When does the zero fiber of a moment map have rational singularities?

Gerald W. Schwarz

Brandeis University

May 5,2024

Gerald W. Schwarz When zero fiber has rational singularities

• • = •

Representation varieties

- Joint with H-C Herbig and C. Seaton, to appear in Geometry and Topology, arXiv:2108.07306. Same title. Call it [HSS].
- Let *G* be a semisimple complex Lie group.
- For p > 1, let π_p be the quotient of the free group on generators $a_1, b_1, a_2, \ldots, a_p, b_p$ by the normal subgroup generated by

$$[a_1, b_1][a_2, b_2] \cdots [a_p, b_p]$$

where $[a_i, b_i]$ is the commutator $a_i b_i a_i^{-1} b_i^{-1}$.

- For C closed Riemann surface genus p, $\pi_1(C) \simeq \pi_p$.
- Let $Z_p := \text{Hom}(\pi_p, G)$ denote the representation variety, the homomorphisms from π_p to G. Scheme structure as $\Phi^{-1}(e)$ where

$$\Phi\colon G^{2p}\to G, \quad (g_1,h_1,g_2,\ldots,g_p,h_p)\mapsto [g_1,h_1]\cdots [g_p,h_p].$$

• Φ is *G*-equivariant where $g \in G$ acts on *G* and G^{2p} by conjugation on each component. Hence *G* acts on Z_p .

- Let Γ be a group and $r_n(\Gamma)$ the number of *n*-dimensional irreducible complex representations of Γ (the growth sequence of Γ).
- Aizenbud and Avni, Invent. 2016 and Duke 2018.

Theorem

Let $p \ge 2$, let ρ_0 be trivial element of Z_p . Consider the following:

- R1. The tangent cone TC_{ρ_0} to Z_p at ρ_0 has rational singularities.
- R2. Z_p has rational singularities.
- R3. Assume G simple, simply connected, rank at least 2 and defined over \mathbb{Z} . Then $r_n(G(\mathbb{Z})) = o(n^{2p-2+\epsilon})$ for any $\epsilon > 0$.

Then $R1 \iff R2 \implies R3$.

• R1 true for $p \ge 21$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- True for $p \ge 11$ Kapon (2019), $p \ge 4$ by Glazer, Hendel (2020).
- Budur (2019). If simple factors of G are of type A, then R1 holds for $p \ge 2$ (best possible).
- Proof uses quivers, criterion of Mustață for rational singularities in terms of jet schemes and Luna's slice theorem.
- [HSS]: $p \ge 2$ works for all G.
- R3: $r_n(G(\mathbb{Z})) = o(n^{2+\epsilon}).$
- The tangent cone to Z_p at ρ_0 is zeroes of map
- $(x_1,\ldots,x_p,y_1,\ldots,y_p) \in \mathfrak{g}^{2p} \mapsto \sum [x_i,y_i] \in \mathfrak{g}.$ Case p = 1...
- Using Killing form this is a mapping from $\mathfrak{g}^{p} \oplus (\mathfrak{g}^{p})^{*} \to \mathfrak{g}^{*}$, which is a moment mapping:

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Let G be complex reductive and V a G-module.
- $U = V \oplus V^*$ has standard *G*-invariant symplectic form σ : $\sigma((v_1, v_1^*), (v_2, v_2^*)) = v_1^*(v_2) - v_2^*(v_1)$. Then *V* and *V*^{*} are Lagrangian subspaces of *U*.
- Standard equivariant moment mapping $\mu: V \oplus V^* \to \mathfrak{g}^*$. For $v \in V$, $v^* \in V^*$, $A \in \mathfrak{g}$ we have $\mu(v, v^*)(A) = v^*(A(v))$.
- μ is unique equivar. moment map for (U, σ) with $\mu(0) = 0$.
- Denote $\mu^{-1}(0)$, the shell, by *N*. Only depends upon (V, G^0) . Since μ is *G*-equivariant, *N* has a *G*-action.
- If $V = \mathfrak{g}^{p}$, then TC_{p_0} is isomorphic to N.

・ 同 ト ・ ヨ ト ・ ヨ ト

Main Question: For which V does N have rational singularities?

