Overview

Let $S = (a_0, \ldots, a_n) \in (\mathbb{N}^+)^{n+1}$. A **Pham-Brieskorn ring** is a ring of the following form:

$$B_S = B_{a_0,\dots,a_n} = \mathbb{C}[X_0,\dots,X_n]/\langle X_0^{a_0}+\dots+X_n^{a_n}]$$

where $a_0, \ldots, a_n \in \mathbb{N}^+$. Observe that if we let $L = \operatorname{lcm}(S)$ and define $w_i = 1$ $\deg(X_i) = L/a_i$, then we can view $B_S = B_{a_0,...,a_n}$ as an N-graded ring and Proj $B_S \subset \mathbb{P}(w_0, \ldots, w_n)$ as a weighted projective hypersurface.

Locally Nilpotent Derivations

- Let B be a commutative ring. A derivation $D: B \rightarrow B$ is locally nilpotent if for every $b \in B$ there exists $n \in \mathbb{N}^+$ such that $D^n(b) = 0$.
- Example: $B = \mathbb{C}[X_0, \dots, X_n]$. For any *i*, the derivation $D = \frac{\partial}{\partial X_i}$ is a locally nilpotent derivation.
- A ring B is rigid if the only locally nilpotent derivation $D: B \rightarrow B$ is the zero derivation. (If B is a k-domain, Spec B is rigid if it admits no non-trivial \mathbb{G}_a -actions.)

Rigidity Conjecture

Question: For which $(a_0, \ldots, a_n) \in (\mathbb{N}^+)^{n+1}$ is B_{a_0, \ldots, a_n} rigid? The following Conjecture has been open for over 25 years. [6] **Main Conjecture:** Suppose that $n \ge 2$, $a_0 \le \cdots \le a_n$. Then, B_{a_0,\ldots,a_n} is not rigid $\iff a_0 = 1$ or $a_0 = a_1 = 2$.

Remarks:

- (\Leftarrow) is easy to prove.
- The n = 2 case of the conjecture is known to be true by Lemma 4 in [6].

Despite many partial results, there was no clear strategy for how to prove this conjecture in general.

A Reduction Theorem

The cotype of a tuple (a_0, \ldots, a_n)

- Given $S = (a_0, \ldots, a_n) \in (\mathbb{N}^+)^{n+1}$, let $S_i = (a_0, \ldots, a_{i-1}, \hat{a}_i, a_{i+1}, \ldots, a_n)$.
- Let $L = \operatorname{lcm}(S)$ and let $L_i = \operatorname{lcm}(S_i)$.
- Define $\operatorname{cotype}(S) = \#\{i : L_i \neq L\}.$
- Given $S = (a_0, \ldots, a_n) \in (\mathbb{N}^+)^{n+1}$ and $i \in \{0, \ldots, n\}$, define $g_i(S) = \gcd(a_i, \operatorname{lcm}(S_i)).$
- Let $S = (a_0, \ldots, a_n)$ and $S' = (a'_0, \ldots, a'_n)$ be elements of $(\mathbb{N}^+)^{n+1}$ and let $i \in \{0, \ldots, n\}$. We write $S \leq^i S'$ if and only if

$$S_i = S'_i$$
 and $g_i(S') \mid a_i \mid a'_i$

We write $S <^i S'$ if and only if $S \leq^i S'$ and $S \neq S'$.

Example: $(2, 3, 3, 2) <^{3} (2, 3, 3, 4) <^{0} (10, 3, 3, 4)$

Our first main result reduces the Main Conjecture to the cotype 0 cases.

Reduction Theorem: To prove the Main Conjecture, it suffices to prove it for the cotype 0 cases.

