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ABSTRACT. We give a way to construct groups of pseudo-auto-
morphisms of rational varieties of any dimension that fix point-
wise the image of a cubic hypersurface of Pn. These groups are
free products of involutions, and most of their elements have dy-
namical degree > 1. Moreover, the Picard group of the varieties
obtained is not big, if the dimension is at least 3.

We also answer a question of E. Bedford on the existence of
birational maps of the plane that cannot be lifted to automor-
phisms of dynamical degree > 1, even if we compose them with
an automorphism of the plane.

1. INTRODUCTION

A birational map ϕ : Pn 99K Pn (or a Cremona transformation) is a rational map
given by

(x0 : · · · : xn) 99K (P0(x0, . . . , xn) : · · · : Pn(x0, . . . , xn)),

where all Pi are homogeneous polynomials of the same degree, which admits an
inverse of the same type. Choosing all Pi without common component, the degree
deg(ϕ) of ϕ is, by definition, the degree of the polynomials Pi, or equivalently
the degree of the pull-back of hyperplanes of Pn by ϕ.

The (first) dynamical degree of ϕ is the number

lim
n→∞(deg(ϕn))1/n,

which always exists, since deg(ϕa+b) ≤ deg(ϕa) · deg(ϕb) for any a,b ≥ 0. It
is, moreover, invariant under conjugation.
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There is a sequence of articles which provide families of examples of birational
maps of P2 with dynamical degree > 1, lifting to automorphisms of a smooth
rational surface obtained by blowing-up a finite number of points (among these,
see [BedKim06], [BedDil06], [McM07], [BedKim09], [BedKim10], [Dil11], and
[DésGri10]). The general way of producing examples is to start by a simple bi-
rational map (quadratic involution, automorphism of the affine plane, etc.), and
to compose it with a linear automorphism of P2 to impose that the base-points of
the inverse “come back” to the base-points of the map after a certain number of
iterations of the map.

This approach was generalised in dimension 3 in [BedKim11], in order to
provide pseudo-automorphisms of projective 3-folds of dynamical degree > 1,
starting from a special family of quadratics elements of Bir(P3). Recall that a
pseudo-automorphism of X is a birational self-map ϕ ∈ Bir(X) such that ϕ and
ϕ−1 do not contract any codimension 1 set; it is the same as an automorphism if
X is a smooth projective surface.

Other examples of pseudo-automorphisms of dynamical degree > 1 of ratio-
nal projective varieties of any dimension were given in [PerZha11], using actions
of Weyl groups on blow-ups of Pn at a finite number of points.

In this article, we give another way of constructing examples, which also works
in any dimension. This produces large groups of pseudo-automorphisms, where
almost all elements have dynamical degree > 1. Moreover, the rank of the Picard
group of the varieties obtained can be smaller than the one of any algebraic surface
admitting automorphisms of dynamical degree > 1 (which is ≥ 11), or to the
examples of [BedKim11] and [PerZha11]. Obtaining varieties of small rank is
interesting in order to get “simple” algebraic varieties. For example, the study of
Fano varieties started from rank 1, and then continued with ranks 2, 3, and so on.

We recall the following construction, defined in [Giz94, Example 3, p. 42]
(over the name of Rp).

Definition 1.1. Let Q ⊂ Pn be a cubic hypersurface, and let p ∈ Q be a
smooth point. We define an involution σp,Q ∈ Bir(Pn) which fixes pointwise Q
by the following: if L is a general line of Pn passing through p, we have σp,Q(L) =
L, and the restriction of σp,Q to L is the involution that fixes (L∩Q) \ {p}.

From the geometric definition, we can easily get an algebraic definition by
polynomials (see [Giz94] or Section 2). We will show that any σp,Q lifts to an
automorphism of a smooth variety obtained by blowing-up p and codimension 2
subsets of Pn. Taking a finite number of points on the same cubic gives a huge
group of pseudo-automorphisms of a rational n-fold, as follows.

Theorem 1.2. Let Q ⊂ Pn be a cubic hypersurface, and let p1, . . . , pk ∈ Q be
distinct smooth points. For i = 1, . . . , k, we write

Γi = {x ∈ Q | the line through x and qi is tangent to Q at x}.
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Denote by π : X → Pn the birational morphism that blows up first all points
p1, . . . , pk, then the strict transform of Γ1, then the strict transform of Γ2, and so on
until it blows up the strict transform of Γk.

If pi ∉ Γj for any i 6= j, then σp1,Q, . . . , σpk,Q lift to pseudo-automorphisms
σ̂1, . . . , σ̂k of X, that generate a free product G = ⋆ki=1〈σ̂i〉 having the following
properties:

(1) Any element of G of finite order is conjugate to σ̂i for some i (and has dynam-
ical degree 1);

(2) Any element conjugate to (σ̂iσ̂j)m for i 6= j and m ≥ 1 is of infinite order,
and its dynamical degree is equal to 1;

(3) Any other element has dynamical degree > 1;
(4) Each element of G fixes pointwise the lift of the cubic Q on X.

Corollary 1.3. For any n ≥ 3, there exists a rational smooth n-fold X with
rk Pic(X) = 7 admitting a group of pseudo-automorphisms G isomorphic to the free
group with two generators, such that all elements of G \ {1} have dynamical degree
> 1. Moreover, G fixes pointwise a hypersurface isomorphic to a general smooth cubic
of Pn.

Remark 1.4. Any pseudo-automorphism of a smooth projective surface X
with rk Pic(X) ≤ 10 has dynamical degree 1. All previously known examples of
smooth rational varieties admitting pseudo-automorphisms with dynamical degree
> 1 had Picard rank bigger than 10.

Section 2 is devoted to the proof of Theorem 1.2 and of its corollary.

Question 1.5. Given n ≥ 3, what is the minimal rank of a smooth projective
rational n-fold admitting a (pseudo)-automorphism of dynamical degree > 1?

Restricting to dimension n = 2, Theorem 1.2 gives the existence of a group of
automorphisms of rational surfaces with many elements of dynamical degree > 1.
The rank of the Picard group is, however, quite large, at least 16. This is because
the varieties Γi are, in fact, a union of four distinct points. See [Bla08] for a more
precise description of the case of dimension 2.

As we said above, the usual way to construct automorphisms of projective
rational surfaces with dynamical degree > 1 is to take a birational map of small
degree, and then to compose it with an automorphism so that all base-points of the
inverse are sent after some iterations onto base-points of the map. This approach
gives rise to the following question of Eric Bedford, stated and studied by Julie
Déserti and Julien Grivaux in [DésGri10]:

Question 1.6. Does there exist a birational map of the projective plane ϕ of
degree > 1 such that, for all τ ∈ Aut(P2), the map τϕ is not birationally conjugate
to an automorphism of dynamical degree > 1?

