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Abstract. We describe the conjugacy classes of affine automorphisms in the group
Aut(n,K) (respectively Bir(Kn)) of automorphisms (respectively of birational maps)
of K

n. From this we deduce also the classification of conjugacy classes of automorphisms
of P

n in the Cremona group Bir(Kn).

1. Introduction

Let K be an algebraically closed field of characteristic 0 and let K
n and P

n denote
respectively the affine and projective n-spaces over K.

The Cremona group, which is the group of birational maps of these two spaces,
Bir(Kn) = Bir(Pn), has been studied a lot, especially in dimension 2 and 3, see
for example [Hud] and [AlC]. Its subgroup of biregular morphisms (or automor-
phisms) of K

n, called the affine Cremona group Aut(n,K), has been also much
explored. We refer to [Kra] for a list of references.

In both cases, the question of the conjugacy classes of elements is natural. For
Bir(P2), the classical approach can be found in [Kan] and [Wim]. A modern clas-
sification of birational morphisms of prime order was completed in [BaB], [DeF]
and [BeB]. We refer to [KrS] and their references for the group Aut(n,K).

In the literature, the affine and projective cases are often treated separately, with
different methods, although the groups are very close as we can see in the following
diagram:

PGL(n+1,K) ⊂ Bir(Pn)

∪ ‖
GL(n,K) ⊂ Aff (n,K) ⊂ Aut(n,K) ⊂ Bir(Kn).

In this paper, we restrict ourselves neither to small dimensions nor to finite ele-
ments, but to the case of maps of degree 1. We give the conjugacy classes, in the
Cremona groups, of automorphisms of K

n and P
n that maps lines to lines. Explic-

itely these are the group Aff (n,K) of affine automorphisms of K
n and the group

PGL(n + 1,K) of automorphisms of P
n (or linear birational maps). These two

groups are very classical and studied in many domains of mathematics.
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More precisely, the goal of this paper is to find under which conditions two
affine automorphisms of K

n are conjugate in Aff (n,K) itself, in Aut(n,K), or
in Bir(Kn). For this purpose, we describe the trace on Aff (n,K) of the conju-
gacy classes of an affine automorphism in Aff (n,K), Aut(n,K) and Bir(Kn),
respectively in Sections 2, 3, and 4.

The similar question in the projective case is to find under which conditions
two linear automorphisms of P

n are conjugate in the group Bir(Pn). This will be
answered in Section 5.

Let Aut(T n) = GL(n,Z) denote the group of automorphisms of the group
T n = (K∗)n. As K

n contains T n as an open subset, we get a natural injection
T : GL(n,Z) → Bir(Kn) which image normalizes D(n,K), the subgroup of
GL(n,K)made up of diagonal automorphisms (x1, . . . , xn) �→ (α1x1, . . . , αnxn),
with αi ∈ K

∗, i = 1, . . . , n. Identifying GL(n,Z) with its image, the group of
monomial birational maps with coefficients 1, we will seeGL(n,Z) as a subgroup
of Bir(Kn). For a further description of the inclusion GL(n,Z) ⊂ Bir(Kn), see
[GoP]. (Note that there is another natural inclusion fromGL(n,Z) toGL(n,K) ⊂
Bir(Kn), but we won’t use this one in this paper.)

Among the affine transformations of K
n, we distinguish those that we call

almost-diagonal automorphisms: namely maps of the form (x1, . . . , xn) �→ (x1 +
1, α2x2, . . . , αnxn). The αi ∈ K

∗, i = 2, . . . , n will be called the eigenvalues of
the map. It is clear that Aut(T n−1) = GL(n− 1,Z) normalizes the set AD(n,K)
of almost-diagonal automorphisms.

We can now extend our diagram:

PGL(n+ 1,K) ⊂ Bir(Pn)

∪ ‖
GL(n,K) ⊂ Aff (n,K) ⊂ Aut(n,K) ⊂ Bir(Kn) ⊃ Aut(T n)= GL(n,Z)

∪ ∪ ∪ ∪
D(n,K) AD(n,K) Aut(T n−1)=GL(n− 1,Z).

We will prove the following results:

Theorem 1 (Conjugacy classes of affine automorphisms of K
n).

1. In the affine Cremona group Aut(n,K) (Section 3)
– The conjugacy classes of affine automorphisms that fix a point are given by

their Jordan normal form, as in GL(n,K).
– Any affine automorphism that fix no point is conjugate to an almost-diagonal

automorphism, unique up to a permutation of its eigenvalues.
2. In the Cremona group Bir(Kn) (Section 4)

– Any affine automorphism of K
n is conjugate, either to a diagonal, or to an

almost-diagonal automorphism of K
n, exclusively.

– The conjugacy classes of diagonal and almost-diagonal automorphisms of
K
n are respectively given by the orbits of the actions of GL(n,Z) and

GL(n− 1,Z) by conjugation. These actions correspond respectively to the
natural actions of Aut(T n) and Aut(T n−1) on T n and T n−1.

– In particular, if n > 1, two affine automorphisms of the same finite order
are conjugate in Bir(Kn).
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From theorem 1 we can deduce the analogue result on P
n, which is the fol-

lowing Theorem (Section 5). We define almost-diagonal automorphism of P
n to

be a map of the form (x0 : . . . : xn) �→ (x0 : x0 + x1 : α2x2 : . . . : αnxn), with
α2, . . . , αn ∈ K

∗.

Theorem 2 (Conjugacy classes of automorphisms of P
n in the Cremona group

Bir(Pn)).

