On Seshadri stratifications

Peter Littelmann Universität zu Köln

Algebraic Transformation Groups

May 5 – 8, 2024

On Seshadri stratifications

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Peter Littelmann

joint work with Rocco Chirivì and Xin Fang

- report on joint work: Rocco Chirivì (Lecce), Xin Fang (Aachen),
- $\bullet~\mathbb{K}$ algebraically closed field, and
- $X \subseteq \mathbb{P}(V)$ embedded projective irreducible variety,
- smooth in codimension one (singular set has codimension at least two).

(日) (四) (三) (三) (三)

San

basics:

- a Seshadri stratification on $X \subseteq \mathbb{P}(V)$ is a collection of
- subvarieties $X_p \subseteq X$, $p \in A$,
- A a finite indexing set, and
- homogeneous functions $f_p \in \mathbb{K}[X]$, $p \in A$,
- have to satisfy certain compatibility conditions.

The f_p are called the *extremal functions* of the stratification.

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

What is a Seshadri stratification good for?

Rough idea:

- $X \longrightarrow$ combinatorial objects (semigroups, NO-body type objects)
- hope: can be used to get information about X.
- X admits a Seshadri stratification $\Rightarrow \exists$ flat degeneration of X into a reduced union of projective toric varieties X_0 ; (toric: not necessarily normal!)
- in nice cases: semigroups ightarrow standard monomial theory on $\mathbb{K}[X]$
- Example: flag variety: $G/B \hookrightarrow \mathbb{P}(V(\lambda))$ combinatorics recovers path model of representations + standard monomial theory...

...after this quick survey, let us be more precise...

イロト イヨト イヨト イヨト

What is a Seshadri stratification good for?

Rough idea:

- $X \longrightarrow$ combinatorial objects (semigroups, NO-body type objects)
- hope: can be used to get information about X.
- X admits a Seshadri stratification $\Rightarrow \exists$ flat degeneration of X into a reduced union of projective toric varieties X_0 ; (toric: not necessarily normal!)
- in nice cases: semigroups \rightarrow standard monomial theory on $\mathbb{K}[X]$
- Example: flag variety: $G/B \hookrightarrow \mathbb{P}(V(\lambda))$ combinatorics recovers path model of representations + standard monomial theory...

...after this quick survey, let us be more precise...

イロト イヨト イヨト イヨト 三日

San

What is a Seshadri stratification good for?

Rough idea:

- $X \longrightarrow$ combinatorial objects (semigroups, NO-body type objects)
- hope: can be used to get information about X.
- X admits a Seshadri stratification $\Rightarrow \exists$ flat degeneration of X into a reduced union of projective toric varieties X_0 ; (toric: not necessarily normal!)
- in nice cases: semigroups \rightarrow standard monomial theory on $\mathbb{K}[X]$
- Example: flag variety: $G/B \hookrightarrow \mathbb{P}(V(\lambda))$ combinatorics recovers path model of representations + standard monomial theory...

...after this quick survey, let us be more precise...

イロト イヨト イヨト イヨト 三日

What is it? More about the subvarieties.

Recall: Seshadri stratification on X is a collection of subvarieties X_p , $p \in A, ...$

In this way A is partially ordered: $p \leq q$ if $X_p \subseteq X_q$.

The condition (S1):

- like X itself, the X_p , $p \in A$, are smooth in codimension one;
- X is an element in this collection (so A has unique max. element);
- the subvarieties corresponding to minimal elements are points;
- inclusions $X_q \subsetneq X_p$ can always be extended to a "full flag"

 $X_q = X_{q_1} \subset X_{q_2} \subset \ldots \subset X_{q_s} = X_p,$

i.e. all inclusions are of codimension one, $q_1, \ldots, q_s \in A$.

・ロト ・ 日 ト ・ 日 ト ・ 日

What is it? More about the subvarieties.

Recall: Seshadri stratification on X is a collection of subvarieties X_p , $p \in A, ...$

In this way A is partially ordered: $p \leq q$ if $X_p \subseteq X_q$.

The condition (S1):

- like X itself, the X_p , $p \in A$, are smooth in codimension one;
- X is an element in this collection (so A has unique max. element);
- the subvarieties corresponding to minimal elements are points;
- inclusions $X_q \subsetneq X_p$ can always be extended to a "full flag"

$$X_q = X_{q_1} \subset X_{q_2} \subset \ldots \subset X_{q_s} = X_{p_s}$$

i.e. all inclusions are of codimension one, $q_1, \ldots, q_s \in A$.

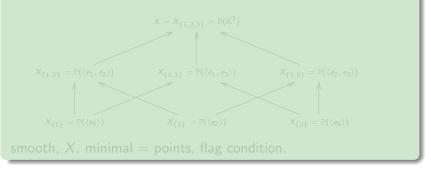
Example: \mathbb{P}^2 and the coordinate hyperplanes

Example (1)

 $X = \mathbb{P}^2 = \mathbb{P}(\mathbb{K}^3)$, $\{e_1, e_2, e_3\}$ standard basis of \mathbb{K}^3 .

A =subsets p of $\{1, 2, 3\}$ different from \emptyset

Collection of subvarieties: $\{X_p \mid p \in A\}$.



イロト イヨト イヨト イヨト

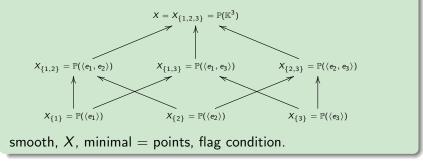
Example: \mathbb{P}^2 and the coordinate hyperplanes

Example (1)

$$X = \mathbb{P}^2 = \mathbb{P}(\mathbb{K}^3)$$
, $\{e_1, e_2, e_3\}$ standard basis of \mathbb{K}^3 .

A = subsets p of $\{1, 2, 3\}$ different from \emptyset

Collection of subvarieties: $\{X_p \mid p \in A\}$.