Here, by “conjugate to an automorphism”, we mean the existence of a bi-
rational map ν : P2

99K X, where X is a projective smooth surface, such that
ν(τϕ)ν−1 ∈ Aut(X).
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It is known that if ϕ is a birational map of degree 2, there exists an automor-
phism τ such that τϕ is conjugate to an automorphism of dynamical degree > 1.
We recall this fact in Section 3. The same was also proved by different authors for
some special mapsϕ of degree 3. Using the involutions σp,Q, we prove in Section
3 that the same holds for a general map of degree 3.

In consequence, the possible mapϕ of Question 1.6 cannot be a general cubic
transformation, or a transformation of degree 2. Section 4 is devoted to the proof
of the following result, showing that the map can be of degree 6, and to answering
the question of Bedford, Déserti and Grivaux that follows.

Theorem 1.7. Let χ : P2
99K P2 be the birational map given by

χ : (x : y : z) 99K (xz5 + (yz2 + x3)2 : yz5 + x3z3 : z6).

For any automorphism τ ∈ Aut(P2), the birational map τχ ∈ Bir(P2) is not
conjugate to an automorphism of a smooth projective rational surface.

Question 1.8. Does there exist a transformation of degree < 6 having the above
property?

2. THE MAPS σp,Q, THEIR LIFTS, AND

THE GROUPS GENERATED BY THESE

Let us describe algebraically the map σp,Q introduced in Definition 1.1.
For this, choose homogeneous coordinates (x1 : x2 : · · · : xn : y) on Pn,

and assume, up to a change of coordinates, that p is equal to (0 : · · · : 0 : 1).
The equation of Q is thus y2P1+yP2 + P3, where P1, P2, P3 ∈ C[x1, . . . , xn] are
homogeneous of degree 1,2,3. The involution σp,Q sends a point

(x1 : x2 : · · · : xn : y)

onto
(−x1(P2 + 2yP1) : · · · : −xn(P2 + 2yP1) : P2y + 2P3).

The point p is a base-point of multiplicity 2. The subscheme Γp ⊂ Q ⊂ Pn
of codimension 2 given by P2+ 2yP1 = 0 and yP2+ 2P3 = 0 is also contained in
the base-locus, and σp,Q is defined on Pn \ Γp.

The cone Vp ⊂ Pn given by (P2)2−4P3P1 is contracted onto Γp by σp,Q, and
the hypersurface given by P2 + 2yP1 is contracted onto the point p.

Note that Γp is also given by the intersection of Q with the hypersurface of
equation P2 + 2yP1 = 0, or with the cone Vp, and corresponds to the points
q ∈ Q such that the line passing through p and q is tangent to Q at q, as defined
in the introduction.

Proposition 2.1. Denote by πp : Xp → Pn the blow-up of p, and by πΓ : X →
Xp the blow-up of the strict transform of Γp, and write π = πp ◦πΓ : X → Pn. The
lift σ̂p = π−1σp,Qπ of σp,Q is an automorphism of X.
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Denoting H ⊂ Pic(X) the pull-back of a hyperplane of Pn by π , E ⊂ Pic(X)
the pull-back of π−1

p (p) by πΓ , and F the exceptional divisor of πΓ , then (H, E, F)
is a basis of a sub-Z-module of Pic(X) invariant by σ̂p (this sub-module is equal to
Pic(X) if and only if Γp is irreducible). Moreover, the action of σ̂p relative to this
basis is 


3 2 4

−2 −1 −4
−1 −1 −1


 .

Proof. We can view Xp in Pn × Pn−1 as

Xp =
{
((x1 : x2 : · · · : xn : y), (z1 : · · · : zn)) | xizj = xjzi for 1 ≤ i, j ≤ n

}
,

where πp : Xp → Pn is given by the projection on the first factor. The variety Xp
is covered by open subsets U1, . . . , Un, where Ui is the set where zi 6= 0.

Each Ui is isomorphic to An−1 × P1. For i = 1, the isomorphism is given by

An−1 × P1 ≃
-→ U1

((t2, . . . , tn), (α : β)) 7 -→ ((α : αt2 : · · · : αtn : β), (1 : t2 : · · · : tn)).

The lift of σ preserves U1; its restriction on U1 is the following birational map:

((t1, . . . , tn), (α : β)) 99K ((t1, . . . , tn), (−(αR2 + 2βR1) : βR2 + 2αR3)),

where Ri = Pi(1, t2, . . . , tn). On this chart, Γp is given by αR2 + 2βR1 = 0 and
R2β + 2αR3 = 0. Blowing up the corresponding ideal, we obtain the variety
W1 ⊂ An × P1 × P1 given by

W1 =
{
((t1, . . . , tn), (α : β), (u : v)) | u(R2β+ 2αR3) = −v(αR2 + 2βR1)

}
,

and the blow-up is given by the projection W1 → An ×P1 on the first two factors.
The map σ̂ corresponds in these coordinates to

((t1, . . . , tn), (α : β), (u : v)) ֏ ((t1, . . . , tn), (u : v), (α : β)),

and is thus an automorphism (the same calculation holds on the other charts).
Since E is exchanged with the strict transform of the hypersurface of equation

P2 + 2yP1, which has degree 2, and since it passes through p with multiplicity 1,
and also through a general point of Γp, thus E is sent onto 2H − E− F . Moreover,
H is exchanged with hyperplanes of degree 3 having multiplicity 2 at p and multi-
plicity 1 at a general point of Γp. This shows thatH is exchanged with 3H−2E−F .
The fact that σ̂p is an involution gives the last column of the matrix, that is, that F
is exchanged with 4H−4E−F , which corresponds to the cone (P2)2+4P1P3 = 0,
which has degree 4, and passes through p with multiplicity 4, and through Γp
with multiplicity 1. ❐

We now generalise the construction by taking many points on the same cubic
hypersurface.
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Proposition 2.2. Let Q ⊂ Pn be a cubic hypersurface, and let p1, . . . , pk ∈ Q
be distinct smooth points. For i = 1, . . . , k we write σi the map σpi,Q given in
Definition 1.1, and by Γi = Γpi ⊂ Pn the codimension 2 subset associated with it. We
assume that pi ∉ Γj for any i 6= j.

Denote by π : X → Pn the birational morphism that blows up first all points
p1, . . . , pk, then the strict transform of Γ1, then the strict transform of Γ2, and so on
until it blows up the strict transform of Γk.

Then, σ1, . . . , σk lift to pseudo-automorphisms σ̂1, . . . , σ̂k of X.

Proof. Applying Proposition 2.1, σi lifts to an automorphism of a variety ob-
tained by blowing up first pi, and then the strict transform of Γi. Since pj 6∈ Γi for
j 6= i, all these points correspond to points of the strict transform of Q, and are
thus fixed by the lift of σi. We can thus blow up all the points pj with j 6= i, and
σi again lifts to an automorphism. The strict transforms of the lifts of Γj for j 6= i
are again contained in the strict transform of Q, and are thus fixed pointwise by
the automorphism. We blow up the strict transform of Γ1, . . . , Γi−1, Γi+1, . . . , Γn,
following this order, and obtain a birational morphism πi : Xi → Pn which con-
jugates σi to an automorphism (πi)−1σi(πi) ∈ Aut(Xi).

