ P3 | w3 + x3 + y3 + z3 = 0}
be the Fermat cubic surface, which is a Del Pezzo surface of degree 3 (see [Kol],
Theorem III.3.5). The elements

ρ1 : (w : x : y : z) 7→ (w : e2iπ/3y : z : x)
ρ2 : (w : x : y : z) 7→ (w : e4iπ/3y : z : x)

are automorphisms of SF . For i = 1, 2, the element (ρi)3 : (w : x : y : z) 7→ (w :
ei2iπ/3x : ei2iπ/3y : ei2iπ/3z) fixes the elliptic curve which is the intersection of
S with the plane w = 0, and corresponds to an element of order 3 described in
Example 3.2. Since (ρi)3 is not birationally conjugate to a linear automorphism
of P2, the same occurs for ρi.

Example 4.7. — Let

S15 = {(w : x : y : z) ∈ P(3, 1, 1, 2) | w2 = z3 + x(x5 + y5)},
be a special Del Pezzo surface of degree 1 (see [Kol], Theorem III.3.5). The
element

θ : (w : x : y : z) 7→ (w : x : e2iπ/5y : e2iπ/3z)
is an automorphism of the surface S15 which has order 15. Since θ3 (which is an
element described in Example 3.3) fixes an elliptic curve, it is not birationally
conjugate to a linear automorphism of P2, and thus the same occurs for θ.
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Proposition 4.8. — Let g be some birational map of P2 of finite odd order
≥ 7. Then, g is birationally conjugate either to a linear automorphism of P2,
or to one of the elements ρ1, ρ2 described in Example 4.6, or to one of the
elements θ, θ2, θ4, θ7, θ8, θ11, θ13, θ14, where θ is described in Example 4.7.

Proof. — As we already mentioned, every birational map of P2 is birationally
conjugate to an automorphism of a rational surface S (see for example [dF-Ei],
Theorem 1.4). Supposing that the action is minimal (i.e. that every g-
equivariant birational morphism S → S′ is an isomorphism), either g preserves
a conic bundle structure on S or S is a Del Pezzo surface (Proposition 4.1).
In the first case, the automorphism is birationally conjugate to a linear auto-
morphism of P2, since it has odd order (Proposition 4.4).
In the second case, if the surface has degree ≥ 4, the automorphism is
birationally conjugate to a linear automorphism of P2 (Proposition 4.5).
Otherwise, applying Lemma 4.2, the degree of the surface is 1 or 3 and divides
the order of the automorphism. We enumerate the possibilities:

Assume that the degree of S is 3, and the order of g is a multiple of 3.
The linear system |KS | gives rise to the canonical embedding of S in P3, whose
image is a smooth cubic surface (see for example [Kol], Theorem III.3.5). Since
g leaves invariant the linear system |KS |, it is the restriction of a linear auto-
morphism of P3.

Suppose first that S is isomorphic to the Fermat cubic surface SF , whose
equation is w3 + x3 + y3 + z3 = 0, and whose group of automorphisms is
(Z/3Z)3 o Sym4, where (Z/3Z)3 is the 3-torsion of PGL(4, C) and Sym4 is the
group of permutations of the variables. Since the order of g is odd and at least
7, its image in Sym4 is an element of order 3. The elements of order 3 of Sym4

being all conjugate, g is conjugate to an element of the form (w : x : y : z) 7→
(w : ay : bz : cx), for some a, b, c in the 3-torsion of C∗. We conjugate g by
the automorphism (w : x : y : z) 7→ (w : bcx : y : cz) of SF and obtain the
automorphism (w : x : y : z) 7→ (w : abcy : z : x). Since the order of g is not
3, abc is not equal to 1 and is thus a primitive 3-th root of unity. The two
possible cases give the elements ρ1 and ρ2 described in Example 4.6.

We proceed now to the study of general cubic surfaces. We denote by G the
group generated by g, and by h one of the two elements of order 3 of G. Up
to isomorphism (and to the choice of h), three possibilities occur (we use the
notation ω = e2iπ/3):

1. The automorphism h is (w : x : y : z) 7→ (ωw : ωx : y : z). The equation
of S is thus L3(w, x) + L′

3(y, z) = 0, where L3, L
′
3 are homogeneous forms of

degree 3; this implies that the surface is isomorphic to the Fermat cubic surface,
a case already studied.

