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K algebraically closed field, and

X ✓ P(V ) embedded projective irreducible variety,

smooth in codimension one (singular set has codimension at
least two).
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What is a Seshadri stratification?

basics:

a Seshadri stratification on X ✓ P(V ) is a collection of

• subvarieties Xp ✓ X , p 2 A,

• A a finite indexing set, and

• homogeneous functions fp 2 K[X ], p 2 A,

• have to satisfy certain compatibility conditions.

The fp are called the extremal functions of the stratification.
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What is it good for?

What is a Seshadri stratification good for?

Rough idea:

• X �! combinatorial objects (semigroups, NO-body type objects)

• hope: can be used to get information about X .

• X admits a Seshadri stratification ) 9 flat degeneration of X
into a reduced union of projective toric varieties X0; (toric: not
necessarily normal!)

- in nice cases: semigroups ! standard monomial theory on K[X ]

- Example: flag variety : G/B ,! P(V (�)) combinatorics recovers
path model of representations + standard monomial theory...

...after this quick survey, let us be more precise...
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What is it? More about the subvarieties.

Recall: Seshadri stratification on X is a collection of subvarieties Xp, p 2 A, . . .

In this way A is partially ordered: p  q if Xp ✓ Xq.

The condition (S1):

like X itself, the Xp, p 2 A, are smooth in codimension one;

X is an element in this collection (so A has unique max. element);

the subvarieties corresponding to minimal elements are points;

inclusions Xq ( Xp can always be extended to a “full flag”

Xq = Xq1 ⇢ Xq2 ⇢ . . . ⇢ Xqs = Xp,

i.e. all inclusions are of codimension one, q1, . . . , qs 2 A.
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Example: P2
and the coordinate hyperplanes

Example (1)

X = P2 = P(K3), {e1, e2, e3} standard basis of K3.

A = subsets p of {1, 2, 3} di↵erent from ;

Collection of subvarieties: {Xp | p 2 A}.

X = X{1,2,3} = P(K3)
66 OO hh

X{1,2} = P(he1, e2i)
OO hh

X{1,3} = P(he1, e3i)
hh66

X{2,3} = P(he2, e3i)
OO66

X{1} = P(he1i) X{2} = P(he2i) X{3} = P(he3i)

smooth, X , minimal = points, flag condition.
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Examples: toric varieties, Schubert varieties

Example (2)

T a torus, X ,! P(V ) embedded normal projective toric variety for T .

P = moment polytope, A = set of faces of the polytope $ T -orbits in X .

Collection of subvarieties: XF = OF , F face of P , OF = T -orbit.

XF normal, so smooth in codim 1, X = unique maximal,

minimal element = T -fixed points, flag condition.

Example (3)

Flag varieties: for simplicity charK = 0 and

G simple alg. group, B Borel subgroup, � regular dominant weight.

G/B ,! P(V (�))

A =W Weyl group

Collection of subvarieties: X (⌧) ✓ G/B, ⌧ 2 A (satisfies all conditions)
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Examples: Generic hyperplane stratification

Example (4)

X ✓ P(V ) proj. variety, dimX = r , smooth in codim. 1.

Bertini: there exist generic hyperplanes H1, . . . ,Hr in P(V ) such that

Xr := X , Xr�1 := Xr \ Hr , . . . , X1 := X2 \ H2,

reduced, irreducible subvarieties, smooth in codimension one.

X0 := X1 \ H1 = X0,1 [ . . . [ X0,s is a finite union of points, s = degree of X .

Collection of subvarieties: {Xr , . . .X1,X0,1, . . . ,X0,s}. Hasse diagram = broom:

X0,1

��

X = Xr Xr�1
oo · · ·oo X1

.

.

.
oo

.

.

.

X0,s

^^

smooth in codim 1, unique maximal, minimal = points, flag condition.
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What is it? The conditions on the functions

(S1) conditions on the subvarieties

Next: extremal functions, conditions concern their vanishing behavior.

(S2) for any q 2 A and any p 6 q, fp vanishes identically on Xq;

(S3) for p 2 A set theoretically we have:

{zero set of fp} \ Xp =

[

q2A
Xq codim one in Xp

Xq.

