
Cremona Groups of Real Surfaces

Jérémy Blanc and Frédéric Mangolte

Abstract We give an explicit set of generators for various natural subgroups of the
real Cremona group BirR.P2/. This completes and unifies former results by several
authors.
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1 Introduction

1.1 On the Real Cremona Group BirR.P2/

The classical Noether–Castelnuovo Theorem [3] (see also [1, Chap. 8] for a modern
exposition of the proof) gives generators of the group BirC.P2/ of birational trans-
formations of the complex projective plane. The group is generated by the biregular
automorphisms, which form the group AutC.P2/ D PGL.3;C/ of projectivities, and
by the standard quadratic transformation

�0W .x W y W z/ Ü .yz W xz W xy/:
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This result does not work over the real numbers. Indeed, recall that a base point
of a birational transformation is a (possibly infinitely near) point of indeterminacy;
and note that two of the base points of the quadratic involution

�1W .x W y W z/ Ü .y2 C z2 W xy W xz/

are not real. Thus �1 cannot be generated by projectivities and �0. More generally,
we cannot generate this way maps having non real base-points. Hence the group
BirR.P2/ of birational transformations of the real projective plane is not generated
by AutR.P2/ D PGL.3;R/ and �0.

The first result of this note is that BirR.P2/ is generated by AutR.P2/, �0, �1, and
a family of birational maps of degree 5 having only non real base-points.

Theorem 1.1. The group BirR.P2/ is generated by AutR.P2/, �0, �1, and the
standard quintic transformations of P2 .defined in Example 3.1/.

The proof of this result follows the so-called Sarkisov program, which amounts
to decompose a birational map between Mori fibre spaces as a sequence of simple
maps, called Sarkisov links. The description of all possible links has been done in
[9] for perfect fields, and in [14] for real surfaces. We recall it in Sect. 2 and show
how to deduce Theorem 1.1 from the list of Sarkisov links.

Note that a family of generators of BirK.P2/ is given in [8], for any perfect
field K. When taking K D R, the list is however longer than the one given in
Theorem 1.1.

Let X be an algebraic variety defined over R (always assumed to be geomet-
rically irreducible), we denote as usual by X.R/ the set of real points endowed
with the induced algebraic structure. The topological space P

2.R/ is then the real
projective plane, letting F0 WD P

1 � P
1, the space F0.R/ is the torus S

1 � S
1 and

lettingQ3;1 D f.w W x W y W z/ 2 P
3 j w2 D x2 C y2 C z2g, the real locusQ3;1.R/ is

the sphere S2.
Recall that an isomorphism X.R/ ! Y.R/ is a birational map 'WX Ü Y

defined over R such that ' is defined at all real points ofX and '�1 at all real points
of Y . The set of automorphisms of X.R/ form a group Aut.X.R//, and we have
natural inclusions

AutR.X/ � Aut.X.R// � BirR.X/:

The strategy used to prove Theorem 1.1 allows us to treat similarly the case of
natural subgroups of BirR.P2/, namely the groups Aut.P2.R//, Aut.Q3;1.R// and
Aut.F0.R// of three minimal real rational surfaces (see Corollary 2.10). This way,
we give a unified treatment to prove three theorems on generators, the first two of
them already proved in a different way in [11, 15].

Observe that Aut.Q3;1.R// and Aut.F0.R// are not really subgroups of BirR.P2/,
but each of them is isomorphic to a subgroup which is determined up to conjugation.
In fact, for any choice of a birational map  WP2 Ü X (X D Q3;1 or F0),
 �1 Aut.X.R// � BirR.P2/.
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Theorem 1.2 ([15]). The group Aut.P2.R// is generated by

AutR.P2/ D PGL.3;R/

and by standard quintic transformations.

Note that, up to the action of PGL.3;R/, the standard quintic transformations
form an algebraic variety of (real) dimension 4. This is in contrast with the complex
case, where the set of standard quadratic transformations is f�0g, up to the action of
PGL.3;C/.

Theorem 1.3 ([11]). The group Aut.Q3;1.R// is generated by

AutR.Q3;1/ D PO.3; 1/

and by standard cubic transformations.

Here the real dimension of the variety of standard cubic transformations, modulo
PO.3; 1/, is 2.

Theorem 1.4. The group Aut.F0.R// is generated by

AutR.F0/ Š PGL.2;R/2 Ì Z=2Z

and by the involution

�0W ..x0 W x1/; .y0 W y1// Ü ..x0 W x1/; .x0y0 C x1y1 W x1y0 � x0y1//:

In each case, we don’t know any easy way of computing the relations between
the given generators. (See [10] for a description in a more general setting, whose
application to the real case does not fit our set of generators.)

The proof of Theorems 1.1, 1.2, 1.3, 1.4 is given in Sects. 4, 3, 5, 6, respectively.
Section 7 is devoted to present some related recent results on birational geometry of
real projective surfaces.

In the sequel, surfaces and maps are assumed to be real. In particular if we
consider that a real surface is a complex surface endowed with a Galois-action of
G WD Gal.CjR/, a map is G-equivariant. On the contrary, points and curves are not
assumed to be real a priori.

We would like to thank the referee whose remarks helped us to improve the
exposition and Igor Dolgachev for indicating us references.

2 Mori Theory for Real Rational Surfaces and Sarkisov
Program

We work with the tools of Mori theory. A good reference in dimension 2, over
any perfect field, is [9]. The theory, applied to smooth projective real rational
surfaces, becomes really simple. The description of Sarkisov links between real
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rational surfaces has been done in [14], together with a study of relations between
these links. In order to state this classification, we first recall the following classical
definitions (which can be found in [9]).

Definition 2.1. A smooth projective real rational surface X is said to be minimal
if any birational morphism X ! Y , where Y is another smooth projective real
surface, is an isomorphism.

Definition 2.2. A Mori fibration is a morphism �WX ! W where X is a smooth
projective real rational surface and one of the following occurs:

(1) �.X/ D 1, W is a point (usually denoted f�g), and X is a del Pezzo surface;
(2) �.X/ D 2, W D P

1 and the map � is a conic bundle.

Note that for an arbitrary surface, the curve W in the second case should be any
smooth curve, but we restrict ourselves to rational surfaces which implies that W is
isomorphic to P

1.

Proposition 2.3. Let X be a smooth projective real rational surface. If X is
minimal, then it admits a morphism �WX ! W which is a Mori fibration.

Proof. Follows from [7, Theorem 1]. See also [13]. ut
Definition 2.4. A Sarkisov link between two Mori fibrations �1WX1 ! W1 and
�2WX2 ! W2 is a birational map 'WX1 Ü X2 of one of the following four types,
where each of the diagrams is commutative:

(1) LINK OF TYPE I

X1

�1

��

'

�������� X2

�2

��

f�g D W1 W2 D P
1

�
��

where '�1WX2 ! X1 is a birational morphism, which is the blow-up of either a
real point or two non-real conjugate points ofX1, and where � is the contraction
of W2 D P

1 to the pointW1.
(2) LINK OF TYPE II

X1

'

��� � � � �

�1

��

Z
�1

��
�2

�� X2

�2

��
W1

�

'
�� W2
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where �i WZ ! Xi is a birational morphism, which is the blow-up of either
a real point or two non-real conjugate points of Xi , and where � is an
isomorphism betweenW1 andW2.

