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Abstract. It is well-known and easy to observe that affine (respectively pro-
jective) simple arrangement of n pseudo-lines may have at most n(n − 2)/3

(respectively n(n − 1)/3) triangles. However, these bounds are reached for
only some values of n (mod 6). We provide the best polynomial bound for the

affine and the projective case, and for each value of n (mod 6).

1. Introduction

Let us remind the reader some classical notions. A pseudo-line L is a curve
of the plane (which may be either the affine real plane R2 or the projective real
plane P2 = P2(R)) that may be stretched to a line, i.e. such that there exists an
homeomorphism of the plane that sends L on a line.

A simple affine (respectively projective) arrangement A of n pseudo-lines is a set
A = {A1, .., An} of n pseudo-lines of the affine plane (respectively of the projective
plane) such that two of the curves intersect transversally into exactly one point, and
this one does not belong to any other curve of A. In the sequel, n is always assumed
to be at least equal to 3. There are exactly n− 1 intersections on each pseudo-line,
that delimit n−2 bounded segments and 2 unbounded segments (respectively n−1
segments).

A particular case is when each pseudo-line is a line, i.e. when A is a simple
arrangement of lines. An arrangement of pseudo-lines is said to be stretchable
if there exists an homeomorphism of the plane that sends each pseudo-line on a
line (such a transformation exists for each pseudo-line, here we ask that the same
homeomorphism suits for each pseudo-line). There exist arrangements of pseudo-
lines that are not stretchable (see [Grü]); the notion of arrangements of pseudo-lines
is thus a non–trivial generalisation of those of arrangements of lines. Note that
usually it is very hard to decide whether an arrangement is stretchable or not.

A simple affine arrangement A of n pseudo-lines decomposes the plane R2 into
n(n+1)/2+1 regions, where n(n−3)/2+1 are bounded and 2n are unbounded. We
say that these regions are the polygons of the arrangement A and denote by a3(A)
the number of bounded triangles (which are polygons delimited by three bounded
segments). Since a bounded segment may not delimit two different triangles, and
the number of bounded segments is n(n− 2), we have a3(A) ≤ n(n− 2)/3.

The projective case is similar; a simple projective arrangement A of n pseudo-
lines decomposes P2 into n(n− 1)/2 + 1 regions (once again called the polygons
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of A), and we denote by p3(A) the number of regions that are triangles. The
number of segments is now n(n− 1), and if n ≥ 4 a segment does not delimit two
different triangles, thus we have p3(A) ≤ n(n− 1)/3.

These two rough bounds are reached for infinitely many values of n (see Theo-
rems 1 and 2 and also [Har1], [Har2], [Rou1]). But to be reached, the bound has to
be an integer, and this implies conditions on the values of n (mod 3). Furthermore,
the affine bound is never reached if n is even (Theorem 1, [BBL, Theorem 1.1]) and
the projective bound is never reached if n is odd (Theorem 2, [Grü, Theorem 2.21,
p.26]). The number of triangles depends thus a lot from the value of n (mod 6).
We are going to precise this dependance.

Denoting by ps
3(n) (respectively as

3(n)) the maximal number of triangles in a
simple projective (respectively affine) arrangement of n pseudo-lines, we look for
the best polynomial upper bounds for the values of ps

3(n) and as
3(n), for each value

of n (mod 6). Furthermore, we would like to describe the values were the bounds
are not reached (which seem to be rare).

In the affine case, for n ≡ 3, 5 (mod 6), [Har2, Theorem 1] shows that the
rough bound (n(n − 2)/3) is the good one to choose, as this one is reached for
infinitely many values. For n ≡ 1 (mod 6), it was proved in [BBL, Theorem 1.3]
that bn(n − 2)/3c = (n(n − 2) − 5)/3 is the right bound. For n even, the rough
bound is not tight at all; it was proved in [BBL, Theorem 1.1] that n(n − 7/3)/3
is an upper bound. However, this one is also not tight. In this article we improve
this bound by showing in Corollary 2.4 that n(n− 5/2)/3 suits, and that this one
is tight (after rounding down for n ≡ 2 (mod 6)), since it is reached for infinitely
many values of n.