The difference between πi and πj corresponds to the order of the blow-ups,
which has its importance above the intersections of Γi with Γj .

Recall that Γi is obtained by intersecting the hypersurface Q ⊂ Pn with the
cone Vpi , being also a hypersurface of Pn (see the discussion before Proposition
2.1). In particular, Γi ⊂ Pn has codimension 2, and Γi ∩ Γj has codimension 3
when i 6= j. Let us write ηi,j : Yi,j → Pn the blow-up of Γi, followed by the blow-
up of the strict transform of Γj . The restriction of the map (ηj,i)−1 ◦ηi,j : Yi,j 99K
Yj,i is an automorphism of the complement of (ηi,j)−1(Γi ∩ Γj); since this latter
has codimension 2, (ηj,i)−1 ◦ ηi,j is a pseudo-automorphism (which is not an
automorphism, as we can check locally).

The order chosen in the description of X implies that X1 = X.
Similarly as for (ηj,i)−1 ◦ ηi,j, the maps Xj 99K X1 given by (π1)−1 ◦ πi are

pseudo-automorphisms. This implies that σ̂1 ∈ Aut(X1), and that all others σ̂i
are pseudo-automorphisms of X. ❐

The following proposition describes the group generated by these pseudo-
automorphisms, and the dynamical properties of its elements. It yields—with
Proposition 2.2—the proof of Theorem 1.2.

Proposition 2.3. Let σ̂1, . . . , σ̂k ∈ Bir(X) be pseudo-automorphisms, as in
Proposition 2.2. These elements generate a free product G = ⋆ki=1〈σ̂i〉, and we have
the following description of elements of G:

(1) Any element of finite order is conjugate to a σ̂i and has dynamical degree 1;
(2) Any element conjugate to (σ̂iσ̂j)m for i 6= j and m ≥ 1 is of infinite order,

and its dynamical degree is equal to 1;
(3) Any other element has dynamical degree > 1.
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Proof. Let H ∈ Pic(X) be the pull-back of a hyperplane of Pn. Denote by
E1, . . . , Ek ∈ Pic(X) the total pull-back of the divisors obtained by blowing up the
pi, and by F1, . . . , Fk ∈ Pic(X) the exceptional divisors associated with Γ1, . . . , Γk,
using the same notation as before. The actions of σ̂1, . . . , σ̂k on Pic(X) are given
by Proposition 2.1:

σ̂i(H) = 3H − 2Ei − Fi,
σ̂i(Ei) = 2H − Ei − Fi,
σ̂i(Fi) = 4H − 4Ei − Fi,
σ̂i(Ej) = Ej for i 6= j,
σ̂i(Fj) = Fj for i 6= j.

Writing νi = σ̂i(H)−H = 2H − 2Ei − Fi, we get

σ̂i(H) = H + νi,
σ̂i(νi) = −νi,
σ̂i(νj) = νj + 2νi for i 6= j.

(2.1)

Let us choose any element ϕ = σar . . . σa1 , where a1, . . . , ar ∈ {1, . . . , k},
ai 6= ai+1 for i = 1, . . . , r − 1. By induction on r , we prove that ϕ(H) =
H +∑ki=1αiνi, satisfying the following properties:

(i) α1, . . . , αk are non-negative integers;
(ii) αar > αi for i 6= ar ;

(iii) If r > 1, then αar−1 > αi for i ∉ {ar , ar−1};
(iv)

∑k
i=1αi ≥ ( 5

3)
t , where t = #{i | i ≥ 3, ai 6= ai−2}.

When r = 1, the result is obvious since ϕ(H) = H + νa1 . We assume the
result true for r − 1, and prove it for r . We have ϕ(H) = σar (V), where V =
σar−1 ◦ · · · ◦ σ1(H) = H +

∑k
i=1 βiνi, and all βi satisfy the properties above. In

particular,
∑
i 6=ar βi ≥ βar−1 > βar . Applying (2.1), we get

αi = β for i 6= ar ,
αar = 1− βar + 2

∑

i 6=ar
βi >

∑

i 6=ar
βi ≥ βar−1 > βar ,

which proves the first three assertions. To prove (iv), we compute

k∑

i=1

αi = 1− 4βar + 3
k∑

i=1

βi.

We always have
∑k
i=1αi >

∑k
i=1 βi. It suffices thus to prove that if r ≥ 3 and

ar 6= ar−2, then
∑k
i=1αi ≥ 5

3

∑k
i=1 βi.
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The fact that r ≥ 3 and ar 6= ar2 gives βar < βar−1 and βar < βar−2 , and
thus implies

k∑

i=1

αi −
5
3

k∑

i=1

βi = 1− 4βar +
(

3− 5
3

) k∑

i=1

βi = 1− 8
3
βar +

4
3

∑

i 6=ar
βi,

which is positive since 2βar < βar−1 + βar−2 ≤
∑
i 6=ar βi.

Now that (i)–(iv) have been proved, we show how they imply the result. First,
assertions (i) and (ii) show that G is the free product of the groups 〈σi〉 ≅ Z/2Z.
Second, any non-trivial element of the group is conjugated to ϕ = σar . . . σa1 ,
where a1, . . . , ar ∈ {1, . . . , k}, ai 6= ai+1 for i = 1, . . . , r − 1 and ar 6= a1.

The element ϕ has finite order if and only if r = 1. If r > 1, we compute
its dynamical degree by computing deg(ϕk) for k ∈ N. The degree here is the
degree as a birational map of Pn, which is the degree of the system π(ϕ−n(H)).
Since each νi corresponds to a divisor of degree 2, we get

deg(ϕn) = 1+ 2
k∑

i=1

αi if ϕ−n(H) = H +
k∑

i=1

αkνk.

The assertions above imply that if the set {a1, . . . , ar} has at least three elements,
then deg(ϕn) ≥ ( 5

3)
n, and so the dynamical degree of ϕ is strictly bigger than 1.

The only case where the dynamical degree 1 could be one is when ϕ = (σ̂iσ̂j)m
for i 6= j and m ≥ 1. It remains to prove that, in this case, the dynamical degree
is 1; and we only have to consider the case m = 1. The submodule of Pic(X)
generated by H,νi, νj is invariant by ϕ, and the action relative to this basis is




1 0 0
1 −1 2
0 0 1


 ·




1 0 0
0 1 0
1 2 −1


 =




1 0 0
3 3 −2
1 2 −1


 ,

which has only one eigenvalue, equal to 1. This achieves the proof. ❐

Remark 2.4. Note that the dynamical degree of any element of the free group
G generated above is easy to compute.