- Let $V_{(n)} = \{x \in V \mid \dim G_x = n\}$. We say V is k-modular, $k \ge 0$, if $\operatorname{codim}_V V_{(n)} \ge n + k$ for $n \ge 1$.
- (Panyushev) V is *k*-modular if and only if a certain cohomological condition holds for $\mathbb{C}[N]$.
- Let V' be a *G*-submodule of *U* which is Lagrangian with corresponding shell N'. Then $N \simeq N'$ *G*-equivariantly.
- V' is k-modular iff V is. Useful fact.

Theorem

Assume that V is 0-modular. Then

- 1. N is a complete intersection of dimension $2 \dim V \dim G$.
- 2. N is reduced and irreducible if and only if V is 1-modular.
- 3. N is factorial ($\mathbb{C}[N]$ is a UFD) if and only if V is 2-modular.

(日本) (日本) (日本)

Theorem (Generic case)

- 1. Suppose that V is (dim G)-modular. Then N is a complete intersection with rational singularities
- 2. Let $k \ge 0$ and G be semisimple. Consider G-modules V where $V^G = 0$ and all irreducible G-submodules $W \subset V$ are almost faithful. Then, up to isomorphism, there are only finitely many V which are not k-modular.

.

• Let X be an affine G-variety. Then there is the categorical quotient $\pi_X \colon X \to X /\!\!/ G$ dual to the inclusion $\mathbb{C}[X]^G \subset \mathbb{C}[X]$.

• π_X is onto and each fiber of π_X contains a unique closed *G*-orbit.

• There is a principal isotropy group H such that the set of fibers of π_X whose closed orbits are G-isomorphic to G/H is an open and dense subset $X_{\rm pr}$ of X.

• We say X has FPIG (finite principal isotropy groups) if H is finite. Then X_{pr} consists of closed orbits.

• We say a *G*-variety is good if it is CI with FPIG and rational singularities.

伺下 イヨト イヨト

• Let X be an affine G-variety. Then there is the categorical quotient $\pi_X \colon X \to X /\!\!/ G$ dual to the inclusion $\mathbb{C}[X]^G \subset \mathbb{C}[X]$.

• π_X is onto and each fiber of π_X contains a unique closed *G*-orbit.

• There is a principal isotropy group H such that the set of fibers of π_X whose closed orbits are G-isomorphic to G/H is an open and dense subset $X_{\rm pr}$ of X.

• We say X has FPIG (finite principal isotropy groups) if H is finite. Then X_{pr} consists of closed orbits.

• We say a *G*-variety is good if it is CI with FPIG and rational singularities.

Theorem (HSS)

Let G^0 be a torus and V a G-module. If V is 1-modular, i.e., N is a variety, then N is good.

(日本) (日本) (日本)

Symplectic slice representations of N

- Let $x \in N$ where Gx is closed. Then $H = G_x$ is reductive and $E = T_x(Gx) \simeq \mathfrak{g}/\mathfrak{h}$.
- $V \oplus V^* \simeq E \oplus E^* \oplus S$ where E and E^* are isotropic and σ induces a symplectic H-invariant form σ_S on S.
- Call (S, H) the symplectic slice representation at x.
- S admits an H-stable Lagrangian submodule W and σ_S is standard on $S = W \oplus W^*$. We have the standard moment mapping $S \to \mathfrak{h}^*$ with shell N_S .

Theorem (Symplectic slice theorem)

The following are G-equivariantly isomorphic: N near Gx and (the homogeneous bundle over G/H with fiber N_S) near G/H.

• Corollary: Let (P) be one of the following conditions: reduced, smooth, normal or rational singularities. Then N satisfies (P) at x if and only if N_S satisfies (P) at 0.

A D D A D D A D D A D D A

Symplectic slice representations satisfying (*).

• The null cone $\mathcal{NC}(V)$ of a *G*-module *V* is $\pi_V^{-1}(\pi_V(0))$ and similarly $\mathcal{NC}(N) = \pi_N^{-1}(\pi_N(0))$.

• Define $\lambda(V) = \max\{\dim L \mid L \subset \mathcal{NC}(V), L \text{ is linear}\}.$

•
$$\lambda(V^*) = \lambda(V).$$

- Let $(S = W \oplus W^*, H)$ be symplectic slice representation of N. Write $S = S^H \oplus S_0$ as H-module.
- $N_S = S^H \times N_0$ where N_0 is shell of any Lagrangian *H*-submodule W_0 of S_0 .

