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BIRATIONAL SELF-MAPS OF THREEFOLDS OF (UN)-BOUNDED
GENUS OR GONALITY

By JÉRÉMY BLANC, IVAN CHELTSOV, ALEXANDER DUNCAN,
and YURI PROKHOROV

Abstract. We study the complexity of birational self-maps of a projective threefold X by looking at
the birational type of surfaces contracted. These surfaces are birational to the product of the projective
line with a smooth projective curve. We prove that the genus of the curves occuring is unbounded if
and only if X is birational to a conic bundle or a fibration into cubic surfaces. Similarly, we prove that
the gonality of the curves is unbounded if and only if X is birational to a conic bundle.

Contents.
1. Introduction.
2. The case of conic bundles.
3. Reminders on the Sarkisov program.
4. Bounding the gonality and genus of curves.
5. Del Pezzo fibrations of degree 3.
Appendix A. FT varieties.
References.

1. Introduction. Let X be a smooth projective complex algebraic variety.
One way of studying the complexity of the geometry of elements of the group
Bir(X) of birational self-maps of X consists of studying the complexity of the
irreducible hypersurfaces contracted by elements of Bir(X) (recall that an irre-
ducible hypersurface H is contracted by ϕ ∈Bir(X) if ϕ(H) has codimension ≥ 2
in X). If X is a curve, then Bir(X) = Aut(X), so there is nothing to be said. If X
is a surface, every irreducible curve contracted by an element of Bir(X) is rational.
The case of threefolds is then the first interesting to study in this context.

If dim(X) = 3, then every irreducible surface contracted by a birational trans-
formation ϕ ∈ Bir(X) is birational to P

1×C for some smooth projective curve C .
There are then two natural integers that one can associate to C in this case, namely
its genus g(C) and its gonality gon(C) (the minimal degree of a dominant mor-
phism C P

1). We then define the genus g(ϕ) (respectively the gonality gon(ϕ))
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of ϕ to be the maximum of the genera g(C) (respectively of the gonalities gon(C))
of the smooth projective curves C such that a hypersurface of X contracted by ϕ
is birational to P

1×C .
This notion of genus of elements of Bir(X) was already defined in [Fru73] with

another definition, which is in fact equivalent to the definition above by [Lam14,
Proposition 3]. Moreover, for each g, the set of elements of Bir(X) of genus ≤
g form a subgroup, so we get a natural filtration on Bir(X), studied in [Fru73,
Lam14]. This naturally raises the question of finding the threefolds X for which
this filtration is infinite, namely the threefolds X for which the genus of Bir(X)

is unbounded (see [Lam14, Question 11]). Analogously, we get a filtration given
by the gonality. Of course, the gonality is bounded if the genus is bounded, the
unboundedness of the gonality is stronger than the unboundedness of the genus.

Note that the boundedness of the genus (respectively of the gonality) of ele-
ments of Bir(X) is a birational invariant. Our main result (Theorem 1.1) describes
the threefolds having this property.

Recall that a variety Y is a conic bundle (respectively a del Pezzo fibration of
degree d) if Y admits a morphism Y S such that the generic fibre is a conic
(respectively a del Pezzo surface of degree d) over the field of rational functions of
S. If the conic has a rational point (or equivalently the conic bundle has a rational
section), then it is isomorphic to P

1 and in this case we say that the conic bundle is
trivial.

1.1. THEOREM. Let X be a smooth projective complex algebraic threefold.
(i) If X is birational to a conic bundle, the gonality and the genus of the ele-

ments Bir(X) are both unbounded.
(ii) If X is birational to a del Pezzo fibration of degree 3, the genus of the

elements of Bir(X) is unbounded.
(iii) If X is not birational to a conic bundle, the gonality of the elements of

Bir(X) is bounded.
(iv) IfX is not birational to a conic bundle or to a del Pezzo fibration of degree

3, then both the genus and the gonality of elements of Bir(X) are bounded.

We can generalise the above notions to higher dimensions. If X is a smooth
projective variety of dimension d≥ 3, every irreducible hypersurface contracted by
an element of Bir(X) is birational to P

1×S for some variety S of dimension d−2.
When d ≥ 4, dim(S) ≥ 2 and there are then many ways to study the complexity
of this variety. One possibility is the covering gonality cov.gon(S) of S, namely
the smallest integer c such that through a general point of S there is an irreducible
curve Γ⊆S birational to a smooth curve of gonality ≤ c. As before, we say that the
covering gonality of Bir(X) is bounded if the covering gonality of the irreducible
varieties S such that a hypersurface contracted by an element Bir(X) is birational
to S×P

1 is bounded. Since the covering gonality of a smooth curve is its gonality,
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this notion is the same as the gonality defined above, in the case of threefolds. As
in dimension 3, this is again a birational invariant.

In Corollary 4.4, we prove that if X is a solid Fano variety (see [AO18, Defini-
tion 1.4]), then the covering gonality of elements of Bir(X) are bounded by a con-
stant that depends only on dim(X). In particular, the covering gonality of birational
selfmaps of birationally rigid Fano varieties of dimension n (see [Che05, Puk13]
or [CS16, Definition 3.1.1]) are bounded by a constant that depends only on n.

In Proposition 2.4, we prove that if π : X B is a trivial conic bundle of any
dimension ≥ 3, then the covering gonality of the elements of

Bir(X/B) = {ϕ ∈ Bir(X) | π ◦ϕ= π} ⊆ Bir(X)

is unbounded. This raises the following two questions:

1.2. Question. Let B be a projective variety of dimension ≥ 3 and let X B

be a non-trivial conic bundle. Is the covering gonality of elements of Bir(X/B)

unbounded?

1.3. Question. Let X be a projective variety of dimension ≥ 4 that is not bira-
tional to a conic bundle. Is the covering gonality of elements of Bir(X) bounded?

A rough idea of the proof of Theorem 1.1 is as follows. Since the bound-
edness of the genus and gonality is a birational invariant, we can run the MMP
and replace X with a birational model (with terminal singularities) such that ei-
ther KX is nef or X has a Mori fibre space structure X/B. In the former case
any birational self-map is a pseudo-automorphism [Han87, Lemma 3.4] and so the
genus and gonality are bounded in this case. If X/B is a Mori fibre space, then
any birational map X ��� X is a composition of Sarkisov links (see Sect. 3). If
a link involves a Mori fibre space Xi/Bi which is (generically) a conic bundle,
then we apply an explicit construction of Sect. 2 to get unboundedness (and thus
obtain Theorem 1.1(i)). If a link involves Mori fibre spaces Xi/Bi and Xi+1/Bi+1

over bases of dimension ≤ 1, then we use the boundedness result for Fano three-
folds [KMMT00] (see also [Bir21]). This result is also used to prove the assertions
1.1(iii)-(iv) (see Lemma 4.5). The unboundeness of the genus for del Pezzo fibra-
tions of degree 3 (Theorem 1.1(ii)) is obtained by finding 2-sections of large genus
and applying Bertini involutions associated to these curves, see Section 5 for the
detailed construction.