・ロト ・回ト ・ヨト ・ヨト

Examples: toric varieties, Schubert varieties

Example (2)

 \mathcal{T} a torus, $X \hookrightarrow \mathbb{P}(V)$ embedded normal projective toric variety for \mathcal{T} .

P = moment polytope, A = set of faces of the polytope \leftrightarrow *T*-orbits in *X*.

Collection of subvarieties: $X_F = \overline{O_F}$, F face of P, $O_F = T$ -orbit.

 X_F normal, so smooth in codim 1, X = unique maximal, minimal element = T-fixed points, flag condition.

Example (3)

Flag varieties: for simplicity char $\mathbb{K} = 0$ and *G* simple alg. group, *B* Borel subgroup, λ regular dominant weight.

$$G/B \hookrightarrow \mathbb{P}(V(\lambda))$$

A=W Weyl group Collection of subvarieties: $X(au)\subseteq G/B,\, au\in A$ (satisfies all conditions)

イロト イヨト イヨト イヨト

Examples: toric varieties, Schubert varieties

Example (2)

 \mathcal{T} a torus, $X \hookrightarrow \mathbb{P}(V)$ embedded normal projective toric variety for \mathcal{T} .

P = moment polytope, A = set of faces of the polytope \leftrightarrow *T*-orbits in *X*.

Collection of subvarieties: $X_F = \overline{O_F}$, F face of P, $O_F = T$ -orbit.

 X_F normal, so smooth in codim 1, X = unique maximal, minimal element = T-fixed points, flag condition.

Example (3)

Flag varieties: for simplicity char $\mathbb{K} = 0$ and G simple alg. group, B Borel subgroup, λ regular dominant weight.

$$G/B \hookrightarrow \mathbb{P}(V(\lambda))$$

A = W Weyl group

Collection of subvarieties: $X(\tau) \subseteq G/B$, $\tau \in A$ (satisfies all conditions)

イロト イヨト イヨト イヨト 三日

San

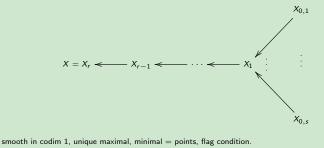
Example (4)

 $X \subseteq \mathbb{P}(V)$ proj. variety, dim X = r, smooth in codim. 1. Bertini: there exist generic hyperplanes H_1, \ldots, H_r in $\mathbb{P}(V)$ such that

$$X_r := X, \quad X_{r-1} := X_r \cap H_r, \quad \dots \quad , \quad X_1 := X_2 \cap H_2,$$

reduced, irreducible subvarieties, smooth in codimension one.

 $X_0 := X_1 \cap H_1 = X_{0,1} \cup \ldots \cup X_{0,s}$ is a finite union of points, s = degree of X. Collection of subvarieties: $\{X_r, \ldots, X_1, X_{0,1}, \ldots, X_{0,s}\}$. Hasse diagram = broom:



Peter Littelmann

On Seshadri stratifications

What is it? The conditions on the functions

(S1) conditions on the subvarieties

Next: extremal functions, conditions concern their vanishing behavior.

(S2) for any $q \in A$ and any $p \not\leq q$, f_p vanishes identically on X_q ;

(S3) for $p \in A$ set theoretically we have:

$$\{\text{zero set of } f_p\} \cap X_p = \bigcup_{\substack{q \in A \\ X_q \text{ codim one in } X_p}} X_q.$$

Definition

A Seshadri stratification on X is a collection of subvarieties $X_p \subseteq X$, $p \in A$ a finite indexing set, and a collection of homogeneous functions $f_p \in \mathbb{K}[V]$, $p \in A$, satisfying the conditions (S1), (S2), (S3).

(日)

What is it? The conditions on the functions

(S1) conditions on the subvarieties

Next: extremal functions, conditions concern their vanishing behavior.

(S2) for any $q \in A$ and any $p \not\leq q$, f_p vanishes identically on X_q ;

(S3) for $p \in A$ set theoretically we have:

$$\{\text{zero set of } f_p\} \cap X_p = \bigcup_{\substack{q \in A \\ X_q \text{ codim one in } X_p}} X_q.$$

Definition

A Seshadri stratification on X is a collection of subvarieties $X_p \subseteq X$, $p \in A$ a finite indexing set, and a collection of homogeneous functions $f_p \in \mathbb{K}[V]$, $p \in A$, satisfying the conditions (S1), (S2), (S3).

ヘロン ヘロン ヘビン ヘビン

What is it? The conditions on the functions

(S1) conditions on the subvarieties

Next: extremal functions, conditions concern their vanishing behavior.

(S2) for any $q \in A$ and any $p \not\leq q$, f_p vanishes identically on X_q ;

(S3) for $p \in A$ set theoretically we have:

$$\{\text{zero set of } f_p\} \cap X_p = \bigcup_{\substack{q \in A \\ X_q \text{ codim one in } X_p}} X_q.$$

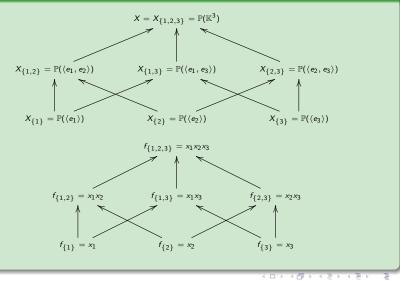
Definition

A Seshadri stratification on X is a collection of subvarieties $X_p \subseteq X$, $p \in A$ a finite indexing set, and a collection of homogeneous functions $f_p \in \mathbb{K}[V]$, $p \in A$, satisfying the conditions (S1), (S2), (S3).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

San

Example with functions: \mathbb{P}^2 and coordinate hyperplanes



On Seshadri stratifications

Example with functions: toric varieties

Example (2)

T a torus, M character lattice, $P \subseteq M_{\mathbb{R}}$ full dimensional normal lattice polytope, $X \hookrightarrow \mathbb{P}(V)$ embedded normal projective toric variety.

A = set of faces of P.

