Factorization of holomorphic matrices

Frank Kutzschebauch, Universität Bern

Monte Verita - May 8th 2024

Outline

(1) Linear Algebra
(2) History of the factorization problem
(3) The main results
(4) Bounds for the numbers of factors
(5) Factorization and Bass stable rank
(6) Product of exponentials

Any matrix $A \in S L_{n}(\mathbb{C})$ is a product of elementary matrices of the form

$$
I d+a_{i j} E_{i j}=\left(\begin{array}{ccccc}
1 & & & & 0 \\
& \ddots & & & \\
0 & a_{i j} & 1 & & 0 \\
\vdots & & \vdots & \ddots & \\
0 & & 0 & & 1
\end{array}\right)
$$

or equivalently a product of upper and lower triangular unipotent matrices.

$$
A=\left(\begin{array}{ll}
1 & 0 \\
G_{1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2} \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{N} \\
0 & 1
\end{array}\right), \text { where } G_{i} \in \mathbb{C}^{n(n-1) / 2}
$$

Proof: Gauss elimination, it requires:
1.) Adding multiples of a row to another row
2.) Interchange of rows :

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

3.) multiplication of rows by constants:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-a^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a-1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a^{-1}-1 \\
0 & 1
\end{array}\right)
$$

(Whitehead lemma)

What if the matrix A depends on a parameter x (continuously, polynomially, holomorphically)? Can the upper and lower triangular unipotent matrices be chosen depending well on the parameter?

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{N}(x) \\
0 & 1
\end{array}\right)
$$

Now the G_{i} are maps $G_{i}: X \rightarrow \mathbb{C}^{n(n-1) / 2}$.

- Let $R=\{f: X \rightarrow \mathbb{C}\}$ denote the ring of continuous/ polynomial /holomorphic functions on a topological space/ algebraic variety / complex space X.
- In the language of K-theory we are asking about factorization of $S L_{n}(R)$ (special linear group over the ring R) as product of elementary matrices over that ring.
- Given $m \geq 2$ and an associative, commutative, unital ring R, let $E_{n}(R)$ denote the set of those $n \times n$ matrices which are representable as products of unipotent matrices with entries in R. We ask about the relation of $E_{n}(R)$ and $S L_{n}(R)$.
- The obstruction to this factorization is called the special K_{1}-group of the ring R, (more precise the n-th, where n is the size of the matrices).

Symplectic Notation

Let I_{n} denote the $(n \times n)$ identity matrix and 0_{n} the $(n \times n)$ zero matrix.
Recall $S p_{2 n}(\mathbb{C}):=\left\{A \in G l_{2 n}(\mathbb{C}): A^{T} J A=J\right\}$, where $J=\left(\begin{array}{cc}0_{n} & I_{n} \\ -I_{n} & 0_{n}\end{array}\right)$ is the standard symplectic form.

In the block notation

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}_{2 n}(\mathbb{C})
$$

the symplectic condition $M J M^{T}=J$ is satisfied by the following matrices, we call them elementary symplectic matrices.

- (i): $\left(\begin{array}{ll}I & B \\ 0 & I\end{array}\right)$, upper triangular with symmetric $B=B^{T}$.
- (ii): $\left(\begin{array}{ll}I & 0 \\ C & 1\end{array}\right)$, lower triangular with symmetric $C=C^{T}$.

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, w., $L_{3}(C \mathcal{C}(X)$) dees not have bounded word length, Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982

- $S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$

counterexample found by Cohn (1966)

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53

- $L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, W ., $S L_{3}(\mathbb{C}[X])$ does not have bounded word length,
Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982
- $S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$ counterexample found by Cohn (1966)

$$
\left(\begin{array}{cc}
1-z_{1} z_{2} & z_{1}^{2} \\
-z_{2}^{2} & 1+z_{1} z_{2}
\end{array}\right) \in \operatorname{SL}_{2}\left(\mathbb{C}\left[z_{1}, z_{2}\right]\right)
$$

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966), no. 30, 5-53

- $S L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$ A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk

Algebraic results

- $S L_{n}\left(\mathbb{C}\left[z_{1}\right]\right)$ factorizes, more generally for Euclidean rings R $S L_{n}(R)$ factorizes, however there is no universal bound on the number of factors! van der Kallen, W ., $S L_{3}(\mathbb{C}[X])$ does not have bounded word length,
Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., 966, 357-361, 1982
- $S L_{2}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{n}\right]\right)$ does not factorize for $n \geq 2$ counterexample found by Cohn (1966)

$$
\left(\begin{array}{cc}
1-z_{1} z_{2} & z_{1}^{2} \\
-z_{2}^{2} & 1+z_{1} z_{2}
\end{array}\right) \in \mathrm{SL}_{2}\left(\mathbb{C}\left[z_{1}, z_{2}\right]\right)
$$

P. M. Cohn, On the structure of the GL_{2} of a ring, Inst. Hautes Études Sci. Publ. Math. (1966),
no. 30, 5-53

- $S L_{n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 3$
A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235-252, 477

Algebraic symplectic results

- $S p_{2 n}\left(\mathbb{Z}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 2$

Grunewald, Fritz; Mennicke, Jens; Vaserstein, Leonid On symplectic groups over polynomial rings. Math. Z. 206 (1991)

- $S p_{2 n}\left(\mathbb{C}\left[z_{1}, z_{2}, \ldots, z_{m}\right]\right)$ does factorize for all m and all $n \geq 2$

Kopeiko, V. I. On the structure of the symplectic group of polynomial rings over regular rings.
(Russian) Fundam. Prikl. Mat. 1 (1995), no. 2, 545-548
Kopeiko, V. I. Stabilization of symplectic groups over a ring of polynomials. (Russian) Mat. Sb.
(N.S.) 106(148) (1978), no. 1, 94-107

Topological results

- $S L_{n}\left(\operatorname{Cont}\left(\mathbb{R}^{3}\right)\right)$ factorizes
W. Thurston and L. Vaserstein, On K K -theory of the Euclidean space, Topology Appl. 23 (1986),
no. 2, 145-148
- A general observation:

gives a homotopy of the map $A: X \rightarrow S L_{m}(\mathbb{C})$ to a constant map. Such maps are called null-homotopic. If a map factorizes, then it is necessarily null-homotopic.

Topological results

- $S L_{n}\left(\operatorname{Cont}\left(\mathbb{R}^{3}\right)\right)$ factorizes
W. Thurston and L. Vaserstein, On K K_{1}-theory of the Euclidean space, Topology Appl. 23 (1986),
no. 2, 145-148
- A general observation:

$$
A_{t}(x)=\left(\begin{array}{cc}
1 & 0 \\
t G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & t G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & t G_{N}(x) \\
0 & 1
\end{array}\right) t \in[0,1]
$$

gives a homotopy of the map $A: X \rightarrow S L_{m}(\mathbb{C})$ to a constant map. Such maps are called null-homotopic. If a map factorizes, then it is necessarily null-homotopic.

Continuous result

Theorem (Vaserstein)

For any natural number n and an integer $d \geq 0$ there is a natural number K such that for any finite dimensional normal topological space X of dimension d and null-homotopic continuous mapping $A: X \rightarrow S L_{n}(\mathbb{C})$ the mapping can be written as a finite product of no more than $K=K(d, n)$ unipotent matrices. That is, one can find continuous mappings $G_{l}: X \rightarrow \mathbb{C}^{n(n-1) / 2}, 1 \leq I \leq K$ such that

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{K}(x) \\
0 & 1
\end{array}\right)
$$

for every $x \in X$.
L. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations,

Let

$$
U_{n}\left(x_{1}, \ldots, x_{n(n+1) / 2}\right)=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n} \\
x_{2} & x_{n+1} & \cdots & x_{2 n-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} & x_{2 n-1} & \cdots & x_{n(n+1) / 2}
\end{array}\right)
$$

Given a map $G: X \rightarrow \mathbb{C}^{n(n+1) / 2}$ let $U_{n}(G(x))=U_{n}\left(G_{1}(x), \ldots, G_{n(n+1) / 2}(x)\right)$ where the G_{j} 's are components of the map G.