2. The automorphism h is (w : x : y : z) 7→ (ωw : x : y : z). In this
case, h fixes an elliptic curve Γ, which is the intersection of S with the plane of
equation w = 0 (h corresponds to an element described in Example 3.2). Note
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that G commutes with h so it leaves invariant Γ and also the plane w = 0. The
action of the group G on the curve Γ must thus be cyclic of odd order at least
3 and corresponds to the action of a cyclic subgroup of PGL(3, C) on a smooth
cubic curve. If the action is a translation, it does not have fixed points and
corresponds to the action of (x : y : z) 7→ (x : ωy : ω2z) on a plane cubic curve
of equation x3 + y3 + w3 + λxyz = 0. But this is not possible, since the group
obtained by lifting this action is isomorphic to (Z/3Z)2 and thus is not cyclic.
It remains the case of an automorphism of an elliptic curve, which has fixed
points. The only possibility is an element of order 3, that acts on the curve of
equation x3 + y3 + z3 = 0. But this case yields once again the Fermat cubic
surface.

3. The automorphism h is (w : x : y : z) 7→ (ωw : ω2x : y : z). We see
now that this case is incompatible with the hypothesis on g. Note that the
action of h on P3 fixes the line Lyz of equation y = z = 0 and thus the group G
itself leaves invariant this line. If Lyz ⊂ S, the rank of rk Pic(S)G is at least 2.
Otherwise, the equation of S is of the form L3(w, x)+L1(w, x)yz+y3 +z3 = 0,
where L3 and L1 are homogeneous form of degree respectively 3 and 1, and L3

has three distinct roots. The action of G on the three points of Lyz ∩ S gives
an exact sequence 1 →< h >→ G → Sym3. Since the order of g is odd and at
least 7, the image at the right is a cyclic group of order 3 and g has order 9. A
quick calculation shows that this is not possible.

Assume now that the degree of S is 1.
The linear system | − 2KS | induces a degree 2 morphism onto a quadric cone
in Q ⊂ P3, ramified over the vertex v of Q and a smooth curve C of genus 4.
Moreover C is the intersection of Q with a cubic surface. (See [Ba-Be], [dFe],
[Do-Iz].) Note that a quadric cone is isomorphic to the weighted projective
plane P(1, 1, 2) and the ramification curve C has equation of degree 6 there.
Up to a change of coordinates, we may thus assume that the surface S has the
equation

w2 = z3 + F4(x, y)z + F6(x, y)

in the weighted projective space P(3, 1, 1, 2), where F4 and F6 are forms of
respective degree 4 and 6 (see [Kol], Theorem III.3.5). Remark that multiple
roots of F6 are not roots of F4, since S is non-singular, and the point v = (1 :
0 : 0 : 1) = (−1 : 0 : 0 : 1) is the vertex of the quadric.

The double covering of the quadric Q ∼= P(1, 1, 2) gives an exact sequence

1 →< σ >→ Aut(S) → Aut(Q)C ,

where Aut(Q)C denote the automorphisms of Q that leaves invariant the ram-
ification curve C = {(x : y : z) | z3 + zF4(x, y) + F6(x, y) = 0}. (In fact
we can prove that the right homomorphism is surjective, but we will not need
it here). A quick calculation shows that any element of Aut(Q)C belongs to
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P(GL(2, C)×GL(1, C)). This implies that Aut(S) ⊂ P(GL(1, C)×GL(2, C)×
GL(1, C)).

Note that |KS | is a pencil of elliptic curves, parametrised by the (x, y)-
coordinates, which has one base point, v = (1 : 0 : 0 : 1). Any automorphism
of S acts thus on the elliptic bundle and fixes the vertex v of Q. This induces
another exact sequence

1 → GS → Aut(S) π→ Aut(P1),

where

GS =
{

< (w : x : y : z) 7→ (−w : x : y : e2iπ/3z) >∼= Z/6Z if F4 = 0,
< (w : x : y : z) 7→ (−w : x : y : z) >∼= Z/2Z otherwise.

The involution that belongs to GS is classically called ”Bertini involution”.
Denoting by G the group generated by our automorphism g, the group G∩GS

is either trivial or cyclic of order 3. We study the two different cases.
1. The group G ∩GS is trivial. In this case, the action of G on the elliptic

pencil (which is cyclic and diagonal) has the same order as g, which is by
hypothesis at least 7. As both F4 and F6 are preserved by this action, both
are monomials. Then, either y2 or x2 divides F6, which implies that F4 is a
multiple of x4 or y4. (Recall that the double roots of F6 are not roots of F4).
Up to an exchange of coordinates, we may thus suppose that F4 = x4 and
F6 = y6 or F6 = xy5.

In the first case, the equation of the surface is w2 = z3 + x4z + y6, and
its group of automorphisms is isomorphic to Z/2Z× Z/12Z, generated by the
Bertini involution (w : x : y : z) 7→ (−w : x : y : z) and (w : x : y : z) 7→ (iw :
x : e2iπ/12 : −z). This case is thus not possible, since the order of g is odd and
at least 7.