Fixed: collection of subvarieties: $X_F = \overline{O_F}$, F face of P, $O_F = T$ -orbit.

face F: fix a rational point μ_F in the relative interior of F.

 $m_F \in \mathbb{N}$, positive, such that $\lambda_F = m_F \mu_F$ is a character, fix $f_F \in \mathbb{K}[X]_{m_F}$ The collection $\{X_F, f_F\}_{F \in A}$ is a Seshadri stratification, and all Seshadri stratifications are of this form.

On Seshadri stratifications

Example with functions: toric varieties

Example (2)

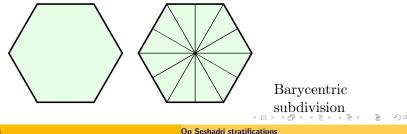
T a torus, M character lattice, $P \subseteq M_{\mathbb{R}}$ full dimensional normal lattice polytope, $X \hookrightarrow \mathbb{P}(V)$ embedded normal projective toric variety.

A = set of faces of P.

Fixed: collection of subvarieties: $X_F = \overline{O_F}$, F face of P, $O_F = T$ -orbit.

face F: fix a rational point μ_F in the relative interior of F.

 $m_F \in \mathbb{N}$, positive, such that $\lambda_F = m_F \mu_F$ is a character, fix $f_F \in \mathbb{K}[X]_{m_F}$ The collection $\{X_F, f_F\}_{F \in A}$ is a Seshadri stratification, and all Seshadri stratifications are of this form.



Example with functions: flag varieties

Example (3)

collection of subvarieties: A = W = Weyl group

Schubert varieties $X(w) \subseteq G/B \subseteq \mathbb{P}(V(\lambda))$,

 $v_{\lambda} \in V(\lambda)$ a highest weight vector, $f_{\lambda} \in V(\lambda)^*$ dual vector to v_{λ} .

For $\tau \in A$ set $f_{\tau} := \tau(f_{\lambda})$ (extremal weight vectors).

collection of subvarieties = Schubert varieties $X(\tau), \tau \in A$; extremal function = extremal weight vectors $f_{\tau}, \tau \in A$.

The extremal weight vectors satisfy (S2) and (S3).

So this defines a *Seshadri stratification* on $G/B \subseteq \mathbb{P}(V(\lambda))$.

イロト イヨト イヨト イヨト 三日

Example (4)

 $X \subset \mathbb{P}(V)$ embedded projective variety of dimension r, smooth in codimension one, generic hyperplanes H_r, \ldots, H_1 :

$$X_r := X, \quad X_{r-1} := X_r \cap H_r, \quad \dots \quad , \quad X_1 := X_2 \cap H_2,$$

Let f_1, \ldots, f_r be the linear function on V defining H_1, \ldots, H_r .

"Exercise": find functions $f_{0,j}$, $j = 1, \ldots, s$ such that the collection of

subvarieties =
$$X_r, \ldots, X_1, X_{0,1}, \ldots, X_{0,s}$$

extremal function = $f_r, \ldots, f_1, f_{0,1}, \ldots, f_{0,s}$.

is a Seshadri stratification on X.(Hint: $f_{0,1}(X_{0,1}) \neq 0$, $i \geq 2$: $f_{0,1}(X_{0,i}) = 0$,..)

Proposition

Every embedded projective variety $X \subseteq \mathbb{P}(V)$, smooth in codimension one, admits a Seshadri stratification.

On Seshadri stratifications

Example (4)

 $X \subset \mathbb{P}(V)$ embedded projective variety of dimension r, smooth in codimension one, generic hyperplanes H_r, \ldots, H_1 :

$$X_r := X, \quad X_{r-1} := X_r \cap H_r, \quad \dots \quad , \quad X_1 := X_2 \cap H_2,$$

Let f_1, \ldots, f_r be the linear function on V defining H_1, \ldots, H_r . "Exercise": find functions $f_{0,j}$, $j = 1, \ldots, s$ such that the collection of

subvarieties =
$$X_r, \ldots, X_1, X_{0,1}, \ldots, X_{0,s}$$

extremal function = $f_r, \ldots, f_1, f_{0,1}, \ldots, f_{0,s}$.

is a Seshadri stratification on X.(Hint: $f_{0,1}(X_{0,1}) \neq 0$, $i \geq 2$: $f_{0,1}(X_{0,i}) = 0$,..)

Proposition

Every embedded projective variety $X \subseteq \mathbb{P}(V)$, smooth in codimension one, admits a Seshadri stratification.

On Seshadri stratifications

Example (4)

 $X \subset \mathbb{P}(V)$ embedded projective variety of dimension r, smooth in codimension one, generic hyperplanes H_r, \ldots, H_1 :

$$X_r := X, \quad X_{r-1} := X_r \cap H_r, \quad \dots \quad , \quad X_1 := X_2 \cap H_2,$$

Let f_1, \ldots, f_r be the linear function on V defining H_1, \ldots, H_r . "Exercise": find functions $f_{0,j}$, $j = 1, \ldots, s$ such that the collection of

subvarieties =
$$X_r, \ldots, X_1, X_{0,1}, \ldots, X_{0,s}$$

extremal function = $f_r, \ldots, f_1, f_{0,1}, \ldots, f_{0,s}$.

is a Seshadri stratification on X.(Hint: $f_{0,1}(X_{0,1}) \neq 0$, $i \geq 2$: $f_{0,1}(X_{0,i}) = 0$,..)

Proposition

Every embedded projective variety $X \subseteq \mathbb{P}(V)$, smooth in codimension one, admits a Seshadri stratification.

