Ivan Arzhantsev (HSE University, Moscow)

Flexible varieties, images of affine spaces, and ellipticity after Mikhail Gromov

Workshop on Algebraic Transformation Groups May 5-8, 2024, Monte Verita, Ascona, Switzerland

7 May 2024

There is no doubt that complex affine n-space $\mathbb{A}^n = \mathbb{A}^n_{\mathbb{C}}$ is one of the basic objects in algebraic geometry. It is therefore surprising how little is known about its geometry and its symmetries.

Hanspeter Kraft

Seminar Nicolas Bourbaki June 1995

Flexibility and Infinite Transitivity

Multiple and Infinite Transitivity

Definition

Let G be a group, X a set, and m a positive integer. An action $G \times X \to X$ is *m*-transitive if for any two tuples (a_1, \ldots, a_m) and (b_1, \ldots, b_m) of pairwise distinct points on X there is $g \in G$ such that $(ga_1, \ldots, ga_m) = (b_1, \ldots, b_m)$.

Definition

An action $G \times X \rightarrow X$ is *infinitely transitive* if it is *m*-transitive for any positive integer *m*.

Example (of infinite transitivity)

1) Let X be an infinite set and G the group of all permutations of X

2) Let X be an infinite set and G the group of all permutations with finite support of X

Let X be a finite set with n elements.

- 1) The group S_n of all permutations of X is *n*-transitive
- 2) The group A_n of all even permutations of X is (n-2)-transitive
- 3) All other finite permutation groups are at most 5-transitive

4) **5-transitive** finite groups are precisely the Mathieu groups M_{12} and M_{24} and all **4-transitive** finite groups are precisely the Mathieu groups M_{11} and M_{23} (1861-1873)

5) There are infinitely many 3-transitive finite permutation groups, for example, $PGL_2(\mathbb{F}_q)$ acting on $\mathbb{P}^1(\mathbb{F}_q)$

Let G be a connected algebraic group over an algebraically closed field \mathbb{K} acting on an algebraic variety X.

- 1) Such an action is at most 3-transitive
- 2) The only **3-transitive** action is $PGL_2(\mathbb{K})$ -action on $\mathbb{P}^1(\mathbb{K})$
- 3) The action of $PGL_{n+1}(\mathbb{K})$ on $\mathbb{P}^n(\mathbb{K})$ for $n \ge 2$ is 2-transitive
- 4) There is a classification of **2-transitive actions**: Borel, Knop, Kramer,....

The Case of Affine Spaces

Theorem

Over an infinite ground field K, the group $Aut(\mathbb{A}^n)$ is infinitely transitive on \mathbb{A}^n for any $n \ge 2$.

Idea (n = 2): use parallel translations $(x_1 + a, x_2)$, $(x_1, x_2 + b)$ and their replicas $(x_1 + af_1(x_2), x_2)$, $(x_1, x_2 + bf_2(x_1))$, where $a, b \in K$.

Example

The group Aut(\mathbb{A}^1) is isomorphic to $K^{\times} \times K$. It is 2-transitive, but not 3-transitive on \mathbb{A}^1 .

Let X be an affine algebraic variety over an algebraically closed field \mathbb{K} of characteristic zero.

When the group Aut(X) of polynomial automorphisms of X is infinitely transitive on X?

If X is singular, we ask this question for the smooth locus X^{reg} . *Idea:* to use \mathbb{G}_a -subgroups in the group Aut(X) and their replicas. Here $\mathbb{G}_a = (\mathbb{K}, +)$.

Notation: SAut(X) is the subgroup of Aut(X) generated by all \mathbb{G}_a -subgroups.

Locally Nilpotent Derivations

Definition

A derivation $D: A \rightarrow A$ of an algebra A is *locally nilpotent* if for any $a \in A$ there is a positive integer k such that $D^k(a) = 0$.

Locally nilpotent derivations on $\mathbb{K}[X] \Leftrightarrow \mathbb{G}_a$ -subgroups in Aut(X):

$$D \in \mathsf{LND}(\mathbb{K}[X]) \iff \exp(\mathbb{K}D) \subseteq \mathsf{Aut}(X)$$

If $D \in \text{LND}(A)$ and $f \in \text{Ker}(D)$, then $fD \in \text{LND}(A)$.

 \mathbb{G}_a -subgroups corresponding to LNDs of the form *fD* are *replicas* of the \mathbb{G}_a -subgroup corresponding to *D*.