Acknowledgments. We thank Serge Cantat, Stéphane Lamy, and Egor Yasin-
sky for interesting discussions during the preparation of this text. We also thank the
anonymous referee for providing thoughtful comments that resulted in changes to
the revised version of the paper.

2. The case of conic bundles. Every conic bundle is square birational
equivalent to a conic bundle that can be seen as a conic in a (Zariski locally trivial)
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P
2-bundle. Using a rational section of the P

2-bundle, one can do the following
construction:

2.1. CONSTRUCTION. Let π : Q B be a conic bundle over an irreducible
normal variety B and let Qη be its generic fibre. Then Qη is a conic over the func-
tion field C(B). The anicanonical linear system | −KQη | defines an embedding
Qη ↪→ P

2
C(B). Fix a C(B)-point sη ∈ P

2
C(B) \Qη . The projection pr : Qη P

1
C(B)

from sη is a double cover. Let ιη : Qη Qη be the corresponding Galois involu-
tion. It induces a fibrewise birational involution ι : Q ��� Q.

Suppose now that our conic bundle π : Q B is embedded into a P
2-bundle

π̂ : P B and suppose that we are given a section s : B P whose image is not
contained in Q. This section defines a point sη ∈ P

2
C(B) \Qη and therefore defines

an involution ι : Q ���Q as above.

2.2. LEMMA [BL15, Lemma 15]. If, in the above notation, Γ ⊆ B is an ir-
reducible hypersurface that is not contained in the discriminant locus of π and
such that s(Γ)⊆Q, the hypersurface V = π−1(Γ) of Q is contracted by ι onto the
codimension 2 subset s(Γ).

2.3. COROLLARY. Let π : Q B be a conic bundle over an irreducible nor-
mal variety B, given by the restriction of a P

2-bundle π̂ : P B. Let Γ⊆B be an
irreducible hypersurface such that the restriction of π gives a trivial conic bundle
V = π−1(Γ) Γ. Then, there exists an involution

ι ∈ Bir(Q/B) =
{
ϕ ∈ Bir(Q) | πϕ= π

}

that contracts the hypersurface V onto the image of a rational section of Γ ��� V .

Proof. Since the restriction of π gives a trivial conic bundle V = π−1(Γ) Γ,
there is a rational section sΓ : Γ ��� V ⊆Q ⊆ P . We then extend this section to a
rational section s : B ��� P whose image is not contained in Q. This can be done
locally, on an open subset where P B is a trivial P2-bundle. Lemma 2.2 provides
an involution ι ∈ Bir(Q/B) that contracts V onto the image of sΓ. �

We can now give the proof of Theorem 1.1(i) (and of the small generalisation
to higher dimensions mentioned in the introduction):

2.4. PROPOSITION. Let B be a projective variety of dimension ≥ 2, let
π : Q B be a conic bundle and let us assume that either π is trivial (admits a
rational section) or that dim(B) = 2. Then, the covering gonality (and the genus
if dim(Q) = 3) of elements of Bir(Q/B) is unbounded.

Proof. We can assume that π is the restriction of a P
2-bundle π̂ : P B.

Let Γ⊆B be an irreducible hypersurface which is not contained in the discrim-
inant locus of π. Then the restriction of π gives a conic bundle πΓ : V = π−1(Γ)
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Γ. If π is a trivial conic bundle, then so is πΓ. If dim(B) = 2, then Γ is a curve,
and π is again a trivial conic bundle by Tsen’s Theorem [Kol96, Corollary 6.6.2,
p. 232]. In both cases, we can apply Corollary 2.3 to find an element of Bir(Q/B)

that contracts the hypersurface V ⊆Q, birational to P
1×Γ.

This can be done for any irreducible hypersurface of B not contained in the
discriminant locus. Thus, the covering gonality of elements of Bir(Q/B) are
unbounded (to see this, simply embed B in a projective space and take a general
hypersurface of large degree). The same argument applies to the genus when
dim(Q) = 3. �

We recall the following classical result:

2.5. LEMMA. LetB be a projective curve. A del Pezzo fibration X/B of degree
≥ 4 is birational to a conic bundle X ′/B′.

Proof. The generic fibre of X/B is a del Pezzo surface F of degree d≥ 4 over
the function field C(B). Applying MMP over B, we can assume that the generic
fibre satisfies rkPic(F ) = 1 or has a structure of conic bundle. In the latter case,
the proof is over, so we assume that rkPic(F ) = 1. It is sufficient to show that
F birationally has a conic bundle structure F C , where C is a curve defined
over C(B); this is for instance the case if F is rational. As B is a curve, the field
C(B) has the C1 property, so F has a rational C(B)-point x ∈ F (see [Kol96,
Theorem IV.6.8, p. 233]).

If d = 9, the existence of x implies that F is isomorphic to P
2. If d = 8, the

fact that rkPic(F ) = 1 implies that F is isomorphic to a smooth quadric in P
3,

and the projection from x gives a birational map to P
2. We cannot have d = 7, as

the unique (−1)-curve of F
C(B)

would be defined over C(B), contradicting the

assumption rkPic(F ) = 1.
It remains to study the cases where d ∈ {4,5,6}. Since rkPic(F ) = 1, the

C(B)-rational point x ∈ F does not lie on a (−1)-curve. Therefore, by blowing-up
x∈F we obtain a del Pezzo surface Y over C(B) of degree d−1 with rkPic(Y ) =

2. Thus on Y there exists a Mori contraction Y Y ′ which is different from
Y F . The type of Y F can be computed explicitely (see [Isk96, Theo-
rem 2.6]): If d= 5 (resp. d= 6), then Y Y ′ is a birational contraction to P

2
C(B),

(resp. to a quadric in P
3
C(B) having a rational point), so F is again rational. If d= 4,

then Y ′ 	 P
1
C(B) and Y Y ′ is a conic bundle. This proves our lemma. �

3. Reminders on the Sarkisov program.

3.1. Definition. A variety X with a surjective morphism η : X B is a Mori
fibre space if the following conditions hold:

(i) η has connected fibres, B is normal, dimX > dimB ≥ 0 and the relative
Picard rank ρ(X/B) = ρ(X)−ρ(B) is equal to 1;
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(ii) X is Q-factorial with at most terminal singularities;
(iii) The anticanonical divisor −KX is η-ample.

The Mori fibre space is denoted by X/B.
An isomorphism of fibre spaces X/B

	−→X ′/B′ is an isomorphism ϕ : X
X ′ that sits in a commutative diagram

X

��

ϕ �� X ′

��
B

ψ �� B′

where ψ : B
	−→B′ is an isomorphism.

3.2. Remark. In the case that we study, namely when dim(X) = 3, we obtain
three possible cases for a Mori fibre space X/B:

(i) If dim(B) = 0, then X is a Fano variety of Picard rank 1;
(ii) If dim(B) = 1, then X is a del Pezzo fibration over the curve B;
(iii) If dim(B) = 2, then X is a conic bundle over the surface B.

3.3. Definition. A Sarkisov link χ : X1 X2 between two Mori fibre spaces
X1/B1 and X2/B2 is a birational map which fits into one of the following com-
mutative diagrams.