On Seshadri stratifications

Example (4)

 $X \subset \mathbb{P}(V)$ embedded projective variety of dimension r, smooth in codimension one, generic hyperplanes H_r, \ldots, H_1 :

$$X_r := X, \quad X_{r-1} := X_r \cap H_r, \quad \dots \quad , \quad X_1 := X_2 \cap H_2,$$

Let f_1, \ldots, f_r be the linear function on V defining H_1, \ldots, H_r . "Exercise": find functions $f_{0,j}, j = 1, \ldots, s$ such that the collection of

subvarieties =
$$X_r, \ldots, X_1, X_{0,1}, \ldots, X_{0,s}$$

extremal function = $f_r, \ldots, f_1, f_{0,1}, \ldots, f_{0,s}$.

is a Seshadri stratification on X.(Hint: $f_{0,1}(X_{0,1}) \neq 0$, $i \geq 2$: $f_{0,1}(X_{0,i}) = 0$,..)

Proposition

Every embedded projective variety $X \subseteq \mathbb{P}(V)$, smooth in codimension one, admits a Seshadri stratification.

Peter Littelmann

On Seshadri stratifications

• • • • • • • •

• $h \in \mathbb{K}[\hat{X}_r]$, $a_r =$ vanishing multiplicity at \hat{X}_{r-1} • set $h_{r-1} = \frac{h}{r^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ...

・ロト ・回ト ・ヨト ・ヨト

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) • $h \in \mathbb{K}[\hat{X}_r]$, $a_r =$ vanishing multiplicity at \hat{X}_{r-1} • set $h_{r-1} = \frac{h}{r^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • $a_{r-1} =$ vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ...

Correct: divide the a_j by $b_j =$ vanishing multiplicity of f_j on X_{j-1} :

$$\mathcal{V}_{\mathfrak{C}}(h) := (\frac{a_r}{b_r}, \frac{a_{r-1}}{b_{r-1}}, \dots, \frac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

イロト イヨト イヨト イヨト 二日

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r =$ vanishing multiplicity at \hat{X}_{r-1} • set $h_{r-1} = \frac{h}{r^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at X_{r-2} , divide ...

On Seshadri stratifications

イロト イロト イヨト イヨト 三日

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r = \text{vanishing multiplicity at } \hat{X}_{r-1}$ • set $h_{r-1} = \frac{h}{\epsilon^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at X_{r-2} , divide ...

イロト イロト イヨト イヨト 三日

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r =$ vanishing multiplicity at \hat{X}_{r-1} • set $h_{r-1} = \frac{h}{f^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ...

$$\mathcal{V}_{\mathfrak{C}}(h) := (rac{a_r}{b_r}, rac{a_{r-1}}{b_{r-1}}, \dots, rac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $\begin{array}{ll} X = X_r & \supset & X_{r-1} & \supset & \ldots & \supset X_0 & \text{subvarieties} \\ f_r & f_{r-1} & \ldots & f_0 & \text{extremal functions} \end{array}$ (use *j* instead of *p_j*, recall: *f_j* vanishes on *X_{j-1}*) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r = \text{vanishing multiplicity at } \hat{X}_{r-1}$ • set $h_{r-1} = \frac{h}{f_r^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$

• a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ...

Define: $\nu_{\mathfrak{C}}(h) := (a_r, a_{r-1}, \dots, a_0) \in \mathbb{Z}^{\mathfrak{C}}$ cheating !

Correct: divide the a_j by $b_j =$ vanishing multiplicity of f_j on X_{j-1} :

$$\mathcal{V}_{\mathfrak{C}}(h) := (\frac{a_r}{b_r}, \frac{a_{r-1}}{b_{r-1}}, \dots, \frac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへで

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r = \text{vanishing multiplicity at } \hat{X}_{r-1}$ • set $h_{r-1} = \frac{h}{f^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ... Define: $\nu_{\mathfrak{C}}(h) := (a_r, a_{r-1}, \dots, a_0) \in \mathbb{Z}^{\mathfrak{C}}$ cheating !

$$\mathcal{V}_{\mathfrak{C}}(h) := (rac{a_r}{b_r}, rac{a_{r-1}}{b_{r-1}}, \dots, rac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r = \text{vanishing multiplicity at } \hat{X}_{r-1}$ • set $h_{r-1} = \frac{h}{f^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ... Define: $\nu_{\mathfrak{C}}(h) := (a_r, a_{r-1}, \ldots, a_0) \in \mathbb{Z}^{\mathfrak{C}}$ cheating !

$$\mathcal{V}_{\mathfrak{C}}(h) := (rac{a_r}{b_r}, rac{a_{r-1}}{b_{r-1}}, \dots, rac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

1. step: maximal chain $\mathfrak{C}: p_r > \ldots > p_1 > p_0$ in A

 $X = X_r \supset X_{r-1} \supset \ldots \supset X_0$ subvarieties f_r f_{r-1} ... f_0 extremal functions (use j instead of p_i , recall: f_i vanishes on X_{i-1}) valuation $\nu_{\mathfrak{C}}$ on $\mathbb{K}[\hat{X}]$ ($\hat{X} = affine \ cone \ over...$), rough idea: • $h \in \mathbb{K}[\hat{X}_r]$, $a_r = \text{vanishing multiplicity at } \hat{X}_{r-1}$ • set $h_{r-1} = \frac{h}{f^{a_r}}$, so can restrict to \hat{X}_{r-1} : $h_{r-1} \in \mathbb{K}(\hat{X}_{r-1})$ • a_{r-1} = vanishing multiplicity of h_{r-1} at \hat{X}_{r-2} , divide ... Define: $\nu_{\sigma}(h) := (a_r, a_{r-1}, \dots, a_0) \in \mathbb{Z}^{\mathfrak{C}}$ cheating ! Correct: divide the a_i by b_i = vanishing multiplicity of f_i on X_{i-1} : `

$$\mathcal{V}_{\mathfrak{C}}(h) := (rac{a_r}{b_r}, rac{a_{r-1}}{b_{r-1}}, \dots, rac{a_0}{b_0}) \in \mathbb{Q}^{\mathfrak{C}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Seshadri stratification and a quasi-valuation

2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:

- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $-\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^{\mathcal{A}}$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition

$$\begin{array}{rcl} & \mathcal{K}[X] - \{0\} & \to & \mathbb{Q}^{\mathcal{A}}_{\geq \mathbf{0}} \\ & h & \mapsto & \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\} \end{array}$$

is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_1) = c \in \mathbb{O}^A$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

On Seshadri stratifications

・ロト ・四ト ・ヨト ・ヨト

Seshadri stratification and a quasi-valuation

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p\mid p\in A\}$, endow it with the lex order as total order.
- $-\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^{\mathcal{A}}$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition

$$\begin{array}{rcl} \mathcal{V} & : & \mathbb{K}[X] - \{0\} & \to & \mathbb{Q}^{\mathcal{A}}_{\geq \mathbf{0}} \\ & h & \mapsto & \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\} \end{array}$$

is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_n)_{n \in A} \in \mathbb{O}^A_{n}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

On Seshadri stratifications

イロト イヨト イヨト イヨト

Seshadri stratification and a quasi-valuation

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $-\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^{A}$ subspace spanned by $e_{p}, p \in \mathfrak{C}, \mathfrak{C}$ a maximal chain.

Definition/Proposition

$$\begin{array}{rcl} : & \mathbb{K}[X] - \{0\} & \to & \mathbb{Q}^{\mathcal{A}}_{\geq \mathbf{0}} \\ & h & \mapsto & \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\} \end{array}$$

is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem).

If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_p)_{p \in A} \in \mathbb{Q}^A_{\geq 0}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

On Seshadri stratifications

・ロト ・日 ト ・日 ト ・ 日 ト

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^A$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition $\mathcal{V} : \mathbb{K}[X] - \{0\} \rightarrow \mathbb{Q}^{A}_{\geq 0}$ $h \mapsto \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\}$ is a quasi valuation

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_p)_{p \in A} \in \mathbb{Q}^A_{>0}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^A$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition $\mathcal{V} : \mathbb{K}[X] - \{0\} \rightarrow \mathbb{Q}^{\mathcal{A}}_{\geq 0}$ $h \mapsto \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\}$ is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_p)_{p \in A} \in \mathbb{Q}^A_{>0}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

イロン スロン スロン スロン 一日

San

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^A$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition $\mathcal{V} : \mathbb{K}[X] - \{0\} \rightarrow \mathbb{Q}^{\mathcal{A}}_{\geq 0}$ $h \mapsto \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\}$ is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_p)_{p \in A} \in \mathbb{Q}^A_{>0}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

- 2. step: look at all $\nu_{\mathfrak{C}}$ at once, $\mathfrak{C} \subseteq A$ maximal chain. To do this:
- fix a total order on A refining the given partial order,
- $-\mathbb{Q}^A$ vector space $\{e_p \mid p \in A\}$, endow it with the lex order as total order.
- $\mathbb{Q}^{\mathfrak{C}} \subseteq \mathbb{Q}^A$ subspace spanned by e_p , $p \in \mathfrak{C}$, \mathfrak{C} a maximal chain.

Definition/Proposition

$$\begin{array}{rcl} \mathcal{V} & : & \mathbb{K}[X] - \{0\} & \to & \mathbb{Q}^{\mathcal{A}}_{\geq \mathbf{0}} \\ & & h & \mapsto & \min\{\nu_{\mathfrak{C}}(h) \mid \mathfrak{C} \text{ maximal chain}\} \end{array}$$

is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem). If $h \in \mathbb{K}[X]$ is homogeneous and $\mathcal{V}(h) = (c_p)_{p \in A} \in \mathbb{Q}^A_{\geq 0}$, then

$$\deg h = \sum_{p \in A} c_p \deg f_p.$$

Theorem

The quasi-valuation \mathcal{V} induces a filtration on $\mathbb{K}[X]$ such that:

- filtration has at most one-dimensional leaves; indexed by $\Gamma = \{\mathcal{V}(h) \mid h \in \mathbb{K}[X] \text{ homogeneous}\} \subseteq \bigcup_{\mathfrak{C}} \mathbb{Q}_{\geq 0}^{\mathfrak{C}} \subseteq \mathbb{Q}_{\geq 0}^{\mathcal{A}};$
- set $\Gamma_{\mathfrak{C}} = \Gamma \cap \mathbb{Q}^{\mathfrak{C}}$, then $\Gamma = \bigcup_{\mathfrak{C}} \Gamma_{\mathfrak{C}}$, and the $\Gamma_{\mathfrak{C}}$ are finitely generated semigroups (Γ is a fan of semigroups);
- Let $\mathbb{K}[\Gamma]$ = fan algebra, then $gr_{\mathcal{V}}\mathbb{K}[X] \simeq \mathbb{K}[\Gamma]$. In particular: it is finitely generated and reduced;
- there exists a flat family over \mathbb{A}^1 with generic fibre X and special fibre $X_0 = \operatorname{Proj}(gr_{\mathcal{V}}\mathbb{K}[X]) = \operatorname{Proj}(\mathbb{K}[\Gamma])$. X_0 is a reduced union of toric varieties;

– irreducible components of X_0 are equidimensional, and in bijection with the set of maximal chains in A.

Theorem

The quasi-valuation \mathcal{V} induces a filtration on $\mathbb{K}[X]$ such that:

- filtration has at most one-dimensional leaves; indexed by $\Gamma = \{\mathcal{V}(h) \mid h \in \mathbb{K}[X] \text{ homogeneous}\} \subseteq \bigcup_{\mathfrak{C}} \mathbb{Q}_{\geq 0}^{\mathfrak{C}} \subseteq \mathbb{Q}_{\geq 0}^{\mathcal{A}};$

- set $\Gamma_{\mathfrak{C}} = \Gamma \cap \mathbb{Q}^{\mathfrak{C}}$, then $\Gamma = \bigcup_{\mathfrak{C}} \Gamma_{\mathfrak{C}}$, and the $\Gamma_{\mathfrak{C}}$ are finitely generated semigroups (Γ is a fan of semigroups);

- Let $\mathbb{K}[\Gamma] = fan$ algebra, then $gr_{\mathcal{V}}\mathbb{K}[X] \simeq \mathbb{K}[\Gamma]$. In particular: it is finitely generated and reduced;

- there exists a flat family over \mathbb{A}^1 with generic fibre X and special fibre $X_0 = \operatorname{Proj}(gr_{\mathcal{V}}\mathbb{K}[X]) = \operatorname{Proj}(\mathbb{K}[\Gamma])$. X_0 is a reduced union of toric varieties;

– irreducible components of X_0 are equidimensional, and in bijection with the set of maximal chains in A.