– Any automorphism of P
n is conjugate, either to a diagonal or to an almost-

diagonal automorphism of P
n, exclusively.

– The conjugacy classes of diagonal and almost-diagonal automorphisms of P
n

are respectively given by the orbits of the actions ofGL(n,Z) andGL(n−1,Z)
by conjugation. These actions correspond respectively to the natural actions of
Aut(T n) and Aut(T n−1) on T n and T n−1.

– In particular, if n > 1, two automorphisms of P
n of the same finite order are

conjugate in Bir(Kn), (see [BeB], Proposition 2.1.).

2. Conjugacy classes of Aff (n, K)

Denote by K[X] = K[X1, . . . , Xn] the polynomial ring in the variablesX1, . . . , Xn
over K and by K(X) = K(X1, . . . , Xn) its field of fractions. Elements ofBir(Kn)

can be written in the form ϕ = (ϕ1, . . . , ϕn), where each ϕi belongs to K(X). Any
birational map ϕ ∈ Bir(Kn) induces a map

ϕ∗ : F �→ F ◦ ϕ, (F ∈ K(X))

which is a K-automorphism of the field K(X). Conversely, any K-automorphism
of K(X) is of this form. So, Bir(Kn) is anti-isomorphic to the group of K-auto-
morphisms of K(X) and its subgroups Aut(n,K), Aff (n,K) and GL(n,K) cor-
responds respectively to the groups of K-automorphisms of K[X], K[X]≤1 and
K[X]1. Here, K[X]≤1 and K[X]1 denote respectively the sets of polynomials of
degree ≤ 1 and egal to 1.

The study of the conjugacy classes ofAff (n,K) is elementary and well-known.
Letα, β ∈ Aff (n,K); let us recall that the first dichotomy consists in separating the
cases according to whether α and β fix a point or not, since an affine automorphism
that fixes a point cannot be conjugate to one with no fixed point.

If both α and β fix a point, they are respectively conjugate to linear automor-
phisms α′ and β ′ of K

n (elements ofGL(n,K)), and are then conjugate if and only
if these have the same Jordan normal form. We will say that these Jordan normal
forms are also the Jordan normal forms of α and β. That doesn’t depend on the
choice of α′ and β ′.

We will extend this idea to the case of affine automorphisms with no fixed point.
Suppose that α has no fixed point. We consider a basis (1, P1, . . . , Pn) of K[X]≤1
such that the matrix of α∗|K[X]≤1

has the Jordan normal form


J (λ1, k1)

. . .

J (λr , kr )


 ,
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where J (µ, k) =




µ 1
. . .

. . .

µ 1
µ


 ∈ GL(k,K) is a Jordan block of size k. Observe

that λ1 = 1 and k1 > 1, as α fixes no point.
Then, π : (x1, . . . , xn) �→ (P1(x1, . . . , xn), . . . , Pn(x1, . . . , xn)) is an affine

automorphism of K
n such that

παπ−1 :




x1
x2
...

xn


 �→

t

J (λ1, k1 − 1)

. . .

J (λr , kr )







x1
x2
...

xn


+




1
0
...

0


 ; (1)

by analogy, we will also say that (1) is the Jordan normal form of α.
By observing that an automorphism given by formula (1) is of infinite order

(since char(K) = 0), we see that any affine automorphism of finite order has a fixed
point, which is true in general for any automorphism of finite order (see [KrS]).

Looking at the linear action of α∗ on K[X]≤1, we observe that the pairs (λi, ki)
characterize the conjugacy class of α. We have thus showed the following proposi-
tion:

Proposition 1 (Conjugacy classes in Aff (n,K)). Two affine automorphisms of
K
n are conjugate if and only if they have the same Jordan normal form. �

3. Conjugation in the group Aut(n, K)

It is clear that the conjugation inAut(n,K) respects the dichotomy of the existence
or not of a fixed point.

When there exists a fixed point, passing from the groupAff (n,K) toAut(n,K)
does not bring anything new:

Proposition 2. Two affine automorphisms of K
n that fix a point are conjugate in

Aut(n,K) if and only if they are already conjugate in Aff (n,K).

Proof. Let α, β be two affine automorphisms which have fixed points. Chang-
ing α and β within their Aff (n,K)-conjugacy classes, we can suppose that α
and β belong to GL(n,K). Let π ∈ Aut(n,K) be such that πα = βπ and let
ρ ∈ GL(n,K) denote the tangent map of π at the origin; then ρα = βρ. �

On the other hand, if there are no fixed points, by means of elements of
Aut(n,K), it is possible to modify the size of the Jordan blocks as the follow-
ing shows:

Example 1. The affine automorphisms

α :

(
x1
x2

)
�→
(

1 0
1 1

)(
x1
x2

)
+
(

1
0

)

β :

(
x1
x2

)
�→
(

1 0
0 1

)(
x1
x2

)
+
(

1
0

)
.
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are conjugate by the automorphism π :

(
x1
x2

)
�→
(

x1

x2 − x1(x1−1)
2

)
.

Geometrically, the affine automorphisms α and β on K
2 respectively leave

invariant the conics Ct given by x2 + x1−x1
2

2 = t and the lines Lt given by x2 = t

where t ∈ K; the action of these automorphisms on this curves is just a translation
by 1 on the axis x1. The automorphism π sends every conic Ct on the line Lt
without changing the coordinate x1, and so sends the orbits of α on those of β.