Symplectic continuous result

Theorem (Ivarsson, Kutzschebauch, Løw, 2020)

Let X be a d-dimensional normal topological space and $f: X \rightarrow \mathrm{Sp}_{2 n}(\mathbb{C})$ be a continuous mapping that is null-homotopic. Then there exist a natural number $K=K_{\text {cont }}(n, d)$ and continuous mappings $G_{1}, \ldots, G_{K}: X \rightarrow \mathbb{C}^{n(n+1) / 2}$ such that

$$
f(x)=\left(\begin{array}{cc}
I_{n} & 0_{n} \\
U_{n}\left(G_{1}(x)\right) & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & U_{n}\left(G_{2}(x)\right) \\
0_{n} & I_{n}
\end{array}\right) \ldots\left(\begin{array}{cc}
I_{n} & U_{n}\left(G_{K}(x)\right) \\
0_{n} & I_{n}
\end{array}\right)
$$

Ivarsson, B.; Kutzschebauch, F.; Løw, Erik Factorization of symplectic matrices into elementary factors. Proc. Amer. Math. Soc. 148 (2020), no. 5, 1963-1970.

The first holomorphic result:

Gromov-Vaserstein problem for $S L_{n}$

Theorem

Let X be a finite dimensional reduced Stein space and $A: X \rightarrow S L_{n}(\mathbb{C})$ be a holomorphic mapping that is null-homotopic. Then there exist a natural number $K=K(\operatorname{dim} X, n)$ and holomorphic mappings $G_{1}, \ldots, G_{K}: X \rightarrow \mathbb{C}^{n(n-1) / 2}$ such that A can be written as a product of upper and lower diagonal unipotent matrices

$$
A(x)=\left(\begin{array}{cc}
1 & 0 \\
G_{1}(x) & 1
\end{array}\right)\left(\begin{array}{cc}
1 & G_{2}(x) \\
0 & 1
\end{array}\right) \ldots\left(\begin{array}{cc}
1 & G_{K}(x) \\
0 & 1
\end{array}\right)
$$

for every $x \in X$.
Ivarsson, B., Kutzschebauch, F. Holomorphic factorization of mappings into $S L_{\bar{n}}(\mathbb{C})$, An̄n. of Math. (2)

The new symplectic holomorphic result: The symplectic Gromov-Vaserstein problem

Theorem (Schott 2022, proved in the smallest dimension for $\mathrm{n}=2$ by Ivarsson, Kutzschebauch, Løw)
Let X be a d-dimensional reduced Stein space and $f: X \rightarrow \mathrm{Sp}_{2 n}(\mathbb{C})$ be a holomorphic mapping that is null-homotopic. Then there exist a natural number $K_{\text {symp }}=K_{\text {symp }}(n, d)$ and holomorphic mappings $G_{1}, \ldots, G_{K}: X \rightarrow \mathbb{C}^{n(n-1)}$ such that

$$
f(x)=\left(\begin{array}{cc}
I_{n} & 0_{n} \\
U_{n}\left(G_{1}(x)\right) & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & U_{n}\left(G_{2}(x)\right) \\
0_{n} & I_{n}
\end{array}\right) \ldots\left(\begin{array}{cc}
I_{n} & U_{n}\left(G_{K}(x)\right) \\
0_{n} & I_{n}
\end{array}\right)
$$

Ivarsson, B.; Kutzschebauch, F.; Løw, Erik Holomorphic factorization of mappings into $S_{p_{4}}(\mathbb{C})$, Anal. PDE, 16, 2023, 1, 233-277
Schott, J. Holomorphic factorization of mappings into $S p_{2 n}(\mathbb{C})$, arXiv:2207.05389, to appear in J. Eur. Math. Soc.