Theorem

The quasi-valuation \mathcal{V} induces a filtration on $\mathbb{K}[X]$ such that:

- filtration has at most one-dimensional leaves; indexed by $\Gamma = \{\mathcal{V}(h) \mid h \in \mathbb{K}[X] \text{ homogeneous}\} \subseteq \bigcup_{\mathfrak{C}} \mathbb{Q}_{\geq 0}^{\mathfrak{C}} \subseteq \mathbb{Q}_{\geq 0}^{\mathcal{A}};$

- set $\Gamma_{\mathfrak{C}} = \Gamma \cap \mathbb{Q}^{\mathfrak{C}}$, then $\Gamma = \bigcup_{\mathfrak{C}} \Gamma_{\mathfrak{C}}$, and the $\Gamma_{\mathfrak{C}}$ are finitely generated semigroups (Γ is a fan of semigroups);

- Let $\mathbb{K}[\Gamma]$ = fan algebra, then $gr_{\mathcal{V}}\mathbb{K}[X] \simeq \mathbb{K}[\Gamma]$. In particular: it is finitely generated and reduced;

- there exists a flat family over \mathbb{A}^1 with generic fibre X and special fibre $X_0 = \operatorname{Proj}(gr_{\mathcal{V}}\mathbb{K}[X]) = \operatorname{Proj}(\mathbb{K}[\Gamma])$. X_0 is a reduced union of toric varieties;

– irreducible components of X_0 are equidimensional, and in bijection with the set of maximal chains in A.

Theorem

The quasi-valuation \mathcal{V} induces a filtration on $\mathbb{K}[X]$ such that:

- filtration has at most one-dimensional leaves; indexed by $\Gamma = \{\mathcal{V}(h) \mid h \in \mathbb{K}[X] \text{ homogeneous}\} \subseteq \bigcup_{\mathfrak{C}} \mathbb{Q}^{\mathfrak{C}}_{>0} \subseteq \mathbb{Q}^{\mathcal{A}}_{>0};$

- set $\Gamma_{\mathfrak{C}} = \Gamma \cap \mathbb{Q}^{\mathfrak{C}}$, then $\Gamma = \bigcup_{\mathfrak{C}} \Gamma_{\mathfrak{C}}$, and the $\Gamma_{\mathfrak{C}}$ are finitely generated semigroups (Γ is a fan of semigroups);

- Let $\mathbb{K}[\Gamma]$ = fan algebra, then $gr_{\mathcal{V}}\mathbb{K}[X] \simeq \mathbb{K}[\Gamma]$. In particular: it is finitely generated and reduced;
- there exists a flat family over \mathbb{A}^1 with generic fibre X and special fibre $X_0 = \operatorname{Proj}(gr_{\mathcal{V}}\mathbb{K}[X]) = \operatorname{Proj}(\mathbb{K}[\Gamma])$. X_0 is a reduced union of toric varieties;

– irreducible components of X_0 are equidimensional, and in bijection with the set of maximal chains in A.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Theorem

The quasi-valuation \mathcal{V} induces a filtration on $\mathbb{K}[X]$ such that:

- filtration has at most one-dimensional leaves; indexed by $\Gamma = \{\mathcal{V}(h) \mid h \in \mathbb{K}[X] \text{ homogeneous}\} \subseteq \bigcup_{\mathfrak{C}} \mathbb{Q}^{\mathfrak{C}}_{>0} \subseteq \mathbb{Q}^{\mathcal{A}}_{>0};$

- set $\Gamma_{\mathfrak{C}} = \Gamma \cap \mathbb{Q}^{\mathfrak{C}}$, then $\Gamma = \bigcup_{\mathfrak{C}} \Gamma_{\mathfrak{C}}$, and the $\Gamma_{\mathfrak{C}}$ are finitely generated semigroups (Γ is a fan of semigroups);

- Let $\mathbb{K}[\Gamma]$ = fan algebra, then $gr_{\mathcal{V}}\mathbb{K}[X] \simeq \mathbb{K}[\Gamma]$. In particular: it is finitely generated and reduced;
- there exists a flat family over \mathbb{A}^1 with generic fibre X and special fibre $X_0 = \operatorname{Proj}(gr_{\mathcal{V}}\mathbb{K}[X]) = \operatorname{Proj}(\mathbb{K}[\Gamma])$. X_0 is a reduced union of toric varieties;

– irreducible components of X_0 are equidimensional, and in bijection with the set of maximal chains in A.

・ロト ・日ト ・ヨト ・ヨト

Simplices and simplicial complexes

 $\Gamma_{\mathfrak{C}}$ has degree function \rightarrow Newton-Okounkov body $D_{\mathfrak{C}}$, – can be identified with a simplex in some \mathbb{R}^r with rational vertices. We call it a simplex with a rational structure.

- Do it for all maximal chains:

Proposition Get a Newton-Okounkov simplicial complex with a rational structure.

The degree of the embedded variety $X \hookrightarrow \mathbb{P}(V)$ is equal to

$$\deg X = r! \sum_{\mathfrak{C} \text{ maximal shain }} \operatorname{vol}(D_{\mathfrak{C}}).$$

C maximal chain

Simplices and simplicial complexes

 $\Gamma_{\mathfrak{C}}$ has degree function \rightarrow Newton-Okounkov body $D_{\mathfrak{C}}$, – can be identified with a simplex in some \mathbb{R}^r with rational vertices. We call it a simplex with a rational structure.