(3) LINK OF TYPE III

X1
'

��

�1

��

X2

�2

��
P
1 D W1

�

�� W2 D f�g

where 'WX1 ! X2 is a birational morphism, which is the blow-up of either a
real point or two non-real conjugate points ofX2, and where � is the contraction
of W1 D P

1 to the pointW2. (It is the inverse of a link of type I.)
(4) LINK OF TYPE IV

X1
'

'
��

�1

��

X2

�2

��

P
1 D W1 W2 D P

1

where 'WX1 ! X2 is an isomorphism and �1; �2 ı ' are conic bundles on X1
with distinct fibres.

Remarks 2.5.

(1) The morphism � is important only for links of type II, between two surfaces
with a Picard group of rank 2 (in higher dimension � is important also for other
links).

(2) There is only one possibleW1 and one possibleW2 in cases I; III; IV but a priori
several possibilities in case II.

(3) We shall see in Example 2.13(2) that indeed there exists links of type II where
W1 D W2 D f�g. This is a feature of the real case that does not arise in the
complex case.

Definition 2.6. If �WX ! W and � 0WX 0 ! W 0 are two (Mori) fibrations, an
isomorphism  WX ! X 0 is called an isomorphism of fibrations if there exists an
isomorphism � WW ! W 0 such that � 0 D �� .

Note that the composition ˛'ˇ of a Sarkisov link ' with some automorphisms of
fibrations ˛ and ˇ is again a Sarkisov link. We have the following fundamental
result:
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Proposition 2.7. If �WX ! W and � 0WX 0 ! W 0 are two Mori fibrations, then
any birational map  WX Ü X 0 is either an isomorphism of fibrations or admits a
decomposition into Sarkisov links  D 'n : : : '1 such that

.i/ for i D 1; : : : ; n � 1, the birational map 'iC1'i is not biregular;
.ii/ for i D 1; : : : ; n, every base-point of 'i is a base-point of 'n : : : 'i .

Proof. Follows from [9, Theorem 2.5] (see also the appendix of [5]).
Let us give an idea of the strategy here, and refer to [9] for the details. If  is

not an isomorphism of fibrations, then one can associate with it a Sarkisov degree,
which is a triple of numbers .a; r;m/ (see Definition at page 601 of [9]). The number
a 2 Q is given by the degree of the linear system HX on X associated with  , the
number r 2 N is the maximal multiplicity of the base-points of this system andm is
the number of base-points that realise this maximum. Then, we have the following
dichotomy:

.i/ If r > a, we denote by �W OX ! X the blow-up of one real point or two
conjugate non-real points that realise the multiplicity, then find that either OX
admits a structure of Mori fibration and '1 D ��1 is a link of type I, or find a
contraction � 0W OX ! X1 such that '1 D � 0��1WX Ü X1 is a link of type III.

.ii/ If r � a, we either find a contraction '1WX ! X1 which is a link of type III or
find a link of type IV, which is an automorphism '1WX ! X .

In each case, it is shown that the Sarkisov degree of  .'1/�1WX1 Ü X 0 is
smaller than the one of  , for the lexicographical ordering. The set of all possible
Sarkisov degrees being discrete and bounded from below ([9, last paragraph of page
601]), the procedure ends at some point.

Moreover, the construction of the links implies that the two properties described
above hold. ut
Remark 2.8. In the above decomposition, if  has no real base-point (for instance
when  induces an isomorphism X.R/ ! X 0.R/), then '1 and '2 have no real
base-point. However, the maps 'i for i � 3 can have some real base-points, which
have been artificially created, and correspond in fact to the base-points of .'j /�1 for
j < i .

This phenomenon happens for any 2 Aut.P2.R//nAut.P2/, as the first link '1
will blow-up two non-real base-point and contract the line through these two, onto
a real point, base-point of .'1/�1 and of 'n : : : '2 (see Example 2.13(2) below).

Theorem 2.9 ([4] (see also [7])). Let X be a real rational surface, if X is minimal,
then it is isomorphic to one of the following:

.1/ P
2,

.2/ the quadric Q3;1 D f.w W x W y W z/ 2 P
3 j w2 D x2 C y2 C z2g,

.3/ a Hirzebruch surface Fn D f..x W y W z/; .u W v// 2 P
2 � P

1 j yvn D zung with
n ¤ 1.
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By [12], if n � n0 � 0 mod 2, Fn.R/ is isomorphic to Fn0.R/. We get:

Corollary 2.10. Let X.R/ be the real locus of a real rational surface. If X is
minimal, then X.R/ is isomorphic to one of the following:

.1/ P
2.R/,

.2/ Q3;1.R/, diffeomorphic to S
2,

.3/ F0.R/, diffeomorphic to S
1 � S

1,
.4/ F3.R/, diffeomorphic to the Klein bottle.

Remark 2.11. Note that F3.R/ and F1.R/ are isomorphic. However, F1 is not
minimal although F3 is.

In the same vein, there exists a birational morphism P
2.R/ ! Q3;1.R/, that

contracts a real line (the map '�1 in Example 2.13(2)).

We give a list of Mori fibrations on real rational surfaces and will show that, up
to isomorphisms of fibrations, this list is exhaustive.

Example 2.12. The following morphisms �WX ! W are Mori fibrations on the
plane, the sphere, the Hirzebruch surfaces, and a particular Del Pezzo surface of
degree 6.

(1) P
2 ! f�g;

(2) Q3;1 D f.w W x W y W z/ 2 P
3
R

j w2 D x2 C y2 C z2g ! f�g;
(3) Fn D f..x W y W z/; .u W v// 2 P

2 � P
1 j yvn D zung ! P

1 for n � 0 (the map is
the projection on the second factor);

(4) D6 D f.w W x W y W z/; .u W v/ 2 Q3;1 � P
1 j wv D xug ! P

1 (the map is the
projection on the second factor).

Example 2.13. The following maps between the surfaces of Example 2.12 are
Sarkisov links (in the list, fibres refer to those of the Mori fibrations introduced
in Example 2.12):

(1) The contraction of the exceptional curve of F1 (or equivalently the blow-up of
a real point of P2), is a link F1 ! P

2 of type III. Note that the inverse of this
link is of type I.

(2) The stereographic projection from the North pole pN D .1 W 0 W 0 W 1/,
'WQ3;1 Ü P

2 given by

'W .w W x W y W z/ Ü .x W y W w � z/

and its inverse '�1WP2 Ü Q3;1 given by

'�1W .x W y W z/ Ü .x2 C y2 C z2 W 2xz W 2yz W x2 C y2 � z2/

are both Sarkisov links of type II.
The map ' decomposes into the blow-up of pN , followed by the contraction

of the strict transform of the curve z D w (intersection of Q3;1 with the tangent
plane at pN ), which is the union of two non-real conjugate lines. The map '�1
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decomposes into the blow-up of the two non-real points .1 W ˙i W 0/, followed
by the contraction of the strict transform of the line z D 0.

(3) The projection on the first factor D6 ! Q3;1 which contracts the two disjoint
conjugate non-real .�1/-curves .0 W 0 W 1 W ˙i/ � P

1 � D6 onto the two
conjugate non-real points .0 W 0 W 1 W ˙i/ 2 Q3;1 is a link of type III.

(4) The blow-up of a real point q 2 Fn, lying on the exceptional section if n > 0

(or any point if n D 0), followed by the contraction of the strict transform of the
fibre passing through q onto a real point of FnC1 not lying on the exceptional
section is a link Fn Ü FnC1 of type II.

(5) The blow-up of two conjugate non-real points p; Np 2 Fn lying on the
exceptional section if n > 0, or on the same section of self-intersection 0
if n D 0, followed by the contraction of the strict transform of the fibres
passing through p; Np onto two non-real conjugate points of FnC2 not lying on
the exceptional section is a link Fn Ü FnC2 of type II.