Flexibility vs Infinite Transitivity

Definition

An affine variety X is *flexible* if the tangent space $T_x(X)$ at any smooth point $x \in X^{\text{reg}}$ is generated by velocity vectors to orbits of \mathbb{G}_a -subgroups passing through x.

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg'2013)

Let X be an irreducible affine variety of dimension ≥ 2 . The following conditions are equivalent:

- (a) the group SAut(X) acts transitively on X^{reg} ;
- (b) the group SAut(X) acts infinitely transitively on X^{reg} ;
- (c) the variety X is flexible.

Examples of Flexible Varieties

• Suspensions Susp(X, f) given by $\{uv = f(x)\}, f \in \mathbb{K}[X] \setminus \mathbb{K}$, in $\mathbb{A}^2 \times X$ over a flexible variety X;

- Non-degenerate (𝔅[𝑋][×] = 𝔅[×]) affine toric varieties;
- Non-degenerate horospherical varieties of reductive groups;
- Homogeneous spaces G/F, where G is semisimple and F is reductive;
- Normal affine SL(2)-embeddings;
- Affine cones over flag varieties and over del Pezzo surfaces of degree \geqslant 4.

The Gromov-Winkellmann Theorem

Theorem (Flenner-Kaliman-Zaidenberg'2016)

Let X be a flexible quasiaffine variety and $Z \subseteq X$ be a closed subvariety with $\operatorname{codim}_X Z \ge 2$. Then $X \setminus Z$ is flexible.

Infinite Transitivity and Finite Generation

Conjecture A. Any flexible affine variety X admits a finite collection H_1, \ldots, H_k of \mathbb{G}_a -subgroups in Aut(X) such that the group $G = \langle H_1, \ldots, H_k \rangle$ acts infinitely transitively on X^{reg} .

Plan of a possible proof:

Step 1. Find $G = \langle H_1, \ldots, H_s \rangle$ that acts transitively on X^{reg} Step 2. Prove that the closure \overline{G} of the subgroup G in Aut(X) in the ind-topology contains 'many other' \mathbb{G}_a -subgroups Step 3. Prove that \overline{G} acts infinitely transitively on X^{reg} Step 4. Prove that G acts infinitely transitively on X^{reg}

Implication Step 3 \Rightarrow Step 4 turns out to be true in general.

A Conjecture on Locally Nilpotent Derivations

To Step 2:

Conjecture B. Let X be an affine variety and $A = \mathbb{K}[X]$. Consider the group $G = \langle H_1, \ldots, H_k \rangle$ generated by a finite collection of \mathbb{G}_a -subgroups $H_i = \exp(\mathbb{K}D_i) \subseteq \operatorname{SAut}(X)$, where $D_i \in \operatorname{LND}(A)$. Then the \mathbb{G}_a -subgroup

$$H = \exp(\mathbb{K}D) \subseteq \operatorname{SAut}(X),$$

where $D \in \text{LND}(A)$, is contained in $\overline{G} \Leftrightarrow D \in \text{Lie} \langle D_1, \dots, D_k \rangle$.

Kraft-Zaidenberg's Theorem

Theorem (Kraft-Zaidenberg'2024)

Let X be an affine variety. A subgroup $G \subseteq \operatorname{Aut}(X)$ generated by a family of connected algebraic subgroups G_i is algebraic if and only if the Lie algebras $\operatorname{Lie}(G_i) \subseteq \operatorname{Vec}(X)$ generate a finite-dimensional Lie subalgebra in $\operatorname{Vec}(X)$. In particular, $G = \langle H_1, \ldots, H_k \rangle$ is a linear algebraic group if and only if $\operatorname{Lie} \langle D_1, \ldots, D_k \rangle$ is finite-dimensional.

Root Subgroups and Demazure Roots

Let X be a variety with an action of a torus T. A \mathbb{G}_a -subgroup H in Aut(X) is called a *root subgroup* if H is normalized in Aut(X) by the torus T. In this case T acts on H by some character e. Such a character is called a *root* of the T-variety X.

Assume X is toric with acting torus T. What are the roots of X? Let p_1, \ldots, p_s be the primitive lattice vectors on rays of the fan Σ_X .

Definition

A Demazure root of the fan Σ_X in a character $e \in M$ such that there exists $1 \leq i \leq s$ with $\langle e, p_i \rangle = -1$ and $\langle e, p_j \rangle \ge 0$ for $j \neq i$.

Theorem (Demazure'1970)

Let X be a complete or affine toric variety. Then root subgroups on X are in bijection with Demazure roots of the fan Σ_X .

