ETHzürich

Finitely generated subgroups of algebraic elements of Cremona groups are bounded

Anne Lonjou¹, Piotr Przytycki², Christian Urech³ ¹University of the Basque Country UPV/EHU, Bilbao, ES, ² McGill University, Montreal, CA, ³ETH Zurich, CH

Groups of birational transformations

To an algebraic surface S over a field k we associate its group of birational transformations Bir(S).

Let G be an algebraic group and $G \times S \dashrightarrow S$ a faithful rational action on S. This induces an injection $G(k) \rightarrow Bir(S)$, whose image we call an *algebraic group*.

Definition

An element $g \in Bir(S)$ is *algebraic* if it is contained in an algebraic subgroup of Bir(S).

2 A question by Favre

A subgroup of Bir(S) such that all its elements are algebraic does not need to be contained in an algebraic subgroup. Consider for example the following subgroup H of $Bir(\mathbb{A}^2)$:

 $H = \{ (x + p(y), y) \mid p \in k[y] \}.$

However, in [2] Charles Favre asked whether a finitely generated subgroup of Bir(S) consisting only of algebraic elements is always contained in an algebraic subgroup. This subtle question remained open for more than a decade.

The question can be seen as an analogue of the Burnside problem, which has a positive answer for Bir(S):

Theorem (Cantat [1])

Let S be a regular surface over a field k and let G < Bir(S)be a finitely generated subgroup such that every element of Ghas **finite order**. Then G is **finite**.

3 Main Result

In our preprint [3] we give a positive answer to Favre's question:

Main Theorem (LPU)

Let S be a regular surface over a field k and let G < Bir(S)be a finitely generated subgroup such that every element of Gis algebraic. Then G is contained in an algebraic group.

The most interesting and difficult case is the case, where Sis a rational surface. In this case, Bir(S) is isomorphic to the *Cremona group* $\operatorname{Cr}_2(k) := \operatorname{Bir}(\mathbb{P}^2_k)$ over the field k.

5 Strategy of the proof

The proof of the Main Theorem has various ingredients.

Ingredient 1: Cantat showed in [1] the main theorem for the case, where G does not preserve rational fibration $\pi: S \dashrightarrow C$. This reduces the proof of the main theorem to the case, where G preserves a rational fibration, i.e., G is a subgroup of the Jonquières group.

Ingredient 2: If only finitely many fibres of the rational fibration are contracted by elements of G, we can construct a locally finite dimensional CAT(0) cube complex on which G acts by isometries, which implies the main theorem for this specific case.

Ingredient 3: We reduce the case, where G preserves a rational fibration to the case, where G preserves a rational fibration fiberwise by exploiting the dynamics of G on the base-curve C.

4 Degree growth of finitely generated groups

To a transformation $f \in Cr_2(k)$ we associate its degree deg(f). The growth of $deg(f^n)$ as $n \to \infty$ has been studied extensively. Recall that the Cremona group acts by isometries on an infinite dimensional hyperbolic space \mathbb{H}^{∞} and the degree growth is closely linked to the dynamics of this action.

Our Main Theorem allows us to describe the **degree growth of finitely generated subgroups** of $Cr_2(k)$ instead of just single elements. Let $G < Cr_2(k)$ be a finitely generated subgroup with a finite generating set T. Denote by $B_T(n)$ the set of all elements in G of word length l_T at most n and define $D_T(n) :=$ $\max_{f \in B_T(n)} \{ \deg(f) \}$. For two functions, φ and ψ on \mathbb{N} , we write $\varphi \asymp \psi$ if $\varphi(x) \leq a\psi(bx)$ and $\psi(x) \leq c\varphi(dx)$ for some a, b, c, d > 0

Corollary (LPU)

Let k be algebraically closed and let $G \subset Cr_2(k)$ be a finitely generated subgroup. Then one of the following is true: •All elements in G are algebraic, $D_T(n)$ is bounded, and G is

- contained in an algebraic subgroup.
- The group G preserves a rational fibration and $D_T(n) \simeq n$.
- The group G preserves an elliptic fibration and $D_T(n) \simeq n^2$.
- The group G preserves no fibration and $D_T(n) \simeq \lambda^n$.

References

- *Math. (2)*, 174(1):299–340, 2011.
- Bourbaki. Volume 2008/2009. Exposés 997–1011.

[1] Serge Cantat. Sur les groupes de transformations birationnelles des surfaces. Ann. of

[2] Charles Favre. Le groupe de Cremona et ses sous-groupes de type fini. Séminaire

[3] Anne Lonjou, Piotr Przytycki, and Christian Urech. Finitely generated subgroups of algebraic elements of plane cremona groups are bounded. arXiv:2307.01334, 2023.