In the projective case, for n ≡ 0, 4 (mod 6), the rough bound (n(n − 1)/3) is
tight, as it was proved in [Har1], [Har2] and [Rou1]; more examples that reach the
bound (in particular for any n ≤ 40) were given in [BRS]. For n ≡ 2 (mod 6), it was
observed in [Rou1, Theorem 3.2] (see also [BBL, Proposition 1.2]) that bn(n−1)/3c
is never reached, i.e. that (n(n− 1)− 5)/3 is an upper bound. However, there was
– up to now – no known example that reached this bound. We provide an example
of 26 pseudo-lines in Figure 4 and show that the bound is reached for infinitely
many values. Furthermore, we show that the value of ps

3(n) for n = 8, 14, 20, is
(n(n− 1)− 8)/3, i.e. that the bound is not reached for n < 26. If n is odd, it was
observed by Granham (see [Grü, page 26, Theorem 2.21]) that ps

3(n) ≤ n(n− 2)/3.
Reducing to the affine case, this bound is clearly tight (after rounding for n ≡ 1
(mod 6)).

Summing up, we complete in this article the proof of the following theorems:

Theorem 1 (polynomial bounds for affine arrangements). Let A be an affine ar-
rangement of n pseudo-lines. Then

a3(A) ≤


n(n− 5/2)/3 if n ≡ 0, 4 (mod 6)
(n(n− 2)− 2)/3 if n ≡ 1 (mod 6)
(n(n− 5/2)− 2)/3 if n ≡ 2 (mod 6)
n(n− 2)/3 if n ≡ 3, 5 (mod 6)

Furthermore, for any integer 0 ≤ k ≤ 5, there exist infinitely many integers n such
that the bound above is reached, for n ≡ k (mod 6).
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Theorem 2 (polynomial bounds for projective arrangements). Let A be a projec-
tive arrangement of n pseudo-lines, with n ≥ 4. Then

p3(A) ≤


n(n− 1)/3 if n ≡ 0, 4 (mod 6)
(n(n− 2)− 2)/3 if n ≡ 1 (mod 6)
(n(n− 1)− 5)/3 if n ≡ 2 (mod 6)
n(n− 2)/3 if n ≡ 3, 5 (mod 6)

Furthermore, for any integer 0 ≤ k ≤ 5, there exist infinitely many integers n such
that the bound above is reached, for n ≡ k (mod 6).

We compute also the explicit values of ps
3(n) and as

3(n) for any integer n ≤ 30:

Theorem 3. The bound of Theorem 1 is reached for any integer n ≤ 30, n 6= 11, 12;
and we have as

3(11) = 32 and as
3(12) = 37.

The bound of Theorem 2 is reached for any integer n ≤ 30, except for n =
8, 11, 12, 14, 20, where the value of ps

3(n) is respectively 16, 32, 40, 58, 124.

Furthermore, we conjecture the following statement (that was already stated in
[Rou2, Conjecture 4.3], in the special case of projective arrangements of n pseudo-
lines, with n ≡ 0, 4 (mod 6))

Conjecture 1.1. The bounds of Theorems 1 and 2 are reached for any integer
n ≥ 21.

The smallest values of n where the conjecture is still open are 31, 32, 37, 38, 43,
44, 47, 48, 55, 56,...

Our choice, in this article, is to be as comprehensive and self-contained as pos-
sible. To this aim, we provide some short proofs of some results cited above, in
Lemmas 2.5, 3.1 and in Corollary 2.6, and are able to prove the theorems directly
without any result.

