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Abstract This article deals with the study of the birational transformations of the projective
complex plane which leave invariant an irreducible algebraic curve. We try to describe the
state of the art and provide some new results on this subject.
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1 Introduction

1.1 The decomposition and inertia groups

We study the birational transformations of the projective complex plane which leave invariant
an irreducible algebraic curve.

We denote by Bir(P2) the group of birational transformations of the complex projective
plane P

2 = P
2(C): this is the Cremona group of P

2. If C ⊂ P
2 is an irreducible curve and

ϕ ∈ Bir(P2), we say that ϕ preserves C (or leaves C invariant) if ϕ restricts to a birational
transformation of C . If this transformation is the identity, we say that ϕ fixes C .
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Let C ⊂ P
2 be an irreducible plane curve. Following Gizatullin [23], we introduce the

decomposition group of C in Bir(P2), denoted here by Dec(P2, C) = Dec(C), as the group
of Cremona transformations that preserve C . The action ρ of Dec(C) on C induces a (not
necessarily exact) complex

1 �� Ine(C) �� Dec(C)
ρ �� Bir(C) �� 1, (1)

where Ine(C) = Ine(P2, C) := ker(ρ) is the inertia group of C in Bir(P2), which is the
group of Cremona transformations that fix C .

1.2 Birational geometry of pairs

The above notions can be generalised to pairs (S, C), where S is a surface and C ⊂ S
an irreducible curve. We say that a birational transformation ϕ : S ��� S′ is a birational
transformation of pairs ϕ : (S, C) ��� (S′, C ′) if it restricts to a birational transformation
ϕ|C : C ��� C ′, and in this case we say that the two pairs are birationally equivalent. The
group of birational transformations of a pair (S, C) is denoted by Dec(S, C) and induces as
before a complex

1 �� Ine(S, C) �� Dec(S, C)
ρ �� Bir(C) �� 1, (2)

which is exactly the complex (1) if S = P
2 (and in this case we omit the surface in the nota-

tion). We will say that (2) is the canonical complex of the pair (S, C). Note that Aut(S, C) :=
Aut(S) ∩ Dec(S, C) is the group of automorphisms of S that leave the curve C invariant.

1.3 Outline of the article

The aim of this article is to give a survey about the pairs (P2, C) whose decomposition group
is not trivial, together with a description of their corresponding canonical complexes; we
point out what is known to us about the subject and give some new results.

Sections 2, 3 and 4 deal respectively with curves of genus ≥2, 1 and 0. Sections 5 and 6
express the link between the transformations that preserve or fix curves with respectively the
classification of finite subgroups and the dynamics of the elements of Bir(P2).

1.4 Conventions

In the sequel, g(C) will denote the geometric genus of an irreducible curve C . Recall also that
a de Jonquières transformation is a birational transformation of P

2 that preserves a pencil of
lines. Finally, all our surfaces are assumed to be rational, smooth, projective and irreducible.

2 Curves of genus at least equal to 2

2.1 The main tool: adjoint linear systems

Let C ⊆ P
2 be an irreducible curve with g(C) ≥ 2. To study the group Dec(C), we follow

an idea of Castelnuovo and Enriques which consists in considering the adjoint linear system
associated to C : we take an embedded resolution of the singularities of C , say σ : Y → P

2,
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denote by ˜C ⊂ Y the strict transform of C and consider the linear system σ∗|KY + ˜C | and its
fixed part �. By definition, the adjoint system Adj(C) is the linear system σ∗|KY + ˜C | − �.
By Riemann-Roch it has dimension g(C) − 1 > 0. The main result is:

Proposition 2.1.1 ([11], [10, Prop. 2.5]) Let C ⊂ P
2 be an irreducible curve with g(C) ≥ 2.

If ϕ ∈ Bir(P2) sends (P2, C) onto (P2, D), then it sends Adj(C) onto Adj(D). In particular,
the group Dec(C) = Dec(P2, C) stabilizes the linear system Adj(C).

One can also define the adjoint of a linear system by taking the adjoint of a general member
of the system. Since this construction decreases the degree of the curves, it has to stop after
a finite number of iterations when the curves have no adjoint, i.e. when they have genus 0 or
1. This yields:

Proposition 2.1.2 ([10, Prop. 2.12]) Let C ⊂ P
2 be an irreducible curve, with g(C) ≥ 2.

There exists a linear system (resp. a pencil) of elliptic or rational curves � such that Dec(C)

(resp. Ine(C)) stabilizes �.

2.2 The inertia group of curves of genus ≥2

Castelnuovo used the existence of the invariant pencils yielded by Proposition 2.1.2 to bound
the order of elements of finite order of Ine(C):

Theorem 2.2.1 ([11], [24, Chap.VIII, Sect. 2], [13, Book IV, Chap. VII, Sect. 3]) Let C ⊂ P
2

be an irreducible curve with g(C) ≥ 2, and let ϕ ∈ Ine(C), ϕ 	= 1. Then, either ϕ is conjugate
to a de Jonquières transformation or ϕ has order 2, 3 or 4.

In [10], an examination of the two possible cases of pencils yielded by Proposition 2.1.2
leads to a precise description of all pairs (P2, C) having a non-trivial inertia group. This gen-
eralises Castelnuovo’s theorem. We describe these cases in Examples 2.2.2, 2.2.3 and 2.2.4
below and then state the classification result (Theorem 2.2.5).

Example 2.2.2 ([1,6,13,14,24,27,36])

(a) Let p1, . . . , p7 be 7 points in the plane in general position. The Geiser involution is
defined as follows: a general point q in the plane determines a pencil of cubic curves
which pass through q and the seven points p1, . . . , p7; this pencil has a ninth base-
point, which is the image of q by the Geiser involution. This involution fixes a non
hyperelliptic curve of genus 3 that is a sextic with ordinary double points at p1, . . . , p7

and whose smooth model is a plane quartic ([27] or [24]); the blow-up of the seven
points conjugates the Geiser transformation to an automorphism of a del Pezzo surface
of degree 2 ([1]).