(i) As we observed in the above proof, the dynamical degree of σi · σj , for
i 6= j, is the biggest eigenvalue of




1 0 0
1 −1 2
0 0 1


 ·




1 0 0
0 1 0
1 2 −1


 =




1 0 0
3 3 −2
1 2 −1


 ,

whose characteristic polynomial is (x−1)3.This dynamical degree is thus 1.
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(ii) We can do a similar calculation with σi ·σj ·σk where i, j, k are pairwise
distinct. The dynamical degree is the highest real eigenvalue of




1 0 0 0
1 −1 2 2
0 0 1 0
0 0 0 1


 ·




1 0 0 0
0 1 0 0
1 2 −1 2
0 0 0 1


 ·




1 0 0 0
0 1 0 0
0 0 1 0
1 2 2 −1


 =




1 0 0 0
9 15 10 −6
3 6 3 −2
1 2 2 −1


 ,

which is 9 + 4
√

5 ∼ 17.944272. Note that all such maps have the same
dynamical degree, but that there is no reason why they are conjugate in
Bir(Pn). This is obvious if we change, for example, the cubic hypersur-
face, but should also be true on the same cubic hypersurface (the proof
of the non-conjugacy of two elements of the same dynamical degree and
fixing the same hypersurface would then be much harder).

(iii) All other dynamical degrees can be computed in the same way.

Remark 2.5. With the descriptions above, it is easy to take explicit cubic
hypersurfaces, (e.g., smooth ones) and to compute explicitly the locus to blow-up
and the involutions.

Now that Theorem 1.2 is proved, we finish the section with the proof of its
corollary.

Proof of Corollary 1.3. In any dimension n ≥ 3, we take a smooth cubic hy-
persurface Q ⊂ Pn, and choose three distinct general points p1, p2, p3 such that
the line through two of them intersects the cubic into another point. These points
in Q satisfy, then, the conditions of Theorem 1.2, and yield pseudo-automor-
phisms σ̂1, σ̂2, σ̂3 of the variety X obtained by blowing up p1, p2, p3 and the
varieties Γ1, Γ2, Γ3 associated. Since these latter are irreducible, the rank of Pic(X)
is exactly 7 (a fact which is false in dimension 2).

Because 〈σ̂1, σ̂2, σ̂3〉 is the free product⋆ki=3〈σ̂i〉, the group generated by α =
σ̂1σ̂2σ̂3 and β = σ̂2σ̂1σ̂2σ̂3σ̂2 is the free group over two generators. Moreover,
none of the non-trivial elements of the group is conjugate to an element of length
< 3, and so each such element has dynamical degree > 1. ❐

3. THE INVOLUTIONS ON P2 AND THE BLOW-UP

In this section, we deal with dimension 2.

3.1. Degree 2. We will say that two birational maps ϕ, ϕ′ are projectively
equivalent if ϕ = αϕ′β for some α,β ∈ Aut(P2). In Question 1.6, we can
only study equivalence classes, since αϕβ is conjugate to ϕ(βα−1). We can also
replace ϕ with ϕ−1.

There are three equivalence classes of birational maps of P2 of degree 2. Each
such map has three base-points of multiplicity 1 which are not collinear, and the
classes correspond to

(i) three points p1, p2, p3 that belong to P2 as proper points;
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(ii) two points p1, p2 that belong to P2 as proper points, with the point p3

infinitely near to p1;
(iii) one point p1 that is a proper point of P2; p2 is infinitely near to p1, and

p3 is infinitely near to p2.

There are many known examples of quadratic maps of type (i) that are con-
jugate to automorphisms of projective surfaces and have dynamical degree > 1.
See, for example [BedKim06] or [BedKim09]. For examples of type (iii), see
[BedKim10]. In fact, in [Dil11], all possible types of quadratic maps preserving
cubics and being conjugate to automorphisms of projective surfaces and that have
dynamical degree > 1 are constructed. They depend on orbit data [n1, n2, n3],
which provide the three types (i), (ii), (iii), depending on the number of ni equal.

All these examples yield the following result.

Lemma 3.1. If ϕ is a birational map of P2 of degree 2, there exists an auto-
morphism τ ∈ Aut(P2) such that τϕ is conjugate to an automorphism of a smooth
projective rational surface with dynamical degree > 1.

3.2. Degree 3. It is also possible to describe equivalence classes of elements
of Bir(P2) of degree 3. There are, in fact, 32 algebraic families, corresponding
to the type of base-points (if some are collinear, or if some infinitely near), or
equivalently to the curves contracted (see [CerDes08, Table of page 176]). The
family of biggest dimension (dimension 2) consists of cubic maps ϕ having five
proper base-points, no three being collinear. All others have dimension ≤ 1.

We will prove that for a general cubic map ϕ ∈ Bir(P2), there exists τ ∈
Aut(P2) such that τϕ is conjugate to an automorphism of positive entropy. To
do this, we will use involutions σp,Q associated with a point p of a smooth cubic
Q (see Definition 1.1). Recall that σp,Q preserves a general line L passing through
p, and its restriction on L is the unique involution that fixes the two points (L∩
Q) \ {p}.

The base-points of σp,Q are described by the following lemma:

Lemma 3.2 ([Bla08, Proposition 12]). LetQ ⊂ P2 be a smooth cubic curve, let
p ∈ Q, and let σp,Q be the element defined in Definition 1.1. The following occur:

(1) The degree of σp,Q is 3, and σp,Q2 = 1; that is, σp,Q is a cubic involution.
(2) The base-points of σp,Q are the point p—which has multiplicity 2—and

the four points p1, p2, p3, p4 such that the line passing through p and pi is
tangent at pi to Q.

(3) If p is not an inflexion point of Q, all the points p1, ..., p4 belong to P2.
Otherwise, only three of them belong to P2, and the fourth is the point in the
blow-up of p that corresponds to the tangent of Q at p.

Since σp,Q is an involution, the blow-up π : X → P2 of its five base-points
conjugates it to an automorphism of X. We now describe the action of this auto-
morphism on the Picard group of X.

Lemma 3.3. Let Q ⊂ P2 be a smooth cubic curve, let p ∈ Q, and let σp,Q be
the element defined in Definition 1.1. Let p1, p2, p3, p4 be the base-points of σp,Q
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of multiplicity one (see Lemma 3.2), and let π : X → P2 be the blow-up of the five
base-points.