(6) The blow-up of two conjugate non-real points p; Np 2 Fn, n 2 f0; 1g not lying
on the same fibre (or equivalently not lying on a real fibre) and not on the same
section of self-intersection �n (or equivalently not lying on a real section of
self-intersection �n), followed by the contraction of the fibres passing through
p; Np onto two non-real conjugate points of Fn having the same properties is a
link Fn Ü Fn of type II.

(7) The exchange of the two components P1 � P
1 ! P

1 � P
1 is a link F0 ! F0 of

type IV.
(8) The blow-up of a real pointp 2 D6, not lying on a singular fibre (or equivalently

p 6D ..1 W 1 W 0 W 0/; .1 W 1//, p 6D ..1 W �1 W 0 W 0/; .1 W �1//), followed by the
contraction of the strict transform of the fibre passing through p onto a real
point of D6, is a link D6 Ü D6 of type II.

(9) The blow-up of two non-real conjugate points p; Np 2 D6, not lying on the same
fibre (or equivalently not lying on a real fibre), followed by the contraction of
the strict transform of the fibres passing through p; Np onto two non-real points
of D6 is a link D6 Ü D6 of type II.

Remark 2.14. Note that in the above list, the three links Fn Ü Fm of type II can be
put in one family, and the same is true for the two links D6 Ü D6. We distinguished
here the possibilities for the base points to describe more precisely the geometry of
each link. The two links D6 Ü D6 could also be arranged into extra families, by
looking if the base points belong to the two exceptional sections of self-intersection
�1, but go in any case from D6 to D6 (see Definition 2.16 below).

Proposition 2.15. Any Mori fibration �WX ! W , where X is a smooth projective
real rational surface, belongs to the list of Example 2.12.

Any Sarkisov link between two such Mori fibrations is equal to ˛'ˇ, where
' or '�1 belongs to the list described in Example 2.13 and where ˛ and ˇ are
isomorphisms of fibrations.

Proof. Since any birational map between two surfaces with Mori fibrations decom-
poses into Sarkisov links and all links of Example 2.13 involve only the Mori
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fibrations of Example 2.12, it suffices to check that any link starting from one of
the Mori fibrations of Example 2.12 belongs to the list 2.13. This is an easy case-
by-case study; here are the steps.

Starting from a Mori fibration �WX ! W where W is a point, the only links
we can perform are links of type I or II centered at a real point or two conjugate
non-real points. From Theorem 2.9, the surface X is either Q3;1 or P2, and both are
homogeneous under the action of Aut.X/, so the choice of the point is not relevant.
Blowing-up a real point in P

2 or two non-real points in Q3;1 gives rise to a link of
type I to F1 or D6. The remaining cases correspond to the stereographic projection
Q3;1 Ü P

2 and its converse.
Starting from a Mori fibration �WX ! W where W D P

1, we have additional
possibilities. If the link is of type IV, thenX admits two conic bundle structures and
by Theorem 2.9, the only possibility is F0 D P

1�P
1. If the link is of type III, then we

contract a real .�1/-curve ofX or two disjoint conjugate non-real .�1/-curves. The
only possibilities forX are respectively F1 and D6, and the image is respectively P

2

and Q3;1 (these are the inverses of the links described before). The last possibility
is to perform a link a type II, by blowing up a real point or two conjugate non-real
points, on respectively one or two smooth fibres, and to contract the strict transform.
We go from D6 to D6 or from Fm to Fm0 where m0 � m 2 f�2;�1; 0; 1; 2g. All
possibilities are described in Example 2.13. ut

We end this section by reducing the number of links of type II needed for the
classification. For this, we introduce the notion of standard links.

Definition 2.16. The following links of type II are called standard:

(1) links Fm Ü Fn, with m; n 2 f0; 1g;
(2) links D6 Ü D6 which do not blow-up any point on the two exceptional section

of self-intersection �1.

The other links of type II will be called special.

The following result allows us to simplify the set of generators of our groups.

Lemma 2.17. Any Sarkisov link of type IV decomposes into links of type I, III, and
standard links of type II.

Proof. Note that a link of type IV is, up to automorphisms preserving the fibrations,
equal to the following automorphism of P1 � P

1

� W ..x1 W x2/; .y1 W y2// 7! ..y1 W y2/; .x1 W x2//:

We denote by  WP2 Ü P
1 �P

1 the birational map .x W y W z/ Ü ..x W y/; .x W z//
and observe that � D  � , where � 2 AutR.P2/. Hence, � D  � �1 . Observing
that  decomposes into the blow-up of the point .0 W 0 W 1/, which is a link of type
III, followed by a standard link of type II, we get the result. ut
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Lemma 2.18. Let �WX ! P
1 and � 0WX 0 ! P

1 be two Mori fibrations, where
X;X 0 belong to the list F0;F1;D6. Let  WX Ü X 0 be a birational map, such
that � 0 D ˛� for some ˛ 2 AutR.P1/. Then,  is either an automorphism
or  D 'n 	 	 	'1, where each 'i is a standard link of type II. Moreover, if  is
an isomorphism on the real points .i.e. is an isomorphism X.R/ ! X 0.R//, the
standard links 'i can also be chosen to be isomorphisms on the real points.

Proof. We first show that  D 'n 	 	 	'1, where each 'i is a link of type II, not
necessarily standard. This is done by induction on the number of base-points of  
(recall that we always count infinitely near points as base-points). If  has no base-
point, it is an isomorphism. If q is a real proper base-point, or q; Nq are two proper
non-real base-points (here proper means not infinitely near), we denote by '1 a
Sarkisov link of type II centered at q (or q; Nq). Then, .'1/�1 has less base-points
than  . The result follows then by induction. Moreover, if  is an isomorphism on
the real points, i.e. if  and  �1 have no real base-point, then so are all 'i .

Let 'W D6 Ü D6 be a special link of type II. Then, it is centered at two
points p1; Np1 lying on the .�1/-curves E1; NE1. We choose then two general non-
real conjugate points q1; Nq1, and let q2 WD '.q1/ and Nq2 WD '. Nq1/. For i D 1; 2, we
denote by 'i W D6 Ü D6 a standard link centered at qi ; Nqi . The image by '2 of E1
is a curve of self-intersection 1. Hence, '2'.'1/�1 is a standard link of type II.

It remains to consider the case where each 'i is a link Fni Ü FniC1
. We denote

by N the maximum of the integers ni . If N � 1, we are done because all links of
type II between Fj and Fj 0 with j; j 0 � 1 are standard. We can thus assumeN � 2,
which implies that there exists i such that ni D N , ni�1 < N; niC1 � N . We
choose two general non-real points qi�1; qi�1 2 Fni�1 , and write qi D 'i�1.qi�1/,
qiC1 D 'i .qi /. For j 2 fi � 1; i; i C 1g, we denote by �j WFnj Ü Fn0

j
a Sarkisov

link centered at qj ; qj . We obtain then the following commutative diagram

Fni�1

'i�1
�����

�i�1

���
�
�

Fni

'i
�����

�i

���
�
�

FniC1

�iC1

���
�
�

Fn0

i�1

'0

i�1
����� Fn0

i

'0

i
����� Fn0

iC1
;

where ' 0
i�1; ' 0

i are Sarkisov links. By construction, n0
i�1; n0

i ; n
0
iC1 < N , we can then

replace 'i'i�1 with .�iC1/�1' 0
i '

0
i�1�i�1 and “avoid” FN . Repeating this process if

needed, we end up with a sequence of Sarkisov links passing only through F1 and
F0. Moreover, since this process does not add any real base-point, it preserves the
regularity at real points. ut
Corollary 2.19. Let �WX ! W and � 0WX 0 ! W 0 be two Mori fibrations, where
X;X 0 are either F0;F1;D6 or P

2. Any birational map  WX Ü X 0 is either an
isomorphism preserving the fibrations or decomposes into links of type I; III, and
standard links of type II.
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Proof. Follows from Proposition 2.7, Lemmas 2.17 and 2.18, and the description of
Example 2.13. ut

3 Generators of the Group Aut.P2.R//

We start this section by describing three kinds of elements of Aut.P2.R//, which
are birational maps of P2 of degree 5. These maps are associated with three pairs
of conjugate non-real points; the description is then analogue to the description of
quadratic maps, which are associated with three points.