The Toric Case

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019)

For any non-degererate affine toric variety X of dimension at least 2, which is smooth in codimention 2, one can find root subgroups H_1, \ldots, H_k such that the group $G = \langle H_1, \ldots, H_s \rangle$ acts infinitely transitively on the smooth locus X^{reg} .

In the proof we use Cox rings and the quotient presentation $\pi \colon \mathbb{A}^s \to X$ by an action of a quasitorus.

Finite Generation for Affine Spaces - I

Theorem (Bodnarchuk'2001)

For any $n \ge 3$ and any triangular $h \in Aut(\mathbb{A}^n) \setminus Aff_n$ we have $\langle Aff_n, h \rangle = Tame_n$.

Corollary

For any $n \ge 3$ and any non-affine root subgroup H in $Aut(\mathbb{A}^n)$ the group $\langle Aff_n, H \rangle$ acts on \mathbb{A}^n infinitely transitively. In particular, one can find n + 2 root subgroups which generate a subgroup acting infinitely transitively on \mathbb{A}^n .

Theorem (Andrist'2019, A.-Kuyumzhiyan-Zaidenberg'2019)

For any $n \ge 2$ one can find \mathbb{G}_a -subgroups H_1, H_2, H_3 in $Aut(\mathbb{A}^n)$ such that $G = \langle H_1, H_2, H_3 \rangle$ acts infinitely transitively on \mathbb{A}^n .

Finite Generation for Affine Spaces - II

Let *H* be the \mathbb{G}_a -subgroup of Aut(\mathbb{A}^n) given by

$$(x_1+ax_2^2,x_2,\ldots,x_n).$$

Theorem (A.-Kuyumzhiyan-Zaidenberg'2019) Consider the action of the symmetric group S_n on \mathbb{A}^n by permutations. Then for any $n \ge 3$ the subgroup

$$G = \langle H, S_n \rangle \subset \operatorname{Aut}(\mathbb{A}^n)$$

acts infinitely transitively in $\mathbb{A}^n \setminus \{0\}$.

Finite Generation for Affine Plane - I

Let L_k and R_s be the \mathbb{G}_a -subgroups of Aut(\mathbb{A}^2) given by

$$(x_1 + ax_2^k, x_2)$$
 and $(x_1, x_2 + bx_1^s)$, respectively.

Let $G_{k,s} = \langle L_k, R_s \rangle$. We claim that if $ks \neq 2$ then $G_{k,s}$ can not be 2-transitive. Indeed,

if k = 0 or s = 0, then there are only parallel translations along one coordinate;

if k = s = 1, then $G_{1,1}$ is the group SL(2) preserving colinearity; if ks > 2, we take a root of unity ω of degree ks - 1 and consider

$$S = \{ (P, Q) \in \mathbb{A}^2 \times \mathbb{A}^2 | P = (x_1, x_2), Q = (\omega x_1, \omega^s x_2) \}$$

$$P' = (x_1 + a x_2^k, x_2), Q' = (\omega x_1 + a (\omega^s x_2)^k, \omega^s x_2) = (\omega (x_1 + a x_2^k), \omega^s x_2)$$

$$P'' = (x_1, x_2 + b x_1^s), Q'' = (\omega x_1, \omega^s x_2 + b (\omega x_1)^s) = (\omega x_1, \omega^s (x_2 + b x_1^s))$$

Finite Generation for Affine Plane - II

Theorem (Lewis-Perry-Straub'2019)

The group $G_{1,2}$ generated by two subgroups

 $(x_1 + ax_2, x_2)$ and $(x_1, x_2 + bx_1^2)$

acts infinitely transitively on $\mathbb{A}^2 \setminus \{0\}$.

The proof is based on a detailed study of the Polydegree Conjecture for plane polynomial automorphisms.

Chistopolskaya-Taroyan: arxiv.org/abs/2202.02214, a simpler proof

Conjecture C. Let X be an affine variety and $G = \langle H_1, \ldots, H_k \rangle$, where H_1, \ldots, H_k are \mathbb{G}_a -subgroups in Aut(X). Then the group G is either a unipotent linear algebraic group, or contains the free group F_2 .

Corollary

If G is 2-transitive then G contains F_2 and is of exponential growth.

Theorem (A.-Zaidenberg'2022)

Let X be an affine toric variety and $G = \langle H_1, \ldots, H_k \rangle$, where H_1, \ldots, H_k are root \mathbb{G}_a -subgroups in Aut(X). Then the group G is either a unipotent linear algebraic group, or contains F_2 .