- Do it for all maximal chains:

Theorem

The degree of the embedded variety $X \hookrightarrow \mathbb{P}(V)$ is equal to

$$\deg X = r! \sum_{\mathfrak{C} \text{ maximal shain }} \operatorname{vol}(D_{\mathfrak{C}}).$$

C maximal chain

イロト イボト イラト イラト

Simplices and simplicial complexes

 $\Gamma_{\mathfrak{C}}$ has degree function \rightarrow Newton-Okounkov body $D_{\mathfrak{C}}$, – can be identified with a simplex in some \mathbb{R}^r with rational vertices. We call it a simplex with a rational structure.

- Do it for all maximal chains:

Theorem

The degree of the embedded variety $X \hookrightarrow \mathbb{P}(V)$ is equal to

$$\deg X = r! \qquad \sum_{\mathfrak{C} \in \mathcal{C}} \operatorname{vol}(D_{\mathfrak{C}}).$$

C maximal chain

・ロト ・四ト ・ヨト ・ヨト

For simplicity: char $\mathbb{K} = 0$, G simple, B Borel subgroup, λ regular dominant, $X = G/B \hookrightarrow \mathbb{P}(V(\lambda))$.

Seshadri stratification: collection of Schubert varieties $X(\tau)$, $\tau \in W$, collection of functions: extremal weight vectors $f_{\tau} = \tau(f_{\lambda}) \in V(\lambda)^*$.

What are the semigroups $\Gamma_{\mathfrak{C}}$?

maximal chain: \mathfrak{C} : $\tau_r = w_0 > \tau_{r-1} \cdots > \tau_1 > \tau_0 = id$ decreasing sequence of Weyl group elements

vanishing multiplicity of $f_{\tau_j}|_{X(\tau_j)}$ at $X(\tau_{j-1})$: $b_j = \langle \tau_j(\lambda), \beta^{\vee} \rangle$ Pieri-Chevalley formula, β positive root such that $s_{\beta}\tau_j = \tau_{j-1}$

For simplicity: char $\mathbb{K} = 0$, G simple, B Borel subgroup, λ regular dominant, $X = G/B \hookrightarrow \mathbb{P}(V(\lambda))$.

Seshadri stratification: collection of Schubert varieties $X(\tau)$, $\tau \in W$, collection of functions: extremal weight vectors $f_{\tau} = \tau(f_{\lambda}) \in V(\lambda)^*$. WHAT ARE THE SEMIGROUPS $\Gamma_{\mathfrak{C}}$?

maximal chain: \mathfrak{C} : $\tau_r = w_0 > \tau_{r-1} \cdots > \tau_1 > \tau_0 = id$ decreasing sequence of Weyl group elements

vanishing multiplicity of $f_{\tau_j}|_{X(\tau_j)}$ at $X(\tau_{j-1})$: $b_j = \langle \tau_j(\lambda), \beta^{\vee} \rangle$ Pieri-Chevalley formula, β positive root such that $s_{\beta}\tau_j = \tau_{j-1}$

For simplicity: char $\mathbb{K} = 0$, G simple, B Borel subgroup, λ regular dominant, $X = G/B \hookrightarrow \mathbb{P}(V(\lambda))$.

Seshadri stratification: collection of Schubert varieties $X(\tau)$, $\tau \in W$, collection of functions: extremal weight vectors $f_{\tau} = \tau(f_{\lambda}) \in V(\lambda)^*$. WHAT ARE THE SEMIGROUPS $\Gamma_{\mathfrak{C}}$?

maximal chain: \mathfrak{C} : $\tau_r = w_0 > \tau_{r-1} \cdots > \tau_1 > \tau_0 = id$ decreasing sequence of Weyl group elements

vanishing multiplicity of $f_{\tau_j}|_{X(\tau_j)}$ at $X(\tau_{j-1})$: $b_j = \langle \tau_j(\lambda), \beta^{\vee} \rangle$ Pieri-Chevalley formula, β positive root such that $s_{\beta}\tau_j = \tau_{j-1}$

(日) (四) (三) (三) (三)

For simplicity: char $\mathbb{K} = 0$, G simple, B Borel subgroup, λ regular dominant, $X = G/B \hookrightarrow \mathbb{P}(V(\lambda))$.

Seshadri stratification: collection of Schubert varieties $X(\tau)$, $\tau \in W$, collection of functions: extremal weight vectors $f_{\tau} = \tau(f_{\lambda}) \in V(\lambda)^*$. WHAT ARE THE SEMIGROUPS $\Gamma_{\mathfrak{C}}$?

maximal chain: \mathfrak{C} : $\tau_r = w_0 > \tau_{r-1} \cdots > \tau_1 > \tau_0 = id$ decreasing sequence of Weyl group elements

vanishing multiplicity of $f_{\tau_j}|_{X(\tau_j)}$ at $X(\tau_{j-1})$: $b_j = \langle \tau_j(\lambda), \beta^{\vee} \rangle$ Pieri-Chevalley formula, β positive root such that $s_{\beta}\tau_j = \tau_{j-1}$

(日) (四) (三) (三) (三)

For simplicity: char $\mathbb{K} = 0$, G simple, B Borel subgroup, λ regular dominant, $X = G/B \hookrightarrow \mathbb{P}(V(\lambda))$.