Example 2. The affine automorphisms

α :




x1
x2
...

xn


 �→




1
1 1
. . .

. . .

1 1







x1
x2
...

xn


+




1
0
...

0




β :




x1
x2
...

xn


 �→




1
1
. . .

1







x1
x2
...

xn


+




1
0
...

0




are conjugate by the automorphism

π :




x1
x2
x3
...

xn




�→




x1
x2 + P2(x1)

x3 + P3(x1, x2)
...

xn + Pn(x1, . . . , xn−1)



,

where Pm ∈ K[X1, . . . , Xm−1] is defined by the formula

Pm =
m−2∑
k=1

(
x1 + k − 1

k

)
(−1)kxm−k + (−1)m−1(m− 1)

(
x1 +m− 2

m

)
,

where we denote by

(
Q

r

)
the polynomial 1

r!Q(Q− 1)(Q− 2) · · · (Q− (r − 1)),

for r ∈ N,Q ∈ K[X1, . . . , Xn].
We give a more precise idea, we explicit the polynomials P2, . . . , P5:

P2 = − 1
2x1(x1 − 1)(see Example 1)

P3 = −x1x2 + 1
3 (x1 − 1)x1(x1 + 1)

P4 = −x1x3 + 1
2x1(x1 + 1)x2 − 1

8 (x1 − 1)x1(x1 + 1)(x1 + 2)

P5 = −x1x4 + 1
2x1(x1 + 1)x3 − 1

6x1(x1 + 1)(x1 + 2)x2

− 1
30 (x1 − 1)x1(x1 + 1)(x1 + 2)(x1 + 3)
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Geometrically, the affine automorphisms α and β on K
2 respectively leave

invariant the curves given by x2 + P2(x1) = τ2, x3 + P3(x1, x2) = τ2, . . . ,xn +
Pn(x1, . . . , xn−1) = τn and the lines given by xi = τi, i = 2, . . . , n where
(τ2, . . . , τn) ∈ K

n−1; the action of these automorphisms on this curves is just a
translation by 1 on the axis x1. The automorphism π sends the curves on the lines
without changing the coordinate x1, and so sends the orbits of α on those of β.

In fact, we can generalize this example to reduce a lot the size of the Jordan
blocks:

Proposition 3. An affine automorphism of K
n with no fixed point is conjugate, in

Aut(n,K), to an almost-diagonal automorphism, unique up to a permutation of its
eigenvalues.

More precisely, the automorphism

α :




x1
x2
...

xn


 �→

t


J (λ1, k1 − 1)
J (λ2, k2)

. . .

J (λr , kr )







x1
x2
...

xn


+




1
0
...

0


 ,

with λ1 = 1,

on Jordan normal form, is conjugate, in Aut(n,K), to the almost-diagonal auto-
morphism

αD :




x1
x2
...

xn


 �→




λ1 · Idk1−1
λ2 · Idk2

. . .

λr · Idkr







x1
x2
...

xn


+




1
0
...

0


 ,

where λ · Idk =



λ

. . .

λ


 ∈ GL(k,K) is the diagonal part of J (λ, k).

Proof. 1. The conjugation
For an automorphismπ : (x1, . . . , xn) �→(P1(x1, . . ., xn), . . ., Pn(x1, . . ., xn)),
we have π ◦ α = αD ◦ π if and only if

α∗(Pj ) =
{
P1 + 1 if j = 1
µ(j)Pj if j > 1

(2)

where µ(j) denotes the j -th eigenvalue of αD .
If j is the first indice of the i-th block, set Pj = Xj . If not, there exists
Qj ∈ K[X1, . . . , Xj−1] such that α∗(Qj ) = µ(j)Qj − Xj−1 (see Lemma
1 below); then let Pj = Xj + Qj so that α∗(Pj ) = α∗(Xj ) + α∗(Qj ) =
(µ(j)Xj + Xj−1) + (µ(j)Qj − Xj−1) = µ(j)(Xj + Qj) = µ(j)Pj . It is
clear that the map defined by thesePj is an automorphism of K

n that conjugates
α and αD .
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2. The unicity
Let us suppose that the two almost-diagonal automorphisms

θµ : (x1, . . . , xn) �→ (x1, µ2x2, µ3x3, . . . , µnxn) + (1, 0, . . . , 0)
θν : (x1, . . . , xn) �→ (x1, ν2x2, ν3x3, . . . , νnxn) + (1, 0, . . . , 0)

are conjugate in Aut(n,K): there exists π ∈ Aut(n,K) such that θµ ◦ π =
π ◦ θν . By derivation, one sees that




1
µ2

. . .

µn


 ◦M(x) = M(θµ(x)) ◦




1
ν2
. . .

νn


 (3)

where M(x) = (mij (x))
n
i,j=1 denotes the Jacobian matrix of π at x =

(x1, . . . , xn).
So we have µimij (x)ν

−1
j =mij (x1 + 1, ν2x2, . . . , νnxn), where µ1 = ν1 = 1.

Hence themij are eigenvectors of θ∗
ν and belong to K[X2, . . . , Xn], by Lemma

2 below. In particular, we see that M(0, . . . , 0) = M(1, 0, . . . , 0) = M(θν
(0, . . . , 0)). Since π is an automorphism of K

n, we have det (M(x)) = det (M

(0, . . . , 0)) ∈ K
∗, so equality (3) evaluated at x = (0, . . . , 0) shows that the

diagonal matrices




1
µ2

. . .

µn


 and




1
ν2
. . .

