## Notation

## $k$ is a field and $\bar{k}$ is an algebraic closure of $k$

For an integral domain $R, R^{[n]}$ denotes a polynomial ring in $n$ variables over $R$.

## The Epimorphism/Embedding Problem

Embedding Problem: Let $m, n$ be two positive integers. Is every closed embedding $\mathbb{A}_{k}^{m} \hookrightarrow \mathbb{A}_{k}^{n}$ rectifiable?
The ring theoretic formulation of this problem is the following which is known as the Epimorphism Problem.
Epimorphism Problem: Let $m, n$ be two positive integers. Then for a $k$-algebra epimorphism $\phi: k\left[X_{1}, \ldots, X_{n}\right] \rightarrow k\left[Y_{1}, \ldots, Y_{m}\right]$, does there exists a system of coordinates $\left\{F_{1}, \ldots, F_{n}\right\}$ of $k\left[X_{1}, \ldots, X_{n}\right]$ such that ker $\phi=\left(F_{1}, \ldots, F_{n-m}\right)$ ?
The famous Abhyankar-Sathaye Conjecture asserts an affirmative answer to the Epimorphism Problem for $m=n-1$ over fields of characteristic zero. In particular, it investigates the following version of the Epimorphism Problem. Question 1 . Let $k$ be a field. For some integer $n \geqslant 2$, let $H \in k\left[X_{1}, \ldots, X_{n}\right]$ be such that $\frac{k\left[X_{1}, \ldots, X_{n}\right]}{(H)}=k^{[n-1]}$. Does it follow that $k\left[X_{1}, \ldots, X_{n}\right]=k[H]^{[n-1]}$ ?

## Some known answers to Question 1

YES; ch. $k=0$ and $n=2$ ( Abhyankar-Moh (1975); Suzuki(1974)).
NO; ch. $k=p>0$ and $n \geqslant 2$. (Segre (1956/1957); Nagata (1972)).
Some partial affirmative results:
Linear planes: (Sathaye (1976); Russell(1976))
$H=a\left(X_{1}, X_{2}\right) X_{3}+b\left(X_{1}, X_{2}\right)$
Moreover, linear planes are shown to be of the form $H=a_{0}(Y) X_{3}+b(Y, Z)$ where $k\left[X_{1}, X_{2}\right]=k[Y, Z]$.
Linear hyperplanes:

- $H=a\left(X_{1}\right) X_{4}+b\left(X_{1}, X_{2}, X_{3}\right)$ over $\mathbb{C}$ (Kaliman, Venereau, Zaidenberg (2004)). Later extended over any field of characteristic zero (Kahoui, Essamaoui, Ouali (2020))
- $H=X_{1}^{r} X_{4}+f\left(X_{1}, X_{2}, X_{3}\right), r>1$ and $k$ is any field (Gupta, (2014)).
- $H=X_{1}^{r_{1}} \cdots X_{n-3}^{r_{n-3}} X_{n}-f\left(X_{n-2}, X_{n-1}\right)+X_{1} \cdots X_{n-3} g\left(X_{1}, \ldots, X_{n-1}\right), n \geqslant 4$,
$r_{i}>1$ and $k$ is any field (Ghosh, Gupta (2023)).


## Connection of linear hyperplanes with ZCP

$B$ be an affine $k$-domain of the following form.

$$
B=\frac{k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]}{(G)},
$$

where $G:=a\left(X_{1}, \ldots, X_{m}\right) Y-F\left(X_{1}, \ldots, X_{m}, Z, T\right)$.
Theorem A:(Gupta) Suppose that $a\left(X_{1}, \ldots, X_{m}\right)=X_{1}^{r_{1}} \cdots X_{m}^{r_{m}}, r_{i}>1$ and $F=$ $f(Z, T)$ is a non-trivial line (i.e., $\left.\frac{k[Z, T]}{(f)}=k^{[1]}, k[Z, T] \neq k[f]^{[1]}\right)$. Then $B^{[1]}=$ $k^{[m+3]}$ but $B \neq k^{[m+2]}$.
Corollary: Over a field of positive characteristic, the ring $B$ in Theorem A is counter example to the ZCP.
Problem: Investigate the necessary and sufficient conditions for $B=k^{[m+2]}$ ?