(b) Let p1, . . . , p8 be 8 points in the plane in general position. The Bertini involution is
defined as follows: a general point q in the plane determines a linear system of sextic
curves which pass through q and are singular at each of the eight points p1, . . . , p8. This
linear system has a tenth base-point, which is the image of q by the Bertini involution.
This involution fixes a non hyperelliptic curve of genus 4 that is a nonic with ordinary
triple points at p1, . . . , p8 and whose smooth model lies on a quadratic cone; the blow-
up of the eight points conjugates the Bertini transformation to an automorphism of a
del Pezzo surface of degree 1 (same references as above).
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(c) Let C ⊂ P
2 be a curve of degree g + 2 with an ordinary g-fold point and which is

smooth everywhere else. The de Jonquières involution associated to C is defined in the
following way: the restriction of the transformation to a general line passing through
the g-fold point of C is the unique involution that preserves this line and fixes the two
other points of intersection of C with the line ([1,15]).

Example 2.2.3 ([6,14,18])
Consider the smooth surface S defined by the equation w2 = z3+F6(x, y) in the weighted

projective space P(3, 1, 1, 2), where F6 is a homogeneous polynomial of degree 6 with 6 sim-
ple roots: it is a particular type of del Pezzo surface of degree 1. The restriction of the map
(w : x : y : z) 
→ (w : x : y : ωz), where ω is a primitive cube root of 1, defines an auto-
morphism of S of order 3 whose set of fixed points is the union of a point and an irreducible
curve ˜C of genus 2. The curve is linearly equivalent to −2KS , hence any birational morphism
S → P

2 sends this curve onto a sextic with 8 ordinary double points in general position.

Example 2.2.4 ([10])
Let h ∈ C[x] be a polynomial of degree 2g + 2 without multiple roots. Consider the

subgroup

Th :=
{(

a1 ha2

a2 a1

)

: ai ∈ C(x), a2
1 − ha2

2 	= 0

}

of GL(2, C(x)) and denote by Jh its image in PGL(2, C(x)). To each a ∈ Jh , we associate
a rational map Fa : C

2 ����� C
2 defined by

(x, y) 
→
(

x,
a1 y + ha2

a2 y + a1

)

;

this is a de Jonquières transformation whose restriction to the hyperelliptic curve C of equa-
tion (y2 = h(x)) is the identity. When a1 = 0, we obtain an involution σ , conjugate to that
of Example 2.2.2c).

Note that Th is isomorphic to the multiplicative group C(C)∗ of the field of rational func-
tions C(C) on C , from which we deduce that Jh is isomorphic to C(C)∗/C(x)∗ and that its
torsion is generated by σ .

Theorem 2.2.5 ([10, Theorem 1.5])
Let C ⊂ P

2 be an irreducible curve of genus g ≥ 2, and assume that Ine(C) is non-trivial.
Then, either Ine(C) is a cyclic group of order 2 or 3 generated by one of the transfor-

mations from Examples2.2.2a, 2.2.2b, 2.2.3 or it is equal to the group Jh of Example2.2.4,
where (y2 = h(x)) is the affine equation of C.

In particular, Ine(C) is Abelian and if it is infinite, then C is hyperelliptic and Ine(C) is
a de Jonquières group, whose torsion is generated by a de Jonquières involution.

Note that Theorem 2.2.5 implies in particular that the elements of order 4 envisaged in
Castelnuovo’s theorem do not exist. It also implies the following result.

Corollary 2.2.6 Let S be a projective smooth rational surface and let C ⊂ S be an irreduc-
ible curve with g(C) > 1. Then, the group of elements of Aut(S) that fix C has order 1, 2
or 3.

Proof Let us write G = Ine(S, C) ∩ Aut(S). According to Theorem 2.2.5, we may assume
that G preserves a rational fibration p : S ��� P

1, and it suffices to show that no element
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of G is of infinite order. Suppose to the contrary that some ϕ ∈ G is of infinite order. After
some blow-up we may assume that p is a morphism (since ϕ acts on the base-point of the
fibration). Then, we replace ϕ by some power, and assume that ϕ preserves any component of
any singular fibre of p. This implies that ϕ is conjugate to an automorphism of a Hirzebruch
surface, which is not possible since it fixes a curve of positive genus. ��
2.3 The decomposition group of curves of genus ≥2

Applying the classification of the non-trivial inertia groups of curves of genus at least 2, we
deduce

Theorem 2.3.1 Let C ⊂ P
2 be an irreducible curve of genus g ≥ 2, and assume that Ine(C)

is non-trivial. Then, the canonical complex of (P2, C) is an exact sequence.

Proof Theorem 2.2.5 restricts the possibilities for the pair (P2, C).
The exactness of the canonical complex in the case where Ine(C) is generated by the

Geiser or Bertini involution is classical. For a proof (see [34, Thm. 1.8]), we consider the
decomposition group as a subgroup of automorphisms of a del Pezzo surface S of degree 2
or 1 and denote by σ the Geiser or the Bertini involution; then each automorphism of the
curve � fixed by σ extends to an automorphism of S because � is canonical in S/ < σ >.

