
The Abhyankar-Sathaye
Epimorphism Conjecture

Neena Gupta
Indian Statistical Institute

Kolkata, India

6th May 2024
Algebraic Transformation Groups
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Challenging Problems on Polynomial Rings

Polynomial rings present several challenging open problems —
easy to state (at least for mathematicians), difficult to solve.

1. Jacobian Conjecture (O.H. Keller).

2. Zariski Cancellation Problem.

3. An-Fibration Problem (Dolgachev-Weisfeiler).

4. Epimorphism Problem (Abhyankar-Sathaye).

5. Linearisation Problem (Kambayashi).

6. Characterisation Problem.

7. An-form Problem.
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Main themes involved in some of these problems:

• To determine whether a polynomial F is a coordinate of
k[X1, . . . ,Xn], i.e., whether there exist F2, . . . ,Fn such that
k[X1, . . . ,Xn] = k[F ,F2, . . . ,Fn].

• To examine whether A ∼= k[X1, . . . ,Xn] for a given ring A.

Throughout my talk,
k : a field of any characteristic.

For a ring R ,
A = R [n]: A is a polynomial ring in n-indeterminates over R
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Shreeram S. Abhyankar (1930-2012)

Polynomials and power series,
May they forever rule the world
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Epimorphism Theorem (Abhyankar-Moh 1975)

k : field of characteristic p ≥ 0.

ϕ : k[X ,Y ] → k[T ] an epimorphism (surjection).

Let n = degTϕ(X ) ≥ 1, m = degTϕ(Y ) ≥ 1.

Suppose p ̸ | GCD{n,m} (in particular, if p = 0).

Epimorphism Theorem. Either m|n or n|m.

i.e., if T can be expressed as a polynomial in P(T ) and Q(T ),
then either degTP | degTQ or degTQ | degTP .
Theorem (Abhyankar-Moh). Let characteristic k be 0 and
F ∈ k[X ,Y ]. Then

k[X ,Y ]/(F ) = k [1] ⇒ k[X ,Y ] = k[F ][1].

Proved independently by Suzuki for k = C.
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Epimorphism Problem

Q.
k[X1, . . . ,Xn]

(F)
= k[n−1] =⇒ k[X1, . . . ,Xn] = k[F][n−1]?

n = 2: YES ch k = 0 (Abhyankar-Moh; Suzuki 1975)

n = 2: NO ch k > 0 (Segre 1957, Nagata 1972)

Abhyankar-Sathaye Conjecture: YES when ch k = 0.

Question on Epimorphism problem can be asked even when
ch k ≥ 0 and F is of certain specified type.

Ex (Segre (1957), Nagata (1971)):

Let g(Z ,T ) = Z pe + T + T sp ∈ k[Z ,T ],

where e, s ∈ N, pe ̸ | sp, sp ̸ | pe . Then

k[Z ,T ]/(g(Z ,T )) = k [1] but k[Z ,T ] ̸= k[g(Z ,T )][1].

Defn. We say g is a nontrivial line.
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Theorem on Linear Planes

Thm (Sathaye, Russell (1976)): Let ch k ≥ 0 and

k[X ,Y ,Z ]

(G )
∼= k [2], where G = a(X ,Z )Y − b(X ,Z ).

Then k[X ,Y ,Z ] = k[G ][2] and there exists X1 ∈ k[X ,Z ] s.t.

a(X ,Z ) = a1(X1), k[X ,Z ] = k[X1]
[1] and k[X ,Y ,Z ] = k[X1,G ][1].

In particular, if A = k [2], then for any linear plane F in A[Y ],
coordinates of A can be so chosen, such that

F = a(X )Y + b(X ,Z ).
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Epimorphism Problem: Russell-Sathaye, Kaliman

Thm: k field of characteristic p ≥ 0 and F = aZ n − b, where
a, b ∈ k[X ,Y ] and p ∤ n. Then

k[X,Y,Z]/(F) ∼= k[2] =⇒ k[X,Y,Z] = k[F][2],

k alg. closed (Wright (1978)); any k (Das–Dutta (2011)).