Example 3.1. Let p1; Np1; p2; Np2; p3; Np3 2 P
2 be three pairs of non-real points of

P
2, not lying on the same conic. Denote by �WX ! P

2 the blow-up of the six
points, which induces an isomorphism X.R/ ! P

2.R/. Note that X is isomorphic
to a smooth cubic of P3. The set of strict transforms of the conics passing through
five of the six points corresponds to three pairs of non-real .�1/-curves (or lines on
the cubic), and the six curves are disjoint. The contraction of the six curves gives a
birational morphism �WX ! P

2, inducing an isomorphism X.R/ ! P
2.R/, which

contracts the curves onto three pairs of non-real points q1; Nq1; q2; Nq2; q3; Nq3 2 P
2; we

choose the order so that qi is the image of the conic not passing through pi . The
map  D ���1 is a birational map P

2 Ü P
2 inducing an isomorphism

P
2.R/ ! P

2.R/:

Let L � P
2 be a general line of P

2. The strict transform of L on X by
��1 has self-intersection 1 and intersects the six curves contracted by � into two
points (because these are conics). The image  .L/ has then six singular points of
multiplicity 2 and self-intersection 25; it is thus a quintic passing through the qi with
multiplicity 2. The construction of  �1 being symmetric as the one of  , the linear
system of consists of quintics of P2 having multiplicity 2 at p1; Np1; p2; Np2; p3; Np3.

One can moreover check that  sends the pencil of conics through p1; Np1; p2; Np2
onto the pencil of conics through q1; Nq1; q2; Nq2 (and the same holds for the two other
real pencil of conics, through p1; Np1; p3; Np3 and through p2; Np2; p3; Np3).
Example 3.2. Let p1; Np1; p2; Np2 2 P

2 be two pairs of non-real points of P2, not
on the same line. Denote by �1WX1 ! P

2 the blow-up of the four points, and by
E2; NE2 � X1 the curves contracted onto p2; Np2 respectively. Let p3 2 E2 be a point,
and Np3 2 NE2 its conjugate. We assume that there is no conic of P2 passing through
p1; Np1; p2; Np2; p3; Np3 and let �2WX2 ! X1 be the blow-up of p3; Np3.

On X , the strict transforms of the two conics C; NC of P
2, passing through

p1; Np1; p2; Np2; p3 and p1; Np1; p2; Np2; Np3 respectively, are non-real conjugate disjoint
.�1/ curves. The contraction of these two curves gives a birational morphism
�2WX2 ! Y1, contracting C , NC onto two points q3; Nq3. On Y1, we find two pairs
of non-real .�1/-curves, all four curves being disjoint. These are the strict trans-
forms of the exceptional curves associated with p2; Np2, and of the conics passing
through p1; p2; Np2; p3; Np3 and Np1; p2; Np2; p3; Np3 respectively. The contraction of
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these curves gives a birational morphism �1WY1 ! P
2, and the images of the four

curves are points q2; Nq2; q1; Nq1 respectively. Note that the four maps �1; �2; �1; �2 are
blow-ups of non-real points, so the birational map  D �1�2.�1�2/

�1WP2 Ü P
2

induces an isomorphism P
2.R/ ! P

2.R/.
In the same way as in Example 3.1, we find that the linear system of  is of

degree 5, with multiplicity 2 at the points pi ; Npi . The situation is similar for  �1,
with the six points qi ; Nqi in the same configuration: q1; Nq1; q2; Nq2 lie on the plane and
q3; Nq3 are infinitely near to q2; Nq2 respectively.

One can moreover check that  sends the pencil of conics through p1; Np1; p2; Np2
onto the pencil of conics through q1; Nq1; q2; Nq2 and the pencil of conics through
p2; Np2; p3; Np3 onto the pencil of conics through q2; Nq2; q3; Nq3. But, contrary to
Example 3.1, there is no pencil of conics through q1; Nq1; q3; Nq3 (because q3; Nq3 are
infinitely near to q2, Nq2).
Example 3.3. Let p1; Np1 be a pair of two conjugate non-real points of P

2. We
choose a point p2 in the first neighbourhood of p1, and a point p3 in the first
neighbourhood of p2, not lying on the exceptional divisor corresponding to p1.
We denote by �WX ! P

2 the blow-up of p1; Np1; p2; Np2; p3 Np3. We denote by
Ei; NEi � X the irreducible exceptional curves corresponding to the points pi ; Npi ,
for i D 1; 2; 3. The strict transforms of the two conics through p1; Np1; p2; Np2; p3
and p1; Np1; p2; Np2; Np3 respectively are disjoint .�1/-curves on X , intersecting
the exceptional curves E1; NE1;E2; NE2 similarly as E3; NE3. Hence, there exists a
birational morphism �WX ! P

2 contracting the strict transforms of the two conics
and the curves E1; NE1;E2; NE2.

As in Examples 3.1 and 3.2, the linear system of  D ���1 consists of quintics
with multiplicity two at the six points p1; Np1; p2; Np2; p3; Np3.
Definition 3.4. The birational maps of P2 of degree 5 obtained in Example 3.1 will
be called standard quintic transformations and those of Examples 3.2 and 3.3 will
be called special quintic transformations respectively.

Lemma 3.5. Let  WP2 Ü P
2 be a birational map inducing an isomorphism

P
2.R/ ! P

2.R/. The following hold:

.1/ The degree of  is 4k C 1 for some integer k � 0.

.2/ Every multiplicity of the linear system of  is even.

.3/ Every curve contracted by  is of even degree.

.4/ If  has degree 1, it belongs to AutR.P2/ D PGL.3;R/.

.5/ If  has degree 5, then it is a standard or special quintic transformation,
described in Examples 3.1, 3.2 or 3.3, and has thus exactly 6 base-points.

.6/ If  has at most 6 base-points, then  has degree 1 or 5.

Remark 3.6. Part (1) is [15, Teorema 1].

Proof. Denote by d the degree of  and by m1; : : : ; mk the multiplicities of
the base-points of  . The Noether equalities yield

Pk
iD1 mi D 3.d � 1/ and

Pk
iD1.mi /

2 D d2 � 1.
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Let C; NC be a pair of two curves contracted by  . Since C \ NC does not contain
any real point, the degree of C and NC is even. This yields .3/, and implies that all
multiplicities of the linear system of  �1 are even, giving .2/.

In particular, 3.d � 1/ is a multiple of 4 (all multiplicities come by pairs of even
integers), which implies that d D 4k C 1 for some integer k. Hence .1/ is proved.

If the number of base-points is at most k D 6, then by Cauchy–Schwartz we get

9.d � 1/2 D
 

kX

iD1
mi

!2

� k

kX

iD1
.mi /

2 D k.d2 � 1/ D 6.d2 � 1/

This yields 9.d � 1/ � 6.d C 1/, hence d � 5.
If d D 5, the Noether equalities yield k D 6 and m1 D m2 D 	 	 	 D m6 D

2. Hence, the base-points of  consist of three pairs of conjugate non-real points
p1; Np1; p2; Np2; p3; Np3. Moreover, if a conic passes through 5 of the six points, its
free intersection with the linear system is zero, so it is contracted by  , and there is
no conic through the six points.