In the de Jonquières case (Examples 2.2.2c and 2.2.4), denote by C the curve of degree
g + 2, by p its g-fold point and by � the pencil of lines passing through p. Let j be a
birational map of C . Since C is hyperelliptic j stabilizes the trace of � on C . Let x ∈ P

2 be
a general point. We can extend j to an element χ of Dec(C): indeed, take the line L ∈ �

through p and x and set L ∩ C = {p, qx , rx }; we define χ(x) by the relation

(p, x, qx , rx ) = (p, χ(x), j (qx ), j (rx )),

where (a, b, c, d) denotes the cross ratio of a, b, c, d .
In the last case we consider the pair (S, ˜C) as in Example 2.2.3 and observe that the

restriction homomorphism Aut(S, ˜C) → Aut(˜C) is surjective: indeed, an automorphism of
˜C extends to an automorphism of P(3, 1, 1) which lifts to an automorphism of S. ��
Remark 2.3.2 It can be observed that the exact sequence described above is split in the de
Jonquières and Geiser cases, and in the case of Example 2.2.3. However it does not split in
the Bertini case (there are square roots of the Bertini involution, see [6, Table 1]).

Theorem 2.3.1 completes the classification of pairs (P2, C) and canonical complexes such
that Ine(C) 	= 1.

What happens when the group Ine(C) is trivial? Firstly, we can state the following obvious
result:

Lemma 2.3.3 Let C ⊂ P
2 be an irreducible curve of genus g ≥ 2, and assume that

Ine(C) = 1. Then Dec(C) is isomorphic to a subgroup of Bir(C), and is a finite group.
In particular, when C is generic, Ine(C) = Dec(C) = 1.

Proof It suffices to observe that Bir(C) is isomorphic to the automorphism group of the
normalization of C and to recall that this group is finite when g(C) ≥ 2 and is trivial if C is
generic. ��
The canonical complex is therefore trivially exact for a general curve. However, there exist
examples where the map Dec(C) → Bir(C) is not surjective, see Sections 2.5, 3.3, 4.2 and
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4.3. These examples rely on Theorem 2.3.4 below. For each point p that belongs to an irreduc-
ible curve C ⊂ P

2, as a proper or infinitely near point, we denote by m p(C) the multiplicity
of C (or of its strict transform) at p; if p does not belong to C , we write m p(C) = 0.

Theorem 2.3.4 Let C ⊂ P
2 be an irreducible curve of degree n and let ϕ ∈ Bir(P2).

Suppose that 3m p(C) ≤ n for each point p and that ϕ sends C onto a curve D of
degree ≤ n.

Then, each base-point q of ϕ belongs to C as a proper or infinitely near point, and
3mq(C) = n. Moreover, the degree of D is n.

Proof We may assume that ϕ is not an automorphism of P
2. Let � be the homoloidal net

associated to ϕ (which is the strict pull-back by ϕ of the linear system of lines of P
2) and

let η : X → P
2 be a minimal birational morphism that solves the indeterminacies of ϕ (or

equivalently the base-points of �). Denote by d the degree of ϕ (which is the degree of the
curves of �), by q1, . . . , qk the base-points of ϕ (or �), which may be proper or infinitely
near points of P

2, and by ai the multiplicity of qi as a base-point of �. We have ai ≥ 1 and
mqi = mqi (C) ≥ 0.

Consider now the strict transforms ˜� of � and ˜C of C on X . Then, ˜� is base-point-free
and ˜�2 = 1. Using the adjunction formula we find the classical equality 3(d −1) = ∑k

i=1 ai .
Computing the free intersection of ˜� and ˜C (which is equal to the degree of the image D of
C , and is, by hypothesis, at most equal to n), we find dn − ∑k

i=1 ai · mqi ≤ n. This yields,
with the above equality:

k
∑

i=1

n · ai = 3n(d − 1) ≤
k

∑

i=1

3mqi · ai . (3)

Since 3mqi ≤ n and ai ≥ 1 for i = 1, . . . , k, the inequality (3) is an equality. This implies
that deg(D) = n and 3mqi = n for i = 1, . . . , k. ��
Corollary 2.3.5 Let C ⊂ P

2 be a smooth curve of degree n.

1. If n = 3, every base-point of each element of Dec(C) belongs to C, as a proper or
infinitely near point.

2. If n > 3, then every element of Dec(C) is an automorphism of the plane, i.e. Dec(C)

= Aut(P2, C).

Proof Apply Theorem 2.3.4, with mq(C) = 1 for any point q that belongs to C as a proper
or infinitely near point. ��
The first part of Corollary 2.3.5 can be found in [34, Theorem 1.3] and the second in [34,
Cor. 3.6] and [30] (see also [37, p. 181] and [13, Book IV, Chap. VII, Sect. 3, Thm. 11]).

Another important corollary is the following one, which describes the inertia group of
a family of classical curves (Halphen curves, Coble curves, …) as a subgroup of automor-
phisms of a rational surface. We will use this to provide examples of plane curves whose
canonical complex is not exact.

Corollary 2.3.6 Let p1, . . . , pk ∈ P
2 be k distinct proper points of P

2 and let C ⊂ P
2 be

an irreducible curve of degree 3n, with n > 1, which has multiplicity n at each pi . Denote
by π : X → P

2 the blow-up of the k points and assume that the strict pull-back ˜C of C by π

is a smooth curve. Then,

1. π−1Dec(P2, C)π = Dec(X, ˜C) = Aut(X, ˜C).
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2. Let D ⊂ P
2 be an irreducible curve of degree ≤ 3n and let ϕ : (P2, C) ����� (P2, D)

be a birational map. Denote by η : Y → P
2 an embedded minimal resolution of the

singularities of D and by ˜D ⊂ Y the strict transform of D.
Then, ϕ lifts to an isomorphism ϕ′ : (X, ˜C) → (Y, ˜D) such that ηϕ′ = ϕπ . Furthermore,
the degree of D is 3n.