Theorem (A.-Zaidenberg'2023)

Let X be an affine surface and $G = \langle H_1, \ldots, H_k \rangle$, where H_1, \ldots, H_k are \mathbb{G}_a -subgroups in Aut(X). Then the group G is either a metabelian unipotent linear algebraic group, or contains F_2 .

Unirationality and Images of Affine Spaces

A Key Lemma

Lemma

Let X be a flexible variety. Then there are G_a-subgroups H₁,..., H_m in Aut(X) such that
(a) H₁ ⋅ H₂ ⋅ ... ⋅ H_m ⋅ x = X^{reg} for any x ∈ X^{reg};
(b) T_x(X) = ⟨h₁,..., h_m⟩, where h_i is a tangent vector to the orbit H_i ⋅ x at x.

Remark: properties (a) and (b) do not imply each other.

Unirationality vs Flexibility

Theorem (A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg'2013) Any flexible variety X is unirational.

Proof.

The morphism $\varphi \colon \mathbb{A}^m \to X$,

$$(a_1, a_2, \ldots, a_m) \mapsto H_1(a_1) \cdot H_2(a_2) \cdot \ldots \cdot H_m(a_m) \cdot x,$$

is dominant for any $x \in X^{reg}$.

Remark: there are homogeneous spaces SL_n/F , where F is a finite subgroup, that are not stably rational.

Bogomolov's Conjecture

Definition

An irreducible variety X is stably birationally infinitely transitive if for some m > 0 the variety $X \times \mathbb{A}^m$ is birational to an affine flexible variety.

Conjecture (Bogomolov'2013) An irreducible variety X is unirational if and only if it is stably birationally infinitely transitive.

In Bogomolov-Karzhemanov-Kuyumzhiyan'2013, this conjecture is proved for some classes of (unirational non-rational) varieties.

Unirationality vs Images of Affine Spaces

Observation. If a flexible variety X is smooth, then the morphism $\varphi \colon \mathbb{A}^m \to X$ is surjective.

Definition

An algebraic variety X is an A-image, if there is a surjective morphism $\mathbb{A}^m \to X$ for some $m \in \mathbb{Z}_{>0}$.

Corollary

Any smooth flexible variety X is an A-image.

Example

The morphism $\mathbb{A}^1 \to \mathbb{P}^1$, $x \mapsto [x : 1 + x^2]$ is surjective.

Three Necessary Conditions

If X is an A-image, then

(1) X is irreducible;

(2) $\mathbb{K}[X]^{\times} = \mathbb{K}^{\times};$

(3) X is unirational

Quetsion. Do (1)-(3) imply that X is an A-image?

Three Results on A-Images

Definition

An algebraic variety X is A-covered if $X = \bigcup_i U_i$, and each U_i is isomorphic to \mathbb{A}^n .

Problem

Which homogeneous spaces G/H are A-covered?

Theorem (A.'2023)

- 1) Any A-covered variety is an A-image.
- 2) A toric variety X is an A-image $\Leftrightarrow \mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$.
- 3) A homogeneous space X of a linear algebraic group G is an A-image $\Leftrightarrow \mathbb{K}[X]^{\times} = \mathbb{K}^{\times}$.

Infinite Transitivity for Endomorphisms

Definition

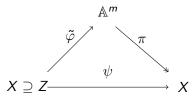
Let X be an algebraic variety. The monoid End(X) acts on X infinitely transitively if for any finite subset $Z \subseteq X$ and any map $\psi: Z \to X$ there is a morphism $\varphi: X \to X$ such that $\varphi|_Z = \psi$.

Theorem (Kaliman-Zaidenberg'2023)

Let X be an affine variety, which is an A-image. Then the monoid End(X) acts on X infinitely transitively.

Proof

Let $Z = \{z_1, \ldots, z_k\}$. Given $\psi \colon Z \to X$, fix $a_1, \ldots, a_k \in \mathbb{A}^m$ with $\pi(a_i) = \psi(z_i)$.



Consider $h_j \in \mathbb{K}[Z]$, j = 1, ..., m, where $h_j(z_i)$ is the *j*th coordinate of a_i . There are $f_j \in \mathbb{K}[X]$ with $f_j|_Z = h_j$ and the functions $(f_1, ..., f_m)$ define the morphism $\tilde{\varphi} \colon X \to \mathbb{A}^m$ with $\tilde{\varphi}(z_i) = a_i$. Then with $\varphi := \pi \circ \tilde{\varphi} \colon X \to X$ we have $\varphi|_Z = \psi$.