Number of factors for the special linear group

Analytic techniques (Ivarsson-K.) can be used to show:

$$
K(2,1)=4 \quad \text { and } \quad K(2,2)=5
$$

K-theoretic arguments (Dennis, Vaserstein, Vavilov, Smolenskii, Sury, generalized by Huang, Kutzschebauch, Schott) guarantee $K(n, d) \geq K(n+1, d)$, the optimal bounds satisfy

$$
\begin{aligned}
K(n, 1) & =4 \forall n \\
4 \leq K(n, 2) & \leq 5=K(2,2) \forall n,
\end{aligned}
$$

for each d, there exists $n(d)$ such that $K(n, d) \leq 6$ for all $n \geq n(d)$,

K-theorists use another symplectic form

There is another simple type of symplectic matrices, namely $\left(\begin{array}{ll}A & 0 \\ 0 & D\end{array}\right)$ block diagonal with $A \in \mathrm{GL}_{\mathrm{n}}(\mathbb{C})$ and $D=\left(A^{-1}\right)^{T}$ If block A is upper triangular, then $D=\left(A^{-1}\right)^{T}$ is lower triangular. In fact, A and D are simultaneously upper or lower triangular in another basis, obtained from the old one by reversing the order of the last n basis elements, giving a Gramian matrix

$$
\tilde{J}=\left(\begin{array}{cc}
0 & L \\
-L & 0
\end{array}\right)
$$

where L is the $n \times n$ matrix with 1 along the skew-diagonal. Matrices of type (i) and (ii) remain upper or lower triangular with respect to \tilde{J}, respectively. If we allow these matrices too the number of factors will be denoted by $\tilde{K}_{\text {symp }}(n, d)$

Number of factors for the symplectic group

$K_{\text {symp }}(n, d)$ is not well understood, only recently the optimal number of factors, namely 5 , over the field of complex numbers was established

Jin, Pengzhan and Lin, Zhangli and Xiao, Bo, Optimal unit triangular factorization of symplectic matrices, Linear Algebra Appl., 650, 2022, 236-247
For $\tilde{K}_{\text {symp }}(n, d)$ we can again use K-theory to get:

$$
\begin{aligned}
& \tilde{K}_{\text {symp }}(n, d) \geq \tilde{K}_{\text {symp }}(n+1, d) \\
& \tilde{K}_{\text {symp }}(n, 1) \\
&=4 \forall n \\
& 4 \leq \tilde{K}_{\text {symp }}(n, 2) \leq 5=\tilde{K}_{\text {symp }}(1,2) \forall n
\end{aligned}
$$

G. Huang, F. Kutzschebauch, J. Schott, Factorization of Holomorphic Matrices and Kazhdan's property (T), Bull. Sci. Math. 190 (2024)

Number of factors for the symplectic group, continued

Theorem (Tran 2024)

$K_{\text {symp }}(2, d) \leq 4 \tilde{K}_{\text {symp }}(2, d), K_{\text {symp }}(3, d) \leq 4 \tilde{K}_{\text {symp }}(3, d)$, $6 \leq K_{\text {symp }}(n, d) \leq 8 \tilde{K}_{\text {symp }}(n, d) \quad \forall n \geq 4$.

We can conclude

$$
\begin{aligned}
K_{\text {symp }}(N, d) \leq 8 K_{\text {symp }}(n, d) & \forall N \geq n+1 \\
5 & \leq K_{\text {symp }}(n, 1) \leq 16 \text { for } n=2,3 \\
6 & \leq K_{\text {symp }}(n, 1) \leq 32 \forall n \\
5 & \leq K_{\text {symp }}(n, 2) \leq 20 \text { for } n=2,3 \\
& 6 \leq K_{\text {symp }}(n, 2) \leq 40 \forall n
\end{aligned}
$$

Definitions

Let R be a commutative unital ring. An element $\left(x_{1}, \ldots, x_{k}\right) \in R^{k}$ is called unimodular if

$$
\sum_{j=1}^{k} x_{j} R=R
$$

Let $U_{k}(R)$ the set of all unimodular elements in R^{k}. An element $x=\left(x_{1}, \ldots, x_{k+1}\right) \in U_{k+1}(R)$ is called reducible if there exists $\left(y_{1}, \ldots, y_{k}\right) \in R^{k}$ such that

$$
\left(x_{1}+y_{1} x_{k+1}, \ldots, x_{k}+y_{k} x_{k+1}\right) \in U_{k}(R) .
$$

The Bass stable rank of R, denoted by $\operatorname{bsr}(R)$ is the least $k \in \mathbb{N}$ such that every $x \in U_{k+1}(R)$ is reducible. If there is no such $k \in \mathbb{N}$, then we set $\operatorname{bsr}(R)=\infty$.