.a/ If the six points belong to P
2, the map is a standard quintic transformation,

described in Example 3.1.
.b/ If two points are infinitely near, the map is a special quintic transformation,

described in Example 3.2.
.c/ If four points are infinitely near, the map is a special quintic transformation,

described in Example 3.3. ut
Before proving Theorem 1.2, we will show that all quintic transformations are

generated by linear automorphisms and standard quintic transformations:

Lemma 3.7. Every quintic transformation  2 Aut.P2.R// belongs to the group
generated by AutR.P2/ and standard quintic transformations.

Proof. By Lemma 3.5, we only need to show the result when  is a special quintic
transformation as in Example 3.2 or Example 3.3.

We first assume that  is a special quintic transformation as in Example 3.2,
with base-points p1; Np1; p2; Np2; p3; Np3, where p3; Np3 are infinitely near to p2; Np2.
For i D 1; 2, we denote by qi 2 P

2 the point which is the image by  of the
conic passing through the five points of fp1; Np1; p2; Np2; p3; Np3g n fpig. Then, the
base-points of  �1 are q1; Nq1; q2; Nq2; q3; Nq3, where q3, Nq3 are points infinitely near to
q2, Nq2 respectively (see Example 3.2). We choose a general pair of conjugate non-
real points p4; Np4 2 P

2, and write q4 D  .p4/, Nq4 D  . Np4/. We denote by '1 a
standard quintic transformation having base-points at p1; Np1; p2; Np2; p4; Np4, and by
'2 a standard quintic transformation having base-points at q1; Nq1; q2; Nq2; q4; Nq4. We
now prove that '2 .'1/�1 is a standard quintic transformation; this will yield the
result. Denote by p0

i ; Npi 0 the base-points of .'1/�1, with the order associated with
the pi , which means that p0

i is the image by 'i of a conic not passing throughpi (see
Example 3.1). Similarly, we denote by q0

i ; Nqi 0 the base-points of .'2/�1. We obtain
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the following commutative of birational maps, where the arrows indexed by points
are blow-ups of these points:

Y1
p0

4; Np40

����
��
��
�� p4; Np4

��	
		

		
		

	
Y2

p3; Np3

����
��
��
�� q3; Nq3

��	
		

		
		

	
Y3

q4; Nq4

����
��
��
�� q0

4; Nq40

��















X1

p0

1; Np1 0

p0

2; Np2 0

��

X2
b'1

��� � � � � � � �
O 

����������

p1; Np1
p2; Np2 ��

X3
b'2

����������

q1; Nq1
q2; Nq2 ��

X4

q0

1; Nq1 0

q2; Nq2 0

��

P
2

P
2

'1
��� � � � � � � �

 
���������� P

2
'2

���������� P
2:

Each of the surfaces X1;X2;X3;X4 admits a conic bundle structure �i WXi ! P
1,

which fibres correspond to the conics passing through the four points blown-up on
P
2 to obtain Xi . Moreover, O'1, O , O'2 preserve these conic bundle structures. The

map . O'1/�1 blows-up p4; Np40 and contract the fibres associated with them, then O 
blows-up p3; Np3 and contract the fibres associated with them. The map O'2 blow-ups
the points q4; Nq4, which correspond to the image of the curves contracted by . O'1/�1,
and contracts their fibres, corresponding to the exceptional divisors corresponding
to the points p4; Np40. Hence, O'2 O O'1 is the blow-up of two conjugate non-real points
p0
3; Np30 2 X1, followed by the contraction of their fibres. We obtain the following

commutative diagram:

Z
p0

3; Np30

����
��
��
�� q0

3; Nq3 0

���
��

��
��

�

X1
b'2 O .b'1/�1

����������

p0

1; Np1 0

p0

2; Np2 0

��

X4

q0

1; Nq1 0

q2; Nq2 0

��

P
2

'2 .'1/
�1

���������� P
2;

and the points p0
3; Np30 correspond to the point of P2, hence '2 .'1/�1 is a standard

quintic transformation.
The remaining case is when  is a special quintic transformation as in Exam-

ple 3.3, with base-points p1; Np1; p2; Np2; p3; Np3, where p3; Np3 are infinitely near to
p2; Np2 and these latter are infinitely near to p1; Np1. The map  �1 has base-points
q1; Nq1; q2; Nq2; q3; Nq3, having the same configuration (see Example 3.3). We choose
a general pair of conjugate non-real points p4; Np4 2 P

2, and write q4 D  .p4/,
Nq4 D  . Np4/. We denote by '1 a special quintic transformation having base-points

at p1; Np1; p2; Np2; p4; Np4, and by '2 a special quintic transformation having base-
points at q1; Nq1; q2; Nq2; q4; Nq4. The maps '1; '2 have four proper base-points, and are
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thus given in Example 3.2. The same proof as before implies that '2 .'1/�1 is a
special quintic transformation with four base-points. This gives the result. ut
Lemma 3.8. Let 'WP2 Ü P

2 be a birational map that decomposes as ' D
'5 	 	 	'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D P

2,
X1 D Q3;1, X2 D X3 D D6, X4 D Q3;1, X5 D P

2. If '2 is an automorphism of
D6.R/ and '4'3'2 sends the base-point of .'1/�1 onto the base-point of '5, then '
is an automorphism of P2.R/ of degree 5.

Proof. We have the following commutative diagram, where each �i is the blow-up
of two conjugate non-real points and each �i is the blow-up of one real point. The
two maps .'2/�1 and '4 are also blow-ups of non-real points.

Y2
�2

��


 �3

		�
��

��
��

�

Y1

�1



��
��
��
��
��
��
��
�� �1

		�
��

��
��

�
D6

.'2/
�1

��

'3
����������� D6

'4

��

Y3
�2

����
��
��
��

�4

���
��
��
��
��
��
��
��
�

Q3;1 Q3;1

'5

���
��������

P
2

'1

���������

'

�������������������������������� P
2:

The only real base-points are those blown-up by �1 and �2. Since �2 blows-up the
image by '4'3'2 of the real point blown-up by �1, the map ' has at most 6 base-
points, all being non-real, and the same holds for '�1. Hence, ' is an automorphism
of P2.R/ with at most 6 base-points. We can moreover see that ' 62 AutR.P2/, since
the two curves of Y2 contracted by �2 are sent by '4�3 onto conics of Q3;1, which
are therefore not contracted by '5.

Lemma 3.5 implies that  has degree 5. ut
Proposition 3.9. The group Aut.P2.R// is generated by AutR.P2/ and by elements
of Aut.P2.R// of degree 5.

Proof. Let us prove that any ' 2 Aut.P2.R// is generated by AutR.P2/ and
elements of Aut.P2.R// of degree 5 . Applying Proposition 2.7, we decompose '
into Sarkisov links ' D 'r 	 	 	'1 such that

.i/ for i D 1; : : : ; r � 1, the map 'iC1'i is not biregular;
.ii/ for i D 1; : : : ; r , every real base-point of 'i is a base-point of 'r : : : 'i .

In particular, '1 has no real base-point.
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We proceed by induction on r , the case r D 0, corresponding to ' 2 AutR.P2/,
being obvious. We also observe that the decompositions of smaller length obtained
by the induction process still satisfy property .i i/ above. We can assume that .i/ is
also satisfied, because removing a biregular map 'iC1'i produces a decomposition
of smaller length, still having the property .i i/.