This article is divided in the following way. Section 2 deals with the parity
of the number of pseudo-lines of the arrangements, and explains why this is so
important. We prove (Corollary 2.4) that as

3(n) ≤ n(n − 5/2)/3 if n is even,
a new tight bound stated before. We also provide the proof of the well-known
inequality ps

3(n) ≤ n(n − 2)/3 for n odd. In Section 3, we study the projective
arrangements of n pseudo-lines with n ≡ 2 (mod 6). We give a simple proof of the
inequality ps

3(n) ≤ (n(n− 2)− 5)/3, already proved in [Rou1], and provide the first
known arrangement that reaches the bound (Figure 4). In Section 4, we give an
adaptation of the doubling method of [Har1] and [Rou1] to provide arrangements
of 2n − 1 (respectively 2n − 2) pseudo-lines reaching the bounds of the theorems,
starting with arrangements of n pseudo-lines reaching the bound, where n is odd
(respectively even). Finally, in Section 5, we provide explicit arrangements that
reach the bound (which have already appear in some previous works), and give the
proofs of the Theorems.

The author would like to express his gratitude to J.P. Roudneff for his comments
on the present article.

2. The importance of the parity of the number of pseudo-lines

Definition 2.1. Let A be an affine or projective simple arrangement, and let s be a
segment of this arrangement. We say that s is used if it is an edge of a triangle of
A, otherwise we say that it is unused.
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Remark 2.2. In an affine simple arrangement, any unbounded segment is unused.

The following Proposition will explain why an affine arrangement with an even
number of pseudo-lines contains many unused segments.

Proposition 2.3. Let A be an affine arrangement of n pseudo-lines, where n is
even and n ≥ 4. Then, for any pseudo-line L ∈ A, there exists an unused bounded
segment s ⊂ L′ ∈ A whose intersection with L consists of one point (in particular
s 6⊂ L).

Proof. Let L ∈ A be a pseudo-line. Applying an homeomorphism of the plane to
A, we may assume that L is the line y = 0 and that the points of intersection of
L with the other lines of A are (1, 0), (2, 0), ..., (n − 1, 0). For i = 1, ..., n − 1, we
denote by Ri the pseudo-line of A\{L} that passes through the point (i, 0) and
by r+

i (respectively r−i ) the segment of Ri that touches (i, 0) and belongs to the
upper (respectively lower) half-plane. For i = 1, ..., n − 2, we call li the segment
{(x, 0) ∈ R2 | i ≤ x ≤ i + 1} of the line L; we call also l0 = {(x, 0) ∈ R2 | x < 1}
and ln−1 = {(x, 0) ∈ R2 | x > n − 1}, the two unbounded segments of L. For
i = 0, ..., n − 1, we denote by p+

i (respectively p−i ) the polygon of A – that may
be bounded or not – that touches li, and belongs to the upper (respectively lower)
half-plane.

R1

L

R2 Rn−2 Rn−1

l0 l1

p+
1

p−1

p+
n−1

p−n−1

p+
n−2

p−n−2

p+
0

p−0

l2 ln−3 ln−2 ln−1

r+
1

r−1

r+
2

r−2

r+
n−2

r−n−2

r+
n−1

r−n−1

Figure 1. The arrangement A, in a neighbourhood of the pseudo-
line L.

(1) Assume that p+
1 and p−n−2 are triangles.

This implies that neither r−1 nor r+
n−1 are used. If L1 and Ln intersect in the

upper (respectively lower) half-plane, then r+
n−1 (respectively r−1 ) is bounded.

(2) Assume that neither p+
1 nor p−1 is a triangle.

In this case, neither r+
1 nor r−1 is a used segment of A. Since one of these is

bounded, we are done.
(3) We may now assume that p+

1 is a triangle (the case where p−1
1 is a triangle

is the same). Suppose, for contradiction, that every segment r±i that is bounded is
used, for i = 1, ..., n− 1.

Claim: for i ∈ {1, .., n− 1} even (respectively odd) p+
i (respectively p−i ) is not a

triangle; and if neither p+
i−1 nor p−i−1 is a triangle, then p−i (respectively p+

i ) is a
triangle.