Denote by L ⊂ Pic(X) the pull-back of a general line of P2, by Ei the divi-
sor corresponding to the point pi, and by E the divisor corresponding to p, which is
the total pull-back on X of the curve contracted on p (if p is an inflexion point, E
corresponds to a reducible curve). The set (L, E, E1, . . . , E4) is an orthogonal basis
of Pic(X); the elements have self-intersection (1,−1,−1,−1,−1), and the action of
σ̂ = π−1σp,Qπ ∈ Aut(X) on the Picard group is




3 2 1 1 1 1
−2 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0
−1 −1 0 −1 0 0
−1 −1 0 0 −1 0
−1 −1 0 0 0 −1




Proof. Only the action of σ̂ is not clear. By Lemma 3.2, the map σp,Q is
a cubic involution, and its base-points are p with multiplicity 2, and p1, . . . , p4

with multiplicity 1. This implies that σ̂ (L) = 3L−2E−E1−E2−E3−E4. Because
σp,Q preserves the pencil of lines passing through p, we have σ̂ (L − E) = L − E.
The lift of this pencil on X gives a conic bundle X → P1, with four singular fibres,
each one being the union of Ei and L− E − Ei for i = 1, . . . ,4. This implies that
the set {Ei, L − E − Ei} is invariant for i = 1, . . . ,4. Computing the intersection
with L and σ̂ (L) shows that σ̂ (Ei) = L − E − Ei, for i = 1, . . . ,4. This achieves
the proof. ❐

Proposition 3.4. Let Q ⊂ P2 be a smooth cubic curve, let p ∈ Q, and let
σp,Q be the element defined in Definition 1.1. There exists an automorphism τ of
P2, acting via a translation of order 3 on C, such that τσp,Q is conjugate to an
automorphism of a smooth projective rational surface Y , with dynamical degree > 1.

Proof. Denote as above by p1, . . . , p4 the base-points of σp,Q of multiplicity
1. Recall (Lemma 3.2) that p1, p2, p3, p4 are the points of C such that the tangent
of C at pi passes through p; if p is an inflexion point, one of the points is the point
infinitely near to p1 corresponding to the tangent direction of C.

We change coordinates on P2, and put the curve C into its Hessian form,
which is the equation

x3 +y3 + z3 + λxyz = 0

for some λ ∈ C satisfying λ3 6= −27. Let H ⊂ P2 be the group generated by

(x : y : z)֏ (y : z : x),

(x : y : z)֏ (x :ωy :ω2z),
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whereω is a third root of unity. One directly sees thatH is isomorphic to (Z/3Z)2

and preserves C. Moreover, the action of any of the non-trivial elements of H on
C is fixed-point-free. We thus obtain an isomorphism of H with the 3-torsion of
the group of translations C ⊂ Aut(C).

Let us denote by π : Y → P2 the blow-up of the orbit of {p,p1, . . . , p4} by
τ. If one of the pi is infinitely near to p, then its orbit consists of points infinitely
near to the orbit of p. As before, we denote by L ⊂ Pic(Y) the pull-back of
a general line of P2, by Ei the divisor corresponding to the point pi, and by E
the divisor corresponding to p, which is the total pull-back on X of the curve
contracted on p. The automorphism τ lifts to an automorphism τ̂ = π−1τπ ∈
Aut(Y), which sends Ei onto the divisor corresponding to τ(pi), and sends E
onto the divisor corresponding to τ(p). The group Pic(X) is generated by L and
by {τ̂i(E), τ̂i(E1), . . . , τ̂i(E4)}2

i=0. The birational involution σp,Q ∈ Bir(P2) lifts
to an automorphism of the surface obtained by blowing up p,p1, . . . , p4; because
this one fixes each of the other points blown up (which belong to the curve C), it
lifts to an automorphism σ̂ of Y . This shows that τσp,Q is conjugate by π−1 to
the automorphism τ̂σ̂ of Y , and, to conclude, it suffices to show that its dynamical
degree is > 1. This amounts to finding a real eigenvalue of the action of τ̂σ̂ on
Pic(Y)⊗ZR which is bigger than 1. The action of σ̂ on Pic(Y) is given by Lemma
3.3, and the action of τ̂ fixes L and permutes the exceptional divisors according to
the action of τ on the points.

Because τ does not fix any point of C, the divisors E, τ̂(E), τ̂2(E) are distinct.
This is also true for the divisors Ei, τ̂(Ei), τ̂2(Ei) for i = 1, . . . ,4. Note that
τ(pi) = pj is also impossible, because it would imply that τ sends the line tangent
to C at pi onto the line tangent to C at pj , and thus τ would fix p. It remains to
study two possible cases:

1. There exists an i ∈ {1, . . . ,4} such that τ(p) = pi or τ2(p) = pi. Replacing
τ by τ2, and renumbering the pi if needed, we can assume that τ(p) = p1. We
see that τ(p1) = τ2(p) is distinct from τi(pj) for j ≥ 2. The sub-Z-module of
Pic(Y) generated by

L, E, τ̂(E) = E1, τ̂(E1),
4∑

i=2

Ei,
4∑

i=2

τ̂(Ei),
4∑

i=2

τ̂2(Ei)

is invariant, and the actions of σ̂ and τ̂, relative to this basis, are given by




3 2 1 0 3 0 0
−2 −1 −1 0 −3 0 0
−1 −1 −1 0 0 0 0

0 0 0 1 0 0 0
−1 −1 0 0 −1 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1




,




1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0




.
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The action of τ̂σ̂ is thus the product of the two matrices, which is




3 2 1 0 3 0 0
0 0 0 1 0 0 0

−2 −1 −1 0 −3 0 0
−1 −1 −1 0 0 0 0

0 0 0 0 0 0 1
−1 −1 0 0 −1 0 0

0 0 0 0 0 1 0




.

The characteristic polynomial is

x7 − 2x6 + 2x − 1 = (x − 1)(x6 − x5 − x4 − x3 − x2 + 1),

whose real eigenvalues are λ,1, λ−1, where λ ∼ 1.946856. This number is the
dynamical degree of τ̂σ̂ (and also of τσp,Q).

2. For i = 1, . . . ,4, pi 6∈ {τ(p), τ2(p)}. In this case, the sub-Z-module of
Pic(Y) generated by

L,2E +
4∑

i=1

Ei, 2τ̂(E)+
4∑

i=1

τ̂(Ei), 2τ̂2(E)+
4∑

i=1

τ̂2(Ei)

is invariant, and the actions of σ̂ and τ̂ are given by



3 8 0 0
−1 −3 0 0

0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0


 .

The action of τ̂σ̂ is thus the product of the two matrices, which is



3 8 0 0
0 0 0 1

−1 −3 0 0
0 0 1 0


 .

The characteristic polynomial is x4−3x3+3x−1 = (x−1)(x+1)(x2−3x+1),
whose real eigenvalues are −1,1,3±

√
5/2.

The dynamical degree is then (3+
√

5)/2 ∼ 2.618034. ❐

Corollary 3.5. Let ϕ ∈ Bir(P2) be a birational map of degree 3.

(1) If all base-points ofϕ andϕ−1 are proper points of the plane, then there exists
an automorphism τ ∈ Aut(P2) such that τϕ is conjugate to an automor-
phism of a smooth projective rational surface with dynamical degree > 1.