## Theorem I (Ghosh, Gupta, Pal)

Let $k$ be any field and $B$ be an affine $k$-domain as in (1), with $m=1$ and all roots of $a\left(X_{1}\right)$ in $\bar{k}$ are multiple roots. Then the following are equivalent.
(i) $k[X, Y, Z, T]=k[X, G]^{[2]}$.
(ii) $k[X, Y, Z, T]=k[G]^{[3]}$.
(iii) $B=k[x]^{[2]}$.
(iv) $B=k^{[3]}$.
(v) For every root $\lambda$ of $a(X), k(\lambda)[Z, T]=k(\lambda)[F(\lambda, Z, T)]^{[1]}$.

## Polynomial of type A

$\alpha_{0}\left(X_{1}, \ldots, X_{m}\right)=X_{1}^{r_{1}} \alpha_{1}\left(X_{1}, \ldots, X_{m}\right)$, for some $\alpha_{1} \in k^{[m]}, r_{1}>0$, with $X_{1} \nmid \alpha_{1}$ and for any $i \in\{2, \ldots, m\}$
$\alpha_{i}\left(X_{i}, \ldots, X_{m}\right):=\alpha_{i-1}\left(0, X_{i}, \ldots, X_{m}\right) / X_{i}^{r_{i}} \in k\left[X_{i}, \ldots, X_{m}\right], r_{i}>0$, with $X_{i} \nmid \alpha_{i}$. i.e., for $i \in\{1, \ldots, m-1\}$ there exist $\beta_{i} \in k^{[m-i+1]}$ such that
$\alpha_{0}=X_{1}^{r_{1}} \alpha_{1}\left(X_{1}, \ldots, X_{m}\right)$
$=X_{1}^{r_{1}}\left(X_{1} \beta_{1}\left(X_{1}, \ldots, X_{m}\right)+\alpha_{1}\left(0, X_{2}, \ldots, X_{m}\right)\right)$
$=X_{1}^{r_{1}}\left(X_{1}\left(X_{1}, X_{2}\right)\right.$
$=X_{1}^{r_{1}}\left(X_{1} \beta_{1}\left(X_{1}, \ldots, X_{m}\right)+X_{2}^{r_{2}} \alpha_{2}\left(X_{2}, \ldots, X_{m}\right)\right)$
$=X_{1}^{r_{1}}\left(X_{1} \beta_{1}\left(X_{1}, \ldots, X_{m}\right)+X_{2}^{r_{2}}\left(X_{2} \beta_{2}\left(X_{2}, \ldots, X_{m}\right)+X_{3}^{r_{3}} \alpha_{3}\left(X_{3}, \ldots, X_{m}\right)\right)\right.$
$=X_{1}^{r_{1}}\left(X_{1} \beta_{1}\left(X_{1}, \ldots, X_{m}\right)+\cdots+X_{m-1}^{r_{m-1}}\left(X_{m-1} \beta_{m-1}\left(X_{m-1}, X_{m}\right)+X_{m}^{r_{m}} \alpha_{m}\left(X_{m}\right)\right) \ldots\right)$. Example: $\alpha\left(X_{1}, \ldots, X_{m}\right)=a_{1}\left(X_{1}\right) \cdots a_{m}\left(X_{m}\right) \in \bar{k}\left[X_{1}, \ldots, X_{m}\right]$, where each $a_{i}\left(X_{i}\right)$ has a multiple root $\lambda_{i}$ in $\bar{k}$.

## Theorem II (Ghosh, Gupta, Pal)

Let $k$ be any field and $B$ be an affine domain of the following form as in (1) such that

$$
G:=\alpha_{0}\left(X_{1}, \ldots, X_{m}\right) Y-f(Z, T)-h\left(X_{1}, \ldots, X_{m}, Z, T\right)
$$

be such that
(a) $\alpha_{0}$ is a polynomial of type $A$ with respect to $\left(r_{1}, \ldots, r_{m}\right) \in \mathbb{Z}_{>1}^{m}$ in the system of coordinates $X_{1}-\lambda_{1}, \ldots, X_{m}-\lambda_{m}$, for some $\lambda_{i} \in \bar{k}$, .
(b) Every prime divisor of $\alpha_{0}$ divides $h$ in $k\left[X_{1}, \ldots, X_{m}, Z, T\right]$.
(c) For each $i, \lambda_{i}$ is separable over $k$ i.e. $k_{1}:=k\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is separable over $k$. Then the following are equivalent.
(i) $k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]=k\left[X_{1}, \ldots, X_{m}, G\right]^{[2]}$.
(ii) $k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]=k[G]^{[m+2]}$.
(iii) $B=k\left[x_{1}, \ldots, x_{m}\right]^{[2]}$.
(iv) $B=k^{[m+2]}$.
(v) $k[Z, T]=k[f(Z, T)]^{[1]}$.