νn




are conjugate in GL(n,K), i.e. the µi and the νi are equal up to permutation.
�

Remark 1. 1. In fact, Proposition 3 shows also that α and αD are conjugate in
the famous Jonquière subgroup of Aut(n,K) given by {ϕ = (ϕ1, . . . , ϕn) ∈
Aut(n,K) | ϕi ∈ K[X1, . . . , Xi] for i = 1, . . . , n}.

2. The characteristic 0 is very important here, because Lemma 1 (and then Propo-
sition 3) is false in characteristic> 0: let L be any field of characteristic p, and
α1, α2, . . . , αp be the affine automorphisms

αk : (x1, x2, . . . , xn) �→(x1 + 1, x2 + x1, . . . , xk+ xk−1, xk+1, xk+2, . . . , xn).

Then α1, α2, . . . , αp−1 are all of order p and conjugate in Bir(Ln) but not αp
which is of order p2.

Lemma 1. If j is not the first indice of a block, there existsQj ∈ K[X1, . . . , Xj−1]
such that α∗(Qj ) = µ(j)Qj −Xj−1.
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Proof. Let us recall that :

α∗(Xk) =




X1 + 1 if k is the first indice
of the first block (k = 1)

λ(k)Xk if k is the first indice of another block
λ(k)Xk +Xk−1 if k is not the first indice of a block

We will prove the stronger assertion (that implies the Lemma, using k = j − 1,
as µ(j − 1) = µ(j)):

For any integers 1 ≤ k ≤ n and t ≥ 0, the monomial Xt1Xk is
in the image of the linear map of vector spaces

(α∗ − µ(k)id) : K[X1, . . . , Xk] → K[X1, . . . , Xk].
(4)

– Since (α∗ − id)|K[X1] is surjective, the assertion (4) is true for k = 1 and t ≥ 0.
– In the same way, if k > 1 is the first indice of a block, since α∗(Xk) = µ(k)Xk ,

the linear map (α∗−µ(k)id)|K[X1]·Xk is surjective and the assertion (4) is correct
for k and t ≥ 0.

– Lastly, if k is not the first indice of a block, we have

α∗(Xt+1
1 Xk) = (X1 + 1)t+1(µ(k)Xk +Xk−1)

= µ(k)Xt+1
1 Xk + (t + 1)µ(k)Xt1Xk +

∑
l,s

al,sX
s
1Xk,

where al,s ∈ K, and all the (l, s) are strictly smaller than (k, t), for the lexico-
graphical order.

The assertion (4) is then right by induction on the indices (k, t). �

Lemma 2. For any almost-diagonal automorphism θλ:(x1, x2, . . . , xn) �→(x1+1,
λ2x2, . . . , λnxn) of K

n, the eigenvectors of θ∗
λ belong to K[X2, . . . , Xn].

Proof. We first observe that the map θ∗
λ leaves invariant the decomposition

K[X] =
⊕

(a2,... ,an)∈Nn−1




n∏
i≥2

Xi
ai · K[X1]




and that the 
i≥2Xi
ai are eigenvectors. Since the only eigenspace of θ∗

λ in K[X1]
is K · 1, any eigenvector is in K[X2, . . . , Xn]. �

4. Conjugation in the group Bir(Kn)

4.1. Diagonalizable and birationaly almost-diagonal affine automorphisms

The conjugation of elements of Aff (n,K) in Bir(Kn) changes the dichotomy on
the existence of a fixed point, as the following example shows:
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Example 3. The two affine automorphisms

α :

(
x1
x2

)
�→

(
1 0
1 1

)(
x1
x2

)

β :

(
x1
x2

)
�→

(
1 0
0 1

)(
x1
x2

)
+
(

1
0

)

are conjugate by the birational map

ϕ :

(
x1
x2

)
�→
(
x2x

−1
1

x−1
1

)
.

In fact, choosing K
2 as the open subset x0 �= 0 of P

2, the two affine automorphisms
become

α̃ : (x0 : x1 : x2) �→ (x0 : x1 : x2 + x1)

β̃ : (x0 : x1 : x2) �→ (x0 : x1 + x0 : x2)

and the birational map corresponds only to the permutation of coordinates

ϕ̃ : (x0 : x1 : x2) �→ (x1 : x2 : x0).

Let us recall thatD(n,K) denotes the subgroup ofGL(n,K)made up of diag-
onal automorphisms and AD(n,K) the subset of Aff (n,K) made up of almost-
diagonal automorphisms.We will say thatα ∈ Aff (n,K) is diagonalizable (respec-
tively birationaly almost-diagonal) if there exists π ∈ Aff (n,K) such that παπ−1

∈ D(n,K) (respectively if there existsπ ∈ Bir(Kn) such thatπαπ−1 ∈ AD(n,K)).
These two notions provide the dichotomy for conjugation in Bir(Kn), as the

following result shows:

Proposition 4. An affine automorphism of K
n is either diagonalizable or biratio-

naly almost-diagonal, exclusively.

Proof.

1. Existence of the conjugation
Let α ∈ Aff (n,K). If α fixes no point, then α is birationaly almost-diagonal,
by Proposition (3). Else, by a conjugation in Aff (n,K), we may suppose that
α ∈ GL(n,K); if α is not diagonalizable, we verify, as in the example (3)
above, that α is birationaly almost-diagonal.

Explicitly, let α be of the form x �→
t(
J (µ,m1)

. . .

)
x, with m1 > 1.