A sufficient condition for factorization

Remark

The identity $\operatorname{bsr}(R)=1$ is equivalent to the following property: For any $x_{1}, x_{2} \in R$ such that $x_{1} R+x_{2} R=R$, there exist $y \in R$ such that $x_{1}+y x_{2} \in R^{*}$.

Theorem (Vavilov, Smolenskii, Sury)

Let R be a unital commutative ring and $n \geq 2$. If $\operatorname{bsr}(R)=1$, then
$E_{n}(R)=S L_{n}(R)$ and $\mathrm{Ep}_{2 n}(R)=S p_{2 n}(R)$. Moreover the number
of elementary factors is 4
Vavilov, N. A.; Smolenskii, A. V.; Sury, B. Unitriangular factorizations of Chevalley groups. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 388 (2011), Voprosy Teorii Predstavlenii Algebr i Grupp. 21, 17-47, 309-310; translation in J. Math. Sci. (N.Y.) 183 (2012), no 5, 584-599

A sufficient condition for factorization

Remark

The identity $\operatorname{bsr}(R)=1$ is equivalent to the following property: For any $x_{1}, x_{2} \in R$ such that $x_{1} R+x_{2} R=R$, there exist $y \in R$ such that $x_{1}+y x_{2} \in R^{*}$.

Theorem (Vavilov, Smolenskii, Sury)

Let R be a unital commutative ring and $n \geq 2$. If $\operatorname{bsr}(R)=1$, then $E_{n}(R)=S L_{n}(R)$ and $\mathrm{Ep}_{2 n}(R)=S p_{2 n}(R)$. Moreover the number of elementary factors is 4.

[^0]
Examples

- Holomorphic functions $\mathcal{O}(X)$ on open Riemann surfaces X Herta Florack 1948: $\operatorname{bsr}(\mathcal{O}(X))=1$.
- Jones, Marshall and Wolff (1986) and independently Corach and Suárez (1985): $\operatorname{bsr}(A(\mathbb{D}))=1$
- for an open Riemann surface Ω with boundary, Leiterer (2021) $\operatorname{bsr}(A(\Omega))=1$
- Treil (1992): $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$,
- Tolokonnikov (1995): $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains)

Examples

- Holomorphic functions $\mathcal{O}(X)$ on open Riemann surfaces X Herta Florack 1948: $\operatorname{bsr}(\mathcal{O}(X))=1$.
- Jones, Marshall and Wolff (1986) and independently Corach and Suárez (1985): $\operatorname{bsr}(A(\mathbb{D}))=1$
- for an open Riemann surface Ω with boundary, Leiterer (2021) $\operatorname{bsr}(A(\Omega))=1$
- Treil (1992): $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$
- Tolokonnikov (1995): $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains)

Examples

- Holomorphic functions $\mathcal{O}(X)$ on open Riemann surfaces X Herta Florack 1948: $\operatorname{bsr}(\mathcal{O}(X))=1$.
- Jones, Marshall and Wolff (1986) and independently Corach and Suárez (1985): $\operatorname{bsr}(A(\mathbb{D}))=1$
- for an open Riemann surface Ω with boundary, Leiterer (2021) $\operatorname{bsr}(A(\Omega))=1$
- Treil (1992): $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$
- Tolokonnikov (1995): $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains)

Examples

- Holomorphic functions $\mathcal{O}(X)$ on open Riemann surfaces X Herta Florack 1948: $\operatorname{bsr}(\mathcal{O}(X))=1$.
- Jones, Marshall and Wolff (1986) and independently Corach and Suárez (1985): $\operatorname{bsr}(A(\mathbb{D}))=1$
- for an open Riemann surface Ω with boundary, Leiterer (2021) $\operatorname{bsr}(A(\Omega))=1$
- Treil (1992): $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$,

Tolokonnikov (1995): $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains).