Note: The family of hyperplanes defined by

$$
G=a_{1}\left(X_{1}\right) \cdots a_{m}\left(X_{m}\right) Y-f(Z, T)+h\left(X_{1}, \ldots, X_{m}, Z, T\right)
$$

are contained in the family of hyperplanes in Theorem B , if $a_{i}\left(X_{i}\right)$ has a separable multiple root in $\bar{k}$ and every prime divisor of $a_{i}\left(X_{i}\right)$ divides $h$.

## Theorem III (Ghosh, Gupta, Pal)

Let $k$ be a field of characteristic zero and $B$ be an affine domain as in (1). If

$$
G=a\left(X_{1}, \ldots, X_{m}\right) Y-f(Z, T),
$$

then the following are equivalent.
(i) $k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]=k\left[X_{1}, \ldots, X_{m}, G\right]^{[2]}$.
(ii) $k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]=k[G]^{[m+2]}$.
(iii) $B=k\left[x_{1}, \ldots, x_{m}\right]^{[2]}$.
(iv) $B=k^{[m+2]}$.
(v) $k[Z, T]=k[f(Z, T)]^{[1]}$.
(vi) $B$ is an $A^{2}$-fibration over $k\left[x_{1}, \ldots, x_{m}\right]$.
(vii) $B^{[l]}=k^{[m+l+2]}$ for some $l \geqslant 0$.

## A new Family of Counter Examples to ZCP (Ghosh,

 Pal)$$
A=\frac{k\left[X_{1}, \ldots, X_{m}, Y, Z, T\right]}{\left(a_{1}\left(X_{1}\right) \cdots a_{m}\left(X_{m}\right) Y-f(Z, T)\right)},
$$

where $f(Z, T)$ is a non-trivial line, each $a_{i}$ has only multiple roots and some $a_{i}$ has at least two distinct roots in $\bar{k}$.

## Consequences

(i) The equivalence of satememts (ii) and (iv) in Theorems I, II, III solves the Epimorphism Problem for the concerned hyperplanes and thus provides affirmative answers to the Abhyankar-Sathaye Conjecture.
(ii) In Theorem II, over a field of positive characteristic if $f(Z, T)$ is a non-trivial line, $B$ can be shown to be stably isomorphic to $k^{[m+3]}$. But the equivalence of the satements (iv) and ( v$)$ yields that $B \neq k^{[m+2]}$. Thus the theory connects the Epimorphism and Zariski Cancellation Problem.

## References

S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
P. Ghosh and N. Gupta, On the triviality of a family of linear hyperplanes, Adv. Math. 428 (2023) 109166.
P. Ghosh, N. Gupta and A. Pal, On Abhyankar-Sathaye Conjecture for a family of linear hypersurfaces in $\mathbb{A}_{k}^{4}$, https:///arxiv.org/html/2403.17397v1.
P. Ghosh, N. Gupta and A. Pal, On the Epimorphism Problem for a family of linear hypersurfaces in $\mathbb{A}_{k}^{4}$, preprint.
N. Gupta, On the family of affine threefolds $x^{m} y=F(x, z, t)$, Compositio Math. 150 (2014), 979-998.
N. Gupta, On Zariski's Cancellation Problem in positive characteristic, Adv. Math. 264 (2014), 296-307.
S. Kaliman, S. Vènéreau and M. Zaidenberg,Simple birational extensions of the polynomial algebra $\mathbb{C}^{[3]}$, Trans. Amer. Math. Soc. 356(2) (2004), 509-555.
P. Russell, Simple birational extensions of two dimensional affine rational domains, Compositio Math. 33(2) (1976), 197-208.
A. Sathaye, On linear planes, Proc. Amer. Math. Soc. 56 (1976), 1-7.
M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de Yespace ${ }^{2}$, J. Math. Soc. Japan 26 (1974), 241-257.