Theorem (A.-Kaliman-Zaidenberg'2024)

Let X be a complete variety. Then X is an A-image if and only if X is unirational.

The proof is based on the ellipticity property.

Ellipticity after Mikhail Gromov

Elliptic Varieties: Gromov'1989

Definition

A spray of rank r over a smooth algebraic variety X is a triple (E, p, s), where $p: E \to X$ is a vector bundle of rank r with zero section Z, and $s: E \to X$ is a morphism such that $p|_Z = s|_Z$.

Definition

A spray (E, p, s) is *dominant* at $x \in X$ if the map $s_x := s|_{E_x} : E_x \to X$ is dominant at zero, i.e. $ds_x : E_x \to T_x X$ is surjective.

Definition

A smooth algebraic variety X is *elliptic* if there is a spray (E, p, s), which is dominant at every $x \in X$.

Ellipticity vs Flexibility

Example

Any smooth flexible variety X is elliptic: take $E = \mathbb{A}^m \times X$ and $s_x \colon \mathbb{A}^m \to X$, $s_x(a_1, \ldots, a_m) = H_1(a_1) \cdot \ldots \cdot H_m(a_m) \cdot x$.

Remark: elliptic \implies unirational

Locally Elliptic Varieties

Definition

A local spray on a smooth algebraic variety X is a tuple (U, E, p, s), where $U \subseteq X$ is open, $p \colon E \to U$ is a vector bundle with $s \colon E \to X$ and $p|_Z = s|_Z$.

Definition

A smooth algebraic variety X is *locally elliptic* if for every $x \in X$ there is a local spray (U, E, p, s) with $x \in U$ that is dominant at x.

Subelliptic Varieties

Definition

A smooth algebraic variety X is *subelliptic* if there is a finite collections (E_i, p_i, s_i) of sprays such that $T_X X = \sum_i (ds_i)_x ((E_i)_x)$ for all $x \in X$.

Theorem (Kaliman-Zaidenberg'2023)

Let X be a smooth algebraic variety. Then elliptic \Leftrightarrow locally elliptic \Leftrightarrow subelliptic.

Uniformly rational varieties

Definition

An irreducible variety X is *uniformly rational* if $X = \bigcup_i U_i$ and every U_i is isomorphic to an open subset of \mathbb{A}^n .

Theorem (Gromov,...)

Uniform rationality is preserved under blow ups of smooth subvarieties.

Question (Gromov):

Is any smooth rational variety X uniformly rational?

Uniform Rationality vs Ellipticity

Theorem (A.-Kaliman-Zaidenberg'2024)

Let X be a smooth complete uniformly rational variety. Then
(a) X is elliptic;
(b) if X is projective and Y is an affine cone over X, then Y \ {0} is elliptic.

Ellipticity vs A-Image

Theorem (Kusakabe'2022)

Any elliptic variety X is an A-image. Moreover, if dim X = n then there is a surjective morphism $\mathbb{A}^{n+1} \to X$.

Proof.

Let (E, p, s) be a dominant spray of rank r on X. $\exists x_1, \ldots, x_k \in X$ with $s(E_{x_1}) \cup \ldots \cup s(E_{x_k}) = X$. Since X is unirational \Rightarrow rationally connected $\Rightarrow \exists \gamma \colon \mathbb{A}^1 \to X, x_1, \ldots, x_k \in \gamma(\mathbb{A}^1)$. Lift E to $\mathbb{A}^1 \Rightarrow$ trivial vector bundle, so $\mathbb{A}^r \times \mathbb{A}^1 \to X$ is surjective. Take $V_i \subseteq E_{x_i}$, dim $V_i = n$, such that $ds_{x_i} \colon V_i \to T_{x_i}(X)$ is surjective. We can assume that $s(V_1) \cup \ldots \cup s(V_k) = X$. Fix $y_i \in \mathbb{A}^1, \gamma(y_i) = x_i$. As $\gamma^*(E) \cong \mathbb{A}^r \times \mathbb{A}^1$, take linear operators L_i on $\gamma^*(E)_{y_i}$ that map a fixed subspace \mathbb{A}^n in \mathbb{A}^r to the preimage of V_i . Then $L \colon \mathbb{A}^n \times \mathbb{A}^1 \to \mathbb{A}^r \times \mathbb{A}^1$, $L(v, a) = (\sum_i \xi_i(a)L_i(v), a)$, where $\xi_i(y_j) = \delta_{ij}$. Then $s \circ \gamma_* \circ L \colon \mathbb{A}^{n+1} \to X$ is surjective.