The claim being true for i = 1, we prove it by induction on i. Assume that i is
even (the odd case is similar, exchanging + and −). If p+

i−1 is a triangle, then p+
i

is not a triangle, since two triangles do not have a common edge, and the claim is
proved. Assume that p+

i−1 is not a triangle, which implies that i > 2, and let us
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illustrate the situation (by induction hypothesis, neither p−i−1 nor p+
i−2 is a triangle).

r+
i

r−i

r+
i−1

r−i−1

p+
i

p−i

p+
i−1

not a triangle

not a triangle

p−i−1

p+
i−2

not a triangle

p−i−2

Figure 2. The situation of the polygons p±i−2, p
±
i−1, p

±
i .

The segment r+
i−1 – that is common to p+

i−1 and p+
i−2 – is unused and consequently

unbounded. This implies that Ri and Ri−1 intersect into the lower half-plane, so
r−i is bounded. The assumption made above implies that r−i is used, so p−i is a
triangle, and not p+

i . This achieves to prove the claim.
Applying the claim for i = n− 1, the region p−n−1 is not a triangle. If p+

n−1 is a
triangle, we obtain the case (1), that was treated above. Otherwise, we obtain the
case (2), after reversing the order of the segments on L. �

This Proposition yields the following bound, which ameliorates the one of [BBL],
that was n(n− 7/3)/3.

Corollary 2.4. Let n be an even integer and let A be a simple affine arrangement
of n pseudo-lines. Then a3(A) ≤ bn(n− 5/2)/3c.

Proof. According to Proposition 2.3, we may associate to any pseudo-line A ∈ A a
segment sA of A, that is bounded, unused and whose intersection with A consists
of one point. Observe that a segment may be associated to at most two lines, which
implies that the number of unused segments is at least n/2. The number of used
segments is consequently at most n(n− 5/2), whence a3(A) ≤ bn(n− 5/2)/3c. �

Similarly to the affine arrangements with an even number of pseudo-lines, any
projective arrangement with an odd number of pseudo-lines contains many unused
segments. This was firstly observed by Granham (see [Grü, page 26, Theorem 2.21])
and used many times, we prove once again this simple result:

Lemme 2.5. Let A be a projective arrangement of n pseudo-lines, where n ≥ 5 is
an odd integer. Then, any pseudo-line of A contains at most n− 2 used segments,
i.e. there exists at least one unused segment on each pseudo-line.

Proof. Let L ∈ A be a pseudo-line of A. Then, L contains exactly n− 1 segments
and touches exactly 2(n−1) polygons of the arrangement. The lemma follows from
the following two observations:

1. Since n is odd, any set of n − 1 polygons touching L contains at least two
polygons that have a common edge (this is false if n is even).

2. Since the number of pseudo-lines is at least 5, two distinct triangles of A do
not have a common edge. �

This Lemma implies – as it was already noticed in [Grü] – the following bound.

Corollary 2.6. Let n be an odd integer and let A be a simple projective arrange-
ment of n pseudo-lines. Then p3(A) ≤ bn(n− 2)/3c.
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Proof. According to Lemma 2.5, there is an unused segment on each pseudo-line
of A. The number of used segments is thus at most n(n − 2), whence p3(A) ≤
bn(n− 2)/3c. �

3. Projective arrangements of n pseudo-lines, with n ≡ 2 (mod 6)

The most interesting case in our subject is when we have a projective simple
arrangement A of n pseudo-lines, where n ≡ 2 (mod 6). The rough bound on the
number of segment implies that

p3(A) ≤ bn(n− 2)/3c = (n(n− 2)− 2)/3.

However, as it was already observed in [Rou1, Theorem 3.2] and [BBL, Propo-
sition 1.2], the above bound is never reached. We prove once again this result for
self-containedness.

Lemme 3.1. Let A be a projective arrangement of n pseudo-lines with n ≡ 2
(mod 6), then p3(A) ≤ (n(n− 2)− 5)/3. Furthermore, if the equality occurs, the 5
unused segments of A delimit a pentagon of the arrangement.