Examples

- Holomorphic functions $\mathcal{O}(X)$ on open Riemann surfaces X Herta Florack 1948: $\operatorname{bsr}(\mathcal{O}(X))=1$.
- Jones, Marshall and Wolff (1986) and independently Corach and Suárez (1985): $\operatorname{bsr}(A(\mathbb{D}))=1$
- for an open Riemann surface Ω with boundary, Leiterer (2021) $\operatorname{bsr}(A(\Omega))=1$
- Treil (1992): $\operatorname{bsr}\left(H^{\infty}(\mathbb{D})\right)=1$,
- Tolokonnikov (1995): $\operatorname{bsr}\left(H^{\infty}(G)\right)=1$ for any finitely connected open Riemann surface G and for certain infinitely connected planar domains G (Behrens domains).
- Let $\mathbb{T}=\partial \mathbb{D}$ denote the unit circle. Given a function $f \in H^{\infty}(\mathbb{D})$, it is well-known that the radial limit $\lim _{r \rightarrow 1-} f(r \zeta)$ exists for almost all $\zeta \in \mathbb{T}$ with respect to Lebesgue measure on \mathbb{T}. So, let $H^{\infty}(\mathbb{T})$ denote the space of the corresponding radial values. It is known that $H^{\infty}(\mathbb{T})+C(\mathbb{T})$ is an algebra, Mortini, Wick: $\operatorname{bsr}\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)=1$
- Now, let B denote a Blaschke product in \mathbb{D}. Then $\mathbb{C}+B H^{\infty}(\mathbb{D})$ is an algebra Mortini, Sasane, Wick: $\operatorname{bsr}\left(\mathbb{C}+B H^{\infty}(\mathbb{D})\right)=1$.
- Brudnyi (2019): for Stein spaces: $\operatorname{bsr}(\mathcal{O}(X))=\left\lfloor\frac{1}{2} \operatorname{dim} X\right\rfloor+1$
- Let $\mathbb{T}=\partial \mathbb{D}$ denote the unit circle. Given a function $f \in H^{\infty}(\mathbb{D})$, it is well-known that the radial limit $\lim _{r \rightarrow 1-} f(r \zeta)$ exists for almost all $\zeta \in \mathbb{T}$ with respect to Lebesgue measure on \mathbb{T}. So, let $H^{\infty}(\mathbb{T})$ denote the space of the corresponding radial values. It is known that $H^{\infty}(\mathbb{T})+C(\mathbb{T})$ is an algebra, Mortini, Wick: $\operatorname{bsr}\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)=1$
- Now, let B denote a Blaschke product in \mathbb{D}. Then $\mathbb{C}+B H^{\infty}(\mathbb{D})$ is an algebra.
Mortini, Sasane, Wick: $\operatorname{bsr}\left(\mathbb{C}+B H^{\infty}(\mathbb{D})\right)=1$.
- Brudnyi (2019): for Stein spaces: $\operatorname{bsr}(\mathcal{O}(X))=\left\lfloor\frac{1}{2} \operatorname{dim} X\right\rfloor+1$
- Let $\mathbb{T}=\partial \mathbb{D}$ denote the unit circle. Given a function $f \in H^{\infty}(\mathbb{D})$, it is well-known that the radial limit $\lim _{r \rightarrow 1-} f(r \zeta)$ exists for almost all $\zeta \in \mathbb{T}$ with respect to Lebesgue measure on \mathbb{T}. So, let $H^{\infty}(\mathbb{T})$ denote the space of the corresponding radial values. It is known that $H^{\infty}(\mathbb{T})+C(\mathbb{T})$ is an algebra, Mortini, Wick: $\operatorname{bsr}\left(H^{\infty}(\mathbb{T})+C(\mathbb{T})\right)=1$
- Now, let B denote a Blaschke product in \mathbb{D}. Then $\mathbb{C}+B H^{\infty}(\mathbb{D})$ is an algebra.
Mortini, Sasane, Wick: $\operatorname{bsr}\left(\mathbb{C}+B H^{\infty}(\mathbb{D})\right)=1$.
- Brudnyi (2019): for Stein spaces: $\operatorname{bsr}(\mathcal{O}(X))=\left\lfloor\frac{1}{2} \operatorname{dim} X\right\rfloor+1$

Let R be a m-convex Frechet algebra with 1 . When is a matrix $F \in G L_{n}(R)$ representable as a product of exponentials, that is, $F=\exp G_{1} \ldots \exp G_{k}$ with $G_{j} \in M_{n}(R)$?

Example

is not an exponential.