Thm (Russell-Sathaye (1979)): k field of characteristic zero
and F = anZ

n + an−1Z
n−1 + · · ·+ a1Z + a0 ∈ k[X ,Y ,Z ],

where a0, . . . , an ∈ k[X ,Y ] s.t. gcd(a1, . . . , an) /∈ k . Then

k[X,Y,Z]/(F) ∼= k[2] =⇒ k[X,Y,Z] = k[F][2].

Thm (Kaliman (2002)): Suppose that G ∈ C[X ,Y ,Z ] s.t.

C[X,Y,Z]

(G− λ)
∼= C[2] for almost all λ ∈ C.

Then C[X,Y,Z] = C[G][2].
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Thm (Kaliman, Vénéreau, Zaidenberg)

F = a(X,Y)W − b(X,Y,Z) ∈ C[X,Y,Z,W], a ̸= 0 s.t.,

B := C[X,Y,Z,W]/(F) = C[3].

Then C[X,Y,Z,W] = C[F][3] in the following cases:

a ∈ C[X ].

degZ b ≤ 1.

b is of the form b0(X ,Y ) + b2(X ,Y ,Z )Z 2.

There exists no irreducible factor a1 of a such that
a1B ∩ C[X ,Y ] is a height two ideal.

a is square free. In fact, it is enough to assume that for
any irreducible factor a1 of a such that a1B ∩ C[X ,Y ] is
a height one ideal, we have a21 ∤ a.
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Linear Affine Varieties

Recent developments in AAG have revealed the importance of
study of the linear affine varieties defined by the polynomials
of the form F = aY − b, where a ∈ k[X ] and b ∈ k[X ,Z ,T ],
in many central problems like Affine Fibration Problem,
Linearisation Problem and the Zariski Cancellation Problem.

• A crucial step in settling the Linearization Problem for
C∗-actions on C3 involved deciding whether certain threefolds
defined by Koras and Russell is a polynomial ring, like whether
the Russell cubic A = C[X ,Y ,Z ,T ]/(X 2Y + X + Z 2 + T 3)
is C[3].

Thm (Makar-Limanov, 1996): A ̸= C[3].

• “Asanuma threefold” in connection with the Affine Fibration
Problem, Linearisation Problem and the Zariski Cancellation
Problem.
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Asanuma’s Example (1987)

Ex: Let k be a field of characteristic p > 0 and

A =
k[X,Y,Z,T]

(XrY + Zp2 + T+ Tsp)
, p ∤ s .

Thm (Asanuma (1987)):
Let x denote the image of X in A. Then

A is an A2-fibration (defined later) over k[x ].

A[1] ∼=k[x] k[x]
[3] = k[4] but

A ≇k[x] k[x]
[2].

Thus A is a nontrivial A2-fibration over the PID k[x ].

Q (Asanuma (1994)): Is A ∼=k k[3]?

If YES then Linearisation Prob has −ve soln for k [3] in +ve ch.
If NO then ZCP has −ve soln for k [3] in +ve ch.

P. Russell called this dichotomy: Asanuma’s Dilemma.
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T. Asanuma
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Thm (— 2014): A ≇ k[3] for r ≥ 2.
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Oscar Zariski (1899-1986)
Brought rigour in classical algebraic geometry, laid the
foundation of modern algebraic Geometry with A. Weil,

connected it with commutative algebra
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Zariski Cancellation Problem

Zariski Cancellation Problem: Is An
k cancellative as an

affine variety? i.e., for an affine variety V,

V× A1
k
∼= An+1

k =⇒ V ∼= An
k?

More generally, is k [n](= k[X1, . . . ,Xn]) cancellative? i.e.,

A[W] ∼=k k[X1, . . . ,Xn+1] =⇒ A ∼=k k[X1, . . . ,Xn]?

n = 1: YES (Abhyankar-Eakin-Heinzer 1972)

n = 2: YES ch k = 0 (Fujita 1979, Miyanishi-Sugie 1980)

YES k perfect (Russell 1981)
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C.P. Ramanujam (1938-1974)

“He felt the spirit of Mathematics demanded of him not
merely routine developments but the right theorem on any
given topic.” – D. Mumford
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M. Koras, P. Russell, M. Miyanishi and R.V. Gurjar
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The threefold x ry = F (x , z , t)

I. Asanuma’s example:
k[X,Y,Z,T]

(XrY + Zp2 + T+ Tsp)
, p ∤ s,

where Zp2 + T+ Tsp is a non-trivial line in k[Z,T].