Then, the birational map

π : (x1, . . . , xn) ��� ( 1

x1
,
x2

x1
, . . . ,

xm1

x1
, xm1+1, xm1+2, . . . , xn)
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conjugates α to the affine automorphism

x �→




µ−1

1
µ−1 1

. . .
. . .

µ−1 1
. . .



x +




0
µ−1

0
...
...

0



,

that fixes no point and so that is birationally almost-diagonal.

2. The diagonal and almost-diagonal automorphisms of K
n are in distinct conju-

gacy classes of Bir(Kn)

Suppose that θλ is an almost-diagonal automorphism of K
n conjugate in

Bir(Kn) to a diagonal automorphism ρµ by a birational map π . We write
ρµ, θλ, π in their explicit form:

θλ : (x1, x2, . . . , xn) �→ ( x1 + 1 , λ2x2 , . . . , λnxn )

ρµ : (x1, x2, . . . , xn) �→ ( µ1x1 , µ2x2 , . . . , µnxn )

π : (x1, x2, . . . , xn) �→ (
P1(x1,... ,xn)
Q1(x1,... ,xn)

,
P2(x1,... ,xn)
Q2(x1,... ,xn)

, . . . ,
Pn(x1,... ,xn)
Qn(x1,... ,xn)

)

with µi, λi ∈ K
∗ and Pi,Qi ∈ K[X] without common divisors. Since θ∗

λ gives

an automorphism of K[X] the condition πθλ = ρµπ implies that
θ∗
λ (Pi )

θ∗
λ (Qi)

=
µi

Pi
Qi

, for any i = 1, . . . , n. Then all the Pi andQi must be eigenvectors of θ∗
λ ,

viewed as a K-linear map. But such eigenvectors belongs to K[X2, . . . , Xn]
(Lemma 2) and so the map π cannot be birational. �

Remark 2. The fact that a non-diagonalizable automorphism of K
n is conjugate,

in Bir(Kn), to an affine automorphism with no fixed point can also be viewed as
follows:

Let us consider the automorphism

α :



x1
...

xn


 �→




µ

1 µ

.. .
. . .

1 µ

.. .






x1
...

xn




of K
n, and his extension to an automorphism

α̃ :




x0
x1
...

xn


 �→




1
µ

1 µ

.. .
. . .

1 µ

.. .







x0
x1
...

xn
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of P
n(K). We observe that α̃ leaves invariant the open set (x1 �= 0) of P

n(K) and
it induces in it the affine automorphism

β :




x0
x2
...

xn


 �→




µ−1

1
µ−1 1

. . .
. . .

µ−1 1
. . .







x0
x2
x3
...

xn




+




0
1
0
...

0




of K
n, that fixes no point. We go from α to β by exchange of x0 and x1.

4.2. Actions of GL(n,Z) and GL(n− 1,Z)

Let us summarize the situation; we have

Aff (n,K) = Aff (n,K) ∩ (Bir(Kn) •D(n,K) � Bir(Kn) • AD(n,K))
where Bir(Kn) • B = {παπ−1 | α ∈ B, π ∈ Bir(Kn)}.

We continue our study by describing the trace on D(n,K) (respectively on
AD(n,K)) of the conjugacy class of an element ρµ (respectively θν) of D(n,K)
(respectively AD(n,K)). Equivalently, we are looking for:

(Bir(Kn) • ρµ) ∩ D(n,K)

(Bir(Kn) • θν) ∩ AD(n,K)

Action of GL(n,Z) on D(n,K)
For this purpose, let us recall that T n = (K∗)n and consider the isomorphism

ρ : T n → D(n,K) ⊂ Bir(Kn)

(µ1, . . . ., µn) �→ [(x1, . . . , xn) �→ (µ1x1, . . . , µnxn)]

that is GL(n,Z)-equivariant for actions that we discribe now:
The action on T n is the natural action of of GL(n,Z) = Aut(T n): a matrix

A = (aij )
n
i,j=1 ∈ GL(n,Z) maps an element (µ1, . . . ., µn) ∈ (K∗)n on

A•(µ1, . . . , µn) = (µ
a11
1 µ

a12
2 · · ·µa1n

n , µ
a21
1 µ

a22
2 · · ·µa2n

n , . . . , µ
an1
1 µ

an2
2 · · ·µannn ).

On the other side, we have the injective homomorphism

T : GL(n,Z) → Bir(Kn)

A = (aij )
n
i,j=1 �→ [(x1, . . . , xn) ��� (xa11

1 · · · xa1n
n , . . . , x

an1
1 · · · xannn )]

whose image normalizes D(n,K). This gives then an action of GL(n,Z) on
D(n,K) by conjugation.

We get the formula:

T (A) ◦ ρ(µ) ◦ T (A)−1 = ρ(A • µ) µ ∈ (K∗)n, A ∈ GL(n,Z) (5)

that proves that ρ is equivariant and that
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(Bir(Kn) • ρ(µ)) ∩D(n,K) ⊃ ρ(GL(n,Z) • µ).

We will see further that this is an equality, i.e. that two diagonal automorphisms of
K
n that are conjugate in Bir(Kn) are conjugate by an element of GL(n,Z) (see

Proposition 6).
Action of GL(n− 1,Z) on AD(n,K)

We do the same for AD(n,K): we have the injective homomorphism

S : GL(n− 1,Z) → Bir(Kn)

A = (aij )
n
i,j=2 �→ [(x1, . . . , xn) ��� (x1, x

a21
2 · · · xa2n

n , . . . , x
an2
2 · · · xannn )]

whose image normalizes AD(n,K) and who gives then an action ofGL(n− 1,Z)
on AD(n,K) by conjugation.