Proof Let us prove assertion (2). Theorem 2.3.4 implies that the base-point locus of ϕ is
contained in {p1, . . . , pk}. Then, ϕπ is a birational morphism X → P

2, that we denote by
ν. Since the curve ˜C is equivalent to −nK X , the degree of the curve ν(˜C) = D is 3n and
every (−1)-curve of X intersects ˜C at n points. This implies that ν is an embedded minimal
resolution of the singularities of D. The two birational morphisms ν and η differ only by an
isomorphism ϕ′ : X → Y , which sends ˜C onto ˜D.

The assertion (1) is a particular case of (2). Indeed, for φ ∈ Dec(P2, C), the element
φ′ = π−1φπ belongs to Aut(X, ˜C) and consequently the group π−1Dec(P2, C)π is con-
tained in Aut(X, ˜C); the other inclusion is obvious. ��

2.4 Examples of different birational embeddings of curves of genus 2 in P
2

Let C be any abstract smooth curve of genus 2. It is isomorphic to the curve z2 = F6(x, y)

in the weighted projective plane P(1, 1, 3), for some form F6 of degree 6, having 6 sim-

ple roots. There exists a birational morphism C
ϕ1→ C0 where C0 is a quartic of P

2 with
one ordinary double point, and furthermore there is only one choice of C0, up to biration-
al equivalence of the pair (P2, C0) (see [1]). The group Ine(C0) is infinite and described
in Example 2.2.4 (Theorem 2.2.5); moreover the canonical complex of (P2, C0) is an exact
sequence (Theorem 2.3.1).

Let F4 be any form of degree 4 in two variables (possibly equal to zero), and define S
to be the surface with equation w2 = z3 + zF4(x, y) + F6(x, y) in the weighted projective
space P(3, 1, 1, 2). Since F6 does not have any multiple roots, S is smooth and hence is a
del Pezzo surface of degree 1 [28, Theorem 3.36]. There thus exists a birational morphism
π : S → P

2 that consists of blowing-up 8 points in general position. Sending the curve C
into S via the morphism (x : y : z) 
→ (z : x : y : 0) gives a curve ˜C ⊂ S, equivalent to
−2KS , whose image by π is a sextic with eight ordinary double points.

If F4 is the zero form, let C1 ⊂ P
2 denote the image of ˜C by π . Then Ine(C1) is isomorphic

to Z/3Z, and the canonical complex of (P2, C1) is an exact sequence (Theorems 2.2.5 and
2.3.1).

If F4 is not the zero form, then no non-trivial automorphism of S fixes the curve ˜C , which
means that Ine(S, ˜C) is trivial (Corollary 2.3.6). The Bertini involution on S (that sends w

onto −w) leaves ˜C invariant, acts on it as the involution associated to the g1
2, and generates

Dec(S, ˜C) if F4 is general enough. Moreover Aut(˜C) is reduced to this involution if and only
if no non-trivial automorphism of P

1 leaves F6 invariant. It then follows from Corollary 2.3.6
that the canonical complex of (P2, C2) is an exact sequence under these circumstances, where
C2 denotes the image of ˜C by π .

Theses examples provide three birational embeddings C → Ci ⊂ P
2 that lead to three

different canonical complexes for the same abstract curve and also to three birationally dif-
ferent pairs (P2, Ci ). Theorem 2.3.4 allows us to improve this result, giving infinitely many
such pairs of the last kind. Indeed, let F4 and F ′

4 be two different forms of degree 4, let
˜C ⊂ S and ˜C ′ ⊂ S′ be the two embeddings of C into two corresponding del Pezzo surfaces
of degree 1, and let C2 ⊂ P

2 and C ′
2 ⊂ P

2 be the corresponding sextic curves. If there exists
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a birational transformation ϕ that sends (P2, C2) onto (P2, C ′
2), then Corollary 2.3.6 implies

that ϕ lifts to an isomorphism S → S′. By changing our choice of F4, we obtain infinitely
many isomorphism classes of del Pezzo surfaces of degree 1, that lead to infinitely many
birationally different pairs (P2, C2) such that C2 is birational to C .

2.5 Examples of different birational embeddings of curves of genus 3 in P
2

We give another example. Let C1 ⊂ P
2 be any smooth quartic curve. The double cover-

ing of P
2 ramified over C1 is a del Pezzo surface S of degree 2 (see [2]), which is the

blow-up π : S → P
2 of 7 points of P

2 in general position. Denote by ˜C the image of C1

on S and by C2 the curve π(˜C). Then, C2 is a sextic with 7 ordinary double points and
Ine(C2) ∼= Z/2Z is generated by the Geiser involution that corresponds to the involution of S
associated to the double covering (Theorem 2.2.5). On the other hand, Corollary 2.3.5 implies
that Dec(C1) = Aut(P2, C1) and consequently that Ine(C1) is trivial. The two curves C1

and C2 are birational curves of the plane, but the pairs (P2, C1) and (P2, C2) have different
canonical complexes, and in particular are not birationally equivalent.

2.6 Examples of different birational embeddings of curves of genus 4 in P
2

Let p1, . . . , p8 be eight points of the plane and let S → P
2 be their blow-up. Assume that

S is a del Pezzo surface. Corollary 2.3.6 implies the following observations. Among the lin-
ear system � of nonics passing through p1, . . . , p8 with multiplicity 3, exactly one has a
non-trivial inertia group, generated by the Bertini involution of S. The other curves of �

have a decomposition group that contains the Bertini involution, and for a general curve of
� this involution generates the decomposition group. Furthermore, the elements of � yield
infinitely many pairs which are birationally different.