Question (Russell): Suppose that f(Z,T) is any non-trivial

line in k[Z,T] and A =
k[X,Y,Z,T]

(XrY + f(Z,T))
.

Is A ≇ k[3]?

II. Russell-Koras example:
C[X,Y,Z,T]

(X2Y + X+ Z2 + T3)
.

Led us to consider the more general threefold:

A = k[X,Y,Z,T]/(XrY − F(X,Z,T))

over any field k and any polynomial F (X ,Z ,T ) ∈ k[X ,Z ,T ].
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Theorem (— 2014)

k : a field of ANY characteristic, B = k[X ,Y ,Z ,T ],

G := X rY − F (X ,Z ,T ) ∈ B and f (Z ,T ) := F (0,Z ,T ).

A = k[X,Y,Z,T]/(XrY − F(X,Z,T)), where r > 1.

Then the following statements are equivalent:

A ∼= k [3].

A ∼= k[x ][2], where x denotes the image of X in A.

f (Z ,T ) is a coordinate in k[Z ,T ].

k[X ,Y ,Z ,T ] = k[G ][3].

k[X ,Y ,Z ,T ] = k[X ,G ][2].
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Investigations on x r11 · · · x rmm y = F (x1, . . . , xm, z , t)

Let k be a field and

A :=
k[X1,X2, . . . ,Xm,Y,Z,T]

(Xr1
1 · · ·Xrm

mY − F(X1, . . . ,Xm,Z,T))
where ri > 1,

for each i , 1 ≤ i ≤ m.

Problem: To obtain a criterion on F for which

A ∼= k[V1, . . . ,Vm+2].

A[W] ∼= k[V1, . . . ,Vm+3].

(Xr1
1 · · ·Xrm

mY − F(X1, . . . ,Xm,Z,T)) is a coordinate in
k[X1, . . . ,Xm,Y,Z,T].

Details are in Parnashree Ghosh’s Poster Presentation.
Sketch follows:
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Thm (Ghosh—, 2023)

k : a field of ANY characteristic, B = k[X1, . . . ,Xm,Y ,Z ,T ],

G := X r1
1 · · ·X rm

m Y − F (X1, . . . ,Xm,Z ,T ) ∈ B where

F = f (Z ,T ) + (X1 · · ·Xm)g(X1, . . . ,Xm,Z ,T ).

A :=
k[X1,X2, . . . ,Xm,Y,Z,T]

(Xr1
1 · · ·Xrm

mY − F(X1, . . . ,Xm,Z,T))
where ri > 1,

for each i , 1 ≤ i ≤ m.

The following statements are equivalent:

A ∼= k [m+2].

f (Z ,T ) is a coordinate in k[Z ,T ].

B = k[G ][m+2].

B = k[X1,X2, . . . ,Xm,G ][2].

A ∼= k[x1, . . . , xm]
[2], where xi ’=s images of Xi in A.
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Linear affine varieties

k : any field,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), such
that f ̸= 0 and every prime divisor of α divides h and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Q. (i) Under what condition A = k [m+2]?

(ii) Does A = k [m+2] =⇒ B = k[H][m+2]?

(iii) Does A = k [m+2] =⇒ B = k[X1, . . . ,Xm,H][2]?
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Linear affine varieties
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Thm A (Ghosh — Pal 2024)

k : field of characteristic zero,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), s.t.
f ̸= 0 and every prime divisor of α divides h and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Suppose A[l ] = k [l+m+2] for some l ⩾ 0
and that k[Z ,T ]/(f ) is a regular ring. Then

k[Z ,T ] = k[f ][1]

and
B = k[X1, . . . ,Xm,H][2]

.
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Thm B (Ghosh — Pal 2024)
k : field of characteristic zero,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), such
that f ̸= 0 and every prime divisor of α divides h and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Let α =
∏n

i=1 p
si
i be a prime factorization of α in B and one

of the following conditions is satisfied.
(I) si = 1 for some i .
(II) si > 1 for every i and at least one of the following holds.

