RIGIDITY OF PERIODIC POINTS FOR LOXODROMIC AUTOMORPHISMS OF AFFINE SURFACES

Marc Abboud, institut de mathématiques, Université de Neuchâtel 5-8 May 2024

1. Dynamical degree	2. Rigidity of periodic points
Let X_0 be an affine surface over a field K and let $f \in \operatorname{Aut}(X_0)$. A completion X of X_0 is a projective surface with an open embedding $X_0 \hookrightarrow X$. Let H be an ample divisor over X . The <i>dynamical degree</i> of f is defined as the following limit $\lambda(f) := \lim_{n} ((f^n)^* H \cdot H)^{1/n}.$ It does not depend on X nor on H . An automorphism is called <i>loxodromic</i> if $\lambda(f) > 1$.	Main theoremTheorem 1 ([Abb24a]) Let X_0 be a normal affine surface over a field K and let $f, g \in$ Aut(X_0) be loxodromic automorphisms, thenPer(f) \cap Per(g) Zariski dense \Leftrightarrow Per(f) = Per(g).(2)

3. Dynamics of a loxodromic automorphism

4. Construction of dynamical Green functions

Theorem 2 ([Abb23]) *If f is a loxodromic automorphisms of* X_0 *, there exists a completion* X *of* X_0 *and* $p_+, p_- \in X \setminus X_0(\mathbf{K})$ *such that*

1. $p_+ \neq p_-$. 2. $f(p_+) = p_+, f^{-1}(p_-) = p_-$.

3. There exists $N_0 \ge 1$, $f^{\pm N_0}(X \setminus X_0) = p_{\pm}$.

4. $f^{\pm 1}$ at p_{\pm} is locally attracting for any absolute value over **K** for the Euclidian topology. If *v* is an absolute value on **K**, write C_v is the completion of the algebraic closure of **K** with respect to *v*.

5. Equidistribution of periodic points

Theorem 4 ([YZ23]) Suppose **K** is a number field. Let (p_n) be a generic sequence of periodic points of f, then for every absolute value v of **K**,

$$\frac{1}{\#\operatorname{Gal}(p_n)} \sum_{q \in \operatorname{Gal}(p_n)} \delta_q \to \mu_v.$$
(4)

This implies $\operatorname{Per}(f) \cap \operatorname{Per}(g)$ Zariski dense $\Rightarrow \forall v, \quad \mu_{f,v} = \mu_{g,v}.$

Theorem 3 Let v be an absolute value over **K** with an embedding $X_0 \hookrightarrow \mathbb{C}_v^n$. The functions

$$\forall p \in X_0(\mathbf{C}_v), \quad G_v^{\pm} = \lim_N \frac{1}{\lambda(f)^N} \log^+ \left| \left| f^{\pm N}(p) \right| \right|$$
(3)

are well defined over $X_0(\mathbb{C}_v)$ and satisfy the following properties: 1. G_v^{\pm} is continuous, ≥ 0 , plurisubharmonic and pluriharmonic over the set $\{G_v^{\pm} > 0\}$. 2. $G_v^{\pm}(p) = 0$ if and only if $\{f^{\pm n}(p)\}_{n \geq 0}$ is bounded. 3. $G_v^{\pm}(f^{\pm 1}(p)) = \lambda(f)p$. The measure $\mu_v := \mathrm{dd}^c G_v^+ \wedge \mathrm{dd}^c G_v^-$ is called the *equilibrium measure* of f at v.

6. Canonical heights

Theorem 5 Suppose **K** is a number field and $\mathscr{M}(\mathbf{K})$ is the set of (normalised) absolute values of **K**. The canonical height of f is defined as

$$\forall p \in X_0(\overline{\mathbf{K}}), \quad h_f(p) = \frac{1}{\# \operatorname{Gal}(p)} \sum_{v \in \mathscr{M}(\mathbf{K})} \sum_{q \in \operatorname{Gal}(p)} G_v(q)$$

where $G_v := G_v^+ + G_v^-$. And we have $p \in \text{Per}(f) \Leftrightarrow h_f(p) = 0$.