3 Curves of genus one

In Sect. 2, we gave a precise description of all elements of finite order of Bir(P2) that fix a
curve of genus ≥2. A precise description also exists for curves of genus 1:

Theorem 3.0.1 ([8, Theorem 2])
Let C ⊂ P

2 be an irreducible curve with g(C) = 1. Let h ∈ Ine(C) be an element
of finite order n > 1. Then, there exists a birational map ϕ : P

2 ��� S that conjugates h to
an automorphism α of a del Pezzo surface S, with (α, S, n) given in the following table:

n Description of α Equation of the surface S In the variety

2 x0 
→ −x0
∑4

i=0 x2
i = ∑4

i=0 λi x2
i = 0 P

4

3 x0 
→ ζ3x0 x0
3 + L3(x1, x2, x3) P

3

4 x0 
→ ζ4x0 x3
2 = x0

4 + L4(x1, x2) P(1, 1, 1, 2)

5 x0 
→ ζ5x0 x3
2 = x2

3 + λ1x1
4x2 + x1(λ2x1

5 + x0
5) P(1, 1, 2, 3)

6 x0 
→ ζ6x0 x3
2 = x2

3 + λ1x1
4x2 + λ2x1

6 + x0
6

P(1, 1, 2, 3),
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where ζn ∈ C is a primitive n-th root of unity, Li is a form of degree i and the λi are
parameters such that S is smooth.

Furthermore, any birational morphism S → P
2 sends the fixed curve onto a smooth plane

cubic curve.

Theorem 3.0.1 implies in particular the following result:

Corollary 3.0.2 Let C ⊂ P
2 be an irreducible curve with g(C) = 1. The following condi-

tions are equivalent:

(1) the pair (P2, C) is birationally equivalent to a pair (P2, D), where D is a smooth cubic
curve;

(2) the group Ine(C) contains non-trivial elements of finite order;
(3) the group Ine(C) contains elements of order 2, 3, 4, 5 and 6.

Proof In order to prove (1) ⇒ (3) we observe that in each of the five types of pairs (α, S) of
Theorem 3.0.1, one gets an arbitrary elliptic curve as fixed curve. The implication (3) ⇒ (2)

is obvious and (2) ⇒ (1) follows from Theorem 3.0.1. ��
The curves of genus 1 having the biggest canonical complex seem in fact to be the cubic

curves. We will make this more precise in (3.3). We examine in (3.1) and (3.2) the case of
smooth cubic curves and then in (3.3) the other irreducible curves of genus 1.

3.1 The inertia group of smooth cubic curves

Let C ⊂ P
2 be a smooth cubic curve. For any point p ∈ C , there exist infinitely many

elements of Ine(C) that leave invariant any general line passing through p; such elements
form a group described in Example 2.2.4. There are furthermore many elements of degree 3
in this group ([8, Lemma 4.1]); one of these, that we call σp , is the classical de Jonquières
involution of Example 2.2.2c (generalised in [23] under the name of Rp to any dimension).
The element σp is the unique involution that leaves invariant any general line passing through
p and fixes the curve C .

By changing the choice of p, all these involutions generate a very large group:

Theorem 3.1.1 ([8, Theorem 1.6])
Let C ⊂ P

2 be a smooth cubic curve. The subgroup of Ine(C) generated by all the cubic
involutions centred at the points of C is the free product

�p∈C < σp > .

Furthermore, since the inertia group of a smooth cubic curve contains elements of order
3, 4, 5 and 6 (Corollary 3.0.2), the free product described in Theorem 3.1.1 is not the whole
inertia group. However, there exists an analogue of the Noether-Castelnuovo theorem for this
group:

Theorem 3.1.2 ([8, Theorem 1.1]) The inertia group of a smooth plane cubic curve is gener-
ated by its elements of degree 3, which are—except the identity—its elements of lower degree.

3.2 The decomposition group of smooth cubic curves

Let C be a smooth plane cubic curve. Take three distincts points p, q, r that belong to C
as proper or infinitely near points. The linear system of conics passing through these points
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defines a birational transformation ϕ of P
2 which transforms C onto another smooth cubic

curve C ′. Composing ϕ with a linear automorphism mapping C ′ onto C we obtain a degree 2
element in Dec(C). Clearly these transformations are the only degree 2 elements in Dec(C).
Moreover, all such transformations may be expressed as a composition of those whose base-
point set consists of three proper points of the plane. As for the inertia group, there exists a
result analogous to the Noether-Castelnuovo theorem for the decomposition group:

Theorem 3.2.1 ([34, Theorem 1.4])
The decomposition group of a smooth plane cubic curve is generated by its elements of

degree 2.

Concerning the action of the decomposition group on the elliptic curve, the following result
shows that this is like the whole automorphism group of the curve:

Theorem 3.2.2 ([23, Theorem 6])
Let C ⊂ P

2 be a smooth cubic curve. The canonical complex of (P2, C) is an exact
sequence.

Remark 3.2.3 It seems that this sequence is not split.

3.3 Curves of genus 1 that are not equivalent to smooth cubic curves

We recall some classical notions on Halphen curves and surfaces (see [25,12,22,19]).

Definition 3.3.1 A Halphen curve of index n is an irreducible plane curve of degree 3n, with
9 points of multiplicity n and of genus 1.

A projective rational smooth surface S is a Halphen surface of degree n if the linear system
| − nKS | is a pencil whose general fibre is an irreducible curve of genus 1.

The following classical relation can be verified by hand:

Lemma 3.3.2 If S is a Halphen surface of degree n, any birational morphism S → P
2 sends

the general fibres of | − nKS | onto Halphen curves of index n.
For n ≥ 2, the blow-up of the 9 singular points of a Halphen curve of index n is a Halphen

surface.

The blow-up of 9 general points is not a Halphen surface. However, for any general set of 8
points of the plane, and for any integer n ≥ 2, there exists a curve of the plane such that the
blow-up of the 8 points and a ninth point on the curve gives a Halphen surface of index n
[25].

We now give a simple proof of the following (probably classical) result:

Proposition 3.3.3 Let C1, C2 ⊂ P
2 be two Halphen curves of index respectively n1 and n2.