Seshadri stratification: collection of Schubert varieties $X(\tau)$, $\tau \in W$, collection of functions: extremal weight vectors $f_{\tau} = \tau(f_{\lambda}) \in V(\lambda)^*$. WHAT ARE THE SEMIGROUPS $\Gamma_{\mathfrak{C}}$?

maximal chain: \mathfrak{C} : $\tau_r = w_0 > \tau_{r-1} \cdots > \tau_1 > \tau_0 = id$ decreasing sequence of Weyl group elements

vanishing multiplicity of $f_{\tau_j}|_{X(\tau_j)}$ at $X(\tau_{j-1})$: $b_j = \langle \tau_j(\lambda), \beta^{\vee} \rangle$ Pieri-Chevalley formula, β positive root such that $s_{\beta}\tau_j = \tau_{j-1}$

Proposition

$$\Gamma_{\mathfrak{C}} = \left\{ v = \begin{pmatrix} a_r \\ \vdots \\ a_0 \end{pmatrix} \in \mathbb{Q}_{\geq 0}^{\mathfrak{C}} \middle| \begin{array}{c} b_r a_r \in \mathbb{Z} \\ b_{r-1}(a_r + a_{r-1}) \in \mathbb{Z} \\ \vdots \\ b_1(a_r + a_{r-1} + \ldots + a_1) \in \mathbb{Z} \\ (\text{degree:}) a_0 + a_1 + \ldots + a_r \in \mathbb{Z} \end{array} \right\}$$

linearly ordered sequences of Weyl group elements + rational numbers + integrality conditions, this may sound familiar....

Corollary

 $\Gamma = \bigcup \Gamma_{\mathfrak{C}} = LS$ - path model [L94] for all representations $V(m\lambda)$, $m \ge 0$.

Algebraic geometric interpretation of path model ! Collects successive vanishing multiplicities of functions/sections.

Special: \mathcal{V} depends on choice of total order on A, but Γ NOT!

Example for a normal (= $\Gamma_{\mathfrak{C}}$ saturated) and balanced Seshadri stratification: notion of indecomposable in $\Gamma_{\mathfrak{C}}$, decomposition in indecomposables is unique, get a

STANDARD MONOMIAL THEORY

linearly ordered sequences of Weyl group elements + rational numbers + integrality conditions, this may sound familiar....

Corollary

 $\Gamma = \bigcup \Gamma_{\mathfrak{C}} = LS$ - path model [L94] for all representations $V(m\lambda)$, $m \ge 0$.

Algebraic geometric interpretation of path model ! Collects successive vanishing multiplicities of functions/sections.

Special: \mathcal{V} depends on choice of total order on A, but Γ NOT!

Example for a normal (= $\Gamma_{\mathfrak{C}}$ saturated) and balanced Seshadri stratification: notion of indecomposable in $\Gamma_{\mathfrak{C}}$, decomposition in indecomposables is unique, get a

STANDARD MONOMIAL THEORY

linearly ordered sequences of Weyl group elements + rational numbers + integrality conditions, this may sound familiar....

Corollary

 $\Gamma = \bigcup \Gamma_{\mathfrak{C}} = LS$ - path model [L94] for all representations $V(m\lambda)$, $m \ge 0$.

Algebraic geometric interpretation of path model ! Collects successive vanishing multiplicities of functions/sections.

Special: \mathcal{V} depends on choice of total order on A, but Γ NOT!

Example for a normal (= $\Gamma_{\mathfrak{C}}$ saturated) and balanced Seshadri stratification: notion of indecomposable in $\Gamma_{\mathfrak{C}}$, decomposition in indecomposables is unique, get a

STANDARD MONOMIAL THEORY

Newton-Okounkov simplicial complex

What about the Newton-Okounkov simplicial complex? "Newton-Okounkov type" interpretation of Raika Dehy's realization of the path model as integral points in a simplicial complex [1998].

Multi-projective version

Consider as an example

$$G/B \hookrightarrow \mathbb{P}(V(\omega_1)) \times \cdots \times \mathbb{P}(V(\omega_n)).$$

Henrik Müller (phd-student) has developed a multi-projective version of Seshadri stratifications.

In particular, in the situation above, he recovers Young tableaux in the case SL_n and certain Lakshmibai-Seshadri tableaux in the general case as elements of the fan of semigroups.

still in the process of writing up...

・ロト ・日ト ・ヨト ・ヨト

Multi-projective version

Consider as an example

$$G/B \hookrightarrow \mathbb{P}(V(\omega_1)) \times \cdots \times \mathbb{P}(V(\omega_n)).$$

Henrik Müller (phd-student) has developed a multi-projective version of Seshadri stratifications.

In particular, in the situation above, he recovers Young tableaux in the case SL_n and certain Lakshmibai-Seshadri tableaux in the general case as elements of the fan of semigroups.

still in the process of writing up...

・ロト ・四ト ・ヨト ・ヨト

Multi-projective version

Consider as an example

$$G/B \hookrightarrow \mathbb{P}(V(\omega_1)) \times \cdots \times \mathbb{P}(V(\omega_n)).$$

Henrik Müller (phd-student) has developed a multi-projective version of Seshadri stratifications.

In particular, in the situation above, he recovers Young tableaux in the case SL_n and certain Lakshmibai-Seshadri tableaux in the general case as elements of the fan of semigroups.

still in the process of writing up...

Miscellaneous

- Seshadri stratifications and standard monomial theory; Rocco Chirivì, Xin Fang, PL; Invent. Math. 234 (2023), no. 2, 489–572.
- Seshadri stratification for Schubert varieties and standard monomial theory; Rocco Chirivì, Xin Fang, PL; Proc. Indian Acad. Sci. Math. Sci. 132 (2022), no. 2, Paper No. 74.
- Seshadri stratifications and Schubert varieties: a geometric construction of a standard monomial theory; Rocco Chirivì, Xin Fang, PL; Pure and Applied Mathematics Quarterly Volume 20, Number 1, 139–169, 2024.
- On normal Seshadri stratifications, Rocco Chirivì, Xin Fang, PL; Pure and Applied Mathematics Quarterly, 2024.

Thank's a lot for your attention!

A quote

A quote from Standard Monomial Theory - A historical account, Collected papers of C. S. Seshadri. Volume 2, (2012):

I have felt that a good understanding of Standard Monomial Theory would be via a cellular Riemann-Roch formula as the definition of LS paths could be formulated geometrically in terms of the canonical cellular decomposition of G/B.

・ロト ・四ト ・ヨト ・ヨト

3