(2) In the algebraic set of birational maps of P2 of degree 3, the set of maps having
this property is a dense subset with complement of codimension 1.
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Proof. (1). We can replaceϕ with αϕβ, where α,β ∈ Aut(P2). In particular,
we can assume that the base-point of multiplicity 2 of both ϕ and ϕ−1 is p =
(1 : 0 : 0), and that a general line passing through this point is invariant by α.
The other base-points of ϕ are p2, p3, p4, and p5. Note that no two of the pi are
collinear with p, because otherwise the linear system of ϕ (being cubics of degree
3, with multiplicity 2 at p and multiplicity 1 at p1, . . . , p5) would be reducible.
If three of the pi are collinear, the line passing through these points would have
self-intersection −2 on the blow-up of p,p1, . . . , p5, and so the map ϕ−1 would
have a base-point infinitely near (to p). This implies that no three of the points
p,p1, . . . , p5 are collinear. Choosing the good automorphism β, we can then
assume that

p = (1 : 0 : 0), p1 = (0 : 1 : 0), p2 = (0 : 0 : 1), p3 = (1 : 1 : 1),
p4 = (a : b : c),

for some a,b, c ∈ C∗, no two being equal. We consider the birational cubic
involution

σ : (x : y : z) 99K
(
− ayz( (c − b)x + (a− c)y + (b − a)z) :

y(a(c − b)yz + b(a− c)xz + c(b − a)xy) :

z(a(c − b)yz + b(a− c)xz + c(b − a)xy)
)
,

and observe that its base-points are p1, . . . , p4, and p with multiplicity 2. It pre-
serves a general line passing through p = (1 : 0 : 0); moreover, it fixes pointwise
the smooth cubic curve C ⊂ P2 of equation

b(a−c)x2z+c(b−a)x2y+a(a−c)y2z+a(b−a)yz2+2a(c−b)xyz = 0.

In particular, the map σ is equal to the involution σp,Q associated with p ∈ C,
according to Definition 1.1. Because σ and ϕ have the same linear system (same
degree, same base-points with same multiplicities), ϕ is thus equal to σγ for
some γ ∈ Aut(P2). Assertion (1) then follows from Proposition 3.4. Note that
the existence of σ (which is uniquely determined by p, p1, . . . , p4) can also be
seen more geometrically, by looking at the automorphism group of the del Pezzo
surface of degree 4 obtained by blowing up p,p1, . . . , p4, (see [Bla09b, Lemma
9.11]).

It remains to prove assertion (2). Any cubic birational map ϕ of P2 has one
base-point of multiplicity 2 and four base-points of multiplicity 1. Moreover,
two maps with the same base-points differ only by the post-composition with an
automorphism. The set of cubic birational maps is then parametrised by one
point of P2, a set of four other points (that are on P2 or infinitely near), and one
automorphism of P2. The biggest dimension is when all points are on P2 and
no three are collinear, which is exactly the set where the map and its inverse have
only proper base-points. The corresponding algebraic variety has the dimension
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of (P2)5 × PGL(3,C), which is 18. The set of all other maps has only dimension
17; it corresponds to the cases where three points are collinear or one point is
infinitely near. ❐

Remark 3.6.

(i) By Proposition 3.4, the same result holds for all maps projectively equiv-
alent to σp,Q where p is an inflexion point of a smooth cubic Q. These
are the maps having four proper base-points p,p1, p2, p3 of multiplicity
2,1,1,1 such that p1, p2, and p3 are collinear, and a point p5 is infinitely
near to p.

(ii) The result also holds for other special cubics maps: some with one proper
base-point (see [BedKim10] and [DésGri10]), and some with exactly two
proper base-points (see [BedDil06] and [DésGri10]).

(iii) If a birational map ϕ ∈ Bir(P2) of degree 3 has base-points which are all
proper but where three are collinear, then it is projectively equivalent to

ψλ : (x : y : z) 99K (yz(y − z + (λ− 1)x) : xy(z − λy) : xz(z − λy))

for some λ ∈ C \ {0,1}. In particular, ϕ−1 has only four proper base-
points.

Question 3.7. Does there exists a λ ∈ C\{0,1} such that, for any τ ∈ Aut(P2),
the map τψλ is not conjugate to an automorphism of a projective surface (with dy-
namical degree > 1)?

4. THE EXAMPLE

4.1. Actions on infinitely near points. Before proving Theorem 1.7, we
need some general tools. Let X,Y be two smooth projective rational surfaces, and
let ψ : X 99K Y be a birational map. If p is a point of X or a point infinitely near,
which is not a base-point of ψ, we define a point ψ•(p), which will also be a
point of Y or a point infinitely near. For this, take a minimal resolution

Z
π2

��
@@

@@
@@

@
π1

����
��

��
�

X
ψ

//_______ Y,

where π1, π2 are sequences of blow-ups. Because p is not a base-point of ψ, it
corresponds, via π1, to a point of Z or infinitely near. Using π2, we view this point
on Y (again, maybe infinitely near), and call it ψ•(p). Observe that this point is
not a base-point of ψ−1, and that (ψ−1)•(ψ•(p)) = p.

Remark 4.1. If p is not a base-point of φ ∈ Bir(X) and φ•(p) is not a base-
point of ψ ∈ Bir(X), we have (ψφ)•(p) = ψ•(φ•(p)). If p is a general point of
X, then φ•(p) = φ(p) ∈ X.
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Example 4.2. If p = (1 : 0 : 0) ∈ P2 and ψ ∈ Bir(P2) is the map (x : y :
z) 99K (yz + x2 : xz : z2), the point ψ•(p) is not equal to p = ψ(p), but is
infinitely near to it.

The following easy lemma will be important for the proof of Theorem 1.7.

Lemma 4.3. Let ϕ ∈ Bir(P2) be a birational map, and let p be a point of P2

(or infinitely near). If there exists an integer N ≥ 0 such that p is a base-point ofϕ−k

for any k ≥ N, but is not a base-point of ϕk for any k ≥ N, then ϕ is not conjugate
to an automorphism of a smooth projective surface.

Proof. We prove first that (ϕk)•(p) and (ϕℓ)•(p) are two distinct points
of P2 (or infinitely near), for any k, ℓ ≥ N with k 6= ℓ. Otherwise, assuming
that ℓ > k, the equality (ϕk)•(p) = (ϕℓ)•(p) implies that ϕ−ℓ is defined at
(ϕk)•(p) (because it is defined at (ϕℓ)•(p)), and that (ϕ−ℓ)•((ϕk)•(p)) = p.
In particular, ϕk−ℓ is defined at p, and (ϕk−ℓ)•(p) = p, which means that
(ϕ(k−ℓ)m)•(p) = p for any m ≥ 0. This is incompatible with the fact that p is a
base-point of ϕ−i for any i ≥ N.