For i = 1, 2, consider the minimal embedded resolution Xi → P
2 of Ci (which is the identity

if ni = 1). The following assertions are equivalent:
(1) the pairs (P2, C1) and (P2, C2) are birationally equivalent;
(2) there exists an isomorphism ϕ : X1 → X2 that sends the strict transform of C1 onto

the strict transform of C2.

Furthermore, both assertions imply that n1 = n2.

Proof The second assertion directly implies the first and the equality n1 = n2. Corollary 2.3.6
shows that the first assertion implies the second. ��

123



Geom Dedicata

This proposition shows in particular the existence of infinitely many distinct types of pairs
(P2, C) where C has genus 1; it also raises the following question, which we think is still
open:

Question 3.3.4 Let C1 ⊂ P
2 be an irreducible curve of genus 1. Does there exist a Halphen

curve C ⊂ P
2 such that the pair (P2, C1) is birationally equivalent to (P2, C)?

We now describe the decomposition and inertia groups of Halphen curves of index ≥2
(those of index 1 are the smooth cubic curves, described previously), and show in particular
the important difference between index 1 and index ≥2.

Theorem 3.3.5 Let C ⊂ P
2 be a Halphen curve of index n ≥ 2 and assume that the pencil

induced by C has no reducible fibre. Then, Dec(C) contains a normal subgroup of finite
index, isomorphic to Z

8. In particular, the canonical complex of (P2, C) is not exact.
Assume that C is a general Halphen curve; then Dec(C) is isomorphic either to Z

8
�Z/2Z

or to Z
8. The first case occurs for n = 2 and the second one if n = 3 or n ≥ 5.

Proof Let π : S → P
2 be the blow-up of the nine singular points of C and let ˜C ⊂ S be

the strict transform of C . Corollary 2.3.6 implies that Dec(C) = Dec(P2, C) is conjugate to
Dec(S, ˜C) = Aut(S, ˜C).

Denote by D ⊂ P
2 a cubic passing through the singular points of C and by ˜D ⊂ S the

strict pull-back of D. Then ˜C and n ˜D belong to the pencil | − nKS | and this shows that D
is unique.

Note that Aut(S) acts on the elliptic fibration η : S → P
1 induced by | − nKS |. Let

G ⊂ Aut(S) be the subgroup of automorphisms that act trivially on the basis and let G ′ be
the image of Aut(S) in Aut(P1), such that the following is an exact sequence:

1 → G → Aut(S) → G ′ → 1.

We show that G ′ is finite. Indeed, η(˜D) is a fixed point, so we may consider G ′ as a
subgroup of Aut(C); then G ′ has at least one finite orbit in C because there are singular
fibres in | − nKS | (the Euler characteristic of S, which is equal to 12, is the sum of the Euler
characteristics of the (singular) fibres of η), which is not possible if G ′ is infinite.

Now, let H ⊂ G be the subgroup of elements that act as translations on the general fibre;
according to the structure of the automorphism group of an elliptic curve and since G ′ is
finite, H is normal in Aut(S), of finite index.

A translation on an elliptic curve corresponds to a linear equivalence of a divisor of degree
0. Since no fibre is reducible, there exists an exact sequence (see [22])

0 → ZKS → K ⊥
S → H → 0,

where K ⊥
S is the subgroup of Pic(S) of elements whose intersection with KS is equal to

0. Since Pic(S) ∼= Z
10 and KS is indivisible, KS

⊥ ∼= Z
9 and H ∼= Z

8. As H ⊂ G ⊂
Dec(S, ˜C) ⊂ Aut(S), the first assertion is proved.

Assume now that C is a general Halphen curve, which implies that Dec(S, ˜C) is equal to
G and that the automorphism group of ˜C is equal to ˜C � Z/2Z. In particular, the index of H
in G is either 2 or 1, depending on whether or not there exists an element of G that acts as an
involution with four fixed points on the general fibre. Assume that such an element σ ∈ G
exists. Then, it fixes a curve in S which intersects the general fibre in four points. The fibre
is equal to −nKS , hence n must divide 4, which implies that n = 2 or n = 4.

It remains to show that for n = 2, such an involution exists. Consider the elliptic fibration
ε : S ��� P

1 defined by the pencil of plane cubics passing through eight of the nine base-
points of the Halphen pencil: the intersection of a general fibre Sη of η with a general fibre of
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ε is equal to 2, which means that the degree of η × ε : S ��� P
1 × P

1 is 2; the corresponding
involution of S leaves each Halphen curve Sη invariant and has thereon 4 fixed points since
the restriction to Sη of ε is simply the canonical g1

2. ��
Remark 3.3.6 In the case where n = 2 and the points are in general position, it may also
be observed that the Bertini involution associated to the blow-up of 8 of the 9 points lifts
to an automorphism of the surface that acts on each member of the elliptic fibration as an
automorphism with four fixed points. Furthermore, the 9 involutions obtained via this map
generate the automorphism group of the Halphen surface [12].

4 Rational curves

The case of rational curves is less well described. We can however quote some simple results.

4.1 The line

There exist many elements in the inertia group of the line; for example, any birational map

of the form (x, y) ���
(

x
α(y)x+β(y)

, y
)

, where α, β ∈ C(y), β 	= 0, fixes the line x = 0.

It seems that the inertia group of a line is a big and complicated group. Let us make some
simple observations:

Proposition 4.1.1 Let L ⊂ P
2 be a line, then the canonical complex of (P2, L) is a split

exact sequence.
Furthermore, the group Ine(P2, L) is neither finite, nor Abelian and does not leave invari-

ant any pencil of rational curves.

Proof It is obvious that the complex is exact, and split: the group of automorphisms of L
extends to a subgroup of Aut(P2), and this yields a section Aut(L) → Aut(P2, L). The other
assertions follow from [10, Proposition 4.1]. ��
Does there exist an analogue of the Noether-Castelnuovo theorem, as in the case of smooth
cubics?