With the action of GL(n− 1,Z) on (K∗)n−1, the bijection

θ : (K∗)n−1 → AD(n,K) ⊂ Bir(Kn)

(ν2, . . . ., νn) �→ [(x1, . . . , xn) �→ (x1 + 1, ν2x2 . . . , νnxn)]

is GL(n− 1,Z)-equivariant, by the formula

S(B) ◦ θ(ν) ◦ S(B)−1 = θ(B • µ) ν ∈ (K∗)n−1, B ∈ GL(n− 1,Z) (6)

and we see too that

(Bir(Kn) • θ(ν)) ∩ AD(n,K) ⊃ θ(GL(n− 1,Z) • ν).

We will see further that this is an equality, i.e. that two almost-diagonal auto-
morphisms of K

n that are conjugate in Bir(Kn) are conjugate by an element of
GL(n− 1,Z) (see Proposition 7).

4.3. Elements of finite order

Let us prove the equality between (Bir(Kn)•ρ(µ))∩D(n,K) andρ(GL(n,Z)•µ),
for elements µ ∈ (K∗)n of finite order. For n > 1, we do this by showing that
ρ(GL(n,Z)•µ) contains all diagonal automorphisms of the same order asµ. This
also proves that two affine automorphisms of the same finite order are conjugate in
Bir(Kn).

If n = 1 the group Bir(K) is equal to PGL(2,K) and a simple calculation
shows that two diagonal automorphisms x �→ αx and x �→ βx are conjugate if and
only if α = β±1. So the equality is true in dimension one too.

Proposition 5 (Diagonal automorphisms of finite order). If n > 1, two diagonal
automorphisms of K

n of the same (finite) order are conjugate by an element of
GL(n,Z) ⊂ Bir(Kn).
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Proof. Let m be a positive integer and ξ a primitive m-th root of the unity. A
diagonal automorphism of K

n of order m is given by ρ(α) : (x1, . . . , xn) �→
(x1ξ

t1 , . . . , xnξ
tn), where α = (ξ t1 , . . . , ξ tn), and the greatest common divisor of

the exponents g = gcd(t1, . . . , tn) is prime to m.
The action of GL(n,Z) on the diagonal automorphisms corresponds here to

the usual action of GL(n,Z) on the exponents (t1, . . . , tn) ∈ Z
n.

With elementary matrices, that add a multiple of a coordinate to another one,
we can map the vector t = (t1, . . . , tn) to the vector (g, 0, . . . , 0), so the diago-
nal automorphism ρ(α) is in the same orbit as the automorphism (x1, . . . , xn) �→
(x1ξ

g, x2, . . . , xn). Because g is prime to m, there exist p, q ∈ Z such that pm+
gq = 1. Since




q −p
m g

1
. . .

1







g

0
...
...

0




=




gq

gm

0
...

0




we see that ρ(α) is conjugate, by an element ofGL(n,Z), to the diagonal automor-
phism (x1, . . . , xn) �→ (x1ξ

gq, x2ξ
gm, x3, . . . , xn) = (x1ξ, x2, . . . , xn), which

concludes the proof. �
Corollary 1 (Conjugacy of affine automorphisms of finite order). Two affine auto-
morphisms of the same finite order are conjugate in Bir(Kn), for n > 1. �

4.4. Conjugacy classes of diagonal automorphisms

Let us now continue the work for diagonal automorphisms that are not necessary
of finite order.

Proposition 6. Two diagonal automorphisms of K
n that are conjugate inBir(Kn)

are conjugate by an element of GL(n,Z).

Proof. To each diagonal automorphism ρ(α) ∈ Aut(n,K), α = (α1, . . . , αn) ∈
(K∗)n, we associate the kernel �α of the following homomorphism:

δα : Z
n → K

∗
(t1, t2, . . . , tn) �→ α1

t1α2
t2 . . . αn

tn .

It is easy to verify that δM•α = δα ◦ tM , for any M ∈ GL(n,Z) and so that
�M•α = tM−1(�α). If δα is not injective, we can choose M (by theorem on
Smith’s normal form) such that �M•α is generated by k1e1, k2e2, . . . krer , where
e1, e2, . . . , en are the canonical basis vectors of Z

n, r ≤ n and the ki are positive
integers such that ki divides ki−1 for i = 2, . . . , r . Let α′ = (α′

1, . . . , α
′
n) = M•α.

We observe that α′
i is a primitive ki-th root of the unity for i = 1, . . . , r . In par-

ticular, we have α′
2 = (α′

1)
s for an integer s, so (s,−1, 0, . . . 0) ∈ �M•α , and then

k2 = k3 = · · · = kr = 1.
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Let ρ(α) and ρ(β) be two diagonal automorphisms conjugate in Bir(Kn). We
will assume that �α is generated by ke1, e2, . . . , er (replacing ρ(α) by another
element of its orbit if necessary, as we did above), so that α1 is a primitive k-th root
of the unity and α2 = α3 = · · · = αr = 1, if r > 0. By the way, if r = n, we
see another time (Proposition 5) that any diagonal automorphism of finite order is
conjugate to another one of the form (x1, . . . , xn) �→ (ξx1, x2, . . . , xn).