Proof. Since there are n(n − 1) segments, and n(n − 1) ≡ 2 (mod 3), there exist
at least two segments of A that are unused. Let A ∈ A be a pseudo-line and let
s be an unused segment contained in A, whose extremities are the points v1 and
v2. There are 6 other segments, and 6 polygons that touch either v1 or v2. We call
these respectively s1, ..., s6 and p1, ..., p6 as in Figure 3.

p3

p4

p5

p2

p1

p6

s6ss1 v1 v2

s2

s3

s4

s5

Figure 3. The situation of the polygons p1, ..., p6 and the seg-
ments s, s1, ..., s6.

Since s is unused, neither p3 nor p4 is a triangle. The number of pseudo-lines
being at least 3, two triangles do not have a common edge. Thus, either p1 or p2 is
not a triangle, which implies that either s2 or s3 is unused. Similarly, either s4 or
s5 is unused.

This shows that each unused segment of A touches two other unused segments.
The number of unused segments being equal to 2 (mod 3), there are at least 5
unused segments and if there are exactly 5 of them, these form a pentagon of the
arrangement. �

Up to now, there was no known example of arrangement that reached this bound.
We provide in Figure 4 the first example that reaches the bound, which is an
arrangement of 26 pseudo-lines. Furthermore, an exhaustive counting (that may
be at hand for 14 pseudo-lines and with computer for 20 pseudo-lines) shows that
no such example exists for 8, 14 and 20 pseudo-lines.



BEST POLYNOMIAL BOUNDS 7

∆

Figure 4. An affine arrangement that gives, with the line at infin-
ity a maximal projective arrangement of n = 26 pseudo-lines with
(n(n − 1) − 5)/3 = 215 triangles, the maximum possible. There
are exactly five unused segments, that form a pentagon ∆.

4. The doubling method

Given a projective arrangement of n pseudo-lines with n(n − 1)/3 triangles –
which may occur only if n ≡ 0, 4 (mod 6) – [Har1] and [Rou1] give a way to
construct a projective arrangement of 2n− 2 pseudo-lines with (2n− 2)(2n− 3)/3
triangles. We generalise this construction to arrangements that may be affine or
projective and having any number of pseudo-lines (a similar construction for affine
arrangements of lines may be found in [BBL]).

Lemme 4.1. Let A be an affine (respectively projective) arrangement of n pseudo-
lines, where n is odd (respectively even), such that one pseudo-line of A touches
n− 2 (respectively n− 1) triangles of the arrangement. Then, there exists an affine
(respectively projective) arrangement of 2n−1 (respectively 2n−2) pseudo-lines B,
such that a3(B) = a3(A) + (n− 1)2 (respectively p3(B) = p3(A) + (n− 1)(n− 2)).

Proof. If the arrangement is projective we choose one pseudo-line, we stretch it and
put it at infinity, to obtain an affine arrangement having one pseudo-line less than
the projective arrangement.

We work with an affine arrangement A = {A1, ..., Am} of m pseudo-lines, where
m is an odd integer and Am touches exactly m − 2 triangles of the arrangement,
and denote by A = A∪{L∞} the projective arrangement obtained by adding to A
the line at infinity. We will construct m pseudo-lines B1, ..., Bm such that the affine
arrangement B = {A1, ..., Am−1, B1, ..., Bm} has (m − 1)2 more triangles than A,
and such that if Am touches exactly m triangles of the projective arrangement A
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then the projective arrangement B = B ∪ {L∞} has m(m− 1) triangles more than
A. This will achieve the proof of the Lemma.

After the application of an homeomorphism of the affine plane, we may assume
that Am is the horizontal line y = 0, and up to a reordering, that the x-coordinate
of Am∩Ai is lower than the x-coordinate of Am∩Ai+1 for i = 1, ...,m−2. We write
A0 = L∞ and for i = 0, ...,m−1 we denote by si the union of the two segments of the
arrangement A that lie on Ai and touch Am; this yields the situation described in
Figure 5 (after assuming that s1 and s2 meet in the upper half-plane, which implies
that sm−2 and sm−1 do the same, since m is odd). In particular, si intersects si+1

for i = 1, ...,m− 2.

s1 s2 s3

Am

sm−2 sm−1 s0s0

Figure 5. The sequence of the segments s0, s1, ..., sm−1, near the
line A0.