Question 4.1.2 Let L ⊂ P
2 be a line. Is the group Dec(P2, L) (respectively Ine(P2, L))

generated by its elements of degree 1 and 2?

4.2 Coble curves

A Coble curve is an irreducible sextic with 10 double points. There does not exist a sextic
singular at ten general points; however Coble curves exist, and are singular members of a
Halphen pencil of index 2; furthermore in each such pencil there are in general 12 Coble
curves [25]. Corollary 2.3.6 implies that the pair (P2, C) where C is a Coble curve is not
equivalent to that of a line. Furthermore, we have:

Proposition 4.2.1 Let C ⊂ P
2 be a Coble curve, let π : S → P

2 be the blow-up of its 10
singular points and let ˜C ⊂ S be the strict pull-back of C by π .

Then, Aut(S) = Dec(S, ˜C) = π−1Dec(P2, C)π .

Proof The curve ˜C is equivalent to −2KS and since it has negative self-intersection it is the
only such curve, consequently Aut(S) = Aut(S, ˜C). The result then follows directly from
Corollary 2.3.6. ��
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The description of the automorphisms of a so-called Coble surface obtained by blowing-
up the ten singular points of a Coble curve is a classical result of Coble [12], see also [19,
Theorem 8, page 107]. It implies in particular the following result:

Proposition 4.2.2 For any Coble curve C, the group Dec(P2, C) is an infinite countable
group. The canonical complex associated to (P2, C) is not exact.

4.3 Other curves of Halphen type

Let S be a Halphen surface of index n obtained by the blow-up π : S → P
2 of the points

p1, . . . , p9. There exist singular fibres of the elliptic fibration |−nKS |, which are thus rational
curves with a double point, whose image on P

2 are curves of degree 3n with multiplicity n at
the points p1, . . . , p9 and multiplicity 2 at some other point p10. The case n = 1 gives nodal
cubics, which are equivalent to lines; the case n = 2 gives Coble curves, and the case n = 3
gives other curves. Once again, it seems that in general 12 such curves exist in a general
Halphen pencil [25].

Proposition 4.3.1 Let C ⊂ P
2 be an irreducible curve of degree 3n with multiplicity n at

p1, . . . , p9 and multiplicity 2 at p10, and assume that n ≥ 3. Let π : S → P
2 (respectively

π ′ : S′ → P
2) be the blow-up of p1, . . . , p10 (respectively of p1, . . . , p9), and let ˜C ⊂ S

and ˜C ′ ⊂ S′ be the strict pull-backs of C by π and π ′.
Then, Aut(S) = Dec(S, ˜C) = π−1Dec(P2, C)π and Aut(S′, ˜C ′) = Dec(S, ˜C ′) =

π ′−1Dec(P2, C)π ′.
Furthermore, Dec(P2, C) contains a subgroup of finite index isomorphic to Z

8. In partic-
ular, the canonical complex associated to (P2, C) is not an exact sequence.

Proof As for Corollary 2.3.6, Theorem 2.3.4 implies the equalities Aut(S, ˜C) = Dec(S, ˜C)

= π−1Dec(P2, C)π . The curve E10 = π−1(p10) is a smooth irreducible rational curve
of self-intersection −1 (a (−1)-curve) and its intersection with ˜C is 2; furthermore, it is
the unique such curve [29, Theorem 3.3]. Consequently, the whole group Aut(S) leaves E10

invariant; denoting by µ : S → S′ the blow-down of this curve (such that π = π ′µ), the group
G = µAut(S)µ−1 is the subgroup of Aut(S′) that fixes the point (π ′)−1(p10) = µ(E10),
which is the unique singular point of ˜C ′. Since S′ is a Halphen surface of index n and ˜C ′ is
a singular member of the fibration, G = Aut(S′, ˜C ′). This implies the remaining equalities.

The last part follows from Theorem 3.3.5. ��

4.4 Other rational curves

Do there exist other examples of pairs (P2, C) where C is rational? A famous problem of
Coolidge and Nagata asks whether the pair of a rational cuspidal curve is birationally equiv-
alent to the pair of a line (see [13] and [32]).

Definition 4.4.1 Let C ⊂ S be an irreducible smooth curve on a surface. We denote by
κ(S, C) the Kodaira dimension of the pair (S, C): this is the dimension of the image of
X ��� P(H0(m(C + K ))∨) for m large enough. If |m(C + KS)| = ∅ for all m > 0, the
Kodaira dimension is by convention equal to −∞.

For a singular curve C ⊂ S, we write κ(S, C) = κ(X, ˜C), where X → S is an embedded
resolution of the singularities of C and ˜C ⊂ X is the strict transform.
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Lemma 4.4.2 ([29])
If (S, C) is birationally equivalent to (S′, C ′) then κ(S, C) = κ(S′, C ′).

Let us quote the following fundamental result, due to Coolidge.

Theorem 4.4.3 ([13,29])
Let C ⊂ P

2 be a rational irreducible curve and L ⊂ P
2 be a line. Then (P2, C) is

birationally equivalent to (P2, L) if and only if κ(P2, C) = −∞.

We also have a description for Kodaira dimensions 0 and 1:

Theorem 4.4.4 ([29])
Let C ⊂ P

2 be a rational irreducible curve.

(1) κ(P2, C) = 0 if and only if (P2, C) is birationally equivalent to (P2, D) where D is a
Coble curve.

(2) κ(P2, C) = 1 if and only if (P2, C) is birationally equivalent to (P2, D), where D is a
curve of degree 3n, with 9 points of multiplicity n > 2 and a tenth point of multiplicity 2.

Consequently, finding other rational curves not equivalent to our examples is equivalent
to finding rational curves C ⊂ P

2 with κ(P2, C) = 2.