Y1 X2

X1 B2

B1 = Z

div fib
χ

fib

Y1 Y2

X1 X2

B1 = Z =B2

div div

χ

fib fib

I II

X1 Y2

B1 X2

Z =B2

χ
fib div

fib

X1 X2

B1 B2

Z

χ
fib fib

III IV

Here the dotted arrows are pseudo-isomorphisms (isomorphisms outside of codi-
mension ≥ 2 subsets) given by a sequence of log-flips, the plain arrows are sur-
jective morphisms of relative Picard rank 1, with fibres not equivalent via χ in the
cases of types II and IV, the arrows written “div” are divisorial contractions, the
arrows written “fib” are Mori fiber spaces, and the variety Z is normal with at
worst Kawamata log terminal singularities. We say that the base of the Sarkisov
link is the variety Z (which is dominated by, but not necessarily equal to, the bases
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B1 andB2 of the two Mori fibre spaces), and that the above diagram is the Sarkisov
diagram associated to χ.

The notion of Sarkisov links is important, because of the following result.

3.4. THEOREM. Every birational map between Mori fibre spaces decomposes
into a composition of Sarkisov links and isomorphisms of Mori fibre spaces.

In dimension 2, this is essentially due to Castelunovo [Cas01], although not
stated directly in these terms. The case of dimension 3 was done for the first time
in [Cor95, Theorem 3.7]. The proof in any dimension is available in [HM13, The-
orem 1.1].

3.5. Remark. In fact, it follows from the definition that there are strong con-
straints on the sequence of anti-flips, flops and flips (that is, about the sign of the
intersection of the exceptional curves against the canonical divisor). Precisely, as
explained in [BLZ19, Remark 3.10], the top (dotted) row of a Sarkisov diagram
has the following form:

Ym · · · Y0 Y ′0 · · · Y ′n

Ȳ

Z

where Y0 Y ′0 is a flop over Z (or an isomorphism), m,n ≥ 0, and each Yi
Yi+1, Y ′i Y ′i+1 is a flip over Z (or an isomorphism). Indeed, one can decompose
the pseudo-isomorphism into a sequence of log-flips and for Y = Yi or Y = Y ′i , a
general contracted curve C of the fibration Y/Z satisfies KY ·C < 0, hence at least
one of the two extremal rays of the cone NE(Y/Z) is strictly negative against KY .
In particular, both Y0/Z and Y ′0/Z are relatively weak Fano (or Fano if the flop is
an isomorphism) over Z .

If Y0 Y ′0 is an isomorphism, we choose Ȳ to be isomorphic to both; if
Y0 Y ′0 is a flop and not an isomorphism, the map is naturally associated to
a variety Ȳ , that is a Fano with terminal (but not Q-factorial) singularities such
that rkCl(Ȳ /Z) = 2. It is called the central model in [CS11]. Two contractions
Y0 Ȳ and Y ′0 Ȳ are small Q-factorialisations of Ȳ . Hence the whole diagram
is uniquely determined by Ȳ /Z .

3.6. Remark. In the sequel, we will mostly work with varieties of dimension
3 not birational to conic bundles, as the case of conic bundles have already been
treated in Section 2. The Mori fibre spaces will be then either Fano of rank 1 or del
Pezzo fibrations of degree ≤ 3 (see Lemma 2.5). As a Fano is rationally connected,
a del Pezzo fibration over a base not equal to P

1 is not birational to a Fano variety.
All the Sarkisov links that we can have between Mori fibre spaces not birational to
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conic bundles are then as follows:

Y1 X2

X1 P
1

point

div fib
χ

fib

Y1 Y2

X1 X2

point or curve

div div

χ

fib fib

I II

X1 Y2

P
1 X2

point

χ
fib div

fib

X1 X2

P
1

P
1

point

χ
fib fib

III IV

3.7. LEMMA. Let us consider a Sarkisov link of type II between three-
dimensional Mori fibre spaces X1/B and X2/B over a base B of dimension
1.

Y1 Y2

X1 X2

B

div div

χ

fib fib

Denoting by Ei ⊂ Yi the exceptional divisor of Yi/Xi and by ei ⊂ Xi its image,
one of the following case holds:

(i) χ induces an isomorphism between the generic fibres of X1/B and X2/B,
and ei is contained in a fibre of Xi/B for i= 1,2.

(ii) χ induces a birational map between the generic fibres of X1/B and X2/B

which is not an isomorphism and ei is a curve of Xi such that ei/B is a finite
morphism of degree ri ∈ {1, . . . ,8}, for i= 1,2.
Moreover, in case (ii), if one of the degree di of the del Pezzo fibration Xi/B is
≤ 3, then d1 = d2 and r1 = r2, and (di,ri) ∈ {(3,2),(3,1),(2,1)}, and the generic
fibres of X1/B and X2/B are isomorphic. In particular, ei is birational to B if
di = 2.

Proof. The image ei is a curve or a point, so is either (a) contained in a fibre of
Xi/B, or (b) maps surjectively to B via a finite morphism of degree di ≥ 1. Case
(a) happens if and only if the generic fibres of Xi/B and Yi/B are isomorphic. As
the generic fibres of Xi/B are del Pezzo surfaces of rank 1, for i = 1,2, case (a)
happens for i = 1 if and only if it happens for i = 2. This provides the dichotomy
(i)–(ii) above.
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In case (ii), we look at the birational map between the generic fibres Xi/B

which are del Pezzo surfaces of degree 1. The classification of such maps, given in
[Isk96, Theorem 2.6], implies that ri≤ 8 for i= 1,2 and that if di≤ 3 then d1 = d2,
r1 = r2, and (di,ri) ∈ {(3,2),(3,1),(2,1)}, and the generic fibres of X1/B and
X2/B are isomorphic. �

In case (ii) in Lemma 3.7, the case of del Pezzo fibrations of degree 3 is the
most interesting one, as the degree ≤ 2 only gives curves ei of bounded genus, and
the case of degree ≥ 4 is covered by Lemma 2.5.

3.8. Remark. LetX/B be a Mori fibre space such that dim(B)∈ {0,1}. It may
happen that no Sarkisov link starts from X. If dim(B) = 0, this means (almost by
definition) that X is a birationally super-rigid Fano threefold. Many examples of
such Fano threefolds can be found in [CP17]. Similarly, if dim(B) = 1 and no
Sarkisov link starts from X, then X/B is a del Pezzo fibration of degree 1 that
is birationally rigid over B (see [Cor00, Definition 1.3]). Vice versa, if X/B is
a del Pezzo fibration of degree 1 that is birationally rigid over B, then the only
Sarkisov links that can start from X are described in case (i) of Lemma 3.7. For
some (birationally rigid over the base) del Pezzo fibrations such links do not exist
(see [Kry18]). However, in general they may exist and are not well understood (see
[Par01, Par03]).

4. Bounding the gonality and genus of curves. We first state a conse-
quence of the boundedness of weak-Fano terminal varieties. The next lemma ap-
plies to Sarkisov links involving a Fano threefold of rank 1 (when one of the Bi has
dimension 0) and to Sarkisov links of type IV between del Pezzo fibrations (when
dim(B1) = dim(B2) = 1 and dim(Z) = 0).