(a) p2j | h for some j .
(b) (pj , (pj)X1 , . . . , (pj)Xm)k[X1, . . . ,Xm] is a proper ideal for

some j .
(c) If n ⩾ 2, then (pl , pj)k[X1, . . . ,Xm] is a proper ideal for

some l ̸= j .
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Let x1, . . . , xm be the images of X1, . . . ,Xm in A respectively.
Then the following statements are equivalent:

B = k[X1, . . . ,Xm,Y ,Z ,T ] = k[X1, . . . ,Xm,H][2].

k[X1, . . . ,Xm,Y ,Z ,T ] = k[H][m+2].

A = k[x1, . . . , xm]
[2].

A = k [m+2].

k[Z ,T ] = k[f (Z ,T )][1].

A is an A2-fibration over k[x1, . . . , xm].

A[l ] = k [m+l+2] for some l ⩾ 0.

The hypersurfaces defined by

H = α(X1, . . . ,Xm)Y − f (Z ,T ) ∈ k[X1, . . . ,Xm,Y ,Z ,T ], α /∈ k

are contained in the family of hypersurfaces mentioned in
Theorem B.
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Type A

(0 ̸=)α ∈ k [m] is called of type A with respect to
(r1, . . . , rm) ∈ Zm

>0 if there exists a system of coordinates
X1, . . . ,Xm of k [m] such that
α(X1, . . . ,Xm) = X r1

1 α1(X1, . . . ,Xm), where α1 ∈
k [m] with X1 ∤ α1, for any i ∈ {2, . . . ,m}

αi(Xi , . . . ,Xm) :=
αi−1(0,Xi , . . . ,Xm)

X ri
i

∈

k[Xi , . . . ,Xm] with Xi ∤ αi αm+1 := αm(0) ∈ k∗, i.e., ∃
βi ∈ k [m−i+1],i ∈ {1, . . . ,m}, s.t.
α = X r1

1 α1(X1, . . . ,Xm)
= X r1

1 (X1β1(X1, . . . ,Xm) + α1(0,X2, . . . ,Xm))
= X r1

1 (X1β1(X1, . . . ,Xm) + X r2
2 α2(X2, . . . ,Xm))

= X r1
1 (X1β1(X1, . . . ,Xm) + X r2

2 (X2β2(X2, . . . ,Xm) + X r3
3 α3(X3, . . . ,Xm)))

= . . .
= X r1

1 (X1β1(X1, . . . ,Xm) + · · ·+ X
rm−1

m−1 (Xm−1βm−1(Xm−1,Xm) + X rm
m αm(Xm)) . . . )

= X r1
1 (X1β1(X1, . . . ,Xm) + · · ·+ X

rm−1

m−1 (Xm−1βm−1(Xm−1,Xm) + X rm
m (Xmβm(Xm) + αm+1)) . . . ).
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Prop (Ghosh — Pal 2024)

k : infinite field of any characteristic,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− X1β(X1, . . . ,Xm,Z ,T ),
such that f ̸= 0 and α is type A w.r.t. (r1, . . . , rm) ∈ Zm

>1 in
{X1, . . . ,Xm} and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− X1β(X1, . . . ,Xm,Z ,T ))
.

Suppose either ML(A) = k or DK(A) = A. Then there exists
Z1,T1 of k[Z ,T ] and a0, a1 ∈ k [1] such that

k[Z ,T ] = k[Z1,T1]

and
f (Z ,T ) = a0(Z1) + a1(Z1)T1.
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Examples

I. Let

H := X 2(1 + X )2Y + Z 2 + T 3 + Xa(X ,Z ,T )

X 2(1 + X )2 is Type A w.r.t. (2) in {X} and
f (Z ,T ) = Z 2 + T 3 which cannot be a linear polynomial.

Thus A = k[X ,Y ,Z ,T ]/(H) is NOT a polynomial ring, even
if A is a ‘nice’ ring.