The set {(ϕk)•(p)}∞k=N is thus an infinite set of points that belong to P2, as
proper or infinitely near points. Suppose now that there exists a birational map
α : P2

99K S, where S is a smooth projective surface, that conjugates ϕ to an
automorphism ϕ̂ = αϕα−1 of S. Since the map α has only a finite number of
base-points, there exists M ≥ N such that no one of the points {(ϕk)•(p)}∞k=M
is a base-point of α. Writing pk = α•((ϕk)•(p)) for any k ≥ M , we obtain
a family of distinct points {pk}∞k=M such that ϕ̂(pk) = pk+1 for each k ≥ M .
Writing pk−m = ϕ̂−m(pk) for any m ≥ 0, we obtain an orbit {pk}k∈Z of the
automorphism ϕ̂, so that pk 6= pℓ for k 6= ℓ. Increasing maybe M , we can
assume that pk is not a base-point of α−1 for any k ≥ M and any k ≤ −M . This
implies that (ϕM)•(p) is not a base-point of the mapϕ−2M = α−1ϕ̂2Mα; indeed,
α•((ϕM)•(p)) = pm, and (ϕ̂−2m)•(pm) = p−m, which is not a base-point of
α−1.

We obtain a contradiction with the fact that p is a base-point of ϕM but not
of ϕ−M . ❐

4.2. Basic description of the map χ. The sequel is devoted to the proof of
Theorem 1.7. We will always denote by χ ∈ Bir(P2) the birational map

χ : (x : y : z) 99K (xz5 + (yz2 + x3)2 : yz5 + x3z3 : z6)

whose restriction on the affine plane z = 1 is the automorphism

(x,y)֏ (x + (y + x3)2, y + x3),

which is the composition of (x,y)֏ (x +y2, y) with (x,y)֏ (x,y + x3).
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The proof of Theorem 1.7 relies on the study of the base-points of χ, and of
its inverse, which is

χ−1 : (x : y : z)֏ (xz5 −y2z4 : yz5 − (xz −y2)3 : z6).

The proof uses two main properties: both χ and χ−1 have only one proper base-
point, but the geometry of the base-points of the two maps are different (see below
for more details). Note that many other examples can be constructed in the same
way; the map χ is only the simplest one having the above properties (all maps
having such properties have degree ≥ 6, and all maps of degree 6 are similar to χ,
obtained by taking the composition of two automorphisms of the affine plane of
degree 2 and 3).

4.3. Base-points of χ. As with all birational maps of P2 which contract
only one curve, χ has only one proper base-point, namely p1 = (0 : 1 : 0), and all
its base-points are “in tower” (see [Bla09, Lemma 2.2]). This means that the eight
base-points of χ that we denote by p1, . . . , p8 are such that pi is infinitely near to
pi−1 for i = 2, . . . ,8. We denote by π : X → P2 the blow-up of the 8 base-points,
and write C ⊂ X the strict transform of the line C ⊂ P2 of equation z = 0, which
is the only curve of P2 contracted by χ. We denote by Ei ⊂ X the strict transform
of the curve obtained by blowing up pi. The intersection form on X corresponds
to the dual diagram of Figure 4.1 (this can be checked directly in local charts or
by the decomposition of χ into two simple maps as above).

E6

E8

E7 E5 E4 E3

E1

E2 C

self-inter
sections

[−1]

[−2]

[−3]

FIGURE 4.1. The configuration of the curves E1, . . . ,E8,C on
the surface X. Two curves are connected by an edge if their in-
tersection is positive (and here equal to 1). The self-intersections
correspond to the shape of the vertices.

Let us write ϕ = τχ, where τ is an automorphism of P2. Because π is the
blow-up of the base-points of χ, which are also the base-points of ϕ, the map
η = ϕπ is a birational morphism X → P2, which is the blow-up of the base-
points of ϕ−1. In fact, Figure 4.2 is the minimal resolution of ϕ.

As the line C ⊂ P2 is the only curve of P2 contracted by ϕ, the morphism
η contracts C, as well as the union of seven other irreducible curves, which are
among the curves E1, . . . ,E8. The configuration of Figure 4.1 shows that η con-
tracts the curves C, E2, E3, E4, E1, E5, E7, E6, following this order.