Definition

A Seshadri stratification on X is a collection of subvarieties
Xp ✓ X , p 2 A a finite indexing set, and a collection of
homogeneous functions fp 2 K[V ], p 2 A, satisfying the conditions
(S1), (S2), (S3).
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Example with functions: P2
and coordinate hyperplanes

Example (1)

X = X{1,2,3} = P(K3)
66 OO hh

X{1,2} = P(he1, e2i)
OO hh

X{1,3} = P(he1, e3i)
hh66

X{2,3} = P(he2, e3i)
OO66

X{1} = P(he1i) X{2} = P(he2i) X{3} = P(he3i)

f{1,2,3} = x1x2x3
77 OO gg

f{1,2} = x1x2
OO gg

f{1,3} = x1x3
gg77

f{2,3} = x2x3
OO77

f{1} = x1 f{2} = x2 f{3} = x3
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Example with functions: toric varieties

Example (2)

T a torus, M character lattice, P ✓ MR full dimensional normal lattice
polytope, X ,! P(V ) embedded normal projective toric variety.

A = set of faces of P .

Fixed: collection of subvarieties: XF = OF , F face of P , OF = T -orbit.

face F : fix a rational point µF in the relative interior of F .

mF 2 N, positive, such that �F = mFµF is a character, fix fF 2 K[X ]mF

The collection {XF , fF}F2A is a Seshadri stratification, and all Seshadri

stratifications are of this form.

Barycentric
subdivision
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Example with functions: flag varieties

Example (3)

collection of subvarieties: A = W = Weyl group

Schubert varieties X (w) ✓ G/B ✓ P(V (�)),

v� 2 V (�) a highest weight vector,
f� 2 V (�)⇤ dual vector to v�.

For ⌧ 2 A set f⌧ := ⌧(f�) (extremal weight vectors).

⇢
collection of subvarieties = Schubert varieties X (⌧), ⌧ 2 A;
extremal function = extremal weight vectors f⌧ , ⌧ 2 A.

The extremal weight vectors satisfy (S2) and (S3).

So this defines a Seshadri stratification on G/B ✓ P(V (�)).
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Example: Generic hyperplane stratification

Example (4)

X ⇢ P(V ) embedded projective variety of dimension r , smooth in
codimension one, generic hyperplanes Hr , . . . ,H1:

Xr := X , Xr�1 := Xr \ Hr , . . . , X1 := X2 \ H2,

Let f1, . . . , fr be the linear function on V defining H1, . . . ,Hr .

“Exercise”: find functions f0,j , j = 1, . . . , s such that the collection of

⇢
subvarieties = Xr , . . . ,X1,X0,1, . . . ,X0,s

extremal function = fr , . . . , f1, f0,1, . . . , f0,s .

is a Seshadri stratification on X .(Hint: f0,1(X0,1) 6= 0, i � 2: f0,1(X0,i ) = 0,..)

Proposition

Every embedded projective variety X ✓ P(V ), smooth in codimension
one, admits a Seshadri stratification.

Peter Littelmann On Seshadri stratifications



Example: Generic hyperplane stratification

Example (4)

X ⇢ P(V ) embedded projective variety of dimension r , smooth in
codimension one, generic hyperplanes Hr , . . . ,H1:

Xr := X , Xr�1 := Xr \ Hr , . . . , X1 := X2 \ H2,

Let f1, . . . , fr be the linear function on V defining H1, . . . ,Hr .

“Exercise”: find functions f0,j , j = 1, . . . , s such that the collection of

⇢
subvarieties = Xr , . . . ,X1,X0,1, . . . ,X0,s

extremal function = fr , . . . , f1, f0,1, . . . , f0,s .

is a Seshadri stratification on X .(Hint: f0,1(X0,1) 6= 0, i � 2: f0,1(X0,i ) = 0,..)

Proposition

Every embedded projective variety X ✓ P(V ), smooth in codimension
one, admits a Seshadri stratification.