The Rigid Pham-Brieskorn Threefolds

Michael Chitayat and Adrien Dubouloz

Sami Shamoon College of Engineering and Université de Bourgogne

Locally Nilpotent Derivations and Polar cylinders

Polar cylinders

- Let X be a normal projective **k**-variety. A Q-divisor is a sum $D = \sum_{i=1}^{n} a_i C_i$ where each C_i is a prime divisor and $a_i \in \mathbb{Q}^+$. Two \mathbb{Q} -divisors D and D' are Q-linearly equivalent (write $D \sim_{\mathbb{Q}} D'$) if there exists $n \in \mathbb{N}^+$ such that nD and nD' are linearly equivalent divisors.
- Let X be normal projective **k**-variety. An open subset $U \subset X$ is called a cylinder if $U \cong \mathbb{A}^1 \times Z$ for some affine variety Z.
- Let H be a Q-divisor of X. A cylinder $U \subset X$ is H-polar if $U = X \setminus \text{Supp}(D)$ for some effective \mathbb{Q} -Cartier \mathbb{Q} -divisor D such that $D \sim_{\mathbb{Q}} sH$ where $s \in \mathbb{Q}^+$.

There is an important connection between locally nilpotent derivations of graded rings and polar cylinders discovered by Kishimoto, Prokhorov and Zaidenberg in [7], and generalized in [5]. The theorem is as follows:

Cylinder Theorem: Assume $B = \bigoplus_{n \in \mathbb{N}} B_n$ satisfies $\operatorname{trdeg}(B/B_0) \geq 2$, and is a normal finitely generated \mathbf{k} -domain that is "saturated in codimension one". Let $X = \operatorname{Proj} B$ and let H be an ample Q-divisor such that $B \cong \bigoplus_{i \in \mathbb{N}} H^0(X, \mathcal{O}_X(nH))$.

B is not rigid $\iff X$ contains an *H*-polar cylinder.

Proof of the 3 dimensional case

Using the previously discussed material, we offer a proof of the 3-dimensional case of the Main Conjecture. To derive this result, we first state the following result which is a corollary of the Cylinder Theorem.

Corollary 1: Let $B = B_{a_0,a_1,a_2,a_3}$ where $\operatorname{cotype}(a_0, a_1, a_2, a_3) = 0$, let $\alpha = L - C$ $\sum_i \deg(x_i)$, and let $X = \operatorname{Proj} B$. Then, $\mathcal{O}_X(K_X) \cong \mathcal{O}_X(\alpha)$ and

(a) if $\alpha > 0$ then B is rigid $\iff X$ doesn't contain a K_X -polar cylinder; (b) if $\alpha = 0$ then X is not birationally ruled, so B is rigid; (c) if $\alpha < 0$ then B is rigid $\iff X$ doesn't contain a $-K_X$ -polar cylinder.

In view of Corollary 1, there are 2 cases to consider: the $\alpha > 0$ case, and the $\alpha < 0$ case.

The $\alpha > 0$ case.

We want to prove that if $X = \operatorname{Proj} B_{a_0,a_1,a_2,a_3}$, $\operatorname{cotype}(a_0,a_1,a_2,a_3) = 0$ and $\alpha > 0$, then X doesn't contain a K_X -polar cylinder. But in fact, by a generalization of an argument in [2], X doesn't contain any cylinder, and so the $\alpha > 0$ case is complete by Corollary 1 (a).

The $\alpha < 0$ case.

If $X = \operatorname{Proj} B_{a_0, a_1, a_2, a_3}$, $\operatorname{cotype}(a_0, a_1, a_2, a_3) = 0$ and $\alpha < 0$, then X is a singular definition. Pezzo surface with quotient singularities. A number theoretic argument (Lemma 4.2.4 in [4]) shows that only 8 cases are possible. They are as follows:

- $(2, 4, 4, 4), \quad (3,$ • (2, 3, 3, 6),(2, 3, 6, 6),
- (2, 3, 4, 12)
- (2, 3, 5, 30)

The first six cases are resolved by Cheltsov, Park and Won's classification of anticanonical polar cylinders in del Pezzo surfaces with Du Val singularities [3] and by computations of log canonical threshholds [1]. It now remains to prove the (2, 3, 4, 12) and (2, 3, 5, 30) cases.

By Corollary 1 (c), it suffices to show that $X = \operatorname{Proj} B_{2,3,5,30}$ does not contain a $-K_X$ polar cylinder. Unfortunately, we cannot apply the classification in [3] because Xdoes not have Du Val singularities.