We can see η : X → P2 as a sequence of eight blow-ups in the same way as
we did for π . We denote by q1, . . . , q8 the base-points of ϕ−1 (or equivalently
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X
π

~~~~
~~

~~
~~ η

  
@@

@@
@@

@@

P2
ϕ

//_______
P2

FIGURE 4.2. The minimal resolution of indeterminacies of ϕ

the points blown up by η), so that q1 ∈ P2, and qi is infinitely near to qi−1 for
i = 2, . . . ,8. We denote by D ⊂ P2 the line which is contracted by ϕ−1 (which
is the image by τ of the line of equation z = 0, or equivalently the image by η of
the curve E8), and write D ⊂ X the strict transform by η−1 of the curve D. We
then denote by Fi ⊂ X the strict transform of the curve obtained by blowing up
qi. Because of the order of the curves contracted by η, we get equalities between
C,E1, . . . ,E8 and D,F1, . . . ,F8, according to Figure 4.3. For example, C ⊂ X,
which is the strict transform of C ⊂ P2 under the map π : X → P2, is equal to
F8, the last exceptional divisor of the map η : X → P2. In a similar way, E2 ⊂ X is
the strict transform of the exceptional divisor obtained from the second blow-up
in the decomposition of π : X → P2, and is equal to F7, the strict transform of
the exceptional divisor obtained from the seventh blow-up in the decomposition
of η : X → P2.

E6=F1

E8=D E7=F2

E5=F3

E4=F5

E3=F6

E1=F4

E2=F7

C=F8

self-inter
sections

[−1]

[−2]

[−3]

FIGURE 4.3. The configuration of the curves Ei,Fi,C,D on the surface X.

In particular, we see that the configuration of the points p1, . . . , p8 is not the
same as that of the points q1, . . . , q8. Saying that a point a is proximate to a point
b if a is infinitely near to b, and that it belongs to the strict transform of the curve
obtained by blowing up b, we then give in Figure 4.4 the configuration of the
points pi and qi.

p1 p2 p3 p4 p5 p6 p7 p8

q1 q2 q3 q4 q5 q6 q7 q8

FIGURE 4.4. The configuration of the points p1, . . . , p8 and of
the points q1, . . . , q8. An arrow corresponds to the relation “is
proximate to”.
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4.4. The proof of the theorem.

Proof of Theorem 1.7. As above, we write ϕ = τχ, where τ is an automor-
phism of P2, and recall that points p1, . . . , p8 are the base-points of ϕ, and that
q1, . . . , q8 are the base-points of ϕ−1. Our aim is to show that p3 is a base-point
of ϕi and not of ϕ−i, for any i > 0. This will imply that ϕ is not conjugate to
an automorphism of a smooth projective rational surface, by Lemma 4.3.

Denote by k the lowest positive integer such that p1 is a base-point ofϕ−k; if
no such integer exists, we write k = ∞.

For any integer i such that 1 ≤ i < k, the point p1 is not a base-point ofϕ−i,
and hence the maps ϕ and ϕ−i have no common base-point. This implies that
the set of base-points of the mapϕi+1 = ϕ ◦ϕi is the union of the base-points of
ϕi and of the points (ϕ−i)•(pj) for j = 1, . . . ,8. Since the map ϕ−i is defined
at p1, the point (ϕ−i)•(pj) is proximate to the point (ϕ−i)•(pk) if and only if
pj is proximate to pk.

Proceeding by induction on i, we obtain the following assertions:

(1) For any integer i with 1 ≤ i ≤ k, the set of base-points ofϕi is equal
to

{(ϕ−m)•(pj) | j = 1, . . . ,8, m = 0, . . . , i− 1}.

(2) For any integer ℓ with 0 ≤ −ℓ < k, the configuration of the points
{(ϕℓ)•(pj)}8

j=1 is given by

(ϕℓ)•(p1)

(ϕℓ)•(p2)

(ϕℓ)•(p3)

(ϕℓ)•(p4)

(ϕℓ)•(p5)

(ϕℓ)•(p6)

(ϕℓ)•(p7)

(ϕℓ)•(p8)

FIGURE 4.5.

In particular, p3 is a base-point of ϕi for any i satisfying 1 ≤ i ≤ k.
If k = ∞, this implies that p3 is a base-point of ϕi for any i > 0, and by

definition of k, the point p1 is not a base-point of ϕ−i for any i > 0, and so
neither is p3. We can thus assume that k is a positive integer.

Observe that q1 is not a base-point ofϕi for 1 ≤ i ≤ k−1. Indeed, otherwise
q1 would be equal to (ϕ−m)•(pj) for some m,j satisfying 0 ≤ m ≤ k − 2 and
1 ≤ j ≤ 8. This would imply that pj is a base-point ofϕm+1, which is impossible
becausem+1 ≤ k−1. We thus see that ϕ−1 has no common base-point withϕi

for 1 ≤ i ≤ k− 1. In particular, the set of common base-points of ϕ−1 and ϕk is
equal to

B =
{
(ϕ−(k−1))•(pj)

}8
j=1 ∩

{
qj
}8
j=1.

Because p1 is a base-point of ϕ−k and not of ϕ−(k−1), the point (ϕ−(k−1))•(p1),
which is a base-point of ϕk, is also a base-point of ϕ−1. In particular, the set B
is not empty. The configuration of the two sets of points {(ϕ−(k−1))•(pj)}8

j=1



1162 JÉRÉMY BLANC

and {qj}8
j=1 implies that q1 = (ϕ−(k−1))•(p1). Moreover, either B = {q1} or

B = {q1, q2}. Indeed, the point q3 is proximate to q2 but not to q1, whereas
(ϕ−(k−1))•(p3) is proximate to (ϕ−(k−1))•(p1) and (ϕ−(k−1))•(p2).

The point (ϕ−(k−1))•(p3) is therefore a point infinitely near to q1, in the
second neighbourhood, which is maybe infinitely near to q2 but is not equal to
q3. Recalling that η is the blow-up of q1, . . . , q8, the point (η−1ϕ−(k−1))•(p3)
corresponds to a point that belongs, as a proper or infinitely near point, to one
of the curves F1,F2 ⊂ X, equal respectively to E7, E6 (see Figure 4.3). The
map π contracts these two curves, and so (πη−1ϕ−(k−1))•(p3) is a point that is
infinitely near to p7 or p6, and thus to p3. Recalling that ϕ−1 = πη−1, we see
that (ϕ−k)•(p3) is a point that is infinitely near to p3.

Because p3 is not a base-point of ϕ−i for 1 ≤ i ≤ k, there is no base-point
of ϕ−i which is infinitely near to p3. In particular, (ϕ−k)•(p3) is not a base-
point of ϕ−i, which implies that p3 is not a base-point ofϕ−(k+i). Moreover, the
point (ϕ−(k+i))•(p3) is infinitely near to (ϕ−i)•(p3). Choosing i = k, we see
that (ϕ−2k)•(p3) is infinitely near to (ϕ−k)•(p3), which is infinitely near to p3.
Continuing like this, we get the following assertion:

For any i ≥ 1, the point p3 is not a base-point of ϕ−i.(4.1)

To get the result, it remains to show that p3 is a base-point of ϕi for each
i ≥ 1. To do this, we will need the following assertion:

For any i ≥ 1, the point q3 is not a base-point of ϕi.(4.2)

Note that (4.2) can be proved in the same way as (4.1), reversing the order of ϕ
and ϕ−1. We quickly recall the way to deduce it. Note that q3 is not a base-point
of ϕi for 1 ≤ i ≤ k − 1, because q1 is not a base-point of ϕi (see above). Since
q3 does not belong to B, which is the set of common base-points of ϕ−1 and
ϕk, the point q3 is not a base-point of ϕk. The point q3 is infinitely near to
q1 = (ϕ−(k−1))•(p1), in the second neighbourhood. The point (ϕk−1)•(q3) is
thus infinitely near to p1. On the blow-up π : X → P2, the point (ϕk−1)•(q3)
thus corresponds to a point that belongs, as a proper or infinitely near point, to
E1 or E2, equal respectively to F4 and F7. The point (ϕk)•(q3) is then a point
infinitely near to q4, and then to q3. As before, the fact that q3 is not a base-point
of ϕi for i = 1, . . . , k, and that (ϕk)•(q3) is infinitely near to q3, implies that q3

is not a base-point of ϕi for any i ≥ 0, proving assertion (4.2).
It remains to see that assertion (4.2) implies that p3 is a base-point of ϕi for

any i ≥ 1. For i = 1, this is obvious. For i > 1, we decomposeϕi into ϕi−1 ◦ϕ,
and decompose π : X → P2 into π = π12 ◦ π38, where π12 : Y → P2 is the blow-
up of p1, p2, and π38 : X → Y is the blow-up of p3, . . . , p8; we then do the same
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with η. This yields the following commutative diagram:

X

η

((

π

vv

π38

��~~
~~

~~
~

η38

��
@@

@@
@@

@

Y
π12

~~~~
~~

~~
~

Z
η12

  
@@

@@
@@

@

P2
ϕ

//______________
P2

ϕi−1

//______
P2.

Note that η38 contracts F8, . . . ,F3 onto the point q3 ∈ X2, which is not a
base-point of ϕi−1 ◦ η12. Let us take the system of conics of P2 passing through
p1, p2, p3, and denote by Λ the lift of this system on Y , which is a system of
smooth curves passing through q3 with movable tangents, having dimension 2.
The strict transform on X of Λ is a system of curves intersecting E3 at a general
movable point. The map η38 contracts the curves C, E2, E3, E4, E1, E5. Since
the curve E3 is contracted and not the last one, the image of the system by η38

passes through q3 with a fixed tangent (corresponding to the point q4). As the
point q3 is not a base-point of ϕi−1 ◦ η12, the image of the system Λ ⊂ Y by
ϕi−1 ◦ η ◦ (π38)−1 has a fixed tangent at the point (ϕi−1 ◦ η12)(q3). This shows
that p3 is a base-point of ϕi−1 ◦ η ◦ (π38)−1, and thus of ϕi. ❐
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