Peter Littelmann On Seshadri stratifications



Example: Generic hyperplane stratification

Example (4)

X ⇢ P(V ) embedded projective variety of dimension r , smooth in
codimension one, generic hyperplanes Hr , . . . ,H1:

Xr := X , Xr�1 := Xr \ Hr , . . . , X1 := X2 \ H2,

Let f1, . . . , fr be the linear function on V defining H1, . . . ,Hr .

“Exercise”: find functions f0,j , j = 1, . . . , s such that the collection of

⇢
subvarieties = Xr , . . . ,X1,X0,1, . . . ,X0,s

extremal function = fr , . . . , f1, f0,1, . . . , f0,s .

is a Seshadri stratification on X .(Hint: f0,1(X0,1) 6= 0, i � 2: f0,1(X0,i ) = 0,..)

Proposition

Every embedded projective variety X ✓ P(V ), smooth in codimension
one, admits a Seshadri stratification.

Peter Littelmann On Seshadri stratifications



Example: Generic hyperplane stratification

Example (4)

X ⇢ P(V ) embedded projective variety of dimension r , smooth in
codimension one, generic hyperplanes Hr , . . . ,H1:

Xr := X , Xr�1 := Xr \ Hr , . . . , X1 := X2 \ H2,

Let f1, . . . , fr be the linear function on V defining H1, . . . ,Hr .

“Exercise”: find functions f0,j , j = 1, . . . , s such that the collection of

⇢
subvarieties = Xr , . . . ,X1,X0,1, . . . ,X0,s

extremal function = fr , . . . , f1, f0,1, . . . , f0,s .

is a Seshadri stratification on X .(Hint: f0,1(X0,1) 6= 0, i � 2: f0,1(X0,i ) = 0,..)

Proposition

Every embedded projective variety X ✓ P(V ), smooth in codimension
one, admits a Seshadri stratification.

Peter Littelmann On Seshadri stratifications



For every maximal chain C ✓ A a valuation on K[X ].

1. step: maximal chain C : pr > . . . > p1 > p0 in A

X = Xr � Xr�1 � . . . � X0 subvarieties
fr fr�1 . . . f0 extremal functions

(use j instead of pj , recall: fj vanishes on Xj�1)

valuation ⌫C on K[X̂ ] (X̂ = a�ne cone over... ), rough idea:

• h 2 K[X̂r ], ar = vanishing multiplicity at X̂r�1

• set hr�1 =
h
f arr

, so can restrict to X̂r�1: hr�1 2 K(X̂r�1)

• ar�1 = vanishing multiplicity of hr�1 at X̂r�2, divide ...

Define: ⌫C(h) := (ar , ar�1, . . . , a0) 2 ZC cheating !

Correct: divide the aj by bj = vanishing multiplicity of fj on Xj�1:

VC(h) := (
ar
br

,
ar�1

br�1
, . . . ,

a0
b0

) 2 QC
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Seshadri stratification and a quasi-valuation

2. step: look at all ⌫C at once, C ✓ A maximal chain. To do this:

– fix a total order on A refining the given partial order,

– QA vector space {ep | p 2 A}, endow it with the lex order as total order.

– QC ✓ QA subspace spanned by ep, p 2 C, C a maximal chain.

Definition/Proposition

V : K[X ]� {0} ! QA
�0

h 7! min{⌫C(h) | C maximal chain}

is a quasi-valuation.

The non-negativity is an important point (Rees Valuation Theorem).

If h 2 K[X ] is homogeneous and V(h) = (cp)p2A 2 QA
�0, then

deg h =
X

p2A

cp deg fp.
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X ✓ P(V ), smooth in codim. 1, fix Seshadri stratification

Theorem

The quasi-valuation V induces a filtration on K[X ] such that:

– filtration has at most one-dimensional leaves; indexed by
� = {V(h) | h 2 K[X ] homogeneous} ✓

S
CQC

�0 ✓ QA
�0;

– set �C = � \QC, then � =
S

C �C, and the �C are finitely
generated semigroups (� is a fan of semigroups);

– Let K[�] = fan algebra, then grVK[X ] ' K[�].
In particular: it is finitely generated and reduced;

– there exists a flat family over A1 with generic fibre X
and special fibre X0 = Proj(grVK[X ]) = Proj(K[�]).
X0 is a reduced union of toric varieties;

– irreducible components of X0 are equidimensional, and in
bijection with the set of maximal chains in A.
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Simplices and simplicial complexes

�C has degree function ! Newton-Okounkov body DC,
– can be identified with a simplex in some Rr with rational
vertices. We call it a simplex with a rational structure.