Definition

Let (S, H) be a symplectic slice representation of N and S_0 , etc. as above. Then (S, H) satisfies (*) if one of the following holds.

- S1. H^0 is a torus and and N_0 is a variety.
- S2. There is a Lagrangian *H*-submodule W_0 of S_0 such that $\lambda(W_0) < \dim W_0 \dim H$.

(日本) (日本) (日本)

Theorem (Main Theorem)

Suppose that every symplectic slice representation of N satisfies (*). Then N is good. Moreover, $N /\!\!/ G$ has symplectic singularities and is (graded) Gorenstein.

Theorem (Main Theorem for $V = \mathfrak{g}^p$, p > 1.)

Let G be semisimple, $V = \mathfrak{g}^p$ for p > 1 and $N = N_V$. Let (S, H) be a symplectic slice representation of N. Then

1. (S, H) satisfies (*), hence N is good.

Suppose that p > 2 or that G has no simple factor of rank 1. Then

2. N_S is factorial. So N is factorial and V is 2-modular.

3.
$$\mathbb{C}[N_S]^* = \mathbb{C}^{\times} = \mathbb{C}[N]^*$$
.

4. If H has trivial character group, then $N_S //H$ is factorial. In particular, N //G is factorial.

When is $\lambda(V) < \dim V - \dim G$?

• It is not easy to determine $\lambda(V)$ in general.

Proposition

Suppose that V is orthogonal.

- 1. $\lambda(V) = (1/2)(\dim V \dim V^T)$ where T is a maximal torus of G.
- 2. $\lambda(V) < \dim V \dim G$ if and only if dim $G < \frac{1}{2}(\dim V + \dim V^T)$.

• If $V = \mathfrak{g}$, due to Gerstenhaber for $G = SL_n$ (1958). For general G simple this is due to Meshulam and Radwan (1998). Also treated by Draisma-Kraft-Kuttler [2006]. Latter gave idea we used to prove proposition.

(日本)(日本)(日本)

Applications to representation and character varieties

Recall that Z_p = Hom(π_p, G) is a representation variety and Y_p = Z_p//G is the corresponding character variety. Here p ≥ 2.
Let z ∈ Z_p such that Gz is closed with isotropy group H. W. Goldman calculated TC_z in the 80's.

• [HSS]: Up to a vector space, $TC_z \simeq N_W$ where $W = \mathfrak{h}^p \oplus (\mathfrak{g}/\mathfrak{h})^{p-1}$.

• (*) holds, so that TC_z has rational singularities. It follows that Z_p has rational singularities. Not AA proof.

Theorem

1. Z_p is good of pure dimension $(2p-1) \dim G$.

2. Y_p has dimension $2(p-1) \dim G$ and symplectic singularities.

Suppose that p > 2 or G has no factor of rank 1.

- 3. Z_p is locally factorial with singularities in codimension four.
- 4. The component of Y_p containing the image of ρ_0 is locally factorial with singularities in codimension 4.

• Let G be a classical group and V a direct sum of copies of the defining representation (and its dual).

• Here are NASC conditions on V to be 1-modular, i.e., for N to be a variety;

Theorem

Let (V, G) be as above. If N is a variety, then it is good.

• Techniques are case by case.

向下 イヨト イヨト

Jet schemes of N

• Let V be a G-module. We use a criterion of Mustață to establish that N has rational singularities.

• Let $\vec{x} = (x_0, \dots, x_m) \in V^{m+1}$ and $\vec{\xi} = (\xi_0, \dots, \xi_m) \in (V^*)^{m+1}$. The *m*th jet scheme N_m of N is given by the following equations where A runs through a basis of \mathfrak{g} .

(e.0)
$$\xi_0(A(x_0)) = 0,$$

(e.1)
$$\xi_0(A(x_1)) + \xi_1(A(x_0)) = 0.$$

(e.2)
$$\xi_0(A(x_2)) + \xi_1(A(x_1)) + \xi_2(A(x_0)) = 0,$$

(e.3)
$$\xi_0(A(x_3)) + \xi_1(A(x_2)) + \xi_2(A(x_1)) + \xi_3(A(x_0)) = 0,$$

(e.m) $\xi_0(A(x_m)) + \xi_1(A(x_{m-1})) + \cdots + \xi_m(A(x_0)) = 0.$

• Let $\rho_m \colon N_m \to N$ be the projection.