Since '1 has no real base-point, the first link '1 is then of type II from P
2 to

Q3;1, and 'r 	 	 	'2 has a unique real base-point r 2 Q3;1, which is the base-point
of .'1/�1. If '2 would blow-up this point, then '2'1 would be biregular, hence '2
is a link of type I from Q3;1 to D6. We can write the map '2'1 as ���1, where
�WX ! P

2 is the blow-up of two pairs of non-real points, say p1; Np1; p2; Np2 and
�WX ! D6 is the contraction of the strict transform of the real line passing through
p1; Np1, onto a real point q 2 D6. Note that p1; Np1 are proper points of P2, blown-up
by '1 and p2; Np2 either are proper base-points or are infinitely near to p1; Np1.

The fibration D6 ! P
1 corresponds to conics through p1; Np1; p2; Np2. If '3 was a

link of type III, then '3'2 would be biregular, so '3 is of type II.
If q is a base-point of '3, then '3 D �0��1, where �0WX ! D6 is the contraction

of the strict transform of the line throughp2; Np2. We can then write '3'2'1 into only
two links, exchangingp1 with p2 and Np1 with Np2, and this decreases r and preserves
property .i i/ on real base-points.

The remaining case is when '3 is the blow-up of two non-real points p3; Np3 of
D6, followed by the contraction of the strict transforms of their fibres. We denote by
q0 2 D6.R/ the image of q by '3, consider 4 D .'2/

�1W D6 ! Q3;1, which is a link
of type III, and write  5WQ3;1 Ü P

2 the stereographic projection by  4.q0/, which
is a link of type II centered at  4.q0/. By Lemma 3.8, the map � D  5 4'3'2'1 is
an element of Aut.P2.R// of degree 5. Since '��1 decomposes into one link less
than ', with a decomposition having still property .i i/, this concludes the proof by
induction. ut
Proof of Theorem 1.2. By Proposition 3.9, Aut.P2.R// is generated by AutR.P2/
and by elements of Aut.P2.R// of degree 5. Thanks to Lemma 3.7, Aut.P2.R// is
indeed generated by projectivities and standard quintic transformations. ut

4 Generators of the Group BirR.P2/

Lemma 4.1. Let 'WQ3;1 Ü Q3;1 be a birational map that decomposes as ' D
'3'2'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D Q3;1 D
X2, X1 D D6. If '2 has a real base-point, then ' can be written as ' D  2 1,
where  1; . 2/�1 are links of type II from Q3;1 to P

2.

Proof. We have the following commutative diagram, where each of the maps �1; �2
blow-ups a real point, and each of the maps .'1/�1; '3 is the blow-up of two
conjugate non-real points.
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Y

�1

��



 �2

		�
��

��
��

��

D6

.'1/
�1

��

'2
����������� D6

'3

��
Q3;1

'
���������� Q3;1:

The map ' has thus exactly three base-points, two of them being non-real and one
being real; we denote them by p1; Np1, q. The fibres of the Mori fibration D6 !
P
1 correspond to conics of Q3;1 passing through the points p1; Np1. The real curve

contracted by �2 is thus the strict transform of the conic C of Q3;1 passing through
p1; Np1 and q. The two curves contracted by '3 are the two non-real sections of self-
intersection �1, which corresponds to the strict transforms of the two non-real lines
L1;L2 of Q3;1 passing through q.

We can then decompose ' as the blow-up of p1; p2; q, followed by the
contraction of the strict transforms of C;L1;L2. Denote by 1WQ3;1 Ü P

2 the link
of type II centered at q, which is the blow-up of q followed by the contraction of
the strict transform of L1;L2, or equivalently the stereographic projection centered
at q. The curve  1.C / is a real line of P2, which contains the two points  1.p1/,
 1. Np1/. The map  2 D '. 1/

�1WP2 Ü Q3;1 is then the blow-up of these two
points, followed by the contraction of the line passing through both of them. It is
then a link of type II. ut
Proof of Theorem 1.1. Let us prove that any ' 2 BirR.P2/ is in the group generated
by AutR.P2/, �0, �1, and standard quintic transformations of P2. We decompose '
into Sarkisov links: ' D 'r 	 	 	'1. By Corollary 2.19, we can assume that all the 'i
are links of type I; III, or standard links of type II.

We proceed by induction on r , the case r D 0, corresponding to ' 2 AutR.P2/,
being obvious.

Note that '1 is either a link of type I from P
2 to F1, or a link of type II from P

2

to Q3;1. We now study the possibilities for the base-points of '1 and the next links:
.1/ Suppose that '1WP2 Ü F1 is a link of type I, and that '2 is a link F1 Ü F1.

Then, '2 blows-up two non-real base-points of F1, not lying on the exceptional
curve. Hence, D .'1/

�1'2'1 is a quadratic transformation of P2 with three proper
base-points, one real and two non-real. It is thus equal to ˛�1ˇ for some ˛; ˇ 2
AutR.P2/. Replacing ' with ' �1, we obtain a decomposition with less Sarkisov
links, and conclude by induction.
.2/ Suppose that '1WP2 Ü F1 is a link of type I, and that '2 is a link F1 Ü F0.

Then, '2'1 is the blow-up of two real pointsp1; p2 of P2 followed by the contraction
of the line through p1; p2. The exceptional divisors corresponding to p1; p2 are two
.0/-curves of F0 D P

1 � P
1, intersecting at one real point.



52 J. Blanc and F. Mangolte

.2a/ Suppose first that '3 has a base-point which is real, and not lying onE1;E2.
Then,  D .'1/

�1'3'2'1 is a quadratic transformation of P
2 with three proper

base-points, all real. It is thus equal to ˛�0ˇ for some ˛; ˇ 2 AutR.P2/. Replacing
' with ' �1, we obtain a decomposition with less Sarkisov links and conclude by
induction.
.2b/ Suppose now that '3 has non-real base-points, which are q; Nq. Since '3

is a standard link of type II, it goes from F0 to F0, so q and Nq do not lie on a
.0/-curve, and then do not belong to the curves E1;E2. We can then decompose
'2'3WF1 Ü F2 into a Sarkisov link centered at two non-real points, followed by
a Sarkisov link centered at a real point. This reduces to case .1/, already treated
before.
.2c/ The remaining case (for .2/) is when '3 has a base-point p3 which is real,

but lying on E1 or E2. We choose a general real point p4 2 F0, and denote by
� WF0 Ü F1 a Sarkisov link centered at p4. We observe that  D .'1/

�1�'2'1
is a quadratic map as in case .2a/, and that ' �1 D 'n : : : '3�

�1'1 admits now a
decomposition of the same length, but which is in case .2a/.
.3/ Suppose now that '1WP2 Ü Q3;1 is a link of type II and that '2 is a link

of type II from Q3;1 to P
2. If '2 and .'1/�1 have the same real base-point, the map

'2'1 belongs to AutR.P2/. Otherwise, '2'1 is a quadratic map with one unique
real base-point q and two non-real base-points. It is then equal to ˛�0ˇ for some
˛; ˇ 2 AutR.P2/. We conclude as before by induction hypothesis.
.4/ Suppose that '1WP2 Ü Q3;1 is a link of type II and '2 is a link of type I

from Q3;1 to D6. If '3 is a Sarkisov link of type III, then '3'2 is an automorphism
of Q3;1, so we can decrease the length. We only need to consider the case where '3
is a link of type II from D6 to D6. If '3 has a real base-point, we apply Lemma 4.1
to write .'2/�1'3'2 D  2 1 where  1; . 2/�1 are links Q3;1 Ü P