In the second case, the equation of the surface is w2 = z3 + x4z + xy5 and
its group of automorphisms is isomorphic to Z/20Z, generated by (w : x : y :
z) 7→ (iw : x : e2iπ/10y : −z). We obtain once again a contradiction.

2. The group G∩GS is cyclic of order 3, generated by (w : x : y : z) 7→ (w :
x : y : e2iπ/3z). In this case, L4 = 0, so L6 has exactly 6 distinct roots. Since
the action of G on these roots must be of odd order ≥ 3, it must be of order 3
or 5. The element g is of the form (w : x : y : z) 7→ (λww : x : αy : λzz), for
some λw, λz ∈ C∗, where α is a n-th root of the unity, and n = 3 or n = 5. This
implies that L6 is, up to a linear change on x and y, respectively x6+ax3y3+y6,
for some a ∈ C, or x(x5 + y5). Thus, we have λ2

w = 1 and λ3
z = 1. Since the

order of g is odd and at least 7, this shows that λw = 1, n = 5 and λz is a 3-th
root of the unity. The surface S is thus the surface S15 of Example 4.7, and
the automorphism is one power of θ, which has order 15.

We are now able to prove Theorem 1.3:
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proof of Theorem 1.3. — Using Proposition 4.8 above, and the fact that all
the linear automorphisms of some given finite order are birationally conjugate
([Be-Bl]), there exists exactly one single conjugacy class of elements of the Cre-
mona group of some given odd order n 6= 3, 5, 9, 15, which is represented by the
linear automorphism αn : (x : y : z) 7→ (x : y : e2iπ/nz).
Using the same results, the elements of order 9 of the Cremona group are bi-
rationally conjugate to one of the three elements α9, ρ1, ρ2, where α9 is the
automorphism α9 : (x : y : z) 7→ (x : y : e2iπ/9z) of P2 and ρ1, ρ2 are the auto-
morphisms of the Fermat cubic surface SF described in Example 4.6. It remains
to show that these three elements are not birationally conjugate. Firstly, since
(ρ1)2 and (ρ2)2 both fix an elliptic curve, neither of them is birationally con-
jugate to a linear automorphism of P2. Thus α is neither conjugate to ρ1, nor
to ρ2. Secondly, the elements (ρ1)2 and (ρ2)2 are diagonal in PGL(4, C) and
have distinct eigenvalues (up to multiplication), so are not conjugate by an el-
ement of PGL(4, C). This implies that ρ1, ρ2, which are elements of the group
of automorphisms of the Fermat cubic surface SF , are not conjugate in this
group. Suppose now that these two elements are conjugate by some birational
transformation ϕ of SF . Then, since ϕ is G-equivariant, where G ∼= Z/9Z, we
may factorise it into a composition of elementary G-equivariant links (see for
example [Isk], Theorem 2.5). Since our surface is of Del Pezzo type (S ∈ {D}
in the notation of [Isk]), the first link is of type I or II. The classification of
elementary links ([Isk], Theorem 2.6) shows that the only possiblity for the link
is to be the Geiser or Bertini involution of a surface obtained by the blow-up of
one or two points invariant by G. A Geiser (respectively Bertini) involution of
a Del Pezzo surface of degree 2 (respectively 1) commutes with any automor-
phism of the surface, thus the elementary link conjugates ρ1 to itself. Since ρ1

and ρ2 are not conjugate in Aut(SF ), these elements are neither birationally
conjugate. Summing up, there are three conjugacy classes of elements of order
9 in the Cremona group, represented by α9, ρ1 and ρ2.
The case of elements of order 15 is similar. Using once again Proposition 4.8
and [Be-Bl], any element of order 15 of the Cremona group is birationally con-
jugate either to α15 : (x : y : z) 7→ (x : y : e2iπ/9z), or to one of the generators
of the group < θ >, generated by the automorphism θ ∈ Aut(S15) described in
Example 4.7. Since the 5-torsion of < θ > fixes an elliptic curve, no generator of
< θ > is birationally conjugate to α15. Note that the group of automorphisms
of S15 is isomorphic to Z/30Z, generated by θ and the Bertini involution. Two
distinct elements of the group < θ >⊂ Aut(S15) are thus not conjugate by an
automorphism of S15. Since the classification of elementary links gives no sat-
isfactory elementary link, the same argument as before shows that the elements
are not birationally conjugate. There are thus exactly 9 conjugacy classes of
elements of order 15 in the Cremona group, represented by α15, θ, θ2, θ4, θ7,
θ8, θ11, θ13 and θ14.
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