Theorem (Mustață, Invent. 2001)

Let N be a local complete intersection variety. The following are equivalent for $m \ge 1$ and each implies that dim $N_m = (m + 1) \dim N$.

- 1. N_m is irreducible.
- 2. dim $\rho_m^{-1}(N_{\rm sing}) < (m+1) \dim N$.

Moreover, N has rational singularities if and only if (1) or (2) holds for all $m \ge 1$.

.

- Assume (*) holds for all symplectic slice representations of *N*.
- Can show that *N* has FPIG, is CI and normal.
- Can assume by induction over slice representations that $N \setminus \mathcal{NC}(N)$ has rational singularities.
- Can assume $V^G = 0$. If G^0 is a torus N is good.
- Otherwise can assume $\lambda(V) < \dim V \dim G$.
- Let N'_m be closure of $\rho_m^{-1}(N \setminus \mathcal{NC}(N)_{sing})$.
- N'_m is irreducible. Show $N_m = N'_m$.

Points in N_m lying over $\mathcal{NC}(N)$

• Fix
$$\vec{x} = (x_0, ..., x_m) \in V^{m+1}$$
.

- Let r_j be the rank of the (dim G) equations (e.j) on $(V^*)^{m+1}$.
- Let $Y \subset (V^*)^{m+1}$ be solutions to (e.0)–(e.m) with our fixed \vec{x} .
- Y is linear of dimension $(m+1) \dim V^* \sum_{j=0}^m r_j$.

Lemma

The projection $\xi \mapsto \xi_0$ maps Y onto a linear subspace $F_m \subset V^*$ of dimension dim $V^* - r_m \ge \dim V^* - \dim G$.

- By (*), dim $F_m > \lambda(V^*) = \lambda(V)$ so that $F_m \not\subset \mathcal{NC}(V^*)$.
- If $(x_0,\xi_0) \in N$ and $\xi_0 \notin \mathcal{NC}(V^*)$, then $(x_0,\xi_0) \notin \mathcal{NC}(N)$.
- Hence $\rho_m^{-1}(\mathcal{NC}(N)) \cap (\{\vec{x}\} \times Y)$ is not dense in $\{\vec{x}\} \times Y$.
- So $N'_m \cap (\{\vec{x}\} \times Y)$ is dense in $\{\vec{x}\} \times Y$.
- Since \vec{x} is arbitrary, N'_m is dense in N_m .
- So N_m is irreducible and N has rational singularities.

A Aizenbud and N Avni, *Representation growth and rational singularities of the moduli space of local systems*, Invent. Math. 204 (2016) 245–316.

A Aizenbud and N Avni, *Counting points of schemes over finite rings and counting representations of arithmetic lattices*, Duke Math. J. 167 (2018) 2721–2743.

N Budur, *Rational singularities, quiver moment maps, and representations of surface groups*, Int. Math. Res. Not. IMRN (2021) 11782–11817.

J Draisma, H Kraft, J Kuttler, *Nilpotent subspaces of maximal dimension in semi-simple Lie algebras*, Compos. Math. 142 (2006) 464–476.

M Gerstenhaber, *On nilalgebras and linear varieties of nilpotent matrices. I*, Amer. J. Math. 80 (1958) 614–622.

向下 イヨト イヨト

I Glazer, YI Hendel, On singularity properties of word maps and applications to probabilistic Waring type problems (2020) arXiv:1912.12556v2 .

G Kapon, Singularity Properties of Graph Varieties (2019) arXiv:1905.05847.

R Meshulam, N Radwan, *On linear subspaces of nilpotent elements in a Lie algebra*, Linear Algebra Appl. 279 (1998) 195–199.

M Mustață, *Jet schemes of locally complete intersection canonical singularities*, Invent. Math. 145 (2001) 397–424.

D I Panyushev, *The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties*, Compositio Math. 94 (1994) 181–199.

・ 同 ト ・ ヨ ト ・ ヨ ト