4.1. LEMMA. There are integers g0, c0 ≥ 1 such that, for each Sarkisov
link χ : X1 X2 between two Mori fibre spaces X1/B1 and X2/B2 such that
dim(X1) = dim(X2) = 3 over a base Z of dimension 0, the following hold:

(i) Each divisorial contraction involved in the Sarkisov diagram of χ contracts
a divisor birational to P

1×Γ where gon(Γ)≤ c0 and g(Γ)≤ g0.
(ii) For each i∈{1,2} such that dim(Bi)= 1, each fibre ofXi/Bi is birational

to P
1×Γ with gon(Γ)≤ c0 and g(Γ) ≤ g0.

Proof. As in Remark 3.5, we consider the variety Y0 which is pseudo-
isomorphic to the top varieties in the Sarkisov diagram and which is a weak-Fano
variety of rank 2, since the base Z of the Sarkisov link is of dimension 0. In
particular, we see that Y0 is FTt (see Definition A.1), so that all top varieties in the
Sarkisov diagram are also FTt by Corollary A.5. Hence, the assertion (i) follows
from Corollary A.13, and the assertion (ii) follows from Corollary A.15. �

The following result is a direct consequence of Lemma 4.1.
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4.2. COROLLARY. There are integers g0, c0 ≥ 1 such that for each Mori fibre
space X/B where dim(X) = 3, dim(B) = 0, not birational to a conic bundle or a
del Pezzo fibration, the genus and the gonality of elements of Bir(X) are bounded
by g0 and c0 respectively.

Proof. Every element of Bir(X) decomposes into a product of Sarkisov links
and isomorphisms of Mori fibre spaces (Theorem 3.4). The base of each of these
Sarkisov links has dimension 0, as X is not birational to a conic bundle or a
del Pezzo fibration. Hence the genus and the gonality of each Sarkisov link are
bounded by g0 and c0 respectively by Lemma 4.1(i). This provides the result. �

In fact, Corollary 4.2 can be easily extended to higher dimension, and concerns
then the solid Fano varieties, defined as below (see [AO18, Definition 1.4]):

4.3. Definition. A Fano variety X being a Mori fibre space over a point is said
to be (birationally) solid if it is not birational to any Mori fibre space over a positive
dimensional base.

Such Fano varieties much earlier were considered by V. Shokurov [Birational
Geometry of Algebraic Varieties. Open Problems. The XXIIIrd International Sym-
posium. Division Of Mathematics. The Taniguchi Foundation, August 22–August
27, 1988 Katata]. He called them primitive. Since primitive is used in algebraic
geometry very often, we do not use this name.

4.4. COROLLARY. For every integer n ≥ 3, there is an integer cn ≥ 1 (that
only depends on n) such that for each solid Fano variety X of dimension n, the
covering gonality of elements of Bir(X) are bounded by cn.

Proof. The proof is similar as the one of Lemma 4.1 and Corollary 4.2: AsX is
a solid Fano, every element of Bir(X) decomposes into a finite number of Sarkisov
links between Mori fibre spaces over a base of dimension 0. As in Remark 3.5, we
consider the variety Y0 which is pseudo-isomorphic to the top varieties in the Sark-
isov diagram and which is a weak-Fano variety of rank 2, since the base Z of the
Sarkisov link is of dimension 0. The result then follows from Corollary A.13. �

We can now extend Corollary 4.2 to a more general situation:

4.5. LEMMA. There are integers g0, c0 ≥ 1 such that the following holds:
Suppose X/B is a Mori fibre space with dim(X) = 3 and there exists a Sark-

isov link over a base of dimension 0 involving X/B. Then, for every element
ϕ ∈ Bir(X) having a decomposition into Sarkisov links that involves no conic
bundles, the gonality of ϕ is bounded by c0. Moreover, if we can choose a decom-
position of ϕ such that no del Pezzo fibration of degree ≥ 3 arises, the genus of ϕ
is bounded by g0.

Proof. We choose integers g0 and c0 from Lemma 4.1, and assume that c0 ≥ 8.
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If dim(B)= 0, thenX is a Fano variety, and thus rationally connected [Zha06].
If dim(B) ≥ 1, then dim(B) = 1 as X is not birational to a conic bundle. By
assumption, X/B is involved in a Sarkisov link over a base of dimension 0. The
variety X is then birational to a Fano variety (the variety Ȳ of Remark 3.5), so
is again rationally connected. Moreover, Lemma 4.1(ii) implies that each fibre of
X/B is birational to C×P

1 for some curve of genus and gonality bounded by g0

and c0.
We take an element ϕ ∈ Bir(X) that we decompose, using Theorem 3.4), as

ϕ= θr ◦χr ◦ · · · ◦θ1 ◦χ1 ◦θ0,

where each χi is a Sarkisov link between X ′i−1/B
′
i−1 and Xi/Bi, each θi is an

isomorphism of Mori fibre spaces

Xi X ′i

Bi B′i

θi

	

where X0/B0 =X ′r/B′r =X/B. By assumption, we may choose one such decom-
position such that none of the Xi/Bi (or X ′i/B

′
i) is a conic bundle, which means

that dim(Bi) ∈ {0,1} for each i ∈ {0, . . . ,r}.
By Remark 3.6 and Lemma 3.7, we obtain three different types of Sarkisov

links χi:
(a) Sarkisov links χi with a base of dimension 0.
(b) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing no isomor-

phism between the generic fibres of X ′i−1/Bi−1 and Xi/Bi.
(c) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing an isomor-

phism between the generic fibres of X ′i−1/Bi−1 and Xi/Bi.
The genus and the gonality of the Sarkisov link in case (a) are bounded by g0

and c0 respectively (Lemma 4.1(i)).
In case (b)–(c), the Sarkisov link is between two del Pezzo fibrations

X ′i−1/B
′
i−1 and Xi/Bi over a curve B′i−1 = Bi. As Xi−1 and Xi are rationally

connected (because they are birational to X), we obtain B′i−1 =Bi 	 P
1.

Case (b) corresponds to case (ii) of Lemma 3.7). The two divisorial contrac-
tions contract divisors onto curves of X ′i−1/B

′
i−1 and Xi/Bi of gonality at most 8,

which are moreover rational (and thus of genus bounded by g0) if the degree of the
del Pezzo fibrations is ≤ 2 (Lemma 3.7).

The remaining case is case (c) (case (i) of Lemma 3.7). In this case, the surfaces
Fi−1 ⊆X ′i−1 and Fi ⊆Xi contracted by χi and χ−1

i correspond to fibres of the del
Pezzo fibrations X ′i−1/B

′
i−1 and Xi/Bi. If the fibre is general, it is rational and we

are done, but it could be that it is birational to P
1×C for some non-rational curve

C , a priori of large genus/gonality even if we do not know if such a situation is
really possible (see Question 4.6). To overcome this issue, we denote by 1 ≤ j ≤
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i ≤ k ≤ r the smallest integer j ∈ {1, . . . , i} and the biggest integer k ∈ {i, . . . ,r}
such that χj, . . . ,χk are links of type II, and obtain that

ν = θk ◦χk ◦θk−1 ◦χk−1 ◦ · · · ◦χj+1 ◦θj ◦χj ◦θj
is a birational map between del Pezzo fibrations Xj−1/Bi and X ′k/B

′
k which fits

in a commutative diagram

Xj−1 X ′k

Bi B′k 	 P
1.