The condition of conjugation implies that there exists a birational map

ϕ : (x1, x2, . . . , xn) ��� (ϕ1(x1, . . . , xn), ϕ2(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)),

where ϕi ∈ K(X), such that ϕ ◦ ρ(α) = ρ(β) ◦ ϕ, and then

ϕi(α1x1, . . . , αnxn) = ρ(α)∗(ϕi) = βiϕi for i = 1, . . . , n.

So, everyϕi must be an eigenvector of ρ(α)∗, viewed as linear map of vector spaces,
and since ρ(α)∗ gives an automorphism of K[X], there must exist Fi,Gi ∈ K[X]
eigenvectors of ρ(α)∗|K[X]

such that ϕi = Fi
Gi

. This map can be diagonalized along

the basis of eigenvectors X1
t1X2

t2 . . . Xn
tn , and two vectors of this basis have the

same eigenvalue if and only if the difference of the exponent vectors is in the kernel
group �α associated to ρ(α).

By a choice of representants in the classes mod�α , we can put the transforma-
tion ϕ on the following form:

ϕ : (x1, . . . , xn) ���
(x1

a11 · · · xna1nψ1(x1
k, x2, . . . , xr ), . . . , x1

an1 · · · xnannψn(x1
k, x2, . . . , xr ))

where each ψi belongs to K(X1, . . . , Xr).
Hence, the map ϕ defines a matrix A = (aij )

n
i,j=1 in Matn,n(Z), which is not

unique because of the choice of the representants. More precisely, ϕ defines an
unique element of the quotient of Matn.n(Z) by the relation

(bij )
n
i,j=1 ∼ (cij )

n
i,j=1 if bi1 − ci1 ∈ kZ and bij = cij for i = 1, . . . , n and

j > r.

We observe that β = (β1, . . . , βn) = (α1
a11 . . . αn

a1n , . . . , α1
an1 . . . αn

ann).
The birationaliy of ϕ implies, (see Lemma 3 below), that there exists a matrix
B = (bij )

n
i,j=1 in the equivalence class associated to ϕ which is invertible. So, we

get from this that T (B)ρ(α)T (B)−1 = ρ(β), by the fact that

B • α = ( α1
b11 · · ·αnb1n , . . . , α1

bn1 · · ·αnbnn )
= ( α1

a11 · · ·αna1n , . . . , α1
an1 · · ·αnann )

= ( β1 , . . . , βn ) = β.

�
Lemma 3. If the rational map

ϕ(x1, . . . , xn) = (x
a11
1 · · · xa1n

n ψ1(x1
k, x2, . . . , xr ), . . . ,

x
an1
1 · · · xannn ψn(x1

k, x2, . . . , xr ))

is birational, then there exists an invertible matrix B = (bij )
n
i,j=1 ∈ GL(n,Z)

such that bi1 − ai1 ∈ kZ and bij = aij for i = 1, . . . , n and j > r .
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Proof. First of all, if n = 1 and r = 0, the lemma is deduced from the fact that the
map x ��� xa is birational if and only if a = ±1.

Suppose that r = n ≥ 1 and let ξ a primitive k-th root of the unity. The
conjugation of the linear automorphism of finite order ν1 : (x1, . . . , xn) �→
(x1ξ, x2, . . . , xn) by ϕ gives the linear automorphism (of the same order) ν2 :
(x1, . . . , xn) �→ (x1ξ

a11
1 , . . . , xnξ

an1). If n = 1, the lemma follows from the
fact that x �→ ξx and x �→ ξa11x are conjugated in PGL(2,K) if and only if
ξa11 = ξ±1, so a11 = ±1 mod k . If n > 1, by Proposition 5, there exists an
invertible matrix B = (bij )

n
i,j=1 ∈ GL(n,Z) such that T (B) conjugates ν1 to

ν2. Explicitly, it gives that ξbi1 = ξai1 for i = 1, . . . , n, so bi1 − ai1 ∈ kZ for
i = 1, . . . , n. The lemma is then proved in this case.

It remains to prove the lemma when r is strictly smaller than n and n > 1.
In this case, the matrix (aij )1≤i≤n,r+1≤j≤n has the maximal rank n − r , since
xr+1, . . . , xn appear only in the monomial part. There exists then an invertible
matrix M ∈ GLn(Z) such that the coefficients of A′ = MA are the same as the
ones of the identity, for columns r + 1, . . . , n. The composition of T (M) and ϕ
gives a new birational map T (M) ◦ ϕ:

T (M) ◦ ϕ(x1, . . . , xn) = ( x
a′

11
1 · · · xa

′
1,r
r ψ ′

1(x
k
1 , x2, . . . , xr ), . . . ,

x
a′
r,1

1 · · · xa
′
r,r
r ψ ′

r (x1
k, x2, . . . , xr ),

x1
a′
r+1,1 · · · xa

′
r+1,r
r xr+1ψ

′
r+1(x1

k, x2, . . . , xr ), . . . ,

x1
a′
n,1 · · · xa

′
n,r
r xnψ

′
n(x1

k, x2, . . . , xr )),

which has the same structure as ϕ, with matrix MA.
This map exchanges affine spaces of codimension r of type x1 = τ1, x2 =

τ2, . . . , xr = τr and so must be its inverse. So, the map of K
r given by the r first

coordinates of T (M) ◦ ϕ must be birational.
By induction, there exists an invertible matrix C′ = (c′ij )

n−1
i,j=1 ∈ GLr(Z) such

that c′i1 − a′
i1 ∈ kZ for i = 1, . . . , r . The matrix B ′ =

(
C′ 0
0 Id

)
(where Id ∈

GLn−r (Z) denotes the identity matrix) satisfy the condition that b′
i1 − a′

i1 ∈ kZ

and b′
ij = a′

ij for i = 1, . . . , n and j > r . The same occurs for B = M−1B ′ and

A = M−1A′. �

4.5. Conjugacy classes of almost-diagonal automorphisms

The case of almost-diagonal automorphism is deduced from the situation of diag-
onal automorphisms:

Proposition 7. Two almost-diagonal automorphisms of K
n are conjugate in the

group Bir(Kn) if and only if they are conjugate by an element of GL(n− 1,Z).