Lemma
Let $X \in S L_{n}(R)$ be a unipotent matrix. Then X is an exponential. Conjugates of exponentials are exponentials.

Let R be a m-convex Frechet algebra with 1 .
When is a matrix $F \in G L_{n}(R)$ representable as a product of exponentials, that is, $F=\exp G_{1} \ldots \exp G_{k}$ with $G_{j} \in M_{n}(R)$?

Example

$$
A(z)=\left(\begin{array}{cc}
1 & 1 \\
0 & e^{4 \pi i z}
\end{array}\right), z \in \Delta .
$$

is not an exponential.
Lemma
Let $X \in S L_{n}(R)$ be a unipotent matrix. Then X is an exponential.
Conjugates of exponentials are exponentials.

Let R be a m-convex Frechet algebra with 1 .
When is a matrix $F \in G L_{n}(R)$ representable as a product of exponentials, that is, $F=\exp G_{1} \ldots \exp G_{k}$ with $G_{j} \in M_{n}(R)$?

Example

$$
A(z)=\left(\begin{array}{cc}
1 & 1 \\
0 & e^{4 \pi i z}
\end{array}\right), z \in \Delta .
$$

is not an exponential.

Lemma

Let $X \in S L_{n}(R)$ be a unipotent matrix. Then X is an exponential. Conjugates of exponentials are exponentials.

Corollary (Doubtsov, Kutzschebauch)

Let X be a Stein space of dimension d and let $A \in G L_{n}(\mathcal{O}(X))$. Then there exists a number $e(n, d)$ such that the following properties are equivalent:
(i) A is null-homotopic;
(ii) A is a product of $e(n, d)$ exponentials.

> Theorem (Kutzschebauch, Studer 2019)
> Any null-homotopic holomorphic map from an open Riemann surface to the linear group $G L_{2}(\mathbb{C})$ is a product of two exponentials.
E. Doubtsov, F. Kutzschebauch: Factorization by elementary matrices, null-homotopy and products of
exponentials for invertible matrices over rings, F. Anal. Math. Phys. (2019).

Corollary (Doubtsov, Kutzschebauch)

Let X be a Stein space of dimension d and let $A \in G L_{n}(\mathcal{O}(X))$. Then there exists a number $e(n, d)$ such that the following properties are equivalent:
(i) A is null-homotopic;
(ii) A is a product of $e(n, d)$ exponentials.

Theorem (Kutzschebauch, Studer 2019)

Any null-homotopic holomorphic map from an open Riemann surface to the linear group $G L_{2}(\mathbb{C})$ is a product of two exponentials.

[^1]
Product of symplectic Exponentials

Theorem (Huang, Kutzschebauch, Schott)

Let X be a reduced Stein space of dimension d and let $f: X \rightarrow \mathrm{Sp}_{2 n}(\mathbb{C})$ be a null-homotopic holomorphic mapping with $n \geq 2$. Then
(0) There exist a natural number $e=e_{\text {symp }}(n, d)$ and holomorphic mappings $A_{1}, \ldots, A_{e}: X \rightarrow \mathfrak{s p}_{2 n}(\mathbb{C})$ such that

$$
f(x)=\exp \left(A_{1}(x)\right) \cdots \exp \left(A_{e}(x)\right)
$$

(b) $2 \leq e_{\text {symp }}(n, 1) \leq e_{\text {symp }}(n, 2) \leq 3 \quad \forall n$.
G. Huang, F. Kutzschebauch, J. Schott, Factorization of Holomorphic Matrices and Kazhdan's property (T), Bull. Sci. Math. 190 (2024)

THANK YOU! ALL THE BEST TO YOU HANSPETER!

[^0]: Vavilov, N. A.; Smolenskii, A. V.; Sury, B. Unitriangular factorizations of Chevalley groups. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 388 (2011), Voprosy Teorii Predstavlenii Algebr i Grupp. 21, 17-47, 309-310; translation in J. Math. Sci. (N.Y.) 183 (2012), no. 5, 584-599

[^1]: E. Doubtsov, F. Kutzschebauch: Factorization by elementary matrices, null-homotopy and products of exponentials for invertible matrices over rings, F. Anal. Math. Phys. (2019).