ν

	

Every surface contracted by ν is either a fibre, or birational to a surface contracted
by a Sarkisov link in χj , . . . ,χk of type (b). We now prove that the fibres contracted
by ν are birational to C×P

1 for some curve C of genus and gonality bounded by
g0 and c0 respectively. If j = 1, this is because X0/B0 = X/B and we already
observed at the beginning that each fibre of X/B had this property. If j > 1, then
the Sarkisov link χj−1 is not of type II, so is over a base of dimension 0, i.e., is in
case (a). Hence, each fibre of Xj−1/Bj−1 is birational to C×P

1 for some curve C
of genus ≤ g0 and gonality ≤ c0 (Lemma 4.1(ii)).

Hence, even if χi can a priori be of arbitrary large genus or gonality, the gonal-
ity of ν is bounded by c0, and the genus is bounded by g0 if no del Pezzo fibration
of degree 3 appears in the decomposition.

As ϕ decomposes into links of type a) and maps having the same form as ν
(compositions of Sarkisov links of type II), the gonality of ν is bounded by c0, and
the genus is bounded by g0 if no del Pezzo fibration of degree 3 appears in the
decomposition. �

The following question is naturally raised by the proof of Lemma 4.5.

4.6. Question. Is there an integer g ≥ 1 such that for each Mori fibre space
X B which is a del Pezzo fibration, each fibre is birational to C×P

1 for some
curve C of genus (respectively gonality) ≤ g?

In the case of birational maps between del Pezzo fibrations, we do not have an
absolute bound (which would follow from a positive answer to Question 4.6), but
we can easily obtain the following result on birational maps involving links over
a base of dimension 1. This is for instance the case for all elements of Bir(X) if
X/B is a Mori fibre space not birational to a conic bundle with X not rationally
connected.

4.7. LEMMA. Let X/B be a Mori fibre space such that dim(X) = 3 and
dim(B) = 1 (a del Pezzo fibration over a curve). There are integers c,g ≥ 0 (de-
pending on X/B) such that the following holds:



BIRATIONAL SELF-MAPS OF THREEFOLDS 587

For each birational map ϕ ∈ Bir(X) that decomposes into Sarkisov links of
type II, each over a base of dimension 1, the gonality of ϕ is bounded by c. More-
over, the genus of ϕ is bounded by g if no del Pezzo fibration of degree ≥ 3 occurs
in the decomposition.

Proof. As each Sarkisov link occuring in the decomposition of ϕ is of type II,
the base of the Sarkisov link is isomorphic to B, and so are all bases of the Mori
fibre spaces involved.

The map ϕ is a square birational map, i.e., sends a general fibre of X/B onto
a general fibre. There are finitely many fibres of X/B that are not rational, so we
only need to bound the gonality and the genus of the curves C such that C×P

1

is birational to a surface contracted by ϕ that is not a fibre. Such a surface is con-
tracted by a Sarkisov link χ between del Pezzo fibrations Xi−1/Bi−1 and Xi/Bi,
which is not an isomorphism between the generic fibres. We proceed as in the proof
of Lemma 4.5: The two divisorial contractions contract divisors onto multisections
of Xi−1/Bi−1 and Xi/Bi. As the variety Y0 in the middle (see Remark 3.5) is a
weak del Pezzo fibration over the base, we can only blow-up curves with gonality
at most 8. Moreover, the curves are rational if Xi−1/Bi−1 and Xi/Bi are del Pezzo
fibrations of degree ≤ 2. This achieves the result. �

We can now apply Lemma 4.5 and obtain the following result, which gives the
proof of parts (iii) and (iv) of Theorem 1.1. Note that here the bound depends on
X and is not an absolute bound as in Lemma 4.5. This is of course needed, as one
can consider the blow-up of any threefold along a curve of arbitrary large genus.

4.8. PROPOSITION. Let X be a projective threefold not birational to a conic
bundle. Then, then the following hold:

(i) The gonality of the elements of Bir(X) is bounded.
(ii) If X is not birational to a del Pezzo fibration of degree 3, the genus of the

elements of Bir(X) is also bounded.

Proof. Using the minimal model program (MMP), we see that X is birational
to a Q-factorial variety X ′ with at worst terminal singularities, which is either a
Mori fibre space X ′/B′ or where KX ′ is nef. We may replace X with X ′, as this
does not change the boundedness (but can a priori change the bound).

If KX is nef, then the genus and the gonality of elements of Bir(X) are
bounded, as no element of Bir(X) contracts any hypersurface.

We can then assume that X/B is a Mori fibre space. We have dim(B) ∈ {0,1}
asX is not birational to a conic bundle. If no Sarkisov link starts fromX, the result
is trivially true, since in this case Theorem 3.4 gives

Bir(X) = Aut(X).

Note that such threefolds do exists (see Remark 3.8). To complete the proof, we
may assume that Bir(X) �= Aut(X), so that, in particular, there is a Sarkisov link
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that starts fromX. IfX/B is involved in a Sarkisov link over a base of dimension 0,
the result follows from Lemma 4.5. So we may assume that the base of every
Sarkisov link between Mori fibre spaces birational to X has dimension 1. Then
dim(B) = 1 and every Sarkisov link involved in any decomposition of any element
ϕ ∈ Bir(X) is of type II between two del Pezzo fibrations. In particular, the del
Pezzo fibration X/B is birationally rigid over B (see [Cor00, Definition 1.3] and
Remark 3.8). Now the result follows from Lemma 4.7. �

5. Del Pezzo fibrations of degree 3. We recall the following result, proven
in [Cor96] (see also [Kol97] for generalisations):

5.1. PROPOSITION. [Cor96, Theorem 1.10] Let B be a smooth curve and let
X B be a del Pezzo fibration of degree 3 (cubic surface fibration). Then, there
exists a birational map

X

���
��

��
��

�
ϕ ��������� X ′

����
��
��
��

B

such that X ′/B is another del Pezzo fibration of degree 3 having the following
properties:

(i) X ′ is a projective threefold with terminal singularities of index 1;
(ii) every fibre of X ′/B is reduced and irreducible, and is a Gorenstein del

Pezzo surface;
(iii) the anticanonical system −KX ′ is relatively very ample and defines an

embedding in a P
3-bundle over B.

We will also need the following lemma:

5.2. LEMMA. Let 0 ∈ V ⊂ C
4 be an isolated cDV singularity and let C ⊂ V

be a smooth curve that contains 0. Let σ : V̂ V be the blowup of C . Then V̂ is
normal.