Plan of proof in the number field case

$\operatorname{Per}(f) \cap \operatorname{Per}(g) \operatorname{Zariski} \operatorname{dense} \quad \Rightarrow \quad \forall v \in \mathscr{M}(\mathbf{K}), \quad \mu_{f,v} = \mu_{g,v} \quad \Rightarrow \quad \forall v \in \mathscr{M}(\mathbf{K}), \quad \{G_{v,f} = 0\} = \{G_{v,g} = 0\} \quad \Rightarrow \quad \operatorname{Per}(f) = \operatorname{Per}(g).$

(9)

(10)

7. The character variety of the punctured torus

Let \mathbb{T}_1 be the once punctured torus, we have $\pi_1(\mathbb{T}_1) = F_2 = \langle a, b \rangle$. Let X be the character variety

$$\mathsf{X} := \operatorname{Hom}\left(\pi_{1}(\mathbb{T}_{1}), \operatorname{SL}_{2}(\mathbf{C})\right) / / \operatorname{SL}_{2}(\mathbf{C}).$$
(6)

By a theorem of Fricke and Klein, we have the following isomorphism

$$[\rho] \in \mathsf{X} \mapsto (\mathrm{Tr}\rho(a), \mathrm{Tr}\rho(b), \mathrm{Tr}\rho(ab)) =: (x, y, z) \in \mathbb{C}^3.$$
(7)

And we have the following relation in $SL_2(\mathbb{C})$:

$$x^{2} + y^{2} + z^{2} = xyz + \operatorname{Tr}\rho(aba^{-1}b^{-1}) + 2.$$
(8)

The generalised Mapping class group $Mod(\mathbb{T}_1)^* = GL_2(\mathbb{Z})$ acts on X and preserves the regular function $Tr \rho(aba^{-1}b^{-1})$.

9. The parameter D = 4

8. The family of Markov surfaces

Let $D \in \mathbb{C}$, the Markov surface M_D of parameter D is the hypersurface in \mathbb{C}^3 defined by the equation

$$x^2 + y^2 + z^2 = xyz + D.$$
 (11)

The group homomorphism

 $\operatorname{Mod}(\mathbb{T}_1^*) \supset \operatorname{SL}_2(\mathbf{Z}) \to \operatorname{Aut}(M_D)$

(14)

is with finite kernel and the image is of finite index.

10. Strong rigidity of periodic points

Theorem 6 ([DF17; Abb24b; Abb24a]) *If* $X_0 = \mathbf{A}_{\mathbf{C}}^2$ or $X_0 = M_D$ with D transcendental or $D = 0, \cos \frac{2\pi}{a}, q \ge 2$, then

 $\operatorname{Per}(f) \cap \operatorname{Per}(g) \ Zariski \ dense \ \Leftrightarrow \exists N, M \in \mathbb{Z} \setminus \{0\}, f^N = g^M.$ (13)

$(u,v) \in \mathbb{G}_m^2 \mapsto \left(u + \frac{1}{u}, v + \frac{1}{v}, uv + \frac{1}{uv}\right).$

and this cover is $SL_2(\mathbf{Z})$ -equivariant with

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot (u, v) = \left(x^a y^b, x^c y^d \right).$$

References

[Abb23] Marc Abboud. On the Dynamics of Endomorphisms of Affine Surfaces. Nov. 2023.

[Abb24a] Marc Abboud. Rigidity of Periodic Points for Loxodromic Automorphisms of Affine Surfaces, In Preparation. 2024.

[Abb24b] Marc Abboud. Unlikely Intersections Problem for Automorphisms of Markov Surfaces. Jan. 2024.
[DF17] Romain Dujardin and Charles Favre. "The Dynamical Manin–Mumford Problem for Plane Polynomial Automorphisms". In: Journal of the European Mathematical Society 19.11 (Oct. 2017), pp. 3421–3465.
[YZ23] Xinyi Yuan and Shou-Wu Zhang. Adelic Line Bundles on Quasi-Projective Varieties. Feb. 2023.

11. Counterexamples and Conjecture

If $A, B \in SL_2(\mathbb{Z})$, then they induce automorphisms f_A, f_B over \mathbb{G}_m^2 and we have $Per(f_A) = \mathbb{U} \times \mathbb{U} = Per(f_B)$ and this also holds over M_4 .

Conjecture 7 *If* char $\mathbf{K} = 0$ and X_0 is a normal affine surface over \mathbf{K} , then for $f, g \in Aut(X_0)$ loxodromic one has

$$\operatorname{Per}(f) = \operatorname{Per}(g) \Leftrightarrow \exists N, M \in \mathbb{Z} \setminus \{0\}, \quad f^N = g^M$$
(15)

unless $X_0 = \mathbb{G}_m^2$ or M_4 .