We construct the pseudo-lines of the set B+ = {B1, .., Bm} near A0 in the fol-
lowing way:

(1) For j = 0, ...,m− 1, each pseudo-line of B+ intersect Aj on the segment sj .
(2) For j = 0, ...,m−1, between the two segments sj and sk – where k = j +1 if

j < m− 1 and k = 0 otherwise – one special pseudo-line in B+ does not touch any
other curve of B+; except from this one, each element of B+ intersect exactly one
other. The special pseudo-line is the one whose intersection with sj has the lowest
(respectively biggest) x-coordinate if j is even (respectively if j is odd).

This yields the situation described in Figure 6.

Figure 6. The arrangement B = {A0, A1, ..., Am−1, B1, ..., Bm}.

Let us prove that this construction is possible, i.e. that the vertical ordering of
the elements of B+ at the left of the affine part is the opposite of the one at the right,
so that the ordering on the line at infinity is the same on each way. We order the
curves so that Bi is upper that Bi+1 at the left of the affine part, for i = 1, ..,m−1.
Between two consecutive segments sj and sk, we say that a pseudo-line of B+ is
going down (respectively is going up) if it crosses a pseudo-line which is below it on
the segment sj (we do as if the segments sj was almost vertical); we say that the
pseudo-line that crosses no other element of B+ is horizontal. Observe that, from
left to right, each pseudo-line B1, B3, ..., Bm−2 (respectively B2, B4, ..., Bm−1) goes
down (respectively goes up) until it is at the top (respectively at the bottom), stay
horizontal, and then goes down (respectively goes up). The pseudo-line Bm stay
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horizontal, and then goes up. Since there are m places to cross, the line Bi is at
the place m + 1− i at the end.

Furthermore, each pseudo-line of B+ stays horizontal exactly at one place. This
shows that each one intersects m− 1 other pseudo-lines of B+. The ordering at the
left and the right being reversed, each two elements of B+ intersect into exactly
one point.

The two arrangements B and B are thus arrangement of pseudo-lines. Counting
the new triangles added (for example by observing that no new unused segment is
added), we obtain the results needed. �

Corollary 4.2. If the bound of Theorem 1 is reached for some odd (respectively
even) integer n, then it is reached for 2n− 1 (respectively for 2n− 2). The same is
true for the bound of Theorem 2.

Proof. This may be proved by direct counting, or by observing that the number of
unused segments of the ”small” arrangement is the same as the number of unused
segments of the arrangement obtained by the doubling method. �

5. Explicit configurations that reach the bounds

The bounds of Theorems 1 and 2 have been proved in Corollaries 2.4 and 2.6,
and in Lemma 3.1. To prove the two theorems, it remains to provide infinite
sequences that reach the bound, for any value of n (mod 6) and for both affine and
projective cases. We do this by providing concrete examples (Figure 7) and using
Corollary 4.2.

Proposition 5.1. For n = 3, 4, 7, 8, 15, 16, 19, 20, 21, 22, 23, 24, 26, 27, 28, the bounds
of Theorems 1 (affine arrangements) is reached. For the same values – except
n = 3, 8, 20 – the bound of Theorem 2 (projective arrangements) is reached.

Remark 5.2. Except for n = 26, the Proposition follows from [Sim], [Har2], [BRS]
and [BBL]; the configurations of these articles are given in Figure 7.

Proof. The odd values are provided directly by the arrangements of Figure 7.
Adding a line far away, we obtain the even values, except n = 26. The projective
arrangement of 26 pseudo-lines provided in Figure 4 reaches the bound of Theo-
rem 2; choosing the line at infinity near one of the five lines of the arrangements
that touch the pentagon ∆, we obtain an affine arrangement of 26 pseudo-lines that
reaches the bound of Theorem 1. �

Corollary 5.3. For n = m · 2t + 1, where t ≥ 0 and m = 4, 6, 14, 18, 20, 22, 26, the
bounds of Theorems 1 and 2 are reached.