Proof. Let t be a local parameter on C . Take analytic coordinates x1, . . . ,x4 in
C

4 so that x1 = t. Then C is the x1-axis, given by x2 = x3 = x4 = 0. As V contains
C , it is given by the equation

φ= x2φ2 +x3φ3 +x4φ4 = 0,

where the functions φi = φi(x1, . . . ,x4) vanish at the origin. The origin being a
cDV singularity, at least one of φi’s contains a linear term and at least one of
the φi’s contains a term xk1 for some k > 0 (because V is smooth at a general
point of C). By changing coordinates x2,x3,x4 linearly, we may assume that φ4

contains a non-zero linear term �(x1,x4). Note that the fibre σ−1(0)⊂ V̂ is a plane
P

2 and V̂ is a hypersurface in a nonsingular fourfold. By Serre’s criterion it is
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sufficient to show that V̂ is smooth at some point of σ−1(0). Consider the affine
chart U4 := {x′4 �= 0}. Then σ−1(U4) is given by

{x′2φ′2 +x′3φ′3 +φ′4 = 0} ⊂ C
4
x′1,...,x

′
4
,

where φ′i = φi(x
′
1,x
′
2x
′
4,x
′
3x
′
4,x
′
4). The fibre σ−1(0)∩U4 in this chart is given by

x′1 = x′4 = 0. Then

mult0(x
′
2φ
′
2)≥ 2, mult0(x

′
3φ
′
3)≥ 2,

and the linear part �(x1,x4) of φ′4 is non-trivial. Therefore, V̂ is smooth at the
origin of σ−1(U4). �

5.3. PROPOSITION. Let B be a smooth curve and let X B be a del Pezzo
fibration of degree 3. Then, the genus of elements of Bir(X/B) is unbounded (even
if the gonality can be bounded).

Proof. We can assume thatB is projective, and apply Proposition 5.1 to reduce
to the case where X,B satisfy the conditions (i)–(iii) of this proposition.

We then take a curve C ⊂X which is a section of X/B (this exists as the field
C(B) has the C1 property, by [Kol96, Theorem IV.6.8, p. 233]). We can moreover
assume that a general point of C is not contained in any of the 27 lines of the
corresponding fibre [Kol96, Theorem IV.6.10, p. 234]. We view X as a closed hy-
persurface of a P

3-bundle P B (condition (iii) of Proposition 5.1). We consider
the blow-up η̂ : P̂ P of P along C , denote by X̂ ⊂ P̂ the strict transform of X,
and denote by η : X̂ X the restriction of η̂, that is the blow-up of C . As X̂ is
a hypersurface of P̂ , the canonical class KX̂ is a well-defined Cartier divisor. By
Lemma 5.2, X̂ is normal. Consider, for some large positive integer n, the divisor

D =−KX̂ +nF̂ ,

where F̂ is a general fibre of X̂ B.
We first observe that D is base-point-free (for n big enough). To see this, we

view X as a closed hypersurface of a P
3-bundle P B (condition (iii) of Propo-

sition 5.1), and then view X̂ as a closed hypersurface of the blow-up P̂ of P along
C . By the adjunction formula, the divisor D is the restriction of a divisor DP on
P̂ which is equal, on each fibre of P̂ B, to a strict transform of a hyperplane of
P

3 through the point blown-up. Taking n big enough, we obtain that DP is without
base-points, and this implies that D is base-point free.

Take two general elements D1,D2 of the linear system of D and consider the
curve Q̂=D1∩D2. Observe that Q̂ intersects a general fibre F̂ of X̂ B at two
points. Indeed, for i= 1,2, the intersection of Di with a general fibre F̂ is the strict
transform of a hyperplane section of the cubic surface F , fibre of X B, passing
through the point C ∩F blown-up by η. The two hyperplane sections intersect F
into 3 points, so 2 outside of C ∩F .
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We can then associate to Q = η(Q̂) the birational involution ϕ ∈ Bir(X/B)

which performs a Bertini involution on a general fibre F of X/B, associated to
the two points Q∩F : the fibre F is a smooth cubic surface in P

3 and the blow-
up of the two points Q∩F is a del Pezzo surface of degree 1 on which there is
the unique Bertini involution associated to the double covering (see for instance
[Isk96, p. 613]). Hence, the involution ϕ lifts to a birational involution of the blow-
up Y X of Q, which is an isomorphism on a general fibre. There is then a
surface birational to Q×P

1 contracted by ϕ, which corresponds to the union of
two curves contracted onto the two points in each fibre.

It remains to see that Q̂ is smooth and irreducible, and that the genus g(Q̂) is
strictly increasing as n grows. This will give the result, as Q is then birational to Q̂.
Since the linear system |D| is base point free and ample, it is not composed with
a pencil. Since X̂ is normal, it is smooth in codimension one so Q̂=D1∩D2 is a
smooth and irreducible curve, contained in the smooth locus of X̂. To see this, we
apply Bertini’s theorem twice for the smoothness and use the fact that the support
of an ample divisor is connected.

By adjunction formula we get, for i= 1,2,

KD1 = (KX̂ +D1)|D1 = n · (F̂ |D1),

KQ = (KD1 +Q)|D1 = (nF̂ |D1 +D2|D1)|Q,

which gives

deg(−KQ) = (nF̂ +D2) ·D1 ·D2

= (nF̂ +D) ·D2

= (−KX̂ +2nF̂ ) · (−KX̂ +nF̂ )2

= 4nF̂ · (KX̂)
2− (KX̂)

3

= 4n− (KX̂)
3.

This shows that the genus of the curve Q, birational to Q̂, strictly increases as n
grows. �

The proof of Theorem 1.1 is now finished:

Proof of Theorem 1.1. Part (i) is given by Proposition 2.4.
Part (ii) is given by Proposition 5.3.
Parts (iii) and (iv) are respectively parts (i) and (ii) of Proposition 4.8. �

Appendix A. FT varieties. In this appendix, we present some results from
[PS09, BCHM10, Bir21], with some mild changes of notation and presentation.
We simply recall them. The notation FTt is a variation of the usual notation for
“Fano type,” where we add a t to indicate a terminality condition.
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A.1. Definition. (cf. [PS09, §2]) Let X be a normal projective variety. We say
that X is FTt (Fano type) if there exists a Q-divisor Δ=

∑
biΔi, with bi > 0 for

each i, such that the following conditions are satisfied:
(i) the pair (X,Δ) is terminal,
(ii) KX +Δ≡ 0,
(iii) the components Δi generate the group Cl(X)⊗Q,
(iv) each component Δi is a movable divisor (i.e., the linear system |Δi| asso-

ciated to Δi is without fixed components).

A.2. LEMMA. (i) A variety X is FTt if and only if there exists an effective
Q-divisor Θ such that the pair (X,Θ) is terminal, −(KX +Θ) is ample, and the
components of Θ are movable divisors that generate Cl(X)⊗Q.

(ii) A Q-factorial variety X is FTt if and only if there exists an effective Q-
divisor Θ such that the pair (X,Θ) is terminal and −(KX +Θ) is ample.