Facts about $X = \operatorname{Proj} B_{2,3,5,30}$

- $\operatorname{mult}_{P_2}(\Delta) = \operatorname{mult}_{P_3}(\Delta) = \operatorname{mult}_{P_5}(\Delta) = 1;$

then $\Delta \subseteq \operatorname{Supp}(D)$.

begin with. We obtain:

Proposition: The surface $X = \operatorname{Proj} B_{2,3,5,30}$ does not contain an anti-canonical polar cylinder. Consequently, $B_{2,3,5,30}$ is rigid.

Remark: The proof that $B_{2,3,4,12}$ is rigid is done in the same way. We conclude:

Suppose that $a_0 \leq a_1 \leq a_2 \leq a_3$. Then,

- [1] Ivan Cheltsov, Jihun Park, and Constantin Shramov. Exceptional del Pezzo hypersurfaces. Journal of Geometric Analysis, 20(4):787–816, 2010.
- [2] Ivan Cheltsov, Jihun Park, and Joonyeong Won. Cylinders in del Pezzo Surfaces.
- [3] Ivan Cheltsov, Jihun Park, and Joonyeong Won. Cylinders in singular del Pezzo surfaces. Compositio Mathematica, 152(6):1198-1224, 2016.
- [4] Michael Chitayat. Rigidity of Pham-Brieskorn Threefolds. https://ruor.uottawa.ca/handle/10393/44886, 2023. University of Ottawa, Theses and Dissertations.
- [5] Michael Chitayat and Daniel Daigle. Locally nilpotent derivations of graded integral domains and cylindricity. Transformation Groups, 2022.
- [6] Shulim Kaliman and Mikhail Zaidenberg. In Annales de l'institut Fourier, volume 50, pages 1649–1669, 2000.
- [7] Takashi Kishimoto, Yuri Prokhorov, and Mikhail Zaidenberg. G_a -actions on affine cones. Transformation Groups, 18:1137–1153, 2013.

The (2,3,5,30) case.

• X has 3 singular points $\{P_2, P_3, P_5\}$ of type $\frac{1}{2}(1, 1), \frac{1}{3}(1, 1), \frac{1}{5}(1, 1);$ • the curve $\Delta = V_+(x_3) \subset X$ is isomorphic to \mathbb{P}^1 and satisfies

• if $\tilde{X} \to X$ is the minimal resolution of singularities of X, then the exceptional locus consists of three curves \tilde{E}_2 , \tilde{E}_3 and \tilde{E}_5 , each isomorphic to \mathbb{P}^1 .

Lemma: If X contains $a - K_X$ -polar cylinder $U = X \setminus \text{Supp}(D)$ where $D = \sum_{i \in I} a_i C_i$,

We now assume for the sake of a contradiction, that X contains a $-K_X$ -polar cylinder $U = X \setminus \text{Supp}(D)$ where D is an effective anti-canonical Q-divisor. By the Lemma, D contains Δ in its support, one can show that X contains a $-K_{\tilde{X}}$ -polar cylinder whose complement contains Δ, \tilde{E}_2 and \tilde{E}_3 in its support. Moreover, these three curves can be contracted via a morphism $\tau : X \to X$. Since these three curves are contained in the complement of the $-K_{\tilde{X}}$ -polar cylinder, it turns out that \hat{X} is a smooth degree 1 del Pezzo surface which too contains a $-K_{\hat{X}}$ -polar cylinder. But this contradicts Cheltsov, Park and Won's classification of del Pezzo surfaces that contain anti-canonical polar cylinders established in [3]. We thus conclude that X itself could not have contained an anti-canonical polar cylinder to

Main Theorem

 B_{a_0,a_1,a_2,a_3} is not rigid $\iff a_0 = 1$ or $a_0 = a_1 = 2$.

References

International Mathematics Research Notices, 2017(4):1179–1230, 05 2016. Miyanishi's characterization of the affine 3-space does not hold in higher dimensions.