II. Let

H := X1X
2
2 (X1 + X 2

2 )
2Y + Z 2 + T 3 − X2β(X1,X2,Z ,T )

X1X
2
2 (X1 + X 2

2 )
2 is Type A w.r.t. (2, 2) in {X2,X1} and

f (Z ,T ) = Z 2 + T 3 which cannot be a linear polynomial.

Thus A = k[X1,X2,Y ,Z ,T ]/(H) is NOT a polynomial ring
even if A is a ‘nice’ ring.
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Thm C (Ghosh — Pal 2024)

k : field of any characteristic,
B := k[X1, . . . ,Xm,Y ,Z ,T ],
H := α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ), such
that f ̸= 0 and every prime divisor of α divides h and

A :=
k[X1, . . . ,Xm,Y ,Z ,T ]

(α(X1, . . . ,Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ))
.

Suppose α is a polynomial of type A with respect to
(r1, . . . , rm) ∈ Zm

>1 in the system of coordinates
{X1 − λ1, . . . ,Xm − λm}, for some λi ∈ k s.t.
k1 := k(λ1, . . . , λm) is separable over k .

Let x1, . . . , xm be the images of X1, . . . ,Xm in A respectively.
Then the following statements are equivalent:
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k[X1, . . . ,Xm,Y ,Z ,T ] = k[X1, . . . ,Xm,H][2].

k[X1, . . . ,Xm,Y ,Z ,T ] = k[H][m+2].

A = k[x1, . . . , xm]
[2].

A = k [m+2].

k[Z ,T ] = k[f (Z ,T )][1].

A[l ] = k [l+m+2] for some l ⩾ 0 and ML(A) = k .

f (Z ,T ) is a line in k[Z ,T ] and ML(A) = k .

A is an A2-fibration over E and ML(A) = k .

A⊗k k1 is a UFD, ML(A) = k and
(

k1[Z ,T ]
(f (Z ,T ))

)∗
= k1

∗.

A[l ] = k [l+m+2] for some l ⩾ 0 and DK(A) = A.

f (Z ,T ) is a line in k[Z ,T ] and DK(A) = A.

A is an A2-fibration over E and DK(A) = A.

A⊗k k1 is a UFD, DK(A) = A and
(

k1[Z ,T ]
(f (Z ,T ))

)∗
= k1

∗.
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The family of hypersurfaces given by

(X r1+1
1 + X r1

1 X r2+1
2 + · · ·+ X r1

1 . . .X
rm−1

m−1X
rm+1
m )Y − f (Z ,T ),

for ri ⩾ 2, 1 ⩽ i ⩽ m and

a1(X1) · · · am(Xm)Y − f (Z ,T )− h(X1, . . . ,Xm,Z ,T ),

where every prime divisor of a1(X1) · · · am(Xm) in
k[X1, . . . ,Xm] divides h, and every ai(Xi) has a separable
multiple root λi over k are included in the family of
hypersurfaces mentioned in Theorem C.

Unified treatment of several apparently different-looking
questions which have been of long interest to mathematicians
(including Cancellation, Epimorphism and Fibration problems).
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Consequences

k : a field of ANY characteristic, ri > 1, for 1 ≤ i ≤ m, m ≥ 1.

A := K [X1, . . . ,Xm,Y ,Z ,T ]/(aY − F ),

where a = π1
s1 . . . πn

sn ∈ k[X1, . . . ,Xm] is a type A polynomial
w.r.t (r1, . . . , rm), π’s primes
F := f (Z ,T ) + (π1 · · · πn)g(X1, . . . ,Xm,Z ,T ), H = aY − F .

A is a polynomial ring in m + 2 variables over k if and
only if f (Z ,T ) is a coordinate in k[Z ,T ].

Provides a general framework for understanding the
non-triviality of Russell-Koras threefold x2y + x + z2 + t3 = 0
and the generalised Asanuma varieties.

If A is isomorphic to k [m+2], then
k[X1, . . . ,Xm,Y ,Z ,T ] = k[X1, . . . ,Xm,G ][2].