Proof. (i) Let X be an FTt variety and let A be an ample divisor. By our as-
sumption A.1(iii) we have A≡∑

ciΔi for some ci ∈Q. Take Θ :=Δ− ε∑ciΔi

for 0 < ε� 1. Conversely, assume that there exists Θ as in (i). For n� 0 the
linear system | − n(KX +Θ)| is base point free. Take a general member A ∈
|−n(KX+Θ)| and put Δ=Θ+ 1

nA.
(ii) If X is FTt, the existence of Θ follows from (i). Conversely, let Θ be a

boundary such that the pair (X,Θ) is terminal and −(KX +Θ) is ample. As X is
Q-factorial, we may take very ample divisors A1, . . . ,Am generating Cl(X)⊗Q.
Then we can apply (i) to the boundary Θ′ =Θ+ ε

∑
Ai for 0 < ε� 1. �

A.3. COROLLARY. If X is an FTt variety, then the numerical and Q-linear
equivalences of Q-Cartier divisors on X coincide.

Proof. By Lemma A.2(i), there exists an effective Q-divisor Θ such that the
pair (X,Θ) is terminal and −(KX +Θ) is ample. This implies that (X,Θ) is a log
Fano variety, so Q-linear equivalences of Q-Cartier divisors on X coincide [IP99,
Proposition 2.1.2]. �

A.4. LEMMA. Let ϕ : X X ′ be a small birational contraction. Then X is
FTt if and only if X ′ is.

Proof. For all Q-divisors Δ on X and Δ′ on X ′ such that Δ′ = ϕ∗(Δ), the
conditions (ii)-(iii)-(iv) of Definition A.1 are fullfilled for Δ if and only if they are
fullfilled for Δ′. If KX +Δ and KX ′ +Δ′ are numerically trivial Q-Cartier divi-
sors, [KM98, Lemma 3.38] implies that (X,Δ) is terminal if and only if (X ′,Δ′)
is terminal.

Assume that X is FTt. Let Δ be as in Definition A.1 and let Δ′ := ϕ(Δ).
By Corollary A.3, the divisor KX ′ +Δ′ is Q-Cartier. As (X,Δ) is terminal, so is
(X ′,Δ′).
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Conversely, assume thatX ′ is FTt and ϕ is small. As above, we haveKX+Δ=

ϕ∗(KX ′ +Δ′), where (X ′,Δ′) is terminal. Thus (X,Δ) is terminal as well. �

A.5. COROLLARY. The FTt property is preserved under flips.

A.6. LEMMA. Let X be a Q-factorial FTt variety X and let ϕ : X X̄ be a
divisorial extremal contraction. Then X̄ is FTt.

Proof. Let Δ=
∑
biΔi be as in Definition A.1. By Lemma A.2(i), there exists

an effective Q-divisor Θ such that −(KX +Θ) is ample. We may then replace Δ

with Θ+ 1
nA, where A ∈ |−n(KX +Θ)| for sufficiently big and divisible n, and

assume that Δ1 is ample.
We write Δ̄ := ϕ(Δ) =

∑
biΔ̄i where Δ̄i := ϕ∗(Δi). Let Ā be an ample divi-

sor on X̄. We can write ϕ∗Ā≡∑
βiΔi for some βi ∈Q. As bi > 0 for each i, we

can choose λ,ε > 0 small enough such that bi > λβi, and b1 > λβ1 + ε. Let

Δλ,ε :=Δ−λ
∑

βiΔi− εΔ1, Δ̄λ,ε := ϕ∗Δλ,ε.

Thus, Δλ,ε and Δ̄λ,ε are effective and

−(KX +Δλ,ε)≡ λϕ∗Ā+ εΔ1

so −(KX +Δλ,ε) is ϕ-ample. For λ� 1 the pair (X,Δλ,ε) is terminal. Since the
ray contracted by ϕ is (KX +Δλ,ε)-negative, and no components of the bound-
ary Δλ,ε are contracted by ϕ since they are movable by assumption, the log pair
(X̄,Δ̄λ,ε) is terminal as well [KM98, Corollary 3.43]. Furthermore, for ε� λ the
divisor

−(KX̄ +Δ̄λ,ε)≡ λĀ+ εΔ̄1

is ample. Thus X̄ is FTt by Lemma A.2(ii). �

Note that, by the cone theorem, for an FTt variety X the Mori cone NE(X) is
polyhedral. In particular, the number of extremal rays on X is finite. We moreover
have the following stronger conditions on X:

A.7. COROLLARY. (cf. [PS09, Corollary 2.7], [BCHM10, Corollary 1.3.2]) A
Q-factorial FTt variety is a Mori dream space. In particular, on such a variety one
can run the D-MMP with respect to any divisor D.

Proof. Let X be a Q-factorial FTt variety. By Lemma A.2(i), there exists an
effective Q-divisor Θ such that the pair (X,Θ) is terminal and −(KX +Θ) is
ample. This implies that X is a Mori dream space [BCHM10, Corollary 1.3.2].

Let Δ =
∑
biΔi be as in Definition A.1. For each divisor D, we can write

D ≡∑
diΔi (by Definition A.1(iii)). Thus for 0 < ε� 1 there is a divisor ΔD :=

Δ− ε∑diΔi such that (X,ΔD) is terminal and −(KX+ΔD)≡ εD. We can thus
run a D-MMP, as this is is the same as the (KX +ΔD)-MMP. �
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A.8. COROLLARY. LetX be an FTt variety. Then there exists a birational map
ψ : X ���X ′ such that ψ is an isomorphism in codimension one and such that X ′

has only Q-factorial terminal singularities and −KX ′ is nef and big (X ′ is weak
Fano).

Proof. According to Lemma A.4, we may replace X with its small Q-facto-
rialization. Run the −KX -MMP. Since −KX ≡Δ, where Δ is effective, on each
step the exceptional locus is contained in the proper transform of Δ. By Defini-
tion A.1(iv) none of components of Δ are contracted. Hence all the steps of the
MMP are flips. We end up with a variety X ′, which is FTt by Corollary A.5, with
nef anticanonical divisor. By Lemma A.2(i), there exists an effective Q-divisor Θ
such that −(KX ′ +Θ) is ample. This implies that −KX ′ is big. �

A.9. LEMMA. Let X ��� X ′ be a birational map that is an isomorphism in
codimension 1. If X is FTt, then so is X ′.

Proof. Let Δ be as in Definition A.1. Let X
p←− X̃ q−→ X ′ be a common log

resolution. Write
KX̃ +Δ̃ = p∗(KX +Δ)+E.

where Δ̃ is the proper transform of Δ and E is an effective divisor whose support
coincides with the exceptional locus.

Since KX̃ + Δ̃ is numerically equivalent to E over X and E > 0, we may
run the (KX̃+Δ̃)-MMP over X ′ and contract all the components of E. We end up
with a terminal pair (X̂,Δ̂) having a small contraction toX ′, where Δ̂ is the proper
transform of Δ. Moreover, KX̂ +Δ̂ ≡ 0. Hence X̂ is of FTt type. The variety X ′

is FTt by Lemma A.4. �

From Lemma A.2 and [Bir21, Theorem 1.1] we have the following.