Proof. Let θ(α) and θ(β) be two almost-diagonal automorphisms of K
n:

θ(α) : (x1, x2, . . . , xn) �→ (x1 + 1, α2x2, α3x3, . . . , αnxn)

θ(β) : (x1, x2, . . . , xn) �→ (x1 + 1, β2x2, β3x3, . . . , βnxn).
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We suppose that θ(α) and θ(β) are conjugate in Bir(Kn), so that there exists a
birational map

ϕ : (x1, x2,. . ., xn) ���
(
P1(x1,. . ., xn)

Q1(x1,. . ., xn)
,
P2(x1,. . ., xn)

Q2(x1,. . ., xn)
,. . .,

Pn(x1,. . ., xn)

Qn(x1,. . ., xn)

)
,

with Pi,Qi ∈ K[X] without common divisor, such that ϕ ◦ θ(α) = θ(β) ◦ ϕ. This
implies that

Pi(x1 + 1, α2x2, . . . , αnxn)

Qi(x1 + 1, α2x2, . . . , αnxn)
= βi

Pi(x1, . . . , xn)

Qi(x1, . . . , xn)
for i = 2, . . . , n.

Since θ(α) induces an automorphism θ(α)∗ of K[X], all the Pi and Qi , for
i ≥ 2, must be eigenvectors of θ(α)∗, viewed as a K-linear map. Such eigenvec-
tors belongs to K[X2, . . . , Xn] (Lemma 2), then the map ϕ exchange lines of type
x2 = τ2, x3 = τ3, . . . , xn = τn and so must be its inverse. This implies that the
map ϕ′ : (x2, x3, . . . , xn) ��� ( P2(x2,... ,xn)

Q2(x2,... ,xn)
, . . . ,

Pn(x2,... ,xn)
Qn(x2,... ,xn)

), given by the n− 1
last coordinates of ϕ is birational.

Since the birational map ϕ′ of K
n−1 conjugates the diagonal automorphisms

ρ(α) : (x2, . . . , xn) �→ (α2x2, α3x3, . . . , αnxn)

ρ(β) : (x2, . . . , xn) �→ (β2x2, β3x3, . . . , βnxn),

Proposition 6 shows that ρ(α) and ρ(β) are conjugate by an element of GL(n −
1,Z) ⊂ Bir(Kn−1). Then, θ(α) and θ(β) are conjugated by the same element of
GL(n− 1,Z) ⊂ Bir(Kn). �

5. Conjugacy classes of automorphisms of P
n in the Cremona group

Let us work in P
n, the projective n-space over K. Choosing a coordinate xi , the

open subset Ui = {(x0 : . . . : xn) ∈ P
n | xi �= 0} is isomorphic to K

n via the map

(x0 : . . . : xn)
νi�→ ( x0

xi
, . . . ,

xi−1
xi
,
xi+1
xi
, . . . , xn

xi
). The restriction map ϕ �→ νiϕνi

−1

gives an isomorphism of the group Bir(Pn) of birational maps of P
n to Bir(Kn),

that we call both the Cremona group.
Let us recall that a birational map of P

n is given by a map (x0 : . . . : xn) ���
(P0(x0, . . . , xn) : . . . : Pn(x0, . . . , xn)), where P0, . . . , Pn ∈ K[X0, . . . , Xn] are
homogeneous polynomials of the same degree (that will be called the degree of the
map). As a birational map is biregular if and only if its degree is one, the group of
automorphisms (biregular rational maps) of P

n is PGL(n+ 1,K).
We will denote diagonal (respectively almost-diagonal) automorphisms of P

n

maps of the form (x0 : . . . : xn) �→ (x0 : α1x1 : . . . : αnxn), with α =
(α1, . . . , αn) ∈ (K∗)n (respectively (x0 : . . . : xn) �→ (x0 : x0 + x1 : α2x2 :
. . . : αnxn), with α = (α2, . . . , αn) ∈ (K∗)n−1).

It is clear that the restriction map ϕ �→ ν0ϕν0
−1 gives an isomorphism of

D(n,K) (respectively AD(n,K)) on the group of diagonal (respectively the set of
almost-diagonal) automorphisms of P

n.
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We can then explicit the conjugacy classes of automorphisms of P
n in the Cre-

mona group using the work made in affine space:
Any automorphism of P

n is conjugate, inBir(Pn), either to a diagonal automor-
phism or to an almost-diagonal automorphism. The conjugacy classes of diagonal
and almost diagonal automorphisms of P

n in the Cremona group are given by the
action of GL(n,Z) on the diagonal automorphisms and of GL(n − 1,Z) on the
almost-diagonal automorphisms (see Section 4).

Furthermore, if n > 1, two linear automorphisms of P
n of the same order are

conjugate in Bir(Pn). This result was already proved in dimension 2 in ([BeB],
Proposition 2.1.) with another method that works also in higher dimension.
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