2. By .3/,
the map � D  1'1 is generated by AutR.P2/ and �0. We can then replace ' with
'��1 D 'r 	 	 	'3'2. 1/�1 D 'r 	 	 	'4'2 2, which has a shorter decomposition.
The last case is when '3 has two non-real base-points. We denote by q 2 Q3;1

the real base-point of .'1/�1, write q0 D .'2/
�1'3'2.q/ 2 Q3;1 and denote by

 WQ3;1 Ü P
2 the stereographic projection centered at q0. By Lemma 3.8, the map

� D  .'2/
�1'3'2'1 is an automorphism of P2.R/ of degree 5, which is generated

by AutR.P2/ and standard automorphisms of P2.R/ of degree 5 (Lemma 3.7). We
can thus replace ' with '��1, which has a decomposition of shorter length. ut

5 Generators of the Group Aut.Q3;1.R//

Example 5.1. Let p1; Np1; p2; Np2 2 Q3;1 � P
3 be two pairs of conjugate non-real

points, not on the same plane of P
3. Let �WX ! Q3;1 be the blow-up of these

points. The non-real plane of P3 passing through p1; Np2; Np2 intersects Q3;1 onto a
conic, having self-intersection 2: two general different conics on Q3;1 are the trace
of hyperplanes, and intersect then into two points, being on the line of intersection
of the two planes. The strict transform of this conic on X is thus a .�1/-curve.
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Doing the same for the other conics passing through 3 of the points p1; Np1; p2; Np2,
we obtain four disjoint .�1/-curves on X , that we can contract in order to obtain
a birational morphism �WX ! Q3;1; note that the target is Q3;1 because it is a
smooth projective rational surface of Picard rank 1. We obtain then a birational map
 D ���1WQ3;1 Ü Q3;1 inducing an isomorphismQ3;1.R/ ! Q3;1.R/.

Denote byH � Q3;1 a general hyperplane section. The strict transform ofH on
X by ��1 has self-intersection 2 and has intersection 2 with the 4 curves contracted.
The image  .H/ has thus multiplicity 2 and self-intersection 18; it is then the trace
of a cubic section. The construction of  and  �1 being similar, the linear system
of  consists of cubic sections with multiplicity 2 at p1; Np1; p2; Np2.
Example 5.2. Let p1; Np1 2 Q3;1 � P

3 be two conjugate non-real points and let
�1WX1 ! Q3;1 be the blow-up of the two points. Denote by E1; NE1 � X1 the
curves contracted onto p1; Np1 respectively. Let p2 2 E1 be a point, and Np2 2 NE1
its conjugate. We assume that there is no conic of Q3;1 � P

3 passing through
p1; Np1; p2; Np2 and let �2WX2 ! X1 be the blow-up of p2; Np2.

On X , the strict transforms of the two conics C; NC of P
2, passing through

p1; Np1; p2 and p1; Np1; Np2 respectively, are non-real conjugate disjoint .�1/ curves.
The contraction of these two curves gives a birational morphism �2WX2 ! Y1.
On this latter surface, we find two disjoint conjugate non-real .�1/-curves. These
are the strict transforms of the exceptional curves associated with p1; Np1. The
contraction of these curves gives a birational morphism �1WY1 ! Q3;1. The
birational map  D �1�2.�1�2/

�1WQ3;1 Ü Q3;1 induces an isomorphism
Q3;1.R/ ! Q3;1.R/.

Definition 5.3. The birational maps of Q3;1 of degree 3 obtained in Example 5.1
will be called standard cubic transformations and those of Example 5.2 will be
called special cubic transformations.

Note that since Pic.Q3;1/ D ZH , where H is an hyperplane section, we can
associate with any birational map Q3;1 Ü Q3;1, an integer d , which is the degree
of the map, such that  �1.H/ D dH .

Lemma 5.4. Let  WQ3;1 Ü Q3;1 be a birational map inducing an isomorphism
Q3;1.R/ ! Q3;1.R/. The following hold:

.1/ The degree of  is 2k C 1 for some integer k � 0.

.2/ If  has degree 1, it belongs to AutR.Q3;1/ D PO.3; 1/.

.3/ If  has degree 3, then it is a standard or special cubic transformation,
described in Examples 5.1 and 5.2, and has thus exactly 4 base-points.

.4/ If  has at most 4 base-points, then  has degree 1 or 3.

Proof. Denote by d the degree of  and by a1; : : : ; an the multiplicities of the
base-points of  . Denote by �WX ! Q3;1 the blow-up of the base-points, and by
E1; : : : ; En 2 Pic.X/ the divisors being the total pull-back of the exceptional .�1/-
curves obtained after blowing-up the points. Writing �WX ! Q3;1 the birational
morphism  � , we obtain
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��.H/ D d��.H/�Pn
iD1 aiEi

KX D ��.�2H/CPn
iD1 Ei :

Since H corresponds to a smooth rational curve of self-intersection 2, we have
.��.H//2 and ��.H/ 	KX D �4. We find then

2 D .��.H//2 D 2d2 �Pn
iD1.ai /2

4 D �KX 	 ��.H/ D 4d �Pn
iD1 ai :

Since multiplicities come by pairs, n D 2m for some integer m and we can order
the ai so that ai D anC1�i for i D 1; : : : ; m. This yields

d2 � 1 D Pm
iD1.ai /2

2.d � 1/ D Pm
iD1 ai

Since .ai /2 � ai .mod 2/, we find d2 � 1 � 2.d � 1/ � 0 .mod 2/, hence d is
odd. This gives .1/.

If the number of base-points is at most 4, we can choose m D 2, and obtain by
Cauchy–Schwartz

4.d � 1/2 D
 

mX

iD1
ai

!2

� m

mX

iD1
.ai /

2 D m.d2 � 1/ D 2.d2 � 1/:

This yields 2.d � 1/ � d C 1, hence d � 3.
If d D 1, all ai are zero, and  2 AutR.Q3;1/.
If d D 3, we get

Pm
iD1.ai /2 D 8,

Pm
iD1 ai D 4, so m D 2 and a1 D

a2 D 2. Hence, the base-points of  consist of two pairs of conjugate non-real
points p1; Np1; p2; Np2. Moreover, if a conic passes through 3 of the points, its free
intersection with the linear system is zero, so it is contracted by  , and there is no
conic through the four points.

.a/ If the four points belong to Q3;1, the map is a standard cubic transformation,
described in Example 5.1.

.b/ If two points are infinitely near, the map is a special cubic transformation,
described in Example 5.2. ut

Lemma 5.5. Let 'WQ3;1 Ü Q3;1 be a birational map that decomposes as ' D
'3'2'1, where 'i WXi�1 Ü Xi is a Sarkisov link for each i , where X0 D Q3;1 D
X2, X1 D D6. If '2 is an automorphism of D6.R/, then ' is a cubic automorphism
ofQ3;1.R/ of degree 3 described in Examples 5.1 and 5.2. Moreover, ' is a standard
cubic transformation if and only if the link '2 of type II is a standard link of type II.

Proof. We have the following commutative diagram, where each of the maps �1,
�2, .'1/�1, '3 is the blow-up of two conjugate non-real points.
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Y

�1

��





�2

		�
��

��
��

��

D6

.'1/
�1

��

'2
����������� D6

'3

��
Q3;1

'
���������� Q3;1:

Hence, ' is an automorphism of P2.R/with at most 4 base-points. We can moreover
see that ' 62 AutR.Q3;1/, since the two curves of Y contracted by �2 are sent by
'3�2 onto conics of Q3;1, contracted by '�1.