A.10. COROLLARY. Let n≥ 2 be an integer. The FTt varieties of dimension n
form a bounded family. This means that there exists a flat morphism h : X S over
a scheme S of finite type such that each FTt variety of dimension n is isomorphic
to a fiber of h.

Proof. For each FTt variety X of dimension n, there exists an effective Q-
divisor Θ onX, such that the pair (X,Θ) is terminal (Lemma A.2) and−(KX+Θ)

is ample. Hence, we may apply [Bir21, Theorem 1.1] to the pairs (X,Θ) with
ε= 1. �

In the sequel, when we say that a set of varieties is bounded, we always mean,
as above, that there is a flat family over a scheme of finite type such that every
variety in the set is isomorphic to a fiber.

A.11. Remark. Let {Xα} be a set of Q-factorial FTt varieties of dimension n
and let h : X S be a flat family as in Corollary A.10. We identify the varieties
Xα with fibers of h and may assume that S is projective and the set {h(Xα)} is
dense in S. Then by [Kaw99] the total space X has only canonical singularities.
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In particular, X is Q-Gorenstein. This implies that (−KXα)
n is bounded. More

precisely, the numbers (−KXα)
n form a finite set that depends only on n.

A.12. PROPOSITION. Let {Xα} be a set of Q-factorial FTt varieties of dimen-
sion n and let fα,i : Xα Yα,i be a collection of divisorial Mori contractions. For
each i, we denote by Eα,i the exceptional divisor of fα,i. Then the set {Eα,i} is
bounded.

Proof. Let h : X S be a flat family given by Corollary A.10 and Re-
mark A.11 so that Xα is the fiber over sα ∈ S. Then for some ample divisor
L on S the divisor −KX + h∗L is big on X. Let A be an ample divisor on X.
By Kodaira’s lemma there exists an integer m (that depends only on n) such
that −mKX +mh∗L−A is effective, i.e., −mKX +mh∗L ∼ A+D, where D

is effective. According to [Kaw91] the exceptional divisor Eα,i is covered by a
family of curves {Cλα,i}, such that Cλα,i ·Eαi < 0 in Xα and such that each f(Cλα,i)
is a point and −KXα ·Cλα,i ≤ 2n. If D ·Cλα,i < 0 for some α and i, then Eα,i is
contained in D. Hence, the degree of Eα,i, with respect to the ample divisor A,
can be bounded as follows

Eα,i · (A|Xα)
n−1 ≤D ·Xα ·An−1 = (−mKX+mh∗L−A) ·Xα ·An−1.

Thus for such α and i the set {Eα,i} is bounded. From now on we may assume that
D ·Cλα,i ≥ 0 and so A ·Cλα,i ≤ 2nm. Hence {Cλα,i} is bounded, i.e., the set of all
curves Cλα,i is contained in a finite union of irreducible components Hα,i of the rela-
tive Hilbert scheme of X/S. We may consider only one of them and put H :=Hα,i.
Let U H be the universal family and let Ψ : U X be the corresponding mor-
phism. Denote the composition by Φ= h◦Ψ : U S. By construction any divisor
Eα,i coincides with the image under Ψ of a component of the fiber Φ−1(sα). The
Ψ-images of the components of the fibers of Φ lie in a finite number of components
of the relative Hilbert scheme of X over S. This means that {Eα,i} is bounded. �

Proposition A.12 implies that the birational invariants of Eα,i are bounded. In
particular, we have the following.

A.13. COROLLARY. Let us take the notation of Proposition A.12. There is an
integer m, depending only on n, such that each Eα,i is birationally equivalent
to P

1×Γα,i where the covering gonality of Γα,i satisfies cov.gon(Γα,i) ≤ m. If
moreover n= 3, the set {g(Γα,i)} of genera of the curves Γα,i is a bounded set of
integers.

Proof. As explained in the introduction (see also [Kaw91]), every divisor Eαi

is birational to P
1×Γα,i for some variety Γα,i of dimension n− 2. By Proposi-

tion A.12, the set {Eα,i} is bounded. There is some integer d such that each Eα,i
is isomorphic to a closed subvariety of a projective space of degree ≤ d. A gen-
eral hypersurface H of Eα,i is of degree ≤ d and admits a dominant rational map
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to Γα,i. This gives d ≥ cov.gon(H) ≥ cov.gon(Γα,i). If moreover n = 3, then the
curve H is of bounded degree and thus of bounded genus, which gives the result
since g(H)≥ g(Γα,i). �

A.14. PROPOSITION. Let {Xα} be a set of Q-factorial FTt varieties of di-
mension n. Let fα,i : Xα Yα,i be a set of Mori fiber spaces and let Fα,i,β be a
set of schematic fibers over smooth points β ∈ Yα,i. Suppose that dim(Fα,i,β) =

dim(Xα)−dim(Yα,i) for all α, i, β. Then the set {Fα,i,β} is bounded.

Proof. Let h : X S be a flat family given by Corollary A.10 and Re-
mark A.11. Let A be an ample divisor on X. As in the proof of Proposition A.12,
we may take an ample divisor L on S such that −KX+ h∗L is big on X and an
integer m (that depends only on n) such that −mKX +mh∗L−A is effective,
i.e., −mKX +mh∗L ∼ A+D, where D is effective. Denoting by Hα and Dα

the restriction of A and D to Xα, we obtain −mKX ∼ Hα+Dα where Dα is
effective.

Note that fα,i is flat in a neighborhood of Fα,i,β . Let F gen
α,i be a general fiber of

fα,i and let rα,i = dim(F gen
α,i ) = dim(Fα,i,β). By the adjunction formula F gen

α,i is a
Fano variety with terminal singularities. By [Bir21] (see Remark A.11) there is a
constant C = C(n) such that

(−KFα,i,β
)rα,i = (−KF gen

α,i
)rα,i ≤ C.

Since fα,i : Xα Yα,i is a Mori fiber space, the restriction of divisors −KXα ,Hα,
Dα to F gen

α,i are proportional and nef. Hence the intersection numbers

H i
α ·Drα,i−i

α ·Fα,i,β =H i
α ·Drα,i−i

α ·F gen
α,i

are non-negative. Thus we have

C ≥ (−KFα,i,β
)rα,i = (−mαKXα)

rα,i ·Fα,i,β
= (Hα+Dα)

rα,i ·Fα,i,β ≥Hrα,i
α ·Fα,i,β.

This shows that the degrees of Fα,i,β are bounded with respect to A. �

Note that all the fibers Fα,i,β are uniruled by [Kaw91] and [Kol96, Corol-
lary 1.5.1]. Similar to Corollary A.13 in dimension 3 we have the following.

A.15. COROLLARY. If, in the notation of Proposition A.14, n = 3 and
dim(Yα,i) = 1, then every fiber Fα,i,β is birationally equivalent to the product of
P

1 and a curve Γα,i of bounded genus.

Proof. The base is smooth since it is normal and one-dimensional. Thus,
Proposition A.14 proves that the set {Fα,i,β} of all fibers is bounded. We then
observe, as in Corollary A.13, that this bounds the arithmetic genus of hyperplane
sections of the Fα,i,β , and thus of the Γα,i. �
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