For n = m · 2t + 2, where t ≥ 0 and m = 4, 14, 20, 22, 24, 26, the bounds of
Theorems 1 and 2 are reached.

Proof. According to Corollary 4.2, if the bounds are reached for n = m · 2t + 1
(respectively for n = m · 2t +2), these are reached for n = m · 2t+1 +1 (respectively
for n = m · 2t+1 +2). This corollary follows then directly from Proposition 5.1. �
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3 (4) 7 (8) [BBL] 15 (16) [Sim], [BRS] 19 (20)[BBL]

21 (22) [BRS] 23 (24) [BRS] 27 (28) [Har2], [BRS]

Figure 7. Affine arrangements of 3, 7, 15, 19, 21, 23, 27 pseudo-
lines that reach the bounds of Theorems and that give – adding
a line far away – affine (respectively projective) arrangements
of 4, 8, 16, 20, 22, 24, 28 (respectively 4, 16, 22, 24, 28) pseudo-lines
that reach the bounds.

5.1. Proofs of Theorems 1, 2 and 3. We are now ready to give the proofs of
the Theorems.

Proof of Theorems 1 and 2. The bounds of Theorems 1 and 2 have been proved in
Corollaries 2.4 and 2.6, and in Lemma 3.1. The infinite sequences of values that
reach the bound are provided by Corollary 5.3. �

Proof of Theorem 3. The values of as
3(n) and ps

3(n) for n = 3, 4 are easy to compute.
Applying Corollary 5.3 for m = 4 we obtain the values for n = 5, 6, 9, 10, 17 and
18. Similarly, we see that as

3(n) and ps
3(n) reach the bound for the following values

of n:

m n
4 5, 6, 9, 10, 17, 18, 33, 34, ...
6 7, 13, 25, 49, 97, 193, ...
14 15, 16, 29, 30, 57, 58, ...
18 19, 37, 73, 145, 289, ...

m n
20 21, 22, 41, 42, 81, 82, ...
22 23, 24, 45, 46, 89, 90, ...
24 26, 50, 98, 194, 386, ...
26 27, 28, 53, 54, 105, 106, ...

In particular, for n ≤ 30, both bounds are reached, except possibly for n =
8, 11, 12, 14, 20.

In the projective case, the bound (of Theorem 2) is not reached, for any of these
5 values. For n = 12, a nice proof may be found in [Rou2, Theorem 4.2]. For n = 8,
it is quite simple to see it directly by hand, and for n = 14 it remains possible, with
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a little bit more work. In fact, a simple computer algorithm proves that the value
of ps

3(n) for n = 8, 11, 12, 14, 20 is respectively 16, 32, 40, 58, 124.
In the affine case, the bound (of Theorem 1) is reached for n = 8 and n = 20

(Proposition 5.1), and then also for n = 14, according to Corollary 4.2. The
remaining two cases (n = 11, 12) do not reach the bound. In particular, as

3(11) = 32
and as

3(12) = 37. This may also be proved by computer (see [BBL]). �

Remark 5.4. In [Rou3, Table 1], it is stated (without proof) that ps
3(12) = 42, a

result that has been cited in [BBL]. This should be a misprint (as it was confirmed to
us by J.P. Roudneff in a private communication). A projective simple arrangement
of 12 pseudo-lines with 42 triangles would have only 6 unused segments, which
would form an hexagon; by hand it is quite easy to observe that this is impossible.

6. Remarks on arrangements of lines

Since an arrangement of lines is also an arrangement of pseudo-lines, all the
bounds of Theorems 1 and 2 are still valid for affine and projective arrangements
of lines. Moreover, it is possible to stretch the first three examples of Figure 7
(the first two are arrangements of lines and the third is stretched in [Sim]). The
duplicate construction may also be applied to straight lines (see [FoR] and [BBL]).
To obtain the proof of Theorems 1 and 2 for lines, it remains in fact to provide an
arrangement of n lines with n ≡ 2 (mod 6) having exactly (n(n−1)−5)/3 triangles
(which could be done by stretching the arrangement of Figure 4).
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