Lemma 3.5 implies that ' is cubic automorphism of Q3;1.R/ of degree 3
described in Examples 5.1 and 5.2. In particular, ' has exactly four base-points,
blown-up by .'1/�1�1. Moreover, ' is a standard cubic transformation if and only
these four points are proper base-points ofQ3;1. This corresponds to saying that the
two base-points of '2 do not belong to the exceptional curves contracted by .'1/�1,
and is thus the case exactly when '2 is a standard link of type II. ut
Proof of Theorem 1.3. Let us prove that any ' 2 Aut.Q3;1.R// is generated
by AutR.Q3;1/ and standard cubic transformations of Aut.Q3;1.R// of degree 3.
Applying Proposition 2.7, we decompose ' into Sarkisov links: ' D 'r 	 	 	'1, and
assume that every real base-point of 'i is a base-point of 'r : : : 'i . This property
implies that all links are either of type I, from Q3;1 to D6, of type II from D6 to
D6 with non-real base-points, or of type III from D6 to Q3;1. In particular, all base-
points of the 'i and their inverses are non-real. (Note that here the situation is easier
than in the case of P2, since no link produces “artificial” real base-points).

By Lemma 2.18, we can also assume that all links of type II are standard.
We proceed by induction on r . The first link '1 is of type I from Q3;1 to D6. If

'2 is of type III, then '2'1 2 AutR.Q3;1/. We replace these two links and conclude
by induction. If '2 is a standard link of type II, then  D .'1/

�1'2'1 is a standard
cubic transformation. Replacing ' with ' �1 decreases the number of links, so we
conclude by induction. ut

5.1 Twisting Maps and Factorisation

Choose a real line L � P
3, which does not meet Q3;1.R/. The projection from L

gives a morphism �LWQ3;1.R/ ! P
1.R/, which induces a conic bundle structure

on the blow-up �LW D6 ! Q3;1 of the two non-real points of L \Q3;1.
We denote by T .Q3;1; �L/ � Aut.Q3;1.R// the group of elements ' 2

Aut.Q3;1.R// such that �L' D �L and such that the lift .�L/�1'�L 2 Aut.D6.R//
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preserves the set of two non-real .�1/-curves which are sections of the conic
bundle �L�L.

Any element ' 2 T .Q3;1; �L/ is called a twisting map of Q3;1 with axis L.
Choosing the line w D x D 0 for L, we can get the more precise description

given in [6, 11]: the twisting maps corresponds in local coordinates .x; y; z/ 7!
.1 W x W y W z/ to

'M W .x; y; z/ 7! �
x; .y; z/ 	M.x/�

whereM W Œ�1; 1	 ! O.2/ � PGL.2;R/ D Aut.P1/ is a real algebraic map.

Proposition 5.6. Any twisting map with axis L is a composition of twisting maps
with axis L, of degree 1 and 3.

Proof. We can assume that L is the line y D z D 0.
The blow-up �LW D6 ! Q3;1 is a link of type III, described in Example 2.13(3),

which blows-up two non-real points of Q3;1. The fibres of the Mori Fibration
�W D6 ! P

1 correspond then, via �L, to the fibres of �LWQ3;1.R/ ! P
1.R/.

Hence, a twisting map of Q3;1 corresponds to a map of the form �'��1, where
'W D6 Ü D6 is a birational map such that �' D � , and which preserves the set of
two .�1/-curves. This implies that ' has all its base-points on the two .�1/-curves.
It remains to argue as in Lemma 2.18 and decompose ' into links that have only
base-points on the set of two .�1/-curves. ut

6 Generators of the Group Aut.F0.R//

Proof of Theorem 1.4. Let us prove that any ' 2 Aut.F0.R// is generated by
AutR.F0/ and by the involution

�0W ..x0 W x1/; .y0 W y1// Ü ..x0 W x1/; .x0y0 C x1y1 W x1y0 � x0y1//:

Observe that �0 is a Sarkisov link F0 Ü F0 that is the blow-up of the two non-real
points p D ..i W 1/; .i W 1//, Np D ..�i W 1/; .�i W 1//, followed by the contraction of
the two fibres of the first projection F0 ! P

1 passing through p; Np.
Applying Proposition 2.7, we decompose ' into Sarkisov links: ' D 'r 	 	 	'1,

and assume that every real base-point of 'i is a base-point of 'r : : : 'i . This property
implies that all links are either of type IV from F0 to F0, or of type II, from F2d to
F2d 0 , with exactly two non-real base-points. In particular, as for the case of Q3;1,
there is no real base-point which is artificially created.

By Lemma 2.18, we can also assume that all links of type II are standard, so all
go from F0 to F0.

Each link of type IV is an element of AutR.F0/.
Each link 'i of type II consists of the blow-up of two non-real points q; Nq,

followed by the contraction of the fibres of the first projection F0 ! P
1 passing
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through q; Nq. Since the two points do not belong to the same fibre by any projection,
we have q D ..a C ib W 1/; .c C id W 1//, for some a; b; c; d 2 R, bd 6D 0. There
exists thus an element ˛ 2 AutR.F0/ that sends q onto p and then Nq onto Np. In
consequence, �0˛.'i /�1 2 AutR.P2/. This yields the result. ut

7 Other Results

7.1 Infinite Transitivity on Surfaces

The group of automorphisms of a complex projective algebraic variety is small: in
most of the cases it is a finite dimensional algebraic group. Moreover, the group
of automorphisms is 3-transitive only if the variety is P

1. On the other hand, it
was proved in [6] that for a real rational surface X , the group of automorphisms
Aut.X.R// acts n-transitively on X.R/ for any n. The next theorem determines all
real algebraic surfaces X having a group of automorphisms which acts infinitely
transitively on X.R/.

Definition 7.1. Let G be a topological group acting continuously on a topological
space M . We say that two n-tuples of distinct points .p1; : : : ; pn/ and .q1; : : : ; qn/
are compatible if there exists an homeomorphism WM ! M such that .pi / D qi
for each i . The action ofG onM is then said to be infinitely transitive if for any pair
of compatible n-tuples of points .p1; : : : ; pn/ and .q1; : : : ; qn/ ofM , there exists an
element g 2 G such that g.pi / D qi for each i . More generally, the action of G
is said to be infinitely transitive on each connected component if we require the
above condition only in case, for each i , pi and qi belong to the same connected
component ofM .

Theorem 7.2 ([2]). Let X be a nonsingular real projective surface. The group
Aut

�
X.R/

�
is then infinitely transitive on each connected component if and only

if X is geometrically rational and #X.R/ � 3.

7.2 Density of Automorphisms in Diffeomorphisms

In [11], it is proved that Aut
�
X.R/

�
is dense in Diff

�
X.R/

�
for the C1-topology

when X is a geometrically rational surface with #X.R/ D 1 (or equivalently when
X is rational). In the cited paper, it is said that #X.R/ D 2 is probably the only
other case where the density holds. The following collect the known results in this
direction.
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Theorem 7.3 ([2, 11]).
Let X be a smooth real projective surface.

• If X is not a geometrically rational surface, then Aut
�
X.R/

� ¤ Diff
�
X.R/

�
;

• If X is a geometrically rational surface, then

– If #X.R/ � 5, then Aut
�
X.R/

� ¤ Diff
�
X.R/

�
;

– if #X.R/ D 1, then Aut
�
X.R/

� D Diff
�
X.R/

�
.

For i D 3; 4, there exists smooth real projective surfaces X with #X.R/ D i

such that Aut
�
X.R/

� ¤ Diff
�
X.R/

�
.

In the above statements, the closure is taken in the C1-topology.
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