5 Link between the inertia and decomposition groups and the classification of finite
subgroups of the Cremona group

In our description of the decomposition group, and more precisely of the inertia group of a
curve of genus ≥1, we provide some subgroups of finite order. Conversely, in the study of
the finite subgroups of Bir(P2), the set of birational classes of curves of positive genus fixed
(pointwise) is an important conjugacy invariant. For example, this invariant was used to find
infinitely many conjugacy classes of elements of order 2n of Bir(P2), for any integer n (see
[7, Theorem 1.2]).

5.1 Cyclic groups of prime order

The conjugacy class of a finite cyclic subgroup of prime order of Bir(P2) is uniquely deter-
mined by the birational equivalence of the curve of positive genus that it fixes (it can fix at
most one such curve):

Theorem 5.1.1 ([1,14]) Let g, g′ be two elements of Bir(P2) of the same prime order, that
fix respectively �,�′, two irreducible curves of positive genus. Then, g and g′ are conjugate
in Bir(P2) if and only if the curves � and �′ are birational.

Theorem 5.1.2 ([3]) An element of Bir(P2) of prime order is not conjugate to a linear
automorphism if and only if it belongs to the inertia group of some curve of positive genus.

5.2 Other groups

Theorem 5.1.2 extends to finite cyclic groups of any order, and almost to finite Abelian groups:

Theorem 5.2.1 ([9], announced in [6])
Let G be a finite cyclic subgroup of order n of Bir(P2). The following conditions are

equivalent:
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• If g ∈ G, g 	= 1, then g does not fix a curve of positive genus.
• G is birationally conjugate to a subgroup of Aut(P2).
• G is birationally conjugate to a subgroup of Aut(P1 × P

1).
• G is birationally conjugate to the group of automorphisms of P

2 generated by (x : y : z)

→ (x : y : e2iπ/nz).

Theorem 5.2.2 ([9], announced in [6])
Let G be a finite Abelian subgroup of Bir(P2). The following conditions are equivalent:

• If g ∈ G, g 	= 1, then g does not fix a curve of positive genus.
• G is birationally conjugate to a subgroup of Aut(P2), or to a subgroup of Aut(P1 × P

1)

or to the group Cs24 isomorphic to Z/2Z × Z/4Z, generated by the two elements

(x : y : z) ��� (yz : xy : −xz),
(x : y : z) ��� (yz(y − z) : xz(y + z) : xy(y + z)).

Moreover, this last group is conjugate neither to a subgroup of Aut(P2), nor to a subgroup
of Aut(P1 × P

1).

However, there are plenty of examples of finite non-Abelian subgroups of Bir(P2) which
are not birationally conjugate to a subgroup of Aut(P2) or of Aut(P1 × P

1) but such that no
curve of positive genus is fixed by any non-trivial element of the group [9, Section 12].

6 The links with the dynamical properties of a Cremona transformation

We can also consider a Cremona transformation as defining a dynamical system. In
comparison with the usual case of dynamics defined by automorphisms, the situation here
is more complicated due to the presence of indeterminacies and critical points: in the neigh-
bourhood of such points the map does not act in a "natural way".

In [21] and [35] the authors introduce the so-called first dynamical degree of a biration-
al map; this number is invariant by birational conjugation. Let us explain what that degree
means in the case of a Cremona transformation ϕ. Consider the sequence (deg(ϕn))1/n for
n ≥ 1. Since deg(ϕn+m) ≤ deg(ϕn) · deg(ϕm) it has a limit. The first dynamical degree is
then

λ(ϕ) := lim
n→∞

(

deg(ϕn)
)1/n

.

As shown in [21] the topological entropy htop(ϕ) of ϕ is at most log λ(ϕ). The equality is
conjectured, and proved for a general ϕ ([4] and [20]).

On the other hand, Diller and Favre propose a more refined approach and consider the
sequence of successive degrees deg(ϕn) itself. They classify the plane Cremona transforma-
tions (in fact they consider a more general setup) with λ = 1 in terms of the growth rate of
that sequence (see [16, Thm. 0.2]); they show that this growth is at most quadratic in n.

It is natural to ask to what extent the dynamics of a Cremona transformation can be affected
by the existence of a genus g stable curve, g = 0, 1, 2... One answer is as follows:

Theorem 6.0.3 ([33, Theorem 1.1])
Let C ⊂ P

2 be an irreducible curve of genus g(C) ≥ 2 and let ϕ ∈ Dec(C); then λ(ϕ) = 1
and the sequence {deg(ϕn)}∞n=1 grows at most linearly.
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Proof Since g(C) > 1, the subgroup Ine(C) is of finite index in Dec(C) so we may assume
that ϕ ∈ Ine(C). If ϕ is of finite order, we are done. If not, Theorem 2.2.5 yields an explicit
description of ϕ as in Example 2.2.4. Computing the degrees of the powers of ϕ, we have
deg(ϕn) ≤ n(deg(ϕ) + c) for some constant c. This completes the proof. ��
For another proof and some generalizations of this result see [17].

On the other hand, when g(C) ≤ 1 the number λ(ϕ) can be strictly larger than 1. For an
example in the rational case we refer the reader to [33, Example 2]. In the case of a smooth
cubic curve, the composition of two generic quadratic elements of the decomposition group
seems suitable.

Finally, until recently, all known examples of automorphisms of rational surfaces with a
first dynamical degree strictly larger than 1 (or equivalently with an action of infinite order
on the Picard group) were those which leave invariant a rational or an elliptic curve. A ques-
tion/conjecture of Gizatullin/Harbourne/McMullen (see [26] and [31]) asked whether this
was always the case. A counterexample is announced in [5] which provides the existence of
automorphisms of rational surfaces that do not leave invariant any curve.
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