Proves a partial case of the Abhyankar-Sathaye Conjecture.
Extends partially Sathaye-Russell theorem to the case n > 3.
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[2].

A is a non-trivial A2-fibration over k[X1, . . . ,Xm] if and
only if f (Z ,T ) is a non-trivial line.
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[2].

A is a non-trivial A2-fibration over k[X1, . . . ,Xm] if and
only if f (Z ,T ) is a non-trivial line.
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Thm (— 2014)

let R be a ring, π1, π2, . . . , πn ∈ R π := π1π2 · · · πn and
G (Z ,T ) ∈ R[Z ,T ] be such that

R[Z ,T ]/(π,G (Z ,T )) ∼= (R/π)[1].

Let

D := R[Z ,T ,Y ]/(π1
s1π2

s2 · · · πn
snY − G (Z ,T ))

for any set of positive integers s1, . . . , sn. Then

D [1] = R [3].
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Thm (Ghosh – Pal) 2024

Let k be a field,

a = π1
s1 . . . πn

sn ∈ k[X1, . . . ,Xm]

be a type A polynomial w.r.t (r1, . . . , rm), ri > 1 and

F = f (Z ,T ) + (π1 · · · πm)g(X1, . . . ,Xm,Z ,T ),

where f (Z ,T ) is a line in k[Z ,T ]. Let

A = K [X1, . . . ,Xm,Y ,Z ,T ]/(aY − F ).

Then A[1] = k [m+3].

Further if f (Z ,T ) is a non-trivial line then A ≇ k [m+2].

Thus, if f (Z ,T ) is a non-trivial line, then A gives rise to a
counter-example to the Zariski Cancellation Problem.
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Theorem (Ghosh—, 2023)

k : a field of positive characteristic,

A(r1, . . . , rm, f) :=
k[X1,X2, . . . ,Xm,Y,Z,T]

(Xr1
1 · · ·Xrm

mY − f(Z,T))
,

where ri > 1 for each i , 1 ≤ i ≤ m and f (Z ,T ) is any
non-trivial line in k[Z ,T ].
Then:

A(r1, . . . , rm, f ) ∼= A(s1, . . . , sm, g) iff (r1, . . . , rm) is equal
to (s1, . . . , sm) up to permutation and f and g are
equivalent.

Thus, over a field k of positive characteristic, there is an
infinite family of non-isomorphic rings which are stably
isomorphic to k [m+2].
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Generalised Epimorphism Theorems over Rings

Thm (Bhatwadekar (1988)): Let R be a Noetherian ring of
characteristic zero and F ∈ R[X ,Y ]. Then

R[X ,Y ]

(F )
= R [1] =⇒ R[X ,Y ] = R[F ][1]

whenever R contains Q or R is seminormal domain.

Example (Asanuma-Dutta (2021)): The hypotheses are
necessary.

Thm (Bhatwadekar-Dutta (1994)): Let R be a DVR with
uniformizing parameter T ,
κ := R/(T ) and K := R[1/T ]. Let G = aY − b ∈ R[X ,Z ][Y ]
be a linear polynomial such that R[X ,Z ,Y ]/(G ) = R [2]. Then
there exists X0 ∈ R[X ,Z ] such that K [X ,Z ] = K [X0]

[1],
a ∈ R[X0] and X̄0 /∈ κ. Further, R[X ,Z ,Y ] = R[G ][2],
whenever T ∤ a or if a = T n for some integer n.
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An Example of Bhatwadekar-Dutta (1993)

R = C[T ],
A = C[T ,X ,Y ,Z ],
B = C[T ,F ] ⊂ A, where F = TX 2Z + X + T 2Y + TXY 2.

Then

A is an A2-fibration over B ,

A[1] = B[3] and

A/(F) = R[X,Y,Z]/(F) = R[2] = C[3].

Thus F is a linear hyperplane in C[4].

Q. Is A = B[2](= C[T,F][2])? At least is A = C[F][3]?
If NO, then it is a counter-example to the following problems:

A2-fibration Problem over C[2];

Cancellation Problem over C[1];

Epimorphism Problem for C[4] ↠ C[3], R [3] ↠ R [2].
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