– Do it for all maximal chains:

Proposition

Get a Newton-Okounkov simplicial complex with a rational
structure.

Theorem

The degree of the embedded variety X ,! P(V ) is equal to

degX = r !
X

C maximal chain

vol(DC).
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Example: X = G/B ,! P(V (�)) and the path model

For simplicity: charK = 0, G simple, B Borel subgroup, � regular
dominant, X = G/B ,! P(V (�)).

Seshadri stratification: collection of Schubert varieties X (⌧), ⌧ 2 W ,
collection of functions: extremal weight vectors f⌧ = ⌧(f�) 2 V (�)⇤.

What are the semigroups �C?

maximal chain: C : ⌧r = w0 > ⌧r�1 · · · > ⌧1 > ⌧0 = id decreasing
sequence of Weyl group elements

vanishing multiplicity of f⌧j |X (⌧j ) at X (⌧j�1): bj = h⌧j(�),�_i
Pieri-Chevalley formula, � positive root such that s�⌧j = ⌧j�1

Proposition

�C =

8
>><

>>:
v =

0

B@
ar
...
a0

1

CA 2 QC
�0

��������

br ar 2 Z
br�1(ar + ar�1) 2 Z

. . .
b1(ar + ar�1 + . . .+ a1) 2 Z

(degree:) a0 + a1 + . . .+ ar 2 Z

9
>>=

>>;
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Example: G/B ,! P(V (�)) and path model

linearly ordered sequences of Weyl group elements + rational
numbers + integrality conditions, this may sound familiar....

Corollary

� =
S
�C = LS - path model [L94] for all representations V (m�),

m � 0.

Algebraic geometric interpretation of path model !
Collects successive vanishing multiplicities of functions/sections.

Special: V depends on choice of total order on A, but � NOT!

Example for a normal (= �C saturated) and balanced Seshadri
stratification: notion of indecomposable in �C, decomposition in
indecomposables is unique, get a

Standard Monomial Theory
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Newton-Okounkov simplicial complex

What about the Newton-Okounkov simplicial complex?
“Newton-Okounkov type” interpretation of Raika Dehy’s
realization of the path model as integral points in a simplicial
complex [1998].
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Multi-projective version

Consider as an example

G/B ,! P(V (!1))⇥ · · ·⇥ P(V (!n)).

Henrik Müller (phd-student) has developed a multi-projective
version of Seshadri stratifications.

In particular, in the situation above, he recovers Young tableaux in
the case SLn and certain Lakshmibai-Seshadri tableaux in the
general case as elements of the fan of semigroups.

still in the process of writing up...
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Miscellaneous

Seshadri stratifications and standard monomial theory; Rocco
Chiriv̀ı, Xin Fang, PL; Invent. Math. 234 (2023), no. 2,
489–572.

Seshadri stratification for Schubert varieties and standard
monomial theory; Rocco Chiriv̀ı, Xin Fang, PL; Proc. Indian
Acad. Sci. Math. Sci. 132 (2022), no. 2, Paper No. 74.

Seshadri stratifications and Schubert varieties: a geometric
construction of a standard monomial theory; Rocco Chiriv̀ı,
Xin Fang, PL; Pure and Applied Mathematics Quarterly
Volume 20, Number 1, 139–169, 2024.

On normal Seshadri stratifications, Rocco Chiriv̀ı, Xin Fang,
PL; Pure and Applied Mathematics Quarterly, 2024.

Thank’s a lot for your attention!
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A quote

A quote from
Standard Monomial Theory - A historical account,
Collected papers of C. S. Seshadri. Volume 2, (2012):

I have felt that a good understanding of Standard Monomial
Theory would be via a cellular Riemann-Roch formula as the
definition of LS paths could be formulated geometrically in terms
of the canonical cellular decomposition of G/B .
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