Return to the result

Theorem (A.-Kaliman-Zaidenberg'2024)

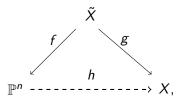
Let X be a complete variety. Then X is an A-image if and only if X is unirational.

Let us prove that a complete unirational variety X is an A-image.

By Chow's Lemma, \exists a birational surjection $X' \rightarrow X$ with X' projective \Rightarrow we assume further that X is projective.

Proof

X is unirational $\Rightarrow \exists$ a dominant rational map h from \mathbb{P}^n to X. By Hironaka's Theorem on elimination of indeterminacy, we have



where f is a composition of blowups with smooth centers and g is a generically finite morphism, which is birational if h is.

So \tilde{X} is uniformly rational \Rightarrow elliptic \Rightarrow A-image \Rightarrow X is an A-image.

Forstnerič'2017: if $\mathbb{K} = \mathbb{C}$, Kusakabe's result on a surjective morphism $\mathbb{A}^{n+1} \to X$ for elliptic X with dim X = n can be improved to a surjective morphism $\mathbb{A}^n \to X$

Some references - I

[1] Andrist. Integrable generators of Lie algebras of vector fields on \mathbb{C}^n . Forum Math. 31 (2019), no. 4, 943-949

[2] A. Automorphisms of algebraic varieties and infinite transitivity.
 St. Petersburg Math. J. 34 (2023), 143-178

[3] A. On images of affine spaces. Indag. Math. (N.S.) 34 (2023), 812-819

[4] A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg. Flexible varieties and automorphism groups. Duke Math. J. 162 (2013), 767-823

[5] A.-Flenner-Kaliman-Kutzschebauch-Zaidenberg. Infinite transitivity on affine varieties. In: Birational Geometry, Rational Curves, and Arithmetic, 1-14, Springer-Verlag, 2013

[6] A.-Kaliman-Zaidenberg. Varieties covered by affine spaces, uniformly rational varieties and their cones. Adv. Math. 437 (2024), article 109449 [7] A.-Kuyumzhiyan-Zaidenberg. Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity. Sb. Math. 203 (2012), 3-30

[8] A.-Kuyumzhiyan-Zaidenberg. Infinite transitivity, finite generation, and Demazure roots. Adv. Math. 351 (2019), 1-32

[9] A.-Perepechko-Süss. Infinite transitivity on universal torsors.J. London Math. Soc. 89 (2014), 762-778

[10] A.-Zaidenberg. Tits-type alternative for groups acting on toric affine varieties. IMRN 2022 (2022), 8162-8195

[11] A.-Zaidenberg. Tits-type alternative for certain groups acting on algebraic surfaces. Proc. Amer. Math. Soc. 151 (2023), 2813-2829

Some references - III

[12] Berest-Eshmatov-Eshmatov. Multitransitivity of Calogero-Moser spaces. Transform. Groups 21 (2016), 35-50

[13] Bogomolov-Karzhemanov-Kuyumzhiyan. Unirationality and existence of infinitely transitive models. In: Birational Geometry, Rational Curves, and Arithmetic, 77-92. Springer-Verlag, 2013

[14] Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4) (1970), 507-588

[15] Flenner-Kaliman-Zaidenberg. The Gromov-Winkelmann theorem for flexible varieties. J. Eur. Math. Soc. 18 (2016), 2483-2510

[16] Gaifullin-Shafarevich. Flexibility of normal affine horospherical varieties. Proc. Amer. Math. Soc. 147 (2019), 3317-3330

Some references - IV

[17] Kaliman-Zaidenberg. Gromov ellipticity and subellipticity. Forum Math. (2023), in print

[18] Kaliman-Zaidenberg. Gromov ellipticity of cones over projective manifolds, Math. Res. Lett. (2023), in print

[19] Kraft-Zaidenberg. Algebraically generated groups and their Lie algebras. J. Lond. Math. Soc. 109 (2024), no. 2, article e12866

[20] Lewis-Perry-Straub. An algorithmic approach to the polydegree conjecture for plane polynomial automorphisms. J. Pure Appl. Algebra 223 (2019), 5346-5359

[21] Perepechko. Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5. Func. Anal. Appl. 47 (2013), 45-52

[22] Shafarevich. Flexibility of affine horospherical varieties of semisimple groups. Sbornik: